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1. The Kähler identities. Some definitions.

• An almost complex structure: bundle map J : TM → TM such that J2 = −I.

• An almost complex manifold is a manifold with an almost complex structure.

• An almost complex structure is integrable if the Nijenhuis tensor, defined by

N(X ,Y ) = [JX , JY ]− J[JX ,Y ]− J[X , JY ]− [X ,Y ],

vanishes (among many equivalent conditions).

• A complex manifold is a manifold M2n with a holomorphic atlas.

It carries a natural “almost” complex structure J.

It is well known (Newlander-Nirenberg’57)

M complex ⇐⇒ J integrable.

• For M (almost) complex, let 〈 , 〉 be a compatible metric, i.e. 〈JX , JY 〉 = 〈X ,Y 〉.
Define the fundamental form ω(X ,Y ) = 〈JX ,Y 〉.

• An almost complex manifold is almost Kähler if dω = 0.

• A complex manifold is Kähler if dω = 0.
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1. The Kähler identities. Some definitions.

Diagrammatically:

Almost complex

Complex
(N = 0)

Almost Kähler
(dω = 0)

Kähler
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1. The Kähler identities. Some definitions.

Perhaps the main question in almost complex manifolds is the following:

Existence of an almost complex structure depends only on the topology (it is a section of a
bundle, so one can use obstruction theory).

Is integrability also a topological condition? If not, what is it?

In fact, there are no examples of almost complex manifolds of real dimension 6 or higher
that do not also admit an integrable complex structure.

The most famous example is S6.

But I will not talk about this.
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1. The Kähler identities. Some definitions.

In an almost complex manifold M with a compatible metric, we have several operators:

• d , the usual differential operator.

• L, the Lefschetz operator, L(α) = ω ∧ α.

• Λ, the adjoint of L with respect to the metric.

• d∗ = − ∗ ◦d ◦ ∗, the formal adjoint of d .

• dc = J−1
a ◦ d ◦ Ja

(Ja = extension of J to the exterior algebra as an algebra map: Ja(α ∧ β) = Jα ∧ Jβ).

There is also a descomposition of the complexified exterior algebra as follows:

Consider the dual of J, J̌ : A1M → A1M.
Extend it complex-linearly to J̌ : A1M ⊗ C→ A1M ⊗ C.

Because J̌2 = −I, the eigenvalues of J are i and −i .
Denote the corresponding eigenspaces by A1,0M and A0,1M, respectively.

This decomposition propagates: let Ap,qM =

p∧
r=0

A1,0M
⊗ q∧

s=0

A0,1M. Then

Ak
CM =

⊕
p+q=k

Ap,qM.
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1. The Kähler identities. Some definitions.

L

Λ = L∗

∂
∂̄

µ

µ̄

λ∂

λ∂̄

λµ

λµ̄

, τ∂

, τ∂̄

τµ

τµ̄

A0,0M

A0
CM

A1,0M

A0,1M

A1
CM

A2,0M

A1,1M

A0,2M

A2
CM

A3,0M

A2,1M

A1,2M

A0,3M

A3
CM

A4,0M

A3,1M

A2,2M

A1,3M

A0,4M

A4
CM

A4,1M

A3,2M

A2,3M

A1,4M

A4,2M

A3,3M

A2,4M

A4,3M

A3,4MA2,4M A4,4M
L(α) := ω ∧ α.
Since ω is a (1, 1)-form,
L : Ak M → Ak+2M

Λ := L∗, so
Λ : Ak+2M → Ak M.

d : Ak M → Ak+1M, so
d = ∂+∂̄ +µ+µ̄

λ(α) := dω ∧ α.
Since dω is a 3-form,
λ : Ak M → Ak+3M.
And since
dω = µ̄ω + ∂̄ω + ∂ω + µω,
λ = λ∂+λ∂̄ +λµ +λµ̄

τ = [Λ, λ] = Λ ◦ λ− λ ◦ Λ,
so τ : Ak M → Ak+1M.
τ = τ∂+τ∂̄ +τµ+τµ̄
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1. The Kähler identities. Some definitions.

For M a Kähler manifold, µ = µ̄ = 0, and dω = 0, so λ = τ = 0.

The Kähler identities (or Hodge identities) read:

[d , L] = 0 [d ,Λ] = dc∗,

or decomposing into type,

[∂, L] = 0, [∂̄, L] = 0 [∂,Λ] = −i ∂̄∗ [∂̄,Λ] = i∂∗.

• [P,Q] := P ◦ Q − Q ◦ P.

• d = ∂ + ∂̄, and L and Λ are as before.

