Harmonic morphisms from Fefferman spaces

Francesco Esposito

Dipartimento di Matematica, Informatica ed Economia
Universit degli Studi della Basilicata

Differential Geometry Workshop 2023

Iași, 8th September 2023

In collaboration with S. Dragomir and E. Loubeau.

Table of Contents

(1) Cauchy-Riemann Geometry
(2) Subelliptic harmonic maps
(3) Subelliptic harmonic morphisms

Some preliminaries on Cauchy-Riemann geometry

Tangential Cauchy-Riemann equations

Let M be a $(2 n+1)$-dimensional, differentiable manifold. An almost $\mathbf{C R}$ structure (of hypersurface type) on M is a subbundle $T_{1,0}(M)$ of complex rank n of $T(M) \otimes \mathbb{C}$, such that

$$
T_{1,0}(M) \cap T_{0,1}(M)=(0), \quad T_{0,1}(M)=\overline{T_{1,0}(M)}
$$

Tangential Cauchy-Riemann equations

Let M be a $(2 n+1)$-dimensional, differentiable manifold. An almost $\mathbf{C R}$ structure (of hypersurface type) on M is a subbundle $T_{1,0}(M)$ of complex rank n of $T(M) \otimes \mathbb{C}$, such that

$$
T_{1,0}(M) \cap T_{0,1}(M)=(0), \quad T_{0,1}(M)=\overline{T_{1,0}(M)}
$$

An almost CR structure is (formally) integrable if for each open set $U \subset M$

$$
Z, W \in C^{\infty}\left(U, T_{1,0}(M)\right) \Longrightarrow[Z, W] \in C^{\infty}\left(U, T_{1,0}(M)\right)
$$

Tangential Cauchy-Riemann equations

Let M be a $(2 n+1)$-dimensional, differentiable manifold. An almost $\mathbf{C R}$ structure (of hypersurface type) on M is a subbundle $T_{1,0}(M)$ of complex rank n of $T(M) \otimes \mathbb{C}$, such that

$$
T_{1,0}(M) \cap T_{0,1}(M)=(0), \quad T_{0,1}(M)=\overline{T_{1,0}(M)}
$$

An almost CR structure is (formally) integrable if for each open set $U \subset M$

$$
Z, W \in C^{\infty}\left(U, T_{1,0}(M)\right) \Longrightarrow[Z, W] \in C^{\infty}\left(U, T_{1,0}(M)\right)
$$

A CR manifold is a differentiable manifold equipped with a CR structure (an integrable, almost CR structure). The integer n is the CR dimension of $\left(M, T_{1,0}(M)\right)$.

Example

Consider a real hypersurface $M \subset \mathbb{C}^{n+1}$. Then the complex structure of the ambient space induces on M the following $C R$ structure

$$
T_{1,0}(M):=[T(M) \otimes \mathbb{C}] \cap T^{1,0}\left(\mathbb{C}^{n+1}\right)
$$

where $T^{1,0}\left(\mathbb{C}^{n+1}\right)$ denotes the holomorphic tangent bundle on \mathbb{C}^{n+1} [i.e. the span of $\left.\left\{\partial / \partial z_{j}: 1 \leq j \leq n+1\right\}\right]$.

The tangential Cauchy-Riemann operator is the first order differential operator

$$
\begin{gathered}
\bar{\partial}_{b}: C^{1}(U, \mathbb{C}) \rightarrow C\left(U, T_{0,1}(M)^{*}\right) \\
\left(\bar{\partial}_{b} f\right) \bar{Z}=\bar{Z}(f), f \in C^{1}(U, \mathbb{C}), \quad Z \in C^{\infty}\left(U, T_{1,0}(M)\right) .
\end{gathered}
$$

$\bar{\partial}_{b} f=0$ are the tangential Cauchy-Riemann equations and a solution $f \in C^{1}(U, \mathbb{C})$ is a CR function.

