Kähler identities for almost complex manifolds

Luis Fernández and Sam Hosmer

Department of Mathematics and Computer Science Bronx Community College and the Graduate Center

City University of New York, USA
Differential Geometry Workshop 2023
University of Iași


```
university-logo-cuny.pdf
```

grad-center-logo.pdf

- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-l$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
\text { M complex } \Longleftrightarrow J \text { Jintegrable. }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-l$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \longleftrightarrow J \text { integrable. }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-l$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \Longleftrightarrow J \text { integrable }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-l$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \Longleftrightarrow J \text { integrable }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-l$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \Longleftrightarrow J \text { integrable }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-I$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \Longleftrightarrow J \text { integrable }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.
- An almost complex structure: bundle map $J: T M \rightarrow T M$ such that $J^{2}=-I$.
- An almost complex manifold is a manifold with an almost complex structure.
- An almost complex structure is integrable if the Nijenhuis tensor, defined by

$$
N(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

vanishes (among many equivalent conditions).

- A complex manifold is a manifold $M^{2 n}$ with a holomorphic atlas.

It carries a natural "almost" complex structure J.
It is well known (Newlander-Nirenberg'57)

$$
M \text { complex } \Longleftrightarrow J \text { integrable }
$$

- For M (almost) complex, let \langle,$\rangle be a compatible metric, i.e. \langle J X, J Y\rangle=\langle X, Y\rangle$. Define the fundamental form $\omega(X, Y)=\langle J X, Y\rangle$.
- An almost complex manifold is almost Kähler if $d \omega=0$.
- A complex manifold is Kähler if $d \omega=0$.

Diagrammatically:

Diagrammatically:

Diagrammatically:

Diagrammatically:

Almost complex

Perhaps the main question in almost complex manifolds is the following:
Existence of an almost complex structure depends only on the topology (it is a section of a bundle, so one can use obstruction theory).

Is integrability also a topological condition? If not, what is it?
In fact, there are no examples of almost complex manifolds of real dimension 6 or higher that do not also admit an integrable complex structure.

The most famous example is S^{6}

But I will not talk about this.

Perhaps the main question in almost complex manifolds is the following:
Existence of an almost complex structure depends only on the topology (it is a section of a bundle, so one can use obstruction theory).

Is integrability also a topological condition? If not, what is it?
In fact, there are no examples of almost complex manifolds of real dimension 6 or higher that do not also admit an integrable complex structure.

The most famous example is S^{6}

But I will not talk about this.

Perhaps the main question in almost complex manifolds is the following:
Existence of an almost complex structure depends only on the topology (it is a section of a bundle, so one can use obstruction theory).

Is integrability also a topological condition? If not, what is it?
In fact, there are no examples of almost complex manifolds of real dimension 6 or higher that do not also admit an integrable complex structure.

The most famous example is S^{6}.

But I will not talk about this.

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- \wedge, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta$).

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{J}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
$\left(J_{a}=\right.$ extension of J to the exterior algebra as an algebra map: $\left.J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta\right)$.

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{J}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{C}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta$).

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{J}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-l$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta$).

There is also a descomposition of the complexified exterior algebra as follows:

Consider the dual of $J, J: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta$).

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{\breve{c}}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta$).

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{\breve{c}}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $\left.J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta\right)$.

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{\breve{c}}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

In an almost complex manifold M with a compatible metric, we have several operators:

- d, the usual differential operator.
- L, the Lefschetz operator, $L(\alpha)=\omega \wedge \alpha$.
- Λ, the adjoint of L with respect to the metric.
- $d^{*}=-* \circ d \circ *$, the formal adjoint of d.
- $d^{c}=J_{a}^{-1} \circ d \circ J_{a}$
($J_{a}=$ extension of J to the exterior algebra as an algebra map: $\left.J_{a}(\alpha \wedge \beta)=J_{\alpha} \wedge J \beta\right)$.

There is also a descomposition of the complexified exterior algebra as follows:
Consider the dual of $J, \check{\breve{c}}: A^{1} M \rightarrow A^{1} M$.
Extend it complex-linearly to $\breve{J}: A^{1} M \otimes \mathbb{C} \rightarrow A^{1} M \otimes \mathbb{C}$.
Because $\breve{J}^{2}=-I$, the eigenvalues of J are i and $-i$.
Denote the corresponding eigenspaces by $A^{1,0} M$ and $A^{0,1} M$, respectively.
This decomposition propagates: let $A^{p, q} M=\bigwedge_{r=0}^{p} A^{1,0} M \bigotimes \bigwedge_{s=0}^{q} A^{0,1} M$. Then

$$
A_{\mathbb{C}}^{k} M=\bigoplus_{p+q=k} A^{p, q} M
$$

```
A *,1}
\mp@subsup{A}{}{0,0}\mp@subsup{M}{\bullet}{}}\begin{array}{lll}{\mp@subsup{A}{}{1,0}M}&{}\\{}&{\mp@subsup{\boldsymbol{A}}{\mathbb{C}}{0}M}&{\mp@subsup{\boldsymbol{A}}{\mathbb{C}}{1}\boldsymbol{M}}
```

$$
\begin{gathered}
\bullet_{A^{0,2} M} \\
\bullet_{A^{0,1} M} \quad \bullet_{A^{1,1} M} \\
A^{0,0} M_{\bullet} \boldsymbol{A}^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \\
\boldsymbol{A}_{\mathbb{C}}^{0} \boldsymbol{M} \quad \boldsymbol{A}_{\mathbb{C}}^{1} \boldsymbol{M} \quad \boldsymbol{A}_{\mathbb{C}}^{2} \boldsymbol{M}
\end{gathered}
$$

