Biconservative submanifolds in complex space forms

Dorel Fetcu

Gheorghe Asachi Technical University of Iaşi

Differential Geometry Workshop 2023 6 – 9 September 2023 Alexandru Ioan Cuza University of Iaşi, Romania

Dorel Fetcu (TUIASI)

Biconservative submanifolds

DGW 2023, laşi

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Biharmonic and biconservative submanifolds

- The biharmonic equation
- Introducing biconservative submanifolds
- PMC biconservative surfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$
 - PMC biconservative submanifolds
 - PMC biconservative surfaces (the characterization result)
 - PMC biconservative surfaces (a Simons type formula)
- On the geometry of CMC biconservative surfaces in $N^2(c)$

Reduction of codimension for PMC biconservative surfaces

Segre embedding and biharmonicity

Harmonic and biharmonic maps

Let $\varphi : (M,g) \to (N,h)$ be a smooth map.

Energy functional

$$E(\boldsymbol{\varphi}) = E_1(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |d\boldsymbol{\varphi}|^2 v_g$$

Euler-Lagrange equation

$$\tau(\varphi) = \tau_1(\varphi) = \operatorname{trace}_g \nabla d\varphi$$
$$= 0$$

Critical points of *E*: harmonic maps

Bienergy functional

$$E_2(\boldsymbol{\varphi}) = \frac{1}{2} \int_M |\boldsymbol{\tau}(\boldsymbol{\varphi})|^2 v_g$$

Euler-Lagrange equation

$$\tau_2(\varphi) = \Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g \overline{R}(d\varphi, \tau(\varphi)) d\varphi$$

= 0

Critical points of *E*₂: biharmonic maps

The biharmonic equation

G.-Y. Jiang (1986):

$$\tau_2(\varphi) = \Delta^{\varphi} \tau(\varphi) - \operatorname{trace}_g \overline{R}(d\varphi, \tau(\varphi)) d\varphi = 0$$

where

$$\Delta^{\varphi} = \operatorname{trace}_{g} \left(\nabla^{\varphi} \nabla^{\varphi} - \nabla^{\varphi}_{\nabla} \right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN$

The biharmonic equation

G.-Y. Jiang (1986):

$$\tau_2(\boldsymbol{\varphi}) = \Delta^{\boldsymbol{\varphi}} \tau(\boldsymbol{\varphi}) - \operatorname{trace}_g \overline{R}(d\boldsymbol{\varphi}, \tau(\boldsymbol{\varphi})) d\boldsymbol{\varphi} = 0$$

where

$$\Delta^{\varphi} = \operatorname{trace}_{g} \left(\nabla^{\varphi} \nabla^{\varphi} - \nabla^{\varphi}_{\nabla} \right)$$

is the rough Laplacian on sections of $\varphi^{-1}TN$

- it is a fourth-order non-linear elliptic equation
- any harmonic map is biharmonic
- a non-harmonic biharmonic map is proper-biharmonic
- a submanifold $i: M \rightarrow N$ is a biharmonic submanifolds if the immersion *i* is biharmonic

Dorel Fetcu (TUIASI)

Biconservative submanifolds

DGW 2023, laşi

A D N A D N A D N A D N

Biconservative submanifolds

D. Hilbert (1924): a symmetric 2-covariant tensor S associated to a variational problem, conservative at critical points, i.e., div S = 0 at these points, called the stress-energy tensor;

イロト イポト イモト イモト

Biconservative submanifolds

- D. Hilbert (1924): a symmetric 2-covariant tensor S associated to a variational problem, conservative at critical points, i.e., div S = 0 at these points, called the stress-energy tensor;
- P. Baird and J. Eells (1981); A. Sanini (1983): used the tensor

$$S = \frac{1}{2} |d\varphi|^2 g - \varphi^* h$$

that satisfies

$$\operatorname{div} S = -\langle \tau(\boldsymbol{\varphi}), d\boldsymbol{\varphi} \rangle,$$

to study harmonic maps, since

$$\varphi = \operatorname{harmonic} \Rightarrow \operatorname{div} S = 0$$

Obviously

 $\varphi: M \to N$ is an isometric immersion $\Rightarrow \tau(\varphi) = \text{normal} \Rightarrow \text{div} S = 0$