The tangential Cauchy-Riemann operator is the first order differential operator

$$
\begin{gathered}
\bar{\partial}_{b}: C^{1}(U, \mathbb{C}) \rightarrow C\left(U, T_{0,1}(M)^{*}\right) \\
\left(\bar{\partial}_{b} f\right) \bar{Z}=\bar{Z}(f), f \in C^{1}(U, \mathbb{C}), Z \in C^{\infty}\left(U, T_{1,0}(M)\right)
\end{gathered}
$$

$\bar{\partial}_{b} f=0$ are the tangential Cauchy-Riemann equations and a solution $f \in C^{1}(U, \mathbb{C})$ is a $\mathbf{C R}$ function.

There is an obvious analogy between holomorphic functions (solutions to $\bar{\partial} F=0$) and CR functions (solutions to $\bar{\partial}_{b} f=0$).

There is more than an analogy between the two concepts. Indeed, let $\Omega \subset \mathbb{C}^{n+1}$, an open subset, and $F: \Omega \rightarrow \mathbb{C}$ holomorphic. Then for every embedded real hypersurface $M \subset \mathbb{C}^{n+1}$ with $U=\Omega \cap M \neq \emptyset$: $F_{l U}$ is a CR function.

The Levi distribution is the distribution of rank $2 n$

$$
H(M)_{x}=\operatorname{Re}\left\{T_{1,0}(M)_{x} \oplus T_{0,1}(M)_{x}\right\}, \quad x \in M
$$

equipped with the complex structure

$$
J: H(M) \rightarrow H(M), \quad J(Z+\bar{Z})=i(Z-\bar{Z}), Z \in T_{1,0}(M)
$$

The Levi distribution is the distribution of rank $2 n$

$$
H(M)_{x}=\operatorname{Re}\left\{T_{1,0}(M)_{x} \oplus T_{0,1}(M)_{x}\right\}, \quad x \in M
$$

equipped with the complex structure

$$
J: H(M) \rightarrow H(M), \quad J(Z+\bar{Z})=i(Z-\bar{Z}), Z \in T_{1,0}(M)
$$

Assume M orientable. Then there exist globally defined, differential 1-forms θ such that $H(M)=\operatorname{Ker}(\theta)$ called pseudo-Hermitian structures. Let $\mathcal{P}(M)$ be the set of all pseudohermitian structures.

The Levi distribution is the distribution of rank $2 n$

$$
H(M)_{x}=\operatorname{Re}\left\{T_{1,0}(M)_{x} \oplus T_{0,1}(M)_{x}\right\}, \quad x \in M
$$

equipped with the complex structure

$$
J: H(M) \rightarrow H(M), \quad J(Z+\bar{Z})=i(Z-\bar{Z}), Z \in T_{1,0}(M)
$$

Assume M orientable. Then there exist globally defined, differential 1-forms θ such that $H(M)=\operatorname{Ker}(\theta)$ called pseudo-Hermitian structures. Let $\mathcal{P}(M)$ be the set of all pseudohermitian structures. If $\theta \in \mathcal{P}(M)$, define the Levi form as

$$
G_{\theta}(X, Y)=(d \theta)(X, J Y), \quad X, Y \in H(M)
$$

If G_{θ} is non degenerate (resp. positive definite) for some $\theta \in \mathcal{P}(M)$, then $\left(M, T_{1,0}(M)\right)$ is said to be non degenerate (resp. strictly pseudoconvex, s.p.c. for short).