$$
\begin{aligned}
& { }^{\bullet} A^{0,3} M \\
& \bullet_{A^{0,2}} M \quad \bullet_{A^{1,2}} M \\
& \bullet_{A^{0,1} M} \quad \bullet_{A^{1,1} M} \quad \bullet_{A^{2,1} M} \\
& \begin{array}{lllll}
A^{0,0} M_{\bullet} & A^{1,0} M_{\bullet} & A^{2,0} M_{\bullet} & \boldsymbol{A}^{3,0} M_{\bullet} & \\
& \boldsymbol{A}_{\mathbb{C}}^{0} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{1} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{2} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{3} \boldsymbol{M}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,4} M \\
& \bullet_{A^{0,3} M} \quad \bullet_{A^{1,3} M} \\
& \bullet_{A^{0,2}} M \quad \bullet_{A^{1,2}} M \quad \bullet_{A^{2,2}} M \\
& \bullet_{A^{0,1} M} \quad \bullet_{A^{1,1} M} \quad \bullet_{A^{2,1} M} \quad \bullet_{A^{3,1} M} \\
& \begin{array}{lllllll}
A^{0,0} M_{\bullet} & A^{1,0} M & A^{2,0} M & \boldsymbol{A}^{3,0} M_{\bullet} & \boldsymbol{A}^{4,0} M_{\bullet} & \\
& \boldsymbol{A}_{\mathbb{C}}^{0} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{1} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{2} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{3} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{4} \boldsymbol{M}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \\
& \bullet_{A^{0,3} M} \quad \bullet_{A^{1,3} M} \quad \bullet_{A^{2,3} M} \\
& \bullet_{A^{0,2}} M \quad \bullet_{A^{1,2}} M \quad \bullet_{A^{2,2} M} \quad \bullet_{A^{3,2} M} \\
& \bullet_{A^{0,1} M} \quad \bullet_{A^{1,1} M} \quad \bullet_{A^{2,1} M} \quad \bullet_{A^{3,1} M} \quad \bullet_{A^{4,1} M} \\
& \begin{array}{lllllll}
\boldsymbol{A}^{0,0} M_{\bullet} & A^{1,0} M & \boldsymbol{A}^{2,0} M_{\bullet} & \boldsymbol{A}^{3,0} M_{\bullet} & \boldsymbol{A}^{4,0} M_{\bullet} & \\
& \boldsymbol{A}_{\mathbb{C}}^{0} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{1} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{2} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{3} \boldsymbol{M} & \boldsymbol{A}_{\mathbb{C}}^{4} \boldsymbol{M}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M} \\
& \bullet_{A^{0,3} M} \quad \bullet_{A^{1,3} M} \quad \bullet_{A^{2,3} M} \quad \bullet_{A^{3,3} M} \quad \bullet_{A^{4,3} M} \\
& \bullet_{A^{0,2} M} \quad \bullet_{A^{1,2} M} \quad \bullet_{A^{2,2} M} \quad \bullet_{A^{3,2} M} \quad \bullet_{A^{4,2} M} \\
& \bullet_{A^{0,1} M} \quad \bullet_{A^{1,1} M} \quad \bullet_{A^{2,1} M} \quad \bullet_{A^{3,1} M} \quad \bullet_{A^{4,1} M} \\
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
\boldsymbol{A}_{\mathbb{C}}^{0} M & A_{\mathbb{C}}^{1} M & A_{\mathbb{C}}^{2} M & A_{\mathbb{C}}^{3} M & A_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
\bullet_{A^{0,4} M} & \bullet_{A^{1,4} M} & \bullet_{A^{2,4} M} & \bullet_{A^{3,4} M} & \bullet_{A^{4,4} M} \quad \begin{array}{l}
L(\alpha):=\omega \wedge \alpha . \\
\\
\\
\\
\\
\\
\\
\\
\end{array} \text { incl } \omega \text { is a }(1,1) \text {-form } M \rightarrow A^{k} M
\end{array} \\
& \bullet_{A^{0,3} M} \quad \bullet_{A^{1,3} M} \quad \bullet_{A^{2,3} M} \quad \bullet_{A^{3,3} M} \quad \bullet_{A^{4,3} M} \\
& \begin{array}{lllll}
\bullet_{A_{i^{2}} M} & \boldsymbol{\bullet}_{A^{1,2} M} & \bullet_{A^{2,2} M} & \bullet_{A^{3,2} M} & \bullet_{A^{4,2} M} \\
\boldsymbol{\bullet}_{A^{0,1} M} & \bullet_{A^{1,1} M} & \bullet_{A^{2,1} M} & \bullet_{A^{3,1} M} & \bullet_{A^{4,1} M}
\end{array} \\
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
A_{\mathbb{C}}^{0} M & A_{\mathbb{C}}^{1} M & A_{\mathbb{C}}^{2} M & A_{\mathbb{C}}^{3} M & A_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M} \\
& \begin{array}{llll}
\bullet_{A^{0,3}} M & \bullet_{A^{1,3} M} & \bullet_{A^{2,3} M} & \bullet_{A^{3,3} M} \\
\bullet_{A^{4,3}} M & & \Lambda:=L^{*}, \text { so } \\
\Lambda: A^{k+2} M \rightarrow A^{k} M .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
\boldsymbol{A}_{\mathbb{C}}^{0} M & \boldsymbol{A}_{\mathbb{C}}^{1} M & \boldsymbol{A}_{\mathbb{C}}^{2} M & \boldsymbol{A}_{\mathbb{C}}^{3} M & \boldsymbol{A}_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M} \\
& \bullet_{A^{0,3} M} \quad \bullet_{A^{1,3} M} \quad \bullet_{A^{2,3} M} \quad \bullet_{A^{3,3} M} \quad \bullet_{A^{4,3} M}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
A_{\mathbb{C}}^{0} M & A_{\mathbb{C}}^{1} M & A_{\mathbb{C}}^{2} M & A_{\mathbb{C}}^{3} M & A_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
A_{\mathbb{C}}^{0} M & A_{\mathbb{C}}^{1} M & A_{\mathbb{C}}^{2} M & A_{\mathbb{C}}^{3} M & A_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
\boldsymbol{A}_{\mathbb{C}}^{0} M & \boldsymbol{A}_{\mathbb{C}}^{1} M & \boldsymbol{A}_{\mathbb{C}}^{2} M & \boldsymbol{A}_{\mathbb{C}}^{3} M & \boldsymbol{A}_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet_{A^{0,4} M} \quad \bullet_{A^{1,4} M} \quad \bullet_{A^{2,4} M} \quad \bullet_{A^{3,4} M} \quad \bullet_{A^{4,4} M}
\end{aligned}
$$

