Biconservative submanifolds in complex space forms

Dorel Fetcu

Gheorghe Asachi Technical University of Iaşi

Differential Geometry Workshop 2023

6-9 September 2023
Alexandru loan Cuza University of Iaşi, Romania
(1) Biharmonic and biconservative submanifolds

- The biharmonic equation
- Introducing biconservative submanifolds
(2) PMC biconservative surfaces in $\mathbb{C} P^{n}$ and $\mathbb{C} H^{n}$
- PMC biconservative submanifolds
- PMC biconservative surfaces (the characterization result)
- PMC biconservative surfaces (a Simons type formula)
(3) On the geometry of CMC biconservative surfaces in $N^{2}(c)$

4. Reduction of codimension for PMC biconservative surfaces
(5) Segre embedding and biharmonicity
(6) References

Harmonic and biharmonic maps

$$
\text { Let } \varphi:(M, g) \rightarrow(N, h) \text { be a smooth map. }
$$

Energy functional
$E(\varphi)=E_{1}(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} v_{g}$
Euler-Lagrange equation

$$
\begin{aligned}
\tau(\varphi)=\tau_{1}(\varphi) & =\operatorname{trace}_{g} \nabla d \varphi \\
& =0
\end{aligned}
$$

Critical points of E : harmonic maps

Bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g}
$$

Euler-Lagrange equation

$$
\begin{aligned}
\tau_{2}(\varphi) & =\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} \bar{R}(d \varphi, \tau(\varphi)) d \varphi \\
& =0
\end{aligned}
$$

Critical points of E_{2} : biharmonic maps

The biharmonic equation

G.-Y. Jiang (1986):

$$
\tau_{2}(\varphi)=\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} \bar{R}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N$

The biharmonic equation

G.-Y. Jiang (1986):

$$
\tau_{2}(\varphi)=\Delta^{\varphi} \tau(\varphi)-\operatorname{trace}_{g} \bar{R}(d \varphi, \tau(\varphi)) d \varphi=0
$$

where

$$
\Delta^{\varphi}=\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)
$$

is the rough Laplacian on sections of $\varphi^{-1} T N$

- it is a fourth-order non-linear elliptic equation
- any harmonic map is biharmonic
- a non-harmonic biharmonic map is proper-biharmonic
- a submanifold $i: M \rightarrow N$ is a biharmonic submanifolds if the immersion i is biharmonic

Biconservative submanifolds

- D. Hilbert (1924): a symmetric 2-covariant tensor S associated to a variational problem, conservative at critical points, i.e., $\operatorname{div} S=0$ at these points, called the stress-energy tensor;

Biconservative submanifolds

- D. Hilbert (1924): a symmetric 2-covariant tensor S associated to a variational problem, conservative at critical points, i.e., $\operatorname{div} S=0$ at these points, called the stress-energy tensor;
- P. Baird and J. Eells (1981); A. Sanini (1983): used the tensor

$$
S=\frac{1}{2}|d \varphi|^{2} g-\varphi^{*} h
$$

that satisfies

$$
\operatorname{div} S=-\langle\tau(\varphi), d \varphi\rangle
$$

to study harmonic maps, since

$$
\varphi=\text { harmonic } \Rightarrow \operatorname{div} S=0
$$

Obviously
$\varphi: M \rightarrow N$ is an isometric immersion $\Rightarrow \tau(\varphi)=$ normal $\Rightarrow \operatorname{div} S=0$

- G. Y. Jiang (1987): the stress-energy tensor S_{2} of the bienergy

$$
\begin{aligned}
S_{2}(X, Y)= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle
\end{aligned}
$$

that satisfies

$$
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle
$$

If $\varphi: M \rightarrow N$ is an isometric immersion, then $\operatorname{div} S_{2}=-\tau_{2}(\varphi)^{\top}$