If G_{θ} is non degenerate (resp. positive definite) for some $\theta \in \mathcal{P}(M)$, then $\left(M, T_{1,0}(M)\right)$ is said to be non degenerate (resp. strictly pseudoconvex, s.p.c. for short).
By nondegeneracy and orientability there is a unique globally defined, nowhere vanishing vector field $T \in \mathfrak{X}(M)$ transverse to the Levi distribution, determined by

$$
\theta(T)=1, \quad T\rfloor(d \theta)=0
$$

The $(0,2)$-tensor field g_{θ} given by

$$
\begin{gathered}
g_{\theta}(X, Y)=G_{\theta}(X, Y), \quad g_{\theta}(T, X)=0, \quad g_{\theta}(T, T)=1 \\
X, Y \in H(M)
\end{gathered}
$$

[followed by linear extension relying on $T(M)=H(M) \oplus \mathbb{R} T$] is a semi-Riemannian metric on M. If M is s.p.c. then g_{θ} is a Riemannian metric (the Webster metric).

The Tanaka-Webster connection

Let M be a strictly pseudoconvex CR manifold, of CR dimension n. For every contact form $\theta \in \mathcal{P}(M)$ there is a unique linear connection ∇ [the Tanaka-Webster connection of (M, θ)] on M such that
i) the Levi distribution $H(M)$ is parallel, i.e. $\nabla H(M) \subset H(M)$,
ii) the complex structure J along $H(M)$, and the Webster metric g_{θ}, are parallel

$$
\nabla J=0, \quad \nabla g_{\theta}=0
$$

iii) the torsion tensor field T_{∇} obeys to

$$
\begin{aligned}
T_{\nabla}(Z, W)=0, & T_{\nabla}(Z, \bar{W})=2 i G_{\theta}(Z, \bar{W}) T \\
& Z, W \in T_{1,0}(M), \\
& \tau \circ J+J \circ \tau=0,
\end{aligned}
$$

where

$$
\tau(X)=T_{\nabla}(T, X), \quad X \in \mathfrak{X}(M)
$$

The Tanaka-Webster connection ∇ of (M, θ) and the Levi-Civita connection $\nabla^{g_{\theta}}$ of $\left(M, g_{\theta}\right)$ are related by

$$
\nabla^{g_{\theta}}=\nabla+(\Omega-A) \otimes T+\tau \otimes \theta+2(\theta \odot J)
$$

where

- tau is the pseudohermitian torsion of ∇;
- $\Omega=-d \theta$;
- $A(X, Y)=g_{\theta}(X, \tau Y)$ for any $X, Y \in \mathfrak{X}(M)$.

The Fefferman metric

Let $\Lambda^{p, 0}(M) \rightarrow M$ be the vector bundle whose cross-sections are ($p, 0$)-forms on M, namely complex valued differential p-forms η on M satisfying $\left.T_{0,1}(M)\right\rfloor \eta=0$.

The Fefferman metric

Let $\Lambda^{p, 0}(M) \rightarrow M$ be the vector bundle whose cross-sections are ($p, 0$)-forms on M, namely complex valued differential p-forms η on M satisfying $\left.T_{0,1}(M)\right\rfloor \eta=0$.
There is a natural free action of $\mathbb{R}_{+}=\mathrm{GL}^{+}(1, \mathbb{R})$ (the multiplicative positive reals) on

$$
K_{0}(M)=\Lambda^{n+1,0}(M) \backslash\{\text { zero section }\}
$$

(top degree ($p, 0$)-forms) and the quotient space

$$
C(M)=K_{0}(M) / \mathbb{R}_{+}
$$

is the total space of a principal S^{1}-bundle over M, referred to as the canonical circle bundle over M.

By a result of J.M. Lee, $C(M)$ carries the Lorentzian metric F_{θ} [the Fefferman metric of (M, θ)] given by

$$
F_{\theta}=\pi^{*} \tilde{G}_{\theta}+2\left(\pi^{*} \theta\right) \odot \sigma,
$$

where

- \tilde{G}_{θ} is the (degenerate) extension of G_{θ} to the whole of $T(M)$ got by requiring that $\tilde{G}_{\theta}=G_{\theta}$ on $H(M) \otimes H(M)$;
- σ is the connection form given locally by

$$
\sigma=\frac{1}{n+2}\left\{d \gamma+\pi^{*}\left(i \omega_{\alpha}^{\alpha}-\frac{i}{2} g^{\alpha \bar{\beta}} d g_{\alpha \bar{\beta}}-\frac{\rho}{4(n+1)} \theta\right)\right\}
$$

with γ a local fibre coordinate on $C(M)$ and ρ the pseudohermitian scalar curvature of (M, θ).