$$
\begin{aligned}
& A^{0,0} M_{\bullet} \quad A^{1,0} M_{\bullet} \quad A^{2,0} M_{\bullet} \quad A^{3,0} M_{\bullet} \quad A^{4,0} M_{\bullet} \\
& \begin{array}{lllll}
A_{\mathbb{C}}^{0} M & A_{\mathbb{C}}^{1} M & A_{\mathbb{C}}^{2} M & A_{\mathbb{C}}^{3} M & A_{\mathbb{C}}^{4} M
\end{array}
\end{aligned}
$$

$$
L(\alpha):=\omega \wedge \alpha
$$

$$
\text { Since } \omega \text { is a }(1,1) \text {-form, }
$$

$$
L: A^{k} M \rightarrow A^{k+2} M
$$

$$
\begin{aligned}
& \Lambda:=L^{*}, \text { so } \\
& \Lambda: A^{k+2} M \rightarrow A^{k} M . \\
& d: A^{k} M \rightarrow A^{k+1} M, \text { so } \\
& d=\partial+\bar{\partial}+\mu+\bar{\mu}
\end{aligned}
$$

$\lambda(\alpha):=d \omega \wedge \alpha$.
Since $d \omega$ is a 3 -form, $\lambda: A^{k} M \rightarrow A^{k+3} M$. And since

$$
\begin{aligned}
& d \omega=\bar{\mu} \omega+\bar{\partial} \omega+\partial \omega+\mu \omega, \\
& \lambda=\lambda \partial
\end{aligned}
$$

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and \wedge are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For M a Kähler manifold, $\mu=\bar{\mu}=0$, and $d \omega=0$, so $\lambda=\tau=0$.
The Kähler identities (or Hodge identities) read:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

- $[P, Q]:=P \circ Q-Q \circ P$.
- $d=\partial+\bar{\partial}$, and L and Λ are as before.
- $d^{*}=-* \circ d \circ *$ is the formal adjoint of d.
- $d^{c}=-i(\partial-\bar{\partial})\left(=J_{a}^{-1} \circ d \circ J_{a}\right)$

The Kähler identities are a fundamental tool to show, for example, the Lefschetz decomposition of complex DeRham cohomology or the fact that, on a Kähler manifold, the notions of d-harmonic, ∂-harmonic, and $\bar{\partial}$-harmonic forms coincide, which has important topological implications.

For Kähler manifolds $(\mu=\bar{\mu}=\lambda=\tau=0)$:
Hodge, 1931:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

For complex manifolds ($\mu=\bar{\mu}=0$):
Demailly, 1986: Define the following operators on $A_{C}(M)(=A(M) \otimes \mathbb{C})$:

$$
\begin{aligned}
\lambda_{\partial}(\alpha) & =\partial \omega \wedge \alpha & \lambda_{\bar{\partial}}(\alpha) & =\bar{\partial} \omega \wedge \alpha \\
\tau_{\partial} & =\left[\Lambda, \lambda_{\partial}\right] & \tau_{\bar{\partial}} & =\left[\Lambda, \lambda_{\bar{\partial}}\right]
\end{aligned} r(\alpha)=d \omega \wedge \alpha,
$$

Then the Kähler identities generalize to

$$
[d, L]=\lambda \quad[d, \wedge]=d^{C^{*}}+\tau^{C^{*}},
$$

or decomposing into type,
$[\partial, L]=\lambda_{\partial}$,
$[\bar{\partial}, L]=\lambda_{\bar{\jmath}}$
$[\partial, \wedge]=-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)$
$[\bar{\partial}, \wedge]=i\left(\partial^{*}+\tau_{\partial}^{*}\right)$.