- G. Y. Jiang (1987): the stress-energy tensor S_{2} of the bienergy

$$
\begin{aligned}
S_{2}(X, Y)= & \frac{1}{2}|\tau(\varphi)|^{2}\langle X, Y\rangle+\langle d \varphi, \nabla \tau(\varphi)\rangle\langle X, Y\rangle \\
& -\left\langle d \varphi(X), \nabla_{Y} \tau(\varphi)\right\rangle-\left\langle d \varphi(Y), \nabla_{X} \tau(\varphi)\right\rangle
\end{aligned}
$$

that satisfies

$$
\operatorname{div} S_{2}=-\left\langle\tau_{2}(\varphi), d \varphi\right\rangle
$$

If $\varphi: M \rightarrow N$ is an isometric immersion, then $\operatorname{div} S_{2}=-\tau_{2}(\varphi)^{\top}$

Remark

If $\varphi: M \rightarrow(N, h)$ is a fixed map, then E_{2} can be thought as a functional on the set of all Riemannian metrics on M whose critical points are Riemannian metrics determined by $S_{2}=0$.

Definition

A submanifold $\varphi: M \rightarrow N$ of a Riemannian manifold N is called a biconservative submanifold if $\operatorname{div} S_{2}=0$, i.e., $\tau_{2}(\varphi)^{\top}=0$.

Definition

A submanifold $\varphi: M \rightarrow N$ of a Riemannian manifold N is called a biconservative submanifold if div $S_{2}=0$, i.e., $\tau_{2}(\varphi)^{\top}=0$.

Theorem (Balmuş, Montaldo, Oniciuc - 2012)
A submanifold M in a Riemannian manifold N, with second fundamental form B, mean curvature vector field H, and shape operator A, is biharmonic iff

$$
\frac{m}{2} \nabla|H|^{2}+2 \operatorname{trace} A_{\nabla \perp H}(\cdot)+2 \operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\top}=0
$$

and

$$
\Delta^{\perp} H+\operatorname{trace} B\left(\cdot, A_{H} \cdot\right)+\operatorname{trace}(\bar{R}(\cdot, H) \cdot)^{\perp}=0
$$

where Δ^{\perp} is the Laplacian in the normal bundle.

Submanifolds with parallel mean curvature

Let M^{m} be a submanifold of a Riemannian manifold N

$$
\begin{gathered}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \quad \text { (Eq. Gauss) } \\
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\frac{1}{X}} V \quad \text { (Eq. Weingarten) }
\end{gathered}
$$

Definition
If the mean curvature vector field H is parallel in the normal bundle, i.e., $\nabla^{\perp} H=0$, then M is called a PMC surface.

Definition

If the mean curvature $|H|$ is constant, then M is called a CMC surface.

PMC biconservative submanifolds

Let M^{m} be a submanifold of a complex space form $N^{n}(c)$ with mean curvature vector field H and decompose $J H=T+N$.

PMC biconservative submanifolds

Let M^{m} be a submanifold of a complex space form $N^{n}(c)$ with mean curvature vector field H and decompose $J H=T+N$.

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{m} be a PMC submanifold of $N^{n}(c)$.

- If $c=0$, then M^{m} is biconservative, and
- if $c \neq 0$, then M^{m} is biconservative iff JT is normal to M.

PMC biconservative submanifolds

Let M^{m} be a submanifold of a complex space form $N^{n}(c)$ with mean curvature vector field H and decompose $J H=T+N$.

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{m} be a PMC submanifold of $N^{n}(c)$.

- If $c=0$, then M^{m} is biconservative, and
- if $c \neq 0$, then M^{m} is biconservative iff JT is normal to M.

Corollary

Let M^{m} be a PMC totally real submanifold of $N^{n}(c)$ (i.e., $J T M^{m} \subset N M^{m}$). Then M^{m} is biconservative.

Corollary
Any PMC real hypersurface $M^{2 n-1}$ of $N^{n}(c)$ is biconservative.

PMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a PMC surface in a complex space form $N^{n}(c)$.

- If $c=0$, then M^{2} is biconservative.
- If $c \neq 0$, then M^{2} is biconservative iff it is totally real.

Proof.