• d∗ = − ∗ ◦d ◦ ∗ is the formal adjoint of d .

• dc = −i(∂ − ∂̄) (= J−1
a ◦ d ◦ Ja)

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition
of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of
d-harmonic, ∂-harmonic, and ∂̄-harmonic forms coincide, which has important topological
implications.
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1. The Kähler identities. Some generalizations.

For Kähler manifolds (µ = µ̄ = λ = τ = 0):

Hodge, 1931:
[d , L] = 0 [d ,Λ] = dc∗,

or decomposing into type,

[∂, L] = 0, [∂̄, L] = 0 [∂,Λ] = −i ∂̄∗ [∂̄,Λ] = i∂∗,

For complex manifolds (µ = µ̄ = 0):

Demailly, 1986: Define the following operators on AC(M) (= A(M)⊗ C):

λ∂(α) = ∂ω ∧ α λ∂̄(α) = ∂̄ω ∧ α λ(α) = dω ∧ α

τ∂ = [Λ, λ∂ ] τ∂̄ = [Λ, λ∂̄ ] τ = [Λ, λ]

Then the Kähler identities generalize to

[d , L] = λ [d ,Λ] = dc∗ + τ c∗,

or decomposing into type,

[∂, L] = λ∂ , [∂̄, L] = λ∂̄ [∂,Λ] = −i(∂̄∗ + τ∗
∂̄

) [∂̄,Λ] = i(∂∗ + τ∗∂ ).
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1. The Kähler identities. Some generalizations.

For almost Kähler manifolds (λ = τ = 0): d decomposes as d = µ̄+ ∂̄ + ∂ + µ.

de Bartolomeis-Tomassini, 2001: The Kähler identities generalize to

[d , L] = 0 [d ,Λ] = dc∗,

or decomposing into type,

[µ, L] = 0, [∂, L] = 0, [µ,Λ] = iµ̄∗, [∂,Λ] = −i ∂̄∗.

For 6-dimensional nearly Kähler manifolds (∂ω = ∂̄ω = 0, τµ = µ):

Verbitsky, 2011: An almost Hermitian manifold is nearly Kähler if the tensor (∇X J)Y is
totally skew symmetric. The Kähler identities generalize to

[d , L] = 0 [d ,Λ] = dc∗ + µc∗ + (µ̄c)∗,

or decomposing into type,

[µ, L] = λµ, [∂, L] = 0, [µ,Λ] = 2iµ̄∗, [∂,Λ] = −i ∂̄∗.

Luis Fernandez and Sam Hosmer — Kähler identities for almost complex manifolds



1. The Kähler identities. Some generalizations.

For almost Kähler manifolds (λ = τ = 0): d decomposes as d = µ̄+ ∂̄ + ∂ + µ.

de Bartolomeis-Tomassini, 2001: The Kähler identities generalize to

[d , L] = 0 [d ,Λ] = dc∗,

or decomposing into type,

[µ, L] = 0, [∂, L] = 0, [µ,Λ] = iµ̄∗, [∂,Λ] = −i ∂̄∗.

For 6-dimensional nearly Kähler manifolds (∂ω = ∂̄ω = 0, τµ = µ):

Verbitsky, 2011: An almost Hermitian manifold is nearly Kähler if the tensor (∇X J)Y is
totally skew symmetric. The Kähler identities generalize to

[d , L] = 0 [d ,Λ] = dc∗ + µc∗ + (µ̄c)∗,

or decomposing into type,

[µ, L] = λµ, [∂, L] = 0, [µ,Λ] = 2iµ̄∗, [∂,Λ] = −i ∂̄∗.

Luis Fernandez and Sam Hosmer — Kähler identities for almost complex manifolds



1. The Kähler identities. Theorem.

We show that Demailly’s identities hold, in greatest generality, for almost complex manifolds:

For almost complex manifolds:

Theorem (F., Hosmer):
Let M be an almost complex manifold with a compatible metric. Then

[d , L] = λ [d ,Λ] = dc∗ + τ c∗,

or decomposing into type,

[µ, L] = λµ, [∂, L] = λ∂ , [µ,Λ] = i(µ̄∗ + τ∗µ̄), [∂,Λ] = −i(∂̄∗ + τ∗
∂̄

).

(Plus the adjoints and conjugates of these identities.)

These identities include all the generalizations above.

The approach is to formulate the problem in the Clifford bundle where the algebraic structure is
somewhat richer, and then translate the result to the exterior bundle.
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2. Sketch of the proof. The Clifford bundle.