For Kähler manifolds ($\mu=\bar{\mu}=\lambda=\tau=0$):
Hodge, 1931:

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\partial, L]=0, \quad[\bar{\partial}, L]=0 \quad[\partial, \Lambda]=-i \bar{\partial}^{*} \quad[\bar{\partial}, \Lambda]=i \partial^{*}
$$

For complex manifolds ($\mu=\bar{\mu}=0$):
Demailly, 1986: Define the following operators on $A_{\mathbb{C}}(M)(=A(M) \otimes \mathbb{C})$:

$$
\begin{aligned}
\lambda_{\partial}(\alpha) & =\partial \omega \wedge \alpha & \lambda_{\bar{\partial}}(\alpha) & =\bar{\partial} \omega \wedge \alpha \\
\tau_{\partial} & =\left[\Lambda, \lambda_{\partial}\right] & \tau_{\bar{\partial}} & =\left[\Lambda, \lambda_{\bar{\partial}}\right]
\end{aligned} r(\alpha)=d \omega \wedge \alpha,
$$

Then the Kähler identities generalize to

$$
[d, L]=\lambda \quad[d, \Lambda]=d^{c^{*}}+\tau^{c^{*}}
$$

or decomposing into type,
$[\partial, L]=\lambda_{\partial}$,
$[\bar{\partial}, L]=\lambda_{\bar{\partial}}$
$[\partial, \Lambda]=-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)$
$[\bar{\partial}, \Lambda]=i\left(\partial^{*}+\tau_{\partial}^{*}\right)$.

For almost Kähler manifolds $(\lambda=\tau=0)$: \boldsymbol{d} decomposes as $\boldsymbol{d}=\bar{\mu}+\bar{\partial}+\partial+\mu$.
de Bartolomeis-Tomassini, 2001: The Kähler identities generalize to

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\mu, L]=0, \quad[\partial, L]=0, \quad[\mu, \Lambda]=i \bar{\mu}^{*}, \quad[\partial, \Lambda]=-i \bar{\partial}^{*}
$$

For 6-dimensional nearly Kähler manifolds $\left(\partial \omega=\bar{\partial} \omega=0, \tau_{\mu}=\mu\right)$:
Verbitsky, 2011: An almost Hermitian manifold is nearly Kähler if the tensor $\left(\nabla_{X} J\right) Y$ is totally skew symmetric. The Kähler identities generalize to

$$
[d, L]=0 \quad[d, \wedge]=d^{c^{*}}+\mu^{c^{*}}+\left(\bar{\mu}^{c}\right)^{*}
$$

or decomposing into type,

$$
[\mu, L]=\lambda_{\mu}, \quad[\partial, L]=0, \quad[\mu, \Lambda]=2 i \bar{\mu}^{*}, \quad[\partial, \Lambda]=-i \bar{\partial}^{*}
$$

For almost Kähler manifolds $(\lambda=\tau=0)$: \boldsymbol{d} decomposes as $\boldsymbol{d}=\bar{\mu}+\bar{\partial}+\partial+\mu$.
de Bartolomeis-Tomassini, 2001: The Kähler identities generalize to

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}
$$

or decomposing into type,

$$
[\mu, L]=0, \quad[\partial, L]=0, \quad[\mu, \Lambda]=i \bar{\mu}^{*}, \quad[\partial, \Lambda]=-i \bar{\partial}^{*}
$$

For 6-dimensional nearly Kähler manifolds ($\partial \omega=\bar{\partial} \omega=0, \tau_{\mu}=\mu$):
Verbitsky, 2011: An almost Hermitian manifold is nearly Kähler if the tensor $\left(\nabla_{X} J\right) Y$ is totally skew symmetric. The Kähler identities generalize to

$$
[d, L]=0 \quad[d, \Lambda]=d^{c *}+\mu^{c *}+\left(\bar{\mu}^{c}\right)^{*},
$$

or decomposing into type,

$$
[\mu, L]=\lambda_{\mu}, \quad[\partial, L]=0, \quad[\mu, \Lambda]=2 i \bar{\mu}^{*}, \quad[\partial, \Lambda]=-i \bar{\partial}^{*}
$$

We show that Demailly's identities hold, in greatest generality, for almost complex manifolds:
For almost complex manifolds:

Theorem (F., Hosmer):

Let M be an almost complex manifold with a compatible metric. Then

$$
[d, L]=\lambda \quad[d, \Lambda]=d^{c^{*}}+\tau^{c^{*}}
$$

or decomposing into type,

$$
[\mu, L]=\lambda_{\mu}, \quad[\partial, L]=\lambda_{\partial}, \quad[\mu, \Lambda]=i\left(\bar{\mu}^{*}+\tau_{\bar{\mu}}^{*}\right), \quad[\partial, \Lambda]=-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)
$$

(Plus the adjoints and conjugates of these identities.)

These identities include all the generalizations above.

The approach is to formulate the problem in the Clifford bundle where the algebraic structure is somewhat richer, and then translate the result to the exterior bundle.

We show that Demailly's identities hold, in greatest generality, for almost complex manifolds:

For almost complex manifolds:

Theorem (F., Hosmer):

Let M be an almost complex manifold with a compatible metric. Then

$$
[d, L]=\lambda \quad[d, \Lambda]=d^{c^{*}}+\tau^{c^{*}}
$$

or decomposing into type,

$$
[\mu, L]=\lambda_{\mu}, \quad[\partial, L]=\lambda_{\partial}, \quad[\mu, \Lambda]=i\left(\bar{\mu}^{*}+\tau_{\bar{\mu}}^{*}\right), \quad[\partial, \Lambda]=-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)
$$

(Plus the adjoints and conjugates of these identities.)