- When $c \neq 0, M$ is biconservative iff $J T$ is normal.

Proof.

- When $c \neq 0, M$ is biconservative iff $J T$ is normal.
- the Ricci equation

$$
\left\langle\left[A_{H}, A_{V}\right] X, Y\right\rangle=-\langle\bar{R}(X, Y) H, V\rangle \quad \text { implies that } \quad\left[A_{H}, A_{J T}\right]=0
$$

Proof.

- When $c \neq 0, M$ is biconservative iff $J T$ is normal.
- the Ricci equation

$$
\left\langle\left[A_{H}, A_{V}\right] X, Y\right\rangle=-\langle\bar{R}(X, Y) H, V\rangle \quad \text { implies that } \quad\left[A_{H}, A_{J T}\right]=0
$$

- it follows that, at each point $p \in M$, there exists a basis $\left\{e_{1}, e_{2}\right\}$ such that

$$
A_{H}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad A_{J T}=\left[\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right]
$$

Proof.

- When $c \neq 0, M$ is biconservative iff $J T$ is normal.
- the Ricci equation

$$
\left\langle\left[A_{H}, A_{V}\right] X, Y\right\rangle=-\langle\bar{R}(X, Y) H, V\rangle \quad \text { implies that } \quad\left[A_{H}, A_{J T}\right]=0
$$

- it follows that, at each point $p \in M$, there exists a basis $\left\{e_{1}, e_{2}\right\}$ such that

$$
A_{H}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad A_{J T}=\left[\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right]
$$

- from the expressions of $\bar{\nabla}_{X} J H$ and $\bar{\nabla}_{X} J T$, as $\nabla^{\perp} H=0$, we have, at p,

$$
\begin{aligned}
\mu_{1}+\mu_{2} & =-\left(\lambda_{1}+\lambda_{2}\right)\left\langle J e_{1}, e_{2}\right\rangle^{2}+\sum_{i=1}^{2}\left\langle B\left(e_{i}, T\right), J e_{i}\right\rangle \\
2|T|^{2} & =2|H|^{2}\left\langle J e_{1}, e_{2}\right\rangle^{2}+\operatorname{trace}\langle J B(\cdot, T), \cdot\rangle
\end{aligned}
$$

Proof.

- When $c \neq 0, M$ is biconservative iff $J T$ is normal.
- the Ricci equation

$$
\left\langle\left[A_{H}, A_{V}\right] X, Y\right\rangle=-\langle\bar{R}(X, Y) H, V\rangle \quad \text { implies that } \quad\left[A_{H}, A_{J T}\right]=0
$$

- it follows that, at each point $p \in M$, there exists a basis $\left\{e_{1}, e_{2}\right\}$ such that

$$
A_{H}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad A_{J T}=\left[\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right]
$$

- from the expressions of $\bar{\nabla}_{X} J H$ and $\bar{\nabla}_{X} J T$, as $\nabla^{\perp} H=0$, we have, at p,

$$
\begin{aligned}
\mu_{1}+\mu_{2} & =-\left(\lambda_{1}+\lambda_{2}\right)\left\langle J e_{1}, e_{2}\right\rangle^{2}+\sum_{i=1}^{2}\left\langle B\left(e_{i}, T\right), J e_{i}\right\rangle \\
2|T|^{2} & =2|H|^{2}\left\langle J e_{1}, e_{2}\right\rangle^{2}+\operatorname{trace}\langle J B(\cdot, T), \cdot\rangle
\end{aligned}
$$

- Now, if $T_{p} \neq 0$, consider the orthonormal basis $\left\{X_{1}=T_{p} /\left|T_{p}\right|, X_{2}\right\}$, tangent to M^{2}. Since $J T$ is normal, we have

$$
\left\langle J X_{2}, X_{1}\right\rangle=0
$$

- Next, assume that $T_{p}=0$. It follows that

$$
2|H|^{2}\left\langle J e_{1}, e_{2}\right\rangle^{2}=0
$$

that is

$$
\left\langle J e_{1}, e_{2}\right\rangle=0
$$

Remark (Sato-1997)

If M^{2} is a PMC surface in $N^{n}(c)$ and $J H$ is normal, i.e., $T=0$, then it is known that M^{2} is totally real and $n>2$.