5/29

イロト イポト イラト イラト

• G. Y. Jiang (1987): the stress-energy tensor S₂ of the bienergy

$$S_{2}(X,Y) = \frac{1}{2} |\tau(\varphi)|^{2} \langle X,Y \rangle + \langle d\varphi, \nabla \tau(\varphi) \rangle \langle X,Y \rangle - \langle d\varphi(X), \nabla_{Y} \tau(\varphi) \rangle - \langle d\varphi(Y), \nabla_{X} \tau(\varphi) \rangle$$

that satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\boldsymbol{\varphi}), d\boldsymbol{\varphi} \rangle$$

If $\varphi: M \to N$ is an isometric immersion, then div $S_2 = -\tau_2(\varphi)^{\top}$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

• G. Y. Jiang (1987): the stress-energy tensor S₂ of the bienergy

$$S_2(X,Y) = rac{1}{2} | au(m{arphi})|^2 \langle X,Y
angle + \langle dm{arphi},
abla au(m{arphi})
angle \langle X,Y
angle \ - \langle dm{arphi}(X),
abla_Y au(m{arphi})
angle - \langle dm{arphi}(Y),
abla_X au(m{arphi})
angle$$

that satisfies

$$\operatorname{div} S_2 = -\langle \tau_2(\boldsymbol{\varphi}), d\boldsymbol{\varphi} \rangle$$

If $\varphi: M \to N$ is an isometric immersion, then $\operatorname{div} S_2 = -\tau_2(\varphi)^\top$

Remark

If $\varphi : M \to (N,h)$ is a fixed map, then E_2 can be thought as a functional on the set of all Riemannian metrics on M whose critical points are Riemannian metrics determined by $S_2 = 0$.

6/29

Definition

A submanifold $\varphi : M \to N$ of a Riemannian manifold N is called a biconservative submanifold if div $S_2 = 0$, i.e., $\tau_2(\varphi)^\top = 0$.

Definition

A submanifold $\varphi : M \to N$ of a Riemannian manifold N is called a biconservative submanifold if div $S_2 = 0$, i.e., $\tau_2(\varphi)^\top = 0$.

Theorem (Balmuş, Montaldo, Oniciuc - 2012)

A submanifold M in a Riemannian manifold N, with second fundamental form B, mean curvature vector field H, and shape operator A, is biharmonic iff

$$\frac{m}{2}\nabla |H|^2 + 2\operatorname{trace} A_{\nabla \downarrow H}(\cdot) + 2\operatorname{trace}(\overline{R}(\cdot, H)\cdot)^{\top} = 0$$

and

$$\Delta^{\perp} H + \operatorname{trace} B(\cdot, A_H \cdot) + \operatorname{trace}(\overline{R}(\cdot, H) \cdot)^{\perp} = 0,$$

where Δ^{\perp} is the Laplacian in the normal bundle.

Submanifolds with parallel mean curvature

Let M^m be a submanifold of a Riemannian manifold N

$$\overline{\nabla}_X Y = \nabla_X Y + B(X, Y)$$
 (Eq. Gauss)
 $\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V$ (Eq. Weingarten)

Definition

If the mean curvature vector field *H* is parallel in the normal bundle, i.e., $\nabla^{\perp} H = 0$, then *M* is called a *PMC surface*.

Definition

If the mean curvature |H| is constant, then M is called a CMC surface.

PMC biconservative submanifolds

Let M^m be a submanifold of a complex space form $N^n(c)$ with mean curvature vector field *H* and decompose JH = T + N.

PMC biconservative submanifolds

Let M^m be a submanifold of a complex space form $N^n(c)$ with mean curvature vector field H and decompose JH = T + N.

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^m be a PMC submanifold of $N^n(c)$.

- If c = 0, then M^m is biconservative, and
- if $c \neq 0$, then M^m is biconservative iff JT is normal to M.

4 D N 4 B N 4 B N 4 B N 4

PMC biconservative submanifolds

Let M^m be a submanifold of a complex space form $N^n(c)$ with mean curvature vector field H and decompose JH = T + N.

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^m be a PMC submanifold of $N^n(c)$.

- If c = 0, then M^m is biconservative, and
- if $c \neq 0$, then M^m is biconservative iff JT is normal to M.

Corollary

Let M^m be a PMC totally real submanifold of $N^n(c)$ (i.e., $JTM^m \subset NM^m$). Then M^m is biconservative.

Corollary

Any PMC real hypersurface M^{2n-1} of $N^n(c)$ is biconservative.