These identities include all the generalizations above.
The approach is to formulate the problem in the Clifford bundle where the algebraic structure is somewhat richer, and then translate the result to the exterior bundle.

We show that Demailly's identities hold, in greatest generality, for almost complex manifolds:

For almost complex manifolds:

Theorem (F., Hosmer):

Let M be an almost complex manifold with a compatible metric. Then

$$
[d, L]=\lambda \quad[d, \Lambda]=d^{c^{*}}+\tau^{c^{*}}
$$

or decomposing into type,

$$
[\mu, L]=\lambda_{\mu}, \quad[\partial, L]=\lambda_{\partial}, \quad[\mu, \Lambda]=i\left(\bar{\mu}^{*}+\tau_{\bar{\mu}}^{*}\right), \quad[\partial, \Lambda]=-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)
$$

(Plus the adjoints and conjugates of these identities.)

These identities include all the generalizations above.
The approach is to formulate the problem in the Clifford bundle where the algebraic structure is somewhat richer, and then translate the result to the exterior bundle.

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual $\breve{J}^{\Sigma}: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for $\left.\check{J}_{d}\right)$.
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\breve{J}_{a}\right)$.

Following Michelsohn' 80 , in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual $\check{\breve{y}}: A^{1} M \rightarrow A^{1} M$
can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for $\left.\check{J}_{d}\right)$.
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for \breve{J}_{a}).

Following Michelsohn' 80 , in $\mathbb{C l}(M)$ we define

- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$ ̌ $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for $\left.\breve{J}_{d}\right)$.
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\check{J}_{a}\right)$.
Following Michelsohn' 80 , in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C I(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$ ̌ $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for $\left.\check{J}_{d}\right)$.
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\breve{J}_{a}\right)$.
Following Michelsohn'80, in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$ ̌ $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for \check{J}_{d}).
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\check{J}_{a}\right)$.
Following Michelsohn'80, in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$: $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for \check{J}_{d}).
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\check{J}_{a}\right)$.

Following Michelsohn'80, in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$ ̌ $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for \check{J}_{d}).
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\check{J}_{a}\right)$.

Following Michelsohn'80, in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Let V be a vector space with a metric, and $\left\{e_{j}\right\}_{j=1}^{n}$ an orthonormal basis.
The Clifford algebra is the free algebra $\mathrm{Cl}(V)$ generated by the e_{j}, subject to the conditions

$$
e_{j} \cdot e_{k}+e_{k} \cdot e_{j}=0 \text { if } j \neq k, \quad e_{j}^{2}=-1
$$

On a manifold we can construct the Clifford bundle $\mathrm{Cl}(M):=\mathrm{Cl}(T M)$.
It is well known that $\mathrm{Cl}(M)$ and the exterior bundle $A(M)$ are canonically isomorphic as vector bundles, as are their complexifications $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$.

The ac structure $J: T M \rightarrow T M$ and its dual ${ }^{\Sigma}$ ̌ $: A^{1} M \rightarrow A^{1} M$ can be extended to $\mathbb{C l}(M)$ and $A_{\mathbb{C}}(M)$, respectively, in two different ways:
\rightarrow As a derivation: $J_{d}(u \cdot v)=J_{d}(u) \cdot v+u \cdot J_{d}(v)$ (similarly for \check{J}_{d}).
\rightarrow As an algebra map: $J_{a}(u \cdot v)=J_{a}(u) \cdot J_{a}(v)$ (similarly for $\left.\check{J}_{a}\right)$.

Following Michelsohn'80, in $\mathbb{C l}(M)$ we define

- If $\varphi \in \Gamma(C /(M))$, the Dirac operator is defined by $D \varphi:=\sum_{B=1}^{2 n} e_{B} \cdot \nabla_{e_{B}} \varphi$.
- If $\left\{e_{A}\right\}_{A=1}^{2 n}$ is an adapted basis (i.e. $e_{j+n}=J e_{j}, 1 \leq j \leq n$), let $\omega=\sum_{j=1}^{n} e_{j} \cdot e_{j+n}$.
- $\mathcal{H}(\varphi):=\frac{1}{2 i}(\omega \cdot \varphi+\varphi \cdot \omega)$

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L) \text { (Michelsohn' } 80 \text {) } \\
D^{c} & \cong & -\left(d^{c}+d^{C *}\right) \\
\text { (For an operator } \left.P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} .\right)
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{C *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\wedge-L)\right]
$$

and express it in terms of D^{c}.

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L)(\text { Michelsohn' } 80 \text {) } \\
D^{c} & \cong & -\left(d^{c}+d^{C *}\right) \\
\text { (For an operator } \left.P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} .\right)
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{C *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\wedge-L)\right]
$$

and express it in terms of D^{c}.

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L) \text { (Michelsohn' } 80 \text {) } \\
D^{c} & \cong & -\left(d^{C}+d^{C *}\right) \\
\text { (For an operator } \left.P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} .\right)
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{C *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\wedge-L)\right]
$$

and express it in terms of D^{c}.

Through the isomorphism, we have the following conversion table:

$\mathbb{C l}(M)$		$A_{\mathbb{C}}(M)$
D	\cong	$d+d^{*}$
ω	\cong	ω
\mathcal{H}	\cong	$i(\Lambda-L) \quad($ Michelsohn'80 $)$
D^{C}	$-\left(d^{C}+d^{C *}\right)$	
(For an operator $\left.P, P^{C}:=J_{a}^{-1} \circ P \circ J_{a .}\right)$		

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{C *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\Lambda-L)\right]
$$

and express it in terms of D^{C}.