Remark (Sato-1997)

If M^{2} is a PMC surface in $N^{n}(c)$ and $J H$ is normal, i.e., $T=0$, then it is known that M^{2} is totally real and $n>2$.

Remark

For $c=0$, every PMC submanifold of \mathbb{C}^{n} is biconservative, but not necessarily totally real. For instance, $\mathbb{S}^{2}(1) \subset \mathbb{E}^{3} \subset \mathbb{C}^{2}$ is $P M C$ and biconservative in \mathbb{C}^{2} but not totally real.

Theorem (Nistor - 2017)

Let M^{2} be a complete CMC biconservative surface in a Riemannian manifold N^{n} with Gaussian curvature $K \geq 0$ and Riem $^{N} \leq K_{0}=$ constant. Then $\nabla A_{H}=0$ and M^{2} is either flat or pseudo-umbilical.

Theorem (Nistor - 2017)
Let M^{2} be a complete CMC biconservative surface in a Riemannian manifold N^{n} with Gaussian curvature $K \geq 0$ and Riem ${ }^{N} \leq K_{0}=$ constant. Then $\nabla A_{H}=0$ and M^{2} is either flat or pseudo-umbilical.

Corollary
Let M^{2} be a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$. Then $\nabla A_{H}=0$ and M^{2} is either flat or pseudo-umbilical.

Theorem (Nistor - 2017)
Let M^{2} be a complete CMC biconservative surface in a Riemannian manifold N^{n} with Gaussian curvature $K \geq 0$ and Riem ${ }^{N} \leq K_{0}=$ constant. Then $\nabla A_{H}=0$ and M^{2} is either flat or pseudo-umbilical.

Corollary
Let M^{2} be a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$. Then $\nabla A_{H}=0$ and M^{2} is either flat or pseudo-umbilical.

Remark

This corollary is similar to a result obtained by B.-Y. Chen and K. Ogiue in 1974 compact surfaces (here surfaces are only complete).

A Simons type formula

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a PMC totally real surface in the complex space form $N^{n}(c)$ with Gaussian curvature K. Then $\nabla T=A_{N}$ and

$$
-\frac{1}{2} \Delta|T|^{2}=K|T|^{2}+\left|A_{N}\right|^{2} .
$$

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^{2} is a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$, then $\nabla T=A_{N}=0$ and either $K=0$ everywhere, or $K>0$ at some point on the surface and $T=0$ on M^{2}.

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^{2} is a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$, then $\nabla T=A_{N}=0$ and either $K=0$ everywhere, or $K>0$ at some point on the surface and $T=0$ on M^{2}.

Proof.

- $|T|^{2} \leq|J H|^{2}=|H|^{2}$ and M^{2} is CMC $\Rightarrow|T|^{2}$ is a bounded function on M^{2}
- $\Delta|T|^{2} \leq 0$, i.e., $|T|^{2}$ is a subharmonic function $\Rightarrow|T|^{2}=$ constant (since M^{2} is parabolic ($K \geq 0$), see A. Huber (1957))
- It follows that $K|T|^{2}+\left|A_{N}\right|^{2}=0$

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^{2} is a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$, then $\nabla T=A_{N}=0$ and either $K=0$ everywhere, or $K>0$ at some point on the surface and $T=0$ on M^{2}.

Proof.

- $|T|^{2} \leq|J H|^{2}=|H|^{2}$ and M^{2} is $\mathrm{CMC} \Rightarrow|T|^{2}$ is a bounded function on M^{2}
- $\Delta|T|^{2} \leq 0$, i.e., $|T|^{2}$ is a subharmonic function $\Rightarrow|T|^{2}=$ constant (since M^{2} is parabolic ($K \geq 0$), see A. Huber (1957))
- It follows that $K|T|^{2}+\left|A_{N}\right|^{2}=0$

Corollary
Let M^{2} be a complete PMC totally real surface with $K \geq 0$ in $N^{n}(c)$. Then

$$
\nabla A_{H}=\nabla T=A_{N}=0
$$

and either M^{2} is flat or pseudo-umbilical with $T=0$. In the latter case $n>2$.