Subelliptic harmonic maps

A. Lichnerowicz (1970): Every (anti) holomorphic map of compact Kählerian manifolds is harmonic and an absolute minimum within its homotopy class, hence stable.
A. Lichnerowicz (1970): Every (anti) holomorphic map of compact Kählerian manifolds is harmonic and an absolute minimum within its homotopy class, hence stable.

If $\Phi: \Omega \subset \mathbb{C}^{n} \rightarrow D \subset \mathbb{C}^{m}$ is a holomorphic map between two open subsets Ω, D and $M \subset \Omega, N \subset D$ are real hypersurfaces such that $\Phi(M) \subset N$, then $\phi=\Phi_{\left.\right|_{M}}: M \rightarrow N$ is a CR map.
A. Lichnerowicz (1970): Every (anti) holomorphic map of compact Kählerian manifolds is harmonic and an absolute minimum within its homotopy class, hence stable.
If $\Phi: \Omega \subset \mathbb{C}^{n} \rightarrow D \subset \mathbb{C}^{m}$ is a holomorphic map between two open subsets Ω, D and $M \subset \Omega, N \subset D$ are real hypersurfaces such that $\Phi(M) \subset N$, then $\phi=\Phi_{\left.\right|_{M}}: M \rightarrow N$ is a CR map.
Any stricly pseudoconvex (s.p.c.) CR manifold M equipped with a positively oriented contact form θ of vanishing pseudohermitian torsion is Sasakian; hence a pair (M, θ) consisting of a s.p.c. CR manifold and a contact form may be thought of as an odd dimensional analog to a Kählerian manifold.

Q: Is an (anti) CR map of s.p.c. CR manifolds $\phi:(M, \theta) \rightarrow(N, \Theta)$ harmonic with respect to the Webster metrics g_{θ} and g_{θ} ?

Q: Is an (anti) CR map of s.p.c. CR manifolds $\phi:(M, \theta) \rightarrow(N, \Theta)$ harmonic with respect to the Webster metrics g_{θ} and g_{θ} ?

A: H. Urakawa (1993) proved that ϕ is harmonic w.r.t g_{θ} and g_{Θ} if and only if $\phi_{*}(T)=T_{\Theta}$, where T and T_{Θ} are the Reeb vector fields of (M, θ) and (N, Θ).

Q: Is an (anti) CR map of s.p.c. CR manifolds $\phi:(M, \theta) \rightarrow(N, \Theta)$ harmonic with respect to the Webster metrics g_{θ} and g_{θ} ?

A: H. Urakawa (1993) proved that ϕ is harmonic w.r.t g_{θ} and g_{Θ} if and only if $\phi_{*}(T)=T_{\Theta}$, where T and T_{Θ} are the Reeb vector fields of (M, θ) and (N, Θ).
Y.L. Xin (1980): Every non-constant harmonic map from the sphere $S^{2 n+1}$ into itself is unstable.

Q: Is an (anti) CR map of s.p.c. CR manifolds $\phi:(M, \theta) \rightarrow(N, \Theta)$ harmonic with respect to the Webster metrics g_{θ} and g_{θ} ?

A: H. Urakawa (1993) proved that ϕ is harmonic w.r.t g_{θ} and g_{Θ} if and only if $\phi_{*}(T)=T_{\Theta}$, where T and T_{Θ} are the Reeb vector fields of (M, θ) and (N, Θ).
Y.L. Xin (1980): Every non-constant harmonic map from the sphere $S^{2 n+1}$ into itself is unstable.

Lichnerowicz's result doesn't admit an immediate analog within the CR category, when the Webster metrics and the ordinary (Riemannian) concept of harmonic maps are involved.