Dorel Fetcu (TUIASI)

PMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a PMC surface in a complex space form $N^n(c)$.

- If c = 0, then M^2 is biconservative.
- If $c \neq 0$, then M^2 is biconservative iff it is totally real.

BA 4 BA

• When $c \neq 0$, *M* is biconservative iff *JT* is normal.

- When $c \neq 0$, *M* is biconservative iff *JT* is normal.
- the Ricci equation

$$\langle [A_H, A_V]X, Y \rangle = - \langle \overline{R}(X, Y)H, V \rangle$$
 implies that $[A_H, A_{JT}] = 0$

- When $c \neq 0$, *M* is biconservative iff *JT* is normal.
- the Ricci equation

$$\langle [A_H, A_V]X, Y \rangle = - \langle \overline{R}(X, Y)H, V \rangle$$
 implies that $[A_H, A_{JT}] = 0$

• it follows that, at each point $p \in M$, there exists a basis $\{e_1, e_2\}$ such that

$$A_{H} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \quad A_{JT} = \begin{bmatrix} \mu_{1} & 0 \\ 0 & \mu_{2} \end{bmatrix}$$

- When $c \neq 0$, *M* is biconservative iff *JT* is normal.
- the Ricci equation

$$\langle [A_H, A_V]X, Y \rangle = - \langle \overline{R}(X, Y)H, V \rangle$$
 implies that $[A_H, A_{JT}] = 0$

It follows that, at each point p ∈ M, there exists a basis {e₁, e₂} such that

$$A_{H} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \quad A_{JT} = \begin{bmatrix} \mu_{1} & 0 \\ 0 & \mu_{2} \end{bmatrix}$$

• from the expressions of $\overline{\nabla}_X JH$ and $\overline{\nabla}_X JT$, as $\nabla^{\perp} H = 0$, we have, at p,

$$\begin{array}{lll} \mu_1 + \mu_2 & = & -(\lambda_1 + \lambda_2)\langle Je_1, e_2\rangle^2 + \sum_{i=1}^2 \langle B(e_i,T), Je_i\rangle \\ \\ 2|T|^2 & = & 2|H|^2 \langle Je_1, e_2\rangle^2 + \mathrm{trace} \langle JB(\cdot,T), \cdot \rangle \end{array}$$

- When $c \neq 0$, *M* is biconservative iff *JT* is normal.
- the Ricci equation

$$\langle [A_H, A_V]X, Y \rangle = - \langle \overline{R}(X, Y)H, V \rangle$$
 implies that $[A_H, A_{JT}] = 0$

It follows that, at each point p ∈ M, there exists a basis {e₁, e₂} such that

$$A_{H} = \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix}, \quad A_{JT} = \begin{bmatrix} \mu_{1} & 0 \\ 0 & \mu_{2} \end{bmatrix}$$

• from the expressions of $\overline{\nabla}_X JH$ and $\overline{\nabla}_X JT$, as $\nabla^{\perp} H = 0$, we have, at p,

$$\begin{array}{lll} \mu_1 + \mu_2 & = & -(\lambda_1 + \lambda_2)\langle Je_1, e_2 \rangle^2 + \sum_{i=1}^2 \langle B(e_i, T), Je_i \rangle \\ \\ 2|T|^2 & = & 2|H|^2 \langle Je_1, e_2 \rangle^2 + \mathrm{trace} \langle JB(\cdot, T), \cdot \rangle \end{array}$$

• Now, if $T_p \neq 0$, consider the orthonormal basis $\{X_1 = T_p / |T_p|, X_2\}$, tangent to M^2 . Since JT is normal, we have

 $\langle JX_2, X_1\rangle = 0$

Next, assume that T_p = 0. It follows that

$$2|H|^2 \langle Je_1, e_2 \rangle^2 = 0,$$

that is

 $\langle Je_1, e_2 \rangle = 0$

Dorel Fetcu (TUIASI)

Biconservative submanifolds

Remark (Sato - 1997)

If M^2 is a PMC surface in $N^n(c)$ and JH is normal, i.e., T = 0, then it is known that M^2 is totally real and n > 2.

∃ ► < ∃ ►</p>

Remark (Sato - 1997)

If M^2 is a PMC surface in $N^n(c)$ and JH is normal, i.e., T = 0, then it is known that M^2 is totally real and n > 2.