Let V be a vector space with a metric, and {ej}n
j=1 an orthonormal basis.

The Clifford algebra is the free algebra Cl(V ) generated by the ej , subject to the conditions

ej · ek + ek · ej = 0 if j 6= k , e2
j = −1.

On a manifold we can construct the Clifford bundle Cl(M) := Cl(TM).

It is well known that Cl(M) and the exterior bundle A(M) are canonically isomorphic as vector
bundles, as are their complexifications Cl(M) and AC(M).

The ac structure J : TM → TM and its dual J̌ : A1M → A1M
can be extended to Cl(M) and AC(M), respectively, in two different ways:

→ As a derivation: Jd (u · v) = Jd (u) · v + u · Jd (v) (similarly for J̌d ).

→ As an algebra map: Ja(u · v) = Ja(u) · Ja(v) (similarly for J̌a).

Following Michelsohn’80, in Cl(M) we define

• If ϕ ∈ Γ(Cl(M)), the Dirac operator is defined by Dϕ :=
2n∑

B=1

eB · ∇eBϕ.

• If {eA}2n
A=1 is an adapted basis (i.e. ej+n = Jej , 1 ≤ j ≤ n), let ω =

n∑
j=1

ej · ej+n.

• H(ϕ) :=
1
2i

(ω · ϕ+ ϕ · ω)
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bundles, as are their complexifications Cl(M) and AC(M).

The ac structure J : TM → TM and its dual J̌ : A1M → A1M
can be extended to Cl(M) and AC(M), respectively, in two different ways:

→ As a derivation: Jd (u · v) = Jd (u) · v + u · Jd (v) (similarly for J̌d ).

→ As an algebra map: Ja(u · v) = Ja(u) · Ja(v) (similarly for J̌a).

Following Michelsohn’80, in Cl(M) we define

• If ϕ ∈ Γ(Cl(M)), the Dirac operator is defined by Dϕ :=
2n∑

B=1

eB · ∇eBϕ.

• If {eA}2n
A=1 is an adapted basis (i.e. ej+n = Jej , 1 ≤ j ≤ n), let ω =

n∑
j=1

ej · ej+n.

• H(ϕ) :=
1
2i

(ω · ϕ+ ϕ · ω)
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2. Sketch of the proof. The Clifford bundle.

Through the isomorphism, we have the following conversion table:

Cl(M) AC(M)

D ∼= d + d∗

ω ∼= ω

H ∼= i(Λ− L) (Michelsohn’80)

Dc ∼= −(dc + dc∗)

(For an operator P, Pc := J−1
a ◦ P ◦ Ja.)

Observe that in the Kähler identities,

• The left hand side is [d , L] or [d ,Λ].

• The right hand side has a term dc∗.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

[D,H] ∼= [d + d∗, i(Λ− L)]

and express it in terms of Dc .
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2. Sketch of the proof. The Clifford bundle.

After a very simple computation using an adapted basis, one obtains:

Theorem (F., Hosmer) (Kähler identities on the Clifford bundle):

[D,H] = −iDc + iDσ − iLDω

where, for ϕ ∈ Γ(Cl(M)),

LDω(ϕ) := Dω · ϕ, Dσ(ϕ) :=
2n∑

A=1

eA · σeAϕ,

with
σX := ∇X Jd + J−1

a ◦ ∇JX Ja.

Luis Fernandez and Sam Hosmer — Kähler identities for almost complex manifolds



2. Sketch of the proof. Conversion to the exterior bundle.

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.

Via relatively simple linear algebraic computations, one obtains

Dσ − LDω ∼= τ c − λ+ τ c∗ − λ∗.

Thus we have
[D,H] = −iDc + iDσ − iLDω ,

and

[D,H] ∼= [d + d∗, i(Λ− L)]

Dc ∼= −(dc + dc∗)

Dσ − LDω ∼= τ c − λ+ τ c∗ − λ∗

Putting all together, we get

[d + d∗,Λ− L] = dc + τ c − λ+ dc∗ + τ c∗ − λ∗,

which gives the Kähler identities by separating by degrees.
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2. Sketch of the proof. Table of commutators.

Here is the full table of commutators of the common operators with L and Λ.