Subelliptic harmonic maps

E. Barletta, S. Dragomir \& H. Urakawa (2001) introduced subelliptic harmonic maps as smooth maps $\phi:(M, \theta) \rightarrow(N, h)$, with (M, θ) a s.p.c. CR manifold and (N, h) a Riemannian manifold which are critical points of the functional

$$
E_{b, \Omega}(\phi)=\int_{\Omega} e_{b}(\phi) \theta \wedge(d \theta)^{n}
$$

with Ω a relatively compact domain in $M(\Omega \subset \subset M)$ and

$$
e_{b}(\phi)=\frac{1}{2} \operatorname{trace}_{G_{\theta}}\left(\Pi_{H} \phi^{*} h\right),
$$

the pseudohermitian energy density. [Here, if B is a bilinear form on $T(M) \otimes T(M), \Pi_{H} B$ is the restriction of B to $\left.H(M) \otimes H(M)\right]$.

The pseudohermitian second fundamental form $\beta_{b}(\phi)$ is

$$
\beta_{b}(\phi)(X, Y)=D_{X}^{\phi} \phi_{*} Y-\phi_{*} \nabla_{X} Y, \quad X, Y \in \mathfrak{X}(M)
$$

where ∇ is the Tanaka-Webster connection of (M, θ) and $D^{\phi}=\phi^{-1} \nabla^{h}$ is the pullback of the Levi-Civita connection ∇^{h} of (N, h) [a connection in the pullback bundle $\left.\phi^{-1} T N \rightarrow M\right]$.

The pseudohermitian second fundamental form $\beta_{b}(\phi)$ is

$$
\beta_{b}(\phi)(X, Y)=D_{X}^{\phi} \phi_{*} Y-\phi_{*} \nabla_{X} Y, \quad X, Y \in \mathfrak{X}(M)
$$

where ∇ is the Tanaka-Webster connection of (M, θ) and $D^{\phi}=\phi^{-1} \nabla^{h}$ is the pullback of the Levi-Civita connection ∇^{h} of (N, h) [a connection in the pullback bundle $\left.\phi^{-1} T N \rightarrow M\right]$.
The pseudohermitian tension field is

$$
\tau_{b}(\phi)=\operatorname{trace}_{G_{\theta}}\left[\Pi_{H} \beta_{b}(\phi)\right] \in C^{\infty}\left(\phi^{-1} T N\right)
$$

The pseudohermitian second fundamental form $\beta_{b}(\phi)$ is

$$
\beta_{b}(\phi)(X, Y)=D_{X}^{\phi} \phi_{*} Y-\phi_{*} \nabla_{X} Y, \quad X, Y \in \mathfrak{X}(M)
$$

where ∇ is the Tanaka-Webster connection of (M, θ) and $D^{\phi}=\phi^{-1} \nabla^{h}$ is the pullback of the Levi-Civita connection ∇^{h} of (N, h) [a connection in the pullback bundle $\left.\phi^{-1} T N \rightarrow M\right]$.
The pseudohermitian tension field is

$$
\tau_{b}(\phi)=\operatorname{trace}_{G_{\theta}}\left[\Pi_{H} \beta_{b}(\phi)\right] \in C^{\infty}\left(\phi^{-1} T N\right) .
$$

A $C^{\infty} \operatorname{map} \phi: M \rightarrow N$ is subelliptic harmonic if

$$
\tau_{b}(\phi)=0
$$

The pseudohermitian second fundamental form $\beta_{b}(\phi)$ is

$$
\beta_{b}(\phi)(X, Y)=D_{X}^{\phi} \phi_{*} Y-\phi_{*} \nabla_{X} Y, \quad X, Y \in \mathfrak{X}(M)
$$

where ∇ is the Tanaka-Webster connection of (M, θ) and $D^{\phi}=\phi^{-1} \nabla^{h}$ is the pullback of the Levi-Civita connection ∇^{h} of (N, h) [a connection in the pullback bundle $\left.\phi^{-1} T N \rightarrow M\right]$.
The pseudohermitian tension field is

$$
\tau_{b}(\phi)=\operatorname{trace}_{G_{\theta}}\left[\Pi_{H} \beta_{b}(\phi)\right] \in C^{\infty}\left(\phi^{-1} T N\right) .
$$