Remark

For c = 0, every PMC submanifold of \mathbb{C}^n is biconservative, but not necessarily totally real. For instance, $\mathbb{S}^2(1) \subset \mathbb{E}^3 \subset \mathbb{C}^2$ is PMC and biconservative in \mathbb{C}^2 but not totally real.

12/29

A B F A B F

Theorem (Nistor - 2017)

Let M^2 be a complete CMC biconservative surface in a Riemannian manifold N^n with Gaussian curvature $K \ge 0$ and $\operatorname{Riem}^N \le K_0 = \operatorname{constant}$. Then $\nabla A_H = 0$ and M^2 is either flat or pseudo-umbilical.

A THE A THE

Theorem (Nistor - 2017)

Let M^2 be a complete CMC biconservative surface in a Riemannian manifold N^n with Gaussian curvature $K \ge 0$ and $\operatorname{Riem}^N \le K_0 = \operatorname{constant}$. Then $\nabla A_H = 0$ and M^2 is either flat or pseudo-umbilical.

Corollary

Let M^2 be a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$. Then $\nabla A_H = 0$ and M^2 is either flat or pseudo-umbilical.

13/29

Theorem (Nistor - 2017)

Let M^2 be a complete CMC biconservative surface in a Riemannian manifold N^n with Gaussian curvature $K \ge 0$ and $\operatorname{Riem}^N \le K_0 = \operatorname{constant}$. Then $\nabla A_H = 0$ and M^2 is either flat or pseudo-umbilical.

Corollary

Let M^2 be a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$. Then $\nabla A_H = 0$ and M^2 is either flat or pseudo-umbilical.

Remark

This corollary is similar to a result obtained by B.-Y. Chen and K. Ogiue in 1974 compact surfaces (here surfaces are only complete).

A Simons type formula

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a PMC totally real surface in the complex space form $N^n(c)$ with Gaussian curvature *K*. Then $\nabla T = A_N$ and

$$-\frac{1}{2}\Delta|T|^2 = K|T|^2 + |A_N|^2.$$

Dorel Fetcu (TUIASI)

► < 2 > < 2 > 2
DGW 2023, lasi

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^2 is a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$, then $\nabla T = A_N = 0$ and either K = 0 everywhere, or K > 0 at some point on the surface and T = 0 on M^2 .

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^2 is a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$, then $\nabla T = A_N = 0$ and either K = 0 everywhere, or K > 0 at some point on the surface and T = 0 on M^2 .

Proof.

- $|T|^2 \leq |JH|^2 = |H|^2$ and M^2 is CMC $\Rightarrow |T|^2$ is a bounded function on M^2
- Δ|T|² ≤ 0, i.e., |T|² is a subharmonic function ⇒ |T|² = constant (since M² is parabolic (K ≥ 0), see A. Huber (1957))
- It follows that $K|T|^2 + |A_N|^2 = 0$

イロト イポト イラト イラト

Theorem (Bibi, Chen, F., Oniciuc - 2021)

If M^2 is a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$, then $\nabla T = A_N = 0$ and either K = 0 everywhere, or K > 0 at some point on the surface and T = 0 on M^2 .

Proof.

- $|T|^2 \leq |JH|^2 = |H|^2$ and M^2 is CMC $\Rightarrow |T|^2$ is a bounded function on M^2
- Δ|T|² ≤ 0, i.e., |T|² is a subharmonic function ⇒ |T|² = constant (since M² is parabolic (K ≥ 0), see A. Huber (1957))
- It follows that $K|T|^2 + |A_N|^2 = 0$

Corollary

Let M^2 be a complete PMC totally real surface with $K \ge 0$ in $N^n(c)$. Then

$$\nabla A_H = \nabla T = A_N = 0$$

and either M^2 is flat or pseudo-umbilical with T = 0. In the latter case n > 2.

Dorel Fetcu (TUIASI)

・ロット (雪) (日) (日)

CMC biconservative surfaces in $N^2(c)$ (the case $c \neq 0$)

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a CMC biconservative surface in a complex space form $N^2(c)$, with $c \neq 0$. If JT is normal, then M^2 is PMC.

CMC biconservative surfaces in $N^2(c)$ (the case $c \neq 0$)

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a CMC biconservative surface in a complex space form $N^2(c)$, with $c \neq 0$. If JT is normal, then M^2 is PMC.