CMC biconservative surfaces in $N^{2}(c)$ (the case $c \neq 0$)

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a CMC biconservative surface in a complex space form $N^{2}(c)$, with $c \neq 0$. If JT is normal, then M^{2} is PMC.

CMC biconservative surfaces in $N^{2}(c)$ (the case $c \neq 0$)

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a CMC biconservative surface in a complex space form $N^{2}(c)$, with $c \neq 0$. If JT is normal, then M^{2} is PMC.

Remark

If M^{2} is a pseudo-umbilical CMC biconservative surface in $N^{2}(c)$, with $c \neq 0$, then M^{2} is PMC and JT is normal.

Biconservative surfaces in \mathbb{C}^{2}

A non-PMC biconservative surface in \mathbb{C}^{2} has the following parametric equation.
Proposition (Montaldo, Oniciuc, Ratto - 2016)
Let M^{2} be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^{2}. Then, locally, the surface is given by

$$
X(u, v)=\left(\gamma^{1}(u), \gamma^{2}(u), \gamma^{3}(u), v\right)
$$

where $\gamma: I \rightarrow \mathbb{E}^{3}$ is a curve parametrized by arc-length with constant non-zero curvature and non-zero torsion.

Biconservative surfaces in \mathbb{C}^{2}

A non-PMC biconservative surface in \mathbb{C}^{2} has the following parametric equation.
Proposition (Montaldo, Oniciuc, Ratto - 2016)
Let M^{2} be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^{2}. Then, locally, the surface is given by

$$
X(u, v)=\left(\gamma^{1}(u), \gamma^{2}(u), \gamma^{3}(u), v\right)
$$

where $\gamma: I \rightarrow \mathbb{E}^{3}$ is a curve parametrized by arc-length with constant non-zero curvature and non-zero torsion.

Proposition (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^{2}. Then $(J T)^{\top} \neq 0$.

A geometric property of CMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a CMC biconservative surface in a complex space form $N^{2}(c)$. If JT is normal, then M^{2} is PMC and totally real.

A geometric property of CMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a CMC biconservative surface in a complex space form $N^{2}(c)$. If JT is normal, then M^{2} is PMC and totally real.

Remark

Complete PMC surfaces in a complex space form $N^{2}(c)$ were classified by K. Kenmotsu (two papers in 2016 and 2018). When $c>0$, these surfaces are totally real flat tori.

Reduction of codimension

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^{n}(c), c \neq 0, n \geq 4$. Then there exists a totally geodesic complex submanifold $N^{4}(c) \subset N^{n}(c)$ such that $M^{2} \subset N^{4}(c)$.

Reduction of codimension

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^{n}(c), c \neq 0, n \geq 4$. Then there exists a totally geodesic complex submanifold $N^{4}(c) \subset N^{n}(c)$ such that $M^{2} \subset N^{4}(c)$.

Proof.

- Consider $L=\operatorname{span}\left\{\operatorname{Im} B \cup(J \operatorname{Im} B)^{\perp} \cup J T M^{2}\right\} \subset N M^{m}$ where $(J \operatorname{Im} B)^{\perp}=\left\{(J B(X, Y))^{\perp}: X, Y\right.$ tangent vector fields to $\left.M^{2}\right\}$
- $\nabla^{\perp} L \subseteq L, \quad \operatorname{Im} B \subseteq L, \quad \operatorname{dim} L \leq 6$
- consider $\widetilde{L}=L \oplus T M^{2}$
- $\bar{\nabla} \widetilde{L} \subset \widetilde{L}$ and $J \widetilde{L}=\widetilde{L}$, which implies that \widetilde{L} is invariant by the curvature tensor \bar{R}
- we conclude by using a result of J. H. Eschenburg and R. Tribuzy (1997).