A $C^{\infty} \operatorname{map} \phi: M \rightarrow N$ is subelliptic harmonic if

$$
\tau_{b}(\phi)=0
$$

A calculation shows that

$$
\begin{equation*}
\tau(\phi)=\tau_{b}(\phi)+D_{T}^{\phi} \phi_{*} T \tag{1}
\end{equation*}
$$

The Euler-Lagrange equations of the variational principle $\delta E_{b, \Omega}(\phi)=0$ are

$$
-\Delta_{b} \phi^{\alpha}+\sum_{a=1}^{2 n}\left(\left\{\begin{array}{c}
\alpha \\
\beta \gamma
\end{array}\right\} \circ \phi\right) E_{a}\left(\phi^{\beta}\right) E_{a}\left(\phi^{\gamma}\right)=0
$$

for $1 \leq \alpha \leq m$.
Here $\left\{E_{a}: 1 \leq a \leq 2 n\right\}$ is a local G_{θ}-orthonormal frame for the $H(M)$, defined on some open subset $U \subset M$, and $\left\{\begin{array}{c}\alpha \\ \beta \gamma\end{array}\right\}$ are the Christoffel symbols of $h_{\alpha \beta}$.

The Euler-Lagrange equations of the variational principle $\delta E_{b, \Omega}(\phi)=0$ are

$$
-\Delta_{b} \phi^{\alpha}+\sum_{a=1}^{2 n}\left(\left\{\begin{array}{c}
\alpha \\
\beta \gamma
\end{array}\right\} \circ \phi\right) E_{a}\left(\phi^{\beta}\right) E_{a}\left(\phi^{\gamma}\right)=0
$$

for $1 \leq \alpha \leq m$.
Here $\left\{E_{a}: 1 \leq a \leq 2 n\right\}$ is a local G_{θ}-orthonormal frame for the $H(M)$, defined on some open subset $U \subset M$, and $\left\{\begin{array}{c}\alpha \\ \beta \gamma\end{array}\right\}$ are the Christoffel symbols of $h_{\alpha \beta}$.
Consider the volume form $\Psi=\theta \wedge(d \theta)^{n}$.

$$
\Delta_{b} u=-\operatorname{div}\left(\nabla^{H} u\right), \quad u \in C^{2}(M)
$$

is the sublaplacian of (M, θ), where $\nabla^{H} u=\Pi_{H} \nabla u$ [the horizontal gradient of u] while the divergence is computed w.r.t. Ψ.
Δ_{b} is a positive, formally self adjoint, second order differential operator, and degenerate elliptic yet

- subelliptic of order $\epsilon=1 / 2$ i.e. for any $x \in M$ there is an open neighborhood $U \subset M$ of x and a constant $C>0$ such that

$$
\|u\|_{\epsilon}^{2} \leq C\left(\left(\Delta_{b} u, u\right)_{L^{2}}+\|u\|_{L^{2}}^{2}\right), \quad \forall u \in C_{0}^{\infty}(U)
$$

$\|\cdot\|_{\epsilon}$ is the Sobolev norm of order ϵ i.e.

$$
\|u\|_{\epsilon}=\left(\int\left(1+|\xi|^{2}\right)^{\epsilon}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

\hat{u} is the Fourier transform of u.
Δ_{b} is a positive, formally self adjoint, second order differential operator, and degenerate elliptic yet