Through the isomorphism, we have the following conversion table:

$\mathbb{C l}(M)$		$A_{\mathbb{C}}(M)$
D	\cong	$d+d^{*}$
ω	\cong	ω
\mathcal{H}	\cong	$i(\Lambda-L) \quad$ (Michelsohn'80)
D^{c}	\cong	$-\left(d^{c}+d^{c *}\right)$
(For an operator $P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a}$.)		

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{c *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\Lambda-L)\right]
$$

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L)(\text { Michelsohn'80) } \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
\text { (For an operator } \left.P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} .\right)
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{c *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\wedge-L)\right]
$$

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L)(\text { Michelsohn'80) } \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
\text { (For an operator } \left.P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} .\right)
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{C *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator

$$
[D, \mathcal{H}] \cong\left[d+d^{*}, i(\Lambda-L)\right]
$$

Through the isomorphism, we have the following conversion table:

$$
\begin{array}{ccc}
\mathbb{C l}(M) & & A_{\mathbb{C}}(M) \\
D & \cong & d+d^{*} \\
\omega & \cong & \omega \\
\mathcal{H} & \cong & i(\Lambda-L)(\text { Michelsohn'80 }) \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
\text { (For an operator } P, P^{c}:=J_{a}^{-1} \circ P \circ J_{a} . \text {) }
\end{array}
$$

Observe that in the Kähler identities,

- The left hand side is $[d, L]$ or $[d, \Lambda]$.
- The right hand side has a term $d^{c *}$.

To find a formulation in the Clifford bundle, it is natural to consider the commutator
$[D, \mathcal{H}] \cong\left[d+d^{*}, i(\Lambda-L)\right]$
and express it in terms of D^{c}.

After a very simple computation using an adapted basis, one obtains:

Theorem (F., Hosmer) (Kähler identities on the Clifford bundle):

$$
[D, \mathcal{H}]=-i D^{c}+i D_{\sigma}-i L_{D \omega}
$$

where, for $\varphi \in \Gamma(\mathbb{C l}(M))$,

$$
L_{D \omega}(\varphi):=D \omega \cdot \varphi, \quad D_{\sigma}(\varphi):=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}} \varphi
$$

with

$$
\sigma_{X}:=\nabla_{X} J_{d}+J_{a}^{-1} \circ \nabla_{J X} J_{a}
$$

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.
Via relatively simple linear algebraic computations, one obtains

$$
D_{\sigma}-L_{D \omega} \cong \tau^{c}-\lambda+\tau^{c^{*}}-\lambda^{*} .
$$

Thus we have

$$
[D, \mathcal{H}]=-i D^{C}+i D_{\sigma}-i L_{D \omega},
$$

and

$$
\begin{array}{ccc}
{[D, \mathcal{H}]} & \cong & {\left[d+d^{*}, i(\Lambda-L)\right]} \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
D_{\sigma}-L_{D \omega} & \cong & \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
\end{array}
$$

Putting all together, we get

$$
\left[d+d^{*}, \Lambda-L\right]=d^{c}+\tau^{c}-\lambda+d^{c *}+\tau^{c *}-\lambda^{*},
$$

which gives the Kähler identities by separating by degrees.

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.
Via relatively simple linear algebraic computations, one obtains

$$
D_{\sigma}-L_{D \omega} \cong \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
$$

Thus we have

$$
[D, \mathcal{H}]=-i D^{C}+i D_{\sigma}-i L_{D \omega},
$$

and

$$
\begin{array}{ccc}
{[D, \mathcal{H}]} & \cong & {\left[d+d^{*}, i(\Lambda-L)\right]} \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
D_{\sigma}-L_{D \omega} & \cong & \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
\end{array}
$$

Putting all together, we get

$$
\left[d+d^{*}, \Lambda-L\right]=d^{c}+\tau^{c}-\lambda+d^{c *}+\tau^{c *}-\lambda^{*},
$$

which gives the Kähler identities by separating by degrees.

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.
Via relatively simple linear algebraic computations, one obtains

$$
D_{\sigma}-L_{D \omega} \cong \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
$$

Thus we have

$$
[D, \mathcal{H}]=-i D^{c}+i D_{\sigma}-i L_{D \omega},
$$

and

$$
\begin{array}{ccc}
{[D, \mathcal{H}]} & \cong & {\left[d+d^{*}, i(\Lambda-L)\right]} \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
D_{\sigma}-L_{D \omega} & \cong & \tau^{c}-\lambda+\tau^{c^{*}}-\lambda^{*}
\end{array}
$$

Putting all together, we get

$$
\left[d+d^{*}, \wedge-L\right]=d^{c}+\tau^{c}-\lambda+d^{c *}+\tau^{c *}-\lambda^{*}
$$

which gives the Kähler identities by separating by degrees.

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.
Via relatively simple linear algebraic computations, one obtains

$$
D_{\sigma}-L_{D \omega} \cong \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
$$

Thus we have

$$
[D, \mathcal{H}]=-i D^{c}+i D_{\sigma}-i L_{D \omega},
$$

and

$$
\begin{array}{ccc}
{[D, \mathcal{H}]} & \cong & {\left[d+d^{*}, i(\Lambda-L)\right]} \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
D_{\sigma}-L_{D \omega} & \cong & \tau^{c}-\lambda+\tau^{c^{*}}-\lambda^{*}
\end{array}
$$

Putting all together, we get

$$
\left[d+d^{*}, \wedge-L\right]=d^{c}+\tau^{c}-\lambda+d^{c *}+\tau^{c *}-\lambda^{*},
$$

which gives the Kähler identities by separating by degrees.