Remark

When the surface M^{2} is pseudo-umbilical and a topological sphere the situation is quite different:

- S. Montaldo, C. Oniciuc, and A. Ratto (2016) showed that if M^{2} is a CMC biconservative sphere in an arbitrary Riemannian manifold, then it is pseudo-umbilical.
- B. Opozda (1988) proved that if M^{2} is a PMC totally real sphere in a complex space form $N^{n}(c), c \neq 0$, then there exists a totally geodesic totally real submanifold N^{\prime} such that $M^{2} \subset N^{\prime}$.
Note that the technique used here is a completely different one.

Reduction of codimension

With the additional hypothesis $H \in C\left(J T M^{2}\right)$ one obtains that $L=J T M^{2}$ and the codimension reduces even more.

Reduction of codimension

With the additional hypothesis $H \in C\left(J T M^{2}\right)$ one obtains that $L=J T M^{2}$ and the codimension reduces even more.

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let M^{2} be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^{n}(c), c \neq 0$. If $H \in C\left(J T M^{2}\right)$, then there exists a totally geodesic complex submanifold $N^{2}(c) \subset N^{n}(c)$ such that $M^{2} \subset N^{2}(c)$.

The Segre embedding (definition)

Consider the isometric and holomorphic embedding introduced by C. Segre (1891)

$$
j=S_{p q}: \mathbb{C} P^{p}(4) \times \mathbb{C} P^{q}(4) \rightarrow \mathbb{C} P^{p+q+p q}(4)
$$

given by

$$
S_{p q}\left(\left[\left(z_{0}, \cdots, z_{p}\right)\right],\left[\left(w_{0}, \cdots, w_{q}\right)\right]\right)=\left[\left(z_{j} w_{t}\right)_{0 \leq j \leq p, 0 \leq t \leq q}\right],
$$

where $\left(z_{0}, \cdots, z_{p}\right)$ and $\left(w_{0}, \cdots, w_{q}\right)$ are the homogeneous coordinates in $\mathbb{C} P^{p}(4)$ and $\mathbb{C} P^{q}(4)$, respectively.

The Segre embedding

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^{j} be the second fundamental form of $j=S_{p q}$.

The Segre embedding

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^{j} be the second fundamental form of $j=S_{p q}$.

- $B^{j}\left(X_{1}, X_{2}\right)=B^{j}\left(Y_{1}, Y_{2}\right)=0, X_{1}, X_{2}$ tangent to $\mathbb{C} P^{p}(4) ; Y_{1}, Y_{2}$ tangent to $\mathbb{C} P^{q}(4)$

The Segre embedding

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^{j} be the second fundamental form of $j=S_{p q}$.

- $B^{j}\left(X_{1}, X_{2}\right)=B^{j}\left(Y_{1}, Y_{2}\right)=0, X_{1}, X_{2}$ tangent to $\mathbb{C} P^{p}(4) ; Y_{1}, Y_{2}$ tangent to $\mathbb{C} P^{q}(4)$
- $\left(\nabla^{\perp} B^{j}\right)(X, Y, Z)=0$

The Segre embedding

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^{j} be the second fundamental form of $j=S_{p q}$.

- $B^{j}\left(X_{1}, X_{2}\right)=B^{j}\left(Y_{1}, Y_{2}\right)=0, X_{1}, X_{2}$ tangent to $\mathbb{C} P^{p}(4) ; Y_{1}, Y_{2}$ tangent to $\mathbb{C} P^{q}(4)$
- $\left(\nabla^{\perp} B^{j}\right)(X, Y, Z)=0$
- Let M^{p} be a Lagrangian submanifold of $\mathbb{C} P^{p}(4)$ (i.e., $\left.J T M=N M\right)$. Then
- $\left\{B^{j}\left(E_{a}, \bar{E}_{\alpha}\right)\right\}$ are orthonormal vector fields;
- $\left\{B^{j}\left(J E_{a}, \bar{E}_{\alpha}\right)\right\}$ are orthonormal vector fields, where $\left\{E_{a}\right\}_{i=1}^{p}$ is a local orthonormal frame field on M^{p} and $\left\{\bar{E}_{\alpha}\right\}_{\alpha=1}^{2 q}$ is a local orthonormal frame field on $\mathbb{C} P^{q}(4)$.