Remark

If M^2 is a pseudo-umbilical CMC biconservative surface in $N^2(c)$, with $c \neq 0$, then M^2 is PMC and JT is normal.

Biconservative surfaces in \mathbb{C}^2

A non-PMC biconservative surface in \mathbb{C}^2 has the following parametric equation.

Proposition (Montaldo, Oniciuc, Ratto - 2016)

Let M^2 be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^2 . Then, locally, the surface is given by

$$X(u,v) = (\gamma^1(u), \gamma^2(u), \gamma^3(u), v),$$

where $\gamma: I \to \mathbb{E}^3$ is a curve parametrized by arc-length with constant non-zero curvature and non-zero torsion.

Biconservative surfaces in \mathbb{C}^2

A non-PMC biconservative surface in \mathbb{C}^2 has the following parametric equation.

Proposition (Montaldo, Oniciuc, Ratto - 2016)

Let M^2 be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^2 . Then, locally, the surface is given by

 $X(u, v) = (\gamma^{1}(u), \gamma^{2}(u), \gamma^{3}(u), v),$

where $\gamma: I \to \mathbb{E}^3$ is a curve parametrized by arc-length with constant non-zero curvature and non-zero torsion.

Proposition (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a non-PMC biconservative surface with constant mean curvature in \mathbb{C}^2 . Then $(JT)^{\top} \neq 0$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

A geometric property of CMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a CMC biconservative surface in a complex space form $N^2(c)$. If JT is normal, then M^2 is PMC and totally real.

A geometric property of CMC biconservative surfaces

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a CMC biconservative surface in a complex space form $N^2(c)$. If JT is normal, then M^2 is PMC and totally real.

Remark

Complete PMC surfaces in a complex space form $N^2(c)$ were classified by K. Kenmotsu (two papers in 2016 and 2018). When c > 0, these surfaces are totally real flat tori.

Reduction of codimension

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^n(c), c \neq 0, n \geq 4$. Then there exists a totally geodesic complex submanifold $N^4(c) \subset N^n(c)$ such that $M^2 \subset N^4(c)$.

Reduction of codimension

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^n(c), c \neq 0, n \geq 4$. Then there exists a totally geodesic complex submanifold $N^4(c) \subset N^n(c)$ such that $M^2 \subset N^4(c)$.

Proof.

- Consider $L = \operatorname{span} \{\operatorname{Im} B \cup (J \operatorname{Im} B)^{\perp} \cup JTM^2\} \subset NM^m$ where $(J \operatorname{Im} B)^{\perp} = \{(JB(X, Y))^{\perp} : X, Y \text{ tangent vector fields to } M^2\}$
- $\nabla^{\perp}L \subseteq L$, $\operatorname{Im}B \subseteq L$, $\dim L \leq 6$
- consider $\widetilde{L} = L \oplus TM^2$
- $\overline{\nabla L} \subset \widetilde{L}$ and $J\widetilde{L} = \widetilde{L}$, which implies that \widetilde{L} is invariant by the curvature tensor \overline{R}
- we conclude by using a result of J. H. Eschenburg and R. Tribuzy (1997).

э

19/29

Remark

When the surface *M*² is pseudo-umbilical and a topological sphere the situation is quite different:

- S. Montaldo, C. Oniciuc, and A. Ratto (2016) showed that if M² is a CMC biconservative sphere in an arbitrary Riemannian manifold, then it is pseudo-umbilical.
- B. Opozda (1988) proved that if M² is a PMC totally real sphere in a complex space form Nⁿ(c), c ≠ 0, then there exists a totally geodesic totally real submanifold N' such that M² ⊂ N'.

Note that the technique used here is a completely different one.

Reduction of codimension

With the additional hypothesis $H \in C(JTM^2)$ one obtains that $L = JTM^2$ and the codimension reduces even more.

イロト イポト イラト イラト

Reduction of codimension

With the additional hypothesis $H \in C(JTM^2)$ one obtains that $L = JTM^2$ and the codimension reduces even more.

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let M^2 be a non-pseudo-umbilical PMC totally real surface in a complex space form $N^n(c)$, $c \neq 0$. If $H \in C(JTM^2)$, then there exists a totally geodesic complex submanifold $N^2(c) \subset N^n(c)$ such that $M^2 \subset N^2(c)$.