Λ L

d dc∗ + τ c∗ λ

µ i(µ̄∗ + τ∗µ̄) λµ

τµ −2iτ∗µ̄ −3λµ
µ̄ −i(µ∗ + τ∗µ) λµ̄

τµ̄ 2iτ∗µ −3λµ̄
∂ −i(∂̄∗ + τ∗

∂̄
) λ∂

τ∂ 2iτ∗
∂̄

−3λ∂
ρ∂ −iρ∗

∂̄
+ τ∗

∂̄
iλ∂

∂̄ i(∂∗ + τ∗∂ ) λ∂̄

τ∂̄ −2iτ∗∂ −3λ∂̄
ρ∂̄ iρ∗∂ + τ∗∂ −iλ∂̄
λµ̄ −τµ̄ 0

λ∂̄ −τ∂̄ 0

λ∂ −τ∂ 0

λµ −τµ 0

L Λ

d∗ −(dc + τ c) −λ∗

µ∗ i(µ̄+ τµ̄) −λ∗µ
τ∗µ −2iτµ̄ 3λ∗µ
µ̄∗ −i(µ+ τµ) −λ∗µ̄
τ∗µ̄ 2iτµ 3λ∗µ̄
∂∗ −i(∂̄ + τ∂̄) −λ∗∂
τ∗∂ 2iτ∂̄ 3λ∗∂
ρ∗∂ −iρ∂̄ − τ∂̄ iλ∗∂
∂̄∗ i(∂ + τ∂) −λ∗

∂̄

τ∗
∂̄

−2iτ∂ 3λ∗
∂̄

ρ∗
∂̄

iρ∂ − τ∂ −iλ∗∂
λ∗µ̄ τ∗µ̄ 0

λ∗
∂̄

τ∗
∂̄

0

λ∗∂ τ∗∂ 0

λ∗µ −iτ∗µ 0
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3. Some thoughts.

• What I like:
→ The proof is completely algebraic once it is formulated in the Clifford bundle.

→ The operator σ has a “companion” ν defined as

νX = ∇X Jd − J−1
a ◦ ∇JX Ja.

Recall that Dσ =
∑2n

A=1 eA · σeA , and Dν =
∑2n

A=1 eA · νeA . It is not hard to prove that

Dν = 0 ⇐⇒ M complex (i.e. J integrable)

Dσ = 0 ⇐⇒ M (2, 1) + (1, 2)-symplectic (i.e. ∂ω = ∂̄ω = 0)

LDω = 0 ⇐⇒ M symplectic (i.e. dω = 0).

Thus we get a simple characterization of all the “sides of the coin”.

• What I do not understand:
→ Why setting the problem in the Clifford bundle give more information? It is kind of magic.

• What I would like to do:
→ Develop, as in Michelsohn’80, a “Clifford cohomology” and study its relationship with

other existing cohomologies.

→ Study harmonic theory on the Clifford bundle, since D2 ∼= ∆.

• What frustrates me:
→ “Nice formula! What is it good for?”
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Thank you.

Thank you
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Appendix.

It is a quick computation to show that Ja(ϕ) = 1
2 (ω · ϕ− ϕ · ω).

Then H = iJd − iLω .

We first compute the commutator with each of the two terms and compare the result with Dc .

[D, Jd ](X) =
2n∑

A=1

(
eA · ∇eA (Jd X)− Jd (eA · ∇eA X)

)
=

2n∑
A=1

(
eA · (∇eA Jd )X + eA · Jd∇eA X − JeA · ∇eA X − eA · Jd∇eA X

)
=

2n∑
A=1

eA · (∇eA Jd )X −
2n∑

A=1

JeA · ∇eA X .

Also,

[D, Lω](X) =
2n∑

A=1

(eA · ∇eA (ω · X)− ω · eA · ∇eA X)

=
2n∑

A=1

(eA · ∇eAω · X + eA · ω · ∇eA X − ω · eA · ∇eA X)

= LDω(X)− 2
2n∑

A=1

JeA · ∇eA X
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Appendix.

Thus, since H = iJd − iLω ,

[D,H] + iLDω(X) = i
2n∑

A=1

eA · (∇eA Jd )X + i
2n∑

A=1

JeA · ∇eA X .

On the other hand,

Dc(X) = J−1
a

( 2n∑
A=1

eA · ∇eA JaX

)

=
2n∑

A=1

(
−JeA · J−1

a ((∇eA Ja)X + Ja∇eA X)
)

=
2n∑

A=1

eA · J−1
a (∇JeA Ja)X −

2n∑
A=1

JeA · ∇eA X ,

where the first term in the last equality comes from the fact that if 1 ≤ A ≤ n, then JeA = eA+n,
and if n + 1 ≤ A ≤ 2n, then JeA = eA−n. Therefore,

[D,H] + iLDω + iDc = i
2n∑

A=1

eA · (∇ea Jd + J−1
a ◦ ∇JeA Ja),

which proves the claim.
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