Biharmonic submanifolds via Segre embedding

Theorem (Bibi, F., Oniciuc - 2023)
If M^{p} is a Lagrangian submanifold in $\mathbb{C} P^{p}$, then
(1) via the Segre embedding of $\mathbb{C} P^{p} \times \mathbb{C} P^{q}$ into $\mathbb{C} P^{p+q+p q}$, the product $\Sigma^{p+2 q}=M^{p} \times \mathbb{C} P^{q}$ is a biconservative submanifold of $\mathbb{C} P^{p+q+p q}$ iff M^{p} is a biconservative submanifold in $\mathbb{C} P^{p}$;
(2) $\Sigma^{p+2 q}$ is a proper-biharmonic submanifold in $\mathbb{C} P^{p+q+p q}$ iff M^{p} is a proper-biharmonic submanifold in $\mathbb{C} P^{p}$.

Biharmonic submanifolds via Segre embedding

Theorem (Bibi, F., Oniciuc - 2023)
If M^{p} is a Lagrangian submanifold in $\mathbb{C} P^{p}$, then
(1) via the Segre embedding of $\mathbb{C} P^{p} \times \mathbb{C} P^{q}$ into $\mathbb{C} P^{p+q+p q}$, the product $\Sigma^{p+2 q}=M^{p} \times \mathbb{C} P^{q}$ is a biconservative submanifold of $\mathbb{C} P^{p+q+p q}$ iff M^{p} is a biconservative submanifold in $\mathbb{C} P^{p}$;
(2) $\Sigma^{p+2 q}$ is a proper-biharmonic submanifold in $\mathbb{C} P^{p+q+p q}$ iff M^{p} is a proper-biharmonic submanifold in $\mathbb{C} P^{p}$.

Remark

$\Sigma^{p+2 q}$ is a non-PMC submanifold of $\mathbb{C} P^{p+q+p q}$ provided that M is not minimal in $\mathbb{C} P^{p}$. On the other hand, $\Sigma^{p+2 q}$ is a CMC submanifold in $\mathbb{C} P^{p+q+p q}$ iff M is a CMC submanifold of $\mathbb{C} P^{p}$.

Biharmonic submanifolds via Segre embedding

Theorem (Bibi, Chen, F., Oniciuc - 2021)
Let γ be a curve of nowhere vanishing curvature κ in $\mathbb{C} P^{1}(4)$. Then, we have:

- the product $\Sigma^{1+2 q}=\gamma \times \mathbb{C} P^{q}(4)$ is a biconservative submanifold of $\mathbb{C} P^{1+2 q}(4)$ via the Segre embedding iff $\kappa=$ constant. In this case, $\Sigma^{1+2 q}$ is CMC non-PMC and it is not totally real.
- Moreover, $\Sigma^{1+2 q}$ is a proper-biharmonic submanifold of $\mathbb{C} P^{1+2 q}(4)$ iff $\kappa^{2}=4$, i.e., γ is proper-biharmonic in $\mathbb{C} P^{1}(4)$.