イロト イポト イラト イラト

The Segre embedding (definition)

Consider the isometric and holomorphic embedding introduced by C. Segre (1891)

$$j = S_{pq} : \mathbb{C}P^p(4) \times \mathbb{C}P^q(4) \to \mathbb{C}P^{p+q+pq}(4)$$

given by

$$S_{pq}([(z_0, \dots, z_p)], [(w_0, \dots, w_q)]) = [(z_j w_t)_{0 \le j \le p, 0 \le t \le q}],$$

where (z_0, \dots, z_p) and (w_0, \dots, w_q) are the homogeneous coordinates in $\mathbb{C}P^p(4)$ and $\mathbb{C}P^q(4)$, respectively.

3

イロト 不得 トイヨト イヨト

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^j be the second fundamental form of $j = S_{pq}$.

(日)

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^j be the second fundamental form of $j = S_{pq}$.

• $B^{j}(X_{1}, X_{2}) = B^{j}(Y_{1}, Y_{2}) = 0, X_{1}, X_{2}$ tangent to $\mathbb{C}P^{p}(4)$; Y_{1}, Y_{2} tangent to $\mathbb{C}P^{q}(4)$

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^j be the second fundamental form of $j = S_{pq}$.

- $B^{j}(X_{1}, X_{2}) = B^{j}(Y_{1}, Y_{2}) = 0$, X_{1}, X_{2} tangent to $\mathbb{C}P^{p}(4)$; Y_{1}, Y_{2} tangent to $\mathbb{C}P^{q}(4)$
- $(\nabla^{\perp} B^j)(X,Y,Z) = 0$

3

(properties, B.-Y. Chen (1981, 2002); H. Nakagawa and R. Takagi (1976))

Let B^{j} be the second fundamental form of $j = S_{pq}$.

- $B^{j}(X_{1}, X_{2}) = B^{j}(Y_{1}, Y_{2}) = 0, X_{1}, X_{2}$ tangent to $\mathbb{C}P^{p}(4); Y_{1}, Y_{2}$ tangent to $\mathbb{C}P^q(4)$
- $(\nabla^{\perp} B^j)(X, Y, Z) = 0$
- Let M^p be a Lagrangian submanifold of $\mathbb{C}P^p(4)$ (i.e., JTM = NM). Then
 - {Bⁱ(E_a, Ē_α)} are orthonormal vector fields;
 {Bⁱ(JE_a, Ē_α)} are orthonormal vector fields,

where $\{E_a\}_{i=1}^p$ is a local orthonormal frame field on M^p and $\{\bar{E}_{\alpha}\}_{\alpha=1}^{2q}$ is a local orthonormal frame field on $\mathbb{C}P^{q}(4)$.

Theorem (Bibi, F., Oniciuc - 2023)

If M^p is a Lagrangian submanifold in $\mathbb{C}P^p$, then

- via the Segre embedding of CP^p × CP^q into CP^{p+q+pq}, the product Σ^{p+2q} = M^p × CP^q is a biconservative submanifold of CP^{p+q+pq} iff M^p is a biconservative submanifold in CP^p;
- 2 Σ^{p+2q} is a proper-biharmonic submanifold in $\mathbb{C}P^{p+q+pq}$ iff M^p is a proper-biharmonic submanifold in $\mathbb{C}P^p$.

Theorem (Bibi, F., Oniciuc - 2023)

If M^p is a Lagrangian submanifold in $\mathbb{C}P^p$, then

- via the Segre embedding of CP^p × CP^q into CP^{p+q+pq}, the product Σ^{p+2q} = M^p × CP^q is a biconservative submanifold of CP^{p+q+pq} iff M^p is a biconservative submanifold in CP^p;
- 2 Σ^{p+2q} is a proper-biharmonic submanifold in $\mathbb{C}P^{p+q+pq}$ iff M^p is a proper-biharmonic submanifold in $\mathbb{C}P^p$.

Remark

 Σ^{p+2q} is a non-PMC submanifold of $\mathbb{C}P^{p+q+pq}$ provided that M is not minimal in $\mathbb{C}P^p$. On the other hand, Σ^{p+2q} is a CMC submanifold in $\mathbb{C}P^{p+q+pq}$ iff M is a CMC submanifold of $\mathbb{C}P^p$.

э.