To obtain the Kähler identities in the exterior bundle, it only remains to convert this identity.
Via relatively simple linear algebraic computations, one obtains

$$
D_{\sigma}-L_{D \omega} \cong \tau^{c}-\lambda+\tau^{c *}-\lambda^{*}
$$

Thus we have

$$
[D, \mathcal{H}]=-i D^{c}+i D_{\sigma}-i L_{D \omega},
$$

and

$$
\begin{array}{ccc}
{[D, \mathcal{H}]} & \cong & {\left[d+d^{*}, i(\Lambda-L)\right]} \\
D^{c} & \cong & -\left(d^{c}+d^{c *}\right) \\
D_{\sigma}-L_{D \omega} & \cong & \tau^{c}-\lambda+\tau^{c^{*}}-\lambda^{*}
\end{array}
$$

Putting all together, we get

$$
\left[d+d^{*}, \Lambda-L\right]=d^{c}+\tau^{c}-\lambda+d^{c *}+\tau^{c *}-\lambda^{*}
$$

which gives the Kähler identities by separating by degrees.

Here is the full table of commutators of the common operators with L and \wedge.

	Λ	L
d	$d^{c^{*}}+\tau^{c^{*}}$	λ
μ	$i\left(\bar{\mu}^{*}+\tau_{\bar{\mu}}^{*}\right)$	λ_{μ}
τ_{μ}	$-2 i \tau_{\bar{\mu}}^{*}$	$-3 \lambda_{\mu}$
$\bar{\mu}$	$-i\left(\mu^{*}+\tau_{\mu}^{*}\right)$	$\lambda_{\bar{\mu}}$
$\tau_{\bar{\mu}}$	$2 i \tau_{\mu}^{*}$	$-3 \lambda_{\bar{\mu}}$
∂	$-i\left(\bar{\partial}^{*}+\tau_{\bar{\partial}}^{*}\right)$	λ_{∂}
τ_{∂}	$2 i \tau_{\bar{\partial}}^{*}$	$-3 \lambda_{\partial}$
ρ_{∂}	$-i \rho_{\bar{\partial}}^{*}+\tau_{\bar{\partial}}^{*}$	$i \lambda_{\partial}$
$\bar{\partial}$	$i\left(\partial^{*}+\tau_{\partial}^{*}\right)$	$\lambda_{\bar{\partial}}$
$\tau_{\bar{\partial}}$	$-2 i \tau_{\partial}^{*}$	$-3 \lambda_{\bar{\partial}}$
$\rho_{\bar{\partial}}$	$i \rho_{\partial}^{*}+\tau_{\partial}^{*}$	$-i \lambda_{\bar{\partial}}$
$\lambda_{\bar{\mu}}$	$-\tau_{\bar{\mu}}$	0
$\lambda_{\bar{\partial}}$	$-\tau_{\bar{\partial}}$	0
λ_{∂}	$-\tau_{\partial}$	0
λ_{μ}	$-\tau_{\mu}$	0

	L	Λ
d^{*}	$-\left(d^{c}+\tau^{c}\right)$	$-\lambda^{*}$
μ^{*}	$i\left(\bar{\mu}+\tau_{\bar{\mu}}\right)$	$-\lambda_{\mu}^{*}$
τ_{μ}^{*}	$-2 i \tau_{\bar{\mu}}$	$3 \lambda_{\mu}^{*}$
$\bar{\mu}^{*}$	$-i\left(\mu+\tau_{\mu}\right)$	$-\lambda_{\bar{\mu}}^{*}$
$\tau_{\bar{\mu}}^{*}$	$2 i \tau_{\mu}$	$3 \lambda_{\bar{\mu}}^{*}$
∂^{*}	$-i\left(\bar{\partial}+\tau_{\bar{\partial}}\right)$	$-\lambda_{\partial}^{*}$
τ_{∂}^{*}	$2 i \tau_{\bar{\partial}}$	$3 \lambda_{\partial}^{*}$
ρ_{∂}^{*}	$-i \rho_{\bar{\partial}}-\tau_{\bar{\partial}}$	$i \lambda_{\partial}^{*}$
$\bar{\partial}^{*}$	$i\left(\partial+\tau_{\partial}\right)$	$-\lambda_{\bar{\partial}}^{*}$
$\tau_{\bar{\partial}}^{*}$	$-2 i \tau_{\partial}$	$3 \lambda_{\bar{\partial}}^{*}$
$\rho_{\bar{\partial}}^{*}$	$i \rho_{\partial}-\tau_{\partial}$	$-i \lambda_{\partial}^{*}$
$\lambda_{\bar{\mu}}^{*}$	$\tau_{\bar{\mu}}^{*}$	0
$\lambda_{\bar{\partial}}^{*}$	$\tau_{\bar{\partial}}^{*}$	0
λ_{∂}^{*}	τ_{∂}^{*}	0
λ_{μ}^{*}	$-i \tau_{\mu}^{*}$	0

- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a}
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \Delta$.
- What frustrates me:
\rightarrow "Nice formula! What is it good for?"
- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a} .
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \triangle$.
What frustrates me:
\rightarrow "Nice formula! What is it good for?"
- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a} .
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \Delta$.
- What frustrates me:
\rightarrow "Nice formula! What is it good for?"
- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a} .
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \Delta$.
- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a}
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \Delta$.
- What frustrates me:
\rightarrow "Nice formula! What is it good for?"
- What I like:
\rightarrow The proof is completely algebraic once it is formulated in the Clifford bundle.
\rightarrow The operator σ has a "companion" ν defined as

$$
\nu_{X}=\nabla_{X} J_{d}-J_{a}^{-1} \circ \nabla_{J X} J_{a}
$$

Recall that $D_{\sigma}=\sum_{A=1}^{2 n} e_{A} \cdot \sigma_{e_{A}}$, and $D_{\nu}=\sum_{A=1}^{2 n} e_{A} \cdot \nu_{e_{A}}$. It is not hard to prove that

$$
\begin{aligned}
D_{\nu}=0 & \Longleftrightarrow M \text { complex (i.e. } J \text { integrable) } \\
D_{\sigma}=0 & \Longleftrightarrow M(2,1)+(1,2) \text {-symplectic (i.e. } \partial \omega=\bar{\partial} \omega=0) \\
L_{D \omega}=0 & \Longleftrightarrow M \text { symplectic (i.e. } d \omega=0) .
\end{aligned}
$$

Thus we get a simple characterization of all the "sides of the coin".

- What I do not understand:
\rightarrow Why setting the problem in the Clifford bundle give more information? It is kind of magic.
- What I would like to do:
\rightarrow Develop, as in Michelsohn'80, a "Clifford cohomology" and study its relationship with other existing cohomologies.
\rightarrow Study harmonic theory on the Clifford bundle, since $D^{2} \cong \Delta$.
- What frustrates me:
\rightarrow "Nice formula! What is it good for?"

Thank you

It is a quick computation to show that $J_{a}(\varphi)=\frac{1}{2}(\omega \cdot \varphi-\varphi \cdot \omega)$.
Then $\mathcal{H}=i J_{d}-i L_{\omega}$.
We first compute the commutator with each of the two terms and compare the result with D^{c}.

$$
\begin{aligned}
{\left[D, J_{d}\right](X) } & =\sum_{A=1}^{2 n}\left(e_{A} \cdot \nabla_{e_{A}}\left(J_{d} X\right)-J_{d}\left(e_{A} \cdot \nabla_{e_{A}} X\right)\right) \\
& =\sum_{A=1}^{2 n}\left(e_{A} \cdot\left(\nabla_{e_{A}} J_{d}\right) X+e_{A} \cdot J_{d} \nabla_{e_{A}} X-J e_{A} \cdot \nabla_{e_{A}} X-e_{A} \cdot J_{d} \nabla_{e_{A}} X\right) \\
& =\sum_{A=1}^{2 n} e_{A} \cdot\left(\nabla_{e_{A}} J_{d}\right) X-\sum_{A=1}^{2 n} J e_{A} \cdot \nabla_{e_{A}} X
\end{aligned}
$$

Also,

$$
\begin{aligned}
{\left[D, L_{\omega}\right](X) } & =\sum_{A=1}^{2 n}\left(e_{A} \cdot \nabla_{e_{A}}(\omega \cdot X)-\omega \cdot e_{A} \cdot \nabla_{e_{A}} X\right) \\
& =\sum_{A=1}^{2 n}\left(e_{A} \cdot \nabla_{e_{A}} \omega \cdot X+e_{A} \cdot \omega \cdot \nabla_{e_{A}} X-\omega \cdot e_{A} \cdot \nabla_{e_{A}} X\right) \\
& =L_{D \omega}(X)-2 \sum_{A=1}^{2 n} J e_{A} \cdot \nabla_{e_{A}} X
\end{aligned}
$$

Thus, since $\mathcal{H}=i J_{d}-i L_{\omega}$,

$$
[D, \mathcal{H}]+i L_{D \omega}(X)=i \sum_{A=1}^{2 n} e_{A} \cdot\left(\nabla_{e_{A}} J_{d}\right) X+i \sum_{A=1}^{2 n} J e_{A} \cdot \nabla_{e_{A}} X
$$

On the other hand,

$$
\begin{aligned}
D^{c}(X) & =J_{a}^{-1}\left(\sum_{A=1}^{2 n} e_{A} \cdot \nabla_{e_{A}} J_{a} X\right) \\
& =\sum_{A=1}^{2 n}\left(-J e_{A} \cdot J_{a}^{-1}\left(\left(\nabla_{e_{A}} J_{a}\right) X+J J_{a} \nabla_{e_{A}} X\right)\right) \\
& =\sum_{A=1}^{2 n} e_{A} \cdot J_{a}^{-1}\left(\nabla_{J e_{A}} J_{a}\right) X-\sum_{A=1}^{2 n} J e_{A} \cdot \nabla_{e_{A}} X,
\end{aligned}
$$

where the first term in the last equality comes from the fact that if $1 \leq A \leq n$, then $J e_{A}=e_{A+n}$, and if $n+1 \leq A \leq 2 n$, then $J e_{A}=e_{A-n}$. Therefore,

$$
[D, \mathcal{H}]+i L_{D \omega}+i D^{c}=i \sum_{A=1}^{2 n} e_{A} \cdot\left(\nabla_{e_{a}} J_{d}+J_{a}^{-1} \circ \nabla_{J e_{A}} J_{a}\right)
$$

which proves the claim.
BACK