Biharmonic submanifolds via Segre embedding

Theorem (Bibi, F., Oniciuc - 2023)
If M_{1}^{p} and M_{2}^{q} are Lagrangian submanifolds in $\mathbb{C} P^{p}$ and $\mathbb{C} P^{q}$, respectively, then
(1) via the Segre embedding of $\mathbb{C} P^{p} \times \mathbb{C} P^{q}$ into $\mathbb{C} P^{p+q+p q}$, the product $\Sigma^{p+q}=M_{1}^{p} \times M_{2}^{q}$ is a biconservative submanifold of $\mathbb{C} P^{p+q+p q}$ iff M_{1}^{p} and M_{2}^{q} are biconservative submanifolds in $\mathbb{C} P^{p}$ and $\mathbb{C} P^{q}$, respectively;
(2) Σ^{p+q} is a proper-biharmonic submanifold in $\mathbb{C} p^{p+q+p q}$ iff one of the submanifolds M_{1}^{p} or M_{2}^{q} is minimal and the other is proper-biharmonic in $\mathbb{C} P^{p}$ or $\mathbb{C} P^{q}$, respectively.

Biharmonic submanifolds via Segre embedding

Theorem (Bibi, F., Oniciuc - 2023)
If M_{1}^{p} and M_{2}^{q} are Lagrangian submanifolds in $\mathbb{C} P^{p}$ and $\mathbb{C} P^{q}$, respectively, then
(1) via the Segre embedding of $\mathbb{C} P^{p} \times \mathbb{C} P^{q}$ into $\mathbb{C} P^{p+q+p q}$, the product $\Sigma^{p+q}=M_{1}^{p} \times M_{2}^{q}$ is a biconservative submanifold of $\mathbb{C} P^{p+q+p q}$ iff M_{1}^{p} and M_{2}^{q} are biconservative submanifolds in $\mathbb{C} P^{p}$ and $\mathbb{C} P^{q}$, respectively;
(2) Σ^{p+q} is a proper-biharmonic submanifold in $\mathbb{C} p^{p+q+p q}$ iff one of the submanifolds M_{1}^{p} or M_{2}^{q} is minimal and the other is proper-biharmonic in $\mathbb{C} P^{p}$ or $\mathbb{C} P^{q}$, respectively.

Remark

Σ^{p+q} is a non-PMC submanifold of $\mathbb{C} P^{p+q+p q}$ if at least one of M_{1} or M_{2} is not minimal in its ambient space. If M_{1} and M_{2} are CMC submanifolds in $\mathbb{C} P^{p}$ and $\mathbb{C} P^{q}$, respectively, so is Σ^{p+q} in $\mathbb{C} P^{p+q+p q}$, while the converse is not true in general.

Biharmonic submanifolds via Segre embedding

Remark

- Consider two curves γ_{1} and γ_{2} in $\mathbb{C} P^{1}$ with constant curvatures κ_{1} and κ_{2}, respectively. Then, they are biconservative and Lagrangian. It follows that $\Sigma^{2}=\gamma_{1} \times \gamma_{2}$ is a CMC (non-PMC) biconservative surface in $\mathbb{C} P^{3}$.
- On the other hand, a CMC biconservative surface in $\mathbb{C} P^{2}$ with $J\left((J H)^{\top}\right)$ normal to the surface is PMC. As Σ^{2} satisfies all these conditions but it is not PMC when either κ_{1} or κ_{2} is positive, one sees that this result does not hold in $\mathbb{C} P^{3}$.
- Moreover, since a PMC biconservative surface in $\mathbb{C} P^{n}$ with JH tangent to the surface lies in $\mathbb{C} P^{2}$, this example shows that this only works for PMC surfaces, the CMC condition not being sufficient.
- The surface $\Sigma^{2}=\gamma_{1} \times \gamma_{2}$ is proper-biharmonic in $\mathbb{C} P^{3}$ iff γ_{1} is a geodesic of $\mathbb{C} P^{1}$, i.e., it is a great circle of Euclidean sphere \mathbb{S}^{2} of radius $1 / 2$, and γ_{2} is a circle of radius $1 /(2 \sqrt{2})$ of the same sphere.

References

围 H. Bibi, B.-Y. Chen, D. Fetcu, and C. Oniciuc
Parallel mean curvature biconservative surfaces in complex space forms
Math. Nachr. 296(8), 2023, 3192-3221.
H. Bibi, D. Fetcu, and C. Oniciuc

Segre embedding and biharmonicity
Preprint 2023.

Thank you!