イロト 不得 トイヨト イヨト

Theorem (Bibi, Chen, F., Oniciuc - 2021)

Let γ be a curve of nowhere vanishing curvature κ in $\mathbb{C}P^1(4)$. Then, we have:

- the product Σ^{1+2q} = γ × ℂP^q(4) is a biconservative submanifold of ℂP^{1+2q}(4) via the Segre embedding iff κ = constant. In this case, Σ^{1+2q} is CMC non-PMC and it is not totally real.
- Moreover, Σ^{1+2q} is a proper-biharmonic submanifold of $\mathbb{C}P^{1+2q}(4)$ iff $\kappa^2 = 4$, i.e., γ is proper-biharmonic in $\mathbb{C}P^1(4)$.

Theorem (Bibi, F., Oniciuc - 2023)

If M_1^p and M_2^q are Lagrangian submanifolds in $\mathbb{C}P^p$ and $\mathbb{C}P^q$, respectively, then

- via the Segre embedding of CP^p × CP^q into CP^{p+q+pq}, the product
 Σ^{p+q} = M^p₁ × M^q₂ is a biconservative submanifold of CP^{p+q+pq} iff M^p₁ and M^q₂ are biconservative submanifolds in CP^p and CP^q, respectively;
- 2 Σ^{p+q} is a proper-biharmonic submanifold in $\mathbb{C}P^{p+q+pq}$ iff one of the submanifolds M_1^p or M_2^q is minimal and the other is proper-biharmonic in $\mathbb{C}P^p$ or $\mathbb{C}P^q$, respectively.

Theorem (Bibi, F., Oniciuc - 2023)

If M_1^p and M_2^q are Lagrangian submanifolds in $\mathbb{C}P^p$ and $\mathbb{C}P^q$, respectively, then

- via the Segre embedding of $\mathbb{C}P^p \times \mathbb{C}P^q$ into $\mathbb{C}P^{p+q+pq}$, the product $\Sigma^{p+q} = M_1^p \times M_2^q$ is a biconservative submanifold of $\mathbb{C}P^{p+q+pq}$ iff M_1^p and M_2^q are biconservative submanifolds in $\mathbb{C}P^p$ and $\mathbb{C}P^q$, respectively;
- 2 Σ^{p+q} is a proper-biharmonic submanifold in $\mathbb{C}P^{p+q+pq}$ iff one of the submanifolds M_1^p or M_2^q is minimal and the other is proper-biharmonic in $\mathbb{C}P^p$ or $\mathbb{C}P^q$, respectively.

Remark

 Σ^{p+q} is a non-PMC submanifold of $\mathbb{C}P^{p+q+pq}$ if at least one of M_1 or M_2 is not minimal in its ambient space. If M_1 and M_2 are CMC submanifolds in $\mathbb{C}P^p$ and $\mathbb{C}P^q$, respectively, so is Σ^{p+q} in $\mathbb{C}P^{p+q+pq}$, while the converse is not true in general.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Remark

- Consider two curves γ_1 and γ_2 in $\mathbb{C}P^1$ with constant curvatures κ_1 and κ_2 , respectively. Then, they are biconservative and Lagrangian. It follows that $\Sigma^2 = \gamma_1 \times \gamma_2$ is a CMC (non-PMC) biconservative surface in $\mathbb{C}P^3$.
- On the other hand, a CMC biconservative surface in CP² with J((JH)^T) normal to the surface is PMC. As Σ² satisfies all these conditions but it is not PMC when either κ₁ or κ₂ is positive, one sees that this result does not hold in CP³.
- Moreover, since a PMC biconservative surface in CPⁿ with JH tangent to the surface lies in CP², this example shows that this only works for PMC surfaces, the CMC condition not being sufficient.
- The surface Σ² = γ₁ × γ₂ is proper-biharmonic in CP³ iff γ₁ is a geodesic of CP¹, i.e., it is a great circle of Euclidean sphere S² of radius 1/2, and γ₂ is a circle of radius 1/(2√2) of the same sphere.

< 日 > < 同 > < 回 > < 回 > < 回 > <

References

H. Bibi, B.-Y. Chen, D. Fetcu, and C. Oniciuc Parallel mean curvature biconservative surfaces in complex space forms Math. Nachr. 296(8), 2023, 3192–3221.

H. Bibi, D. Fetcu, and C. Oniciuc Segre embedding and biharmonicity Preprint 2023.

Thank you!

Dorel Fetcu (TUIASI)

Biconservative submanifolds

DGW 2023, Iaşi

29/29

æ