- subelliptic of order $\epsilon=1 / 2$ i.e. for any $x \in M$ there is an open neighborhood $U \subset M$ of x and a constant $C>0$ such that

$$
\begin{gathered}
\|u\|_{\epsilon}^{2} \leq C\left(\left(\Delta_{b} u, u\right)_{L^{2}}+\|u\|_{L^{2}}^{2}\right), \quad \forall u \in C_{0}^{\infty}(U) \\
\|\cdot\|_{\epsilon} \text { is the Sobolev norm of order } \epsilon \text { i.e. }
\end{gathered}
$$

$$
\|u\|_{\epsilon}=\left(\int\left(1+|\xi|^{2}\right)^{\epsilon}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

\hat{u} is the Fourier transform of u.

- hypoelliptic i.e. if u is a distribution on M and $\Delta_{b} u=f \in C^{\infty}(M)$ (in the distribution sense), then $u \in C^{\infty}$ [i.e. u is the distribution associated to some C^{∞} function].
J. Jost \& C-J. Xu (1998) started a program aiming to recover known properties of solutions to quasi-linear systems of PDEs, of variational origin, whose principal part is a second order linear elliptic operator, to the case where the principal part is at least hypoelliptic.
J. Jost \& C-J. Xu (1998) started a program aiming to recover known properties of solutions to quasi-linear systems of PDEs, of variational origin, whose principal part is a second order linear elliptic operator, to the case where the principal part is at least hypoelliptic.
Given a Hörmander system of vector fields $X=\left\{X_{1}, \cdots, X_{p}\right\}$ on $\mathcal{U} \subset \mathbb{R}^{N}$ open set, a $C^{\infty} \operatorname{map} \phi: \mathcal{U} \rightarrow N$ into a Riemannian manifold (N, h) is a subelliptic harmonic map (in the sense of J. Jost \& C-J. Xu) if ϕ is a critical point of the functional

$$
E_{X}(\phi)=\frac{1}{2} \int_{\Omega}|X(\phi)|^{2} d \mu, \quad \Omega \subset \subset \mathcal{U}
$$

where $|X(\phi)|^{2}=\sum_{a=1}^{p} X_{a}\left(\phi^{\beta}\right) X_{a}\left(\phi^{\gamma}\right) h_{\beta \gamma}(\phi)$ and μ is the Lebesgue measure on \mathbb{R}^{N}.
J. Jost \& C-J. Xu (1998) started a program aiming to recover known properties of solutions to quasi-linear systems of PDEs, of variational origin, whose principal part is a second order linear elliptic operator, to the case where the principal part is at least hypoelliptic.
Given a Hörmander system of vector fields $X=\left\{X_{1}, \cdots, X_{p}\right\}$ on $\mathcal{U} \subset \mathbb{R}^{N}$ open set, a $C^{\infty} \operatorname{map} \phi: \mathcal{U} \rightarrow N$ into a Riemannian manifold (N, h) is a subelliptic harmonic map (in the sense of J. Jost \& C-J. Xu) if ϕ is a critical point of the functional

$$
E_{X}(\phi)=\frac{1}{2} \int_{\Omega}|X(\phi)|^{2} d \mu, \quad \Omega \subset \subset \mathcal{U}
$$

where $|X(\phi)|^{2}=\sum_{a=1}^{p} X_{a}\left(\phi^{\beta}\right) X_{a}\left(\phi^{\gamma}\right) h_{\beta \gamma}(\phi)$ and μ is the Lebesgue measure on \mathbb{R}^{N}.
Such maps were recognized as local manifestations, with respect to a given local G_{θ}-orthonormal frame of the Levi distribution, of subellitpic harmonic maps (in the sense of E. Barletta et al.).

For any local coordinate system $\chi: U \subset M \rightarrow \mathbb{R}^{2 n+1}$, the pushforward $\left\{\chi_{*} E_{a}: 1 \leq a \leq 2 n\right\}$ is a Hörmander system of vector fields on $\mathcal{U}=\chi(U) \subset \mathbb{R}^{2 n+1}$ and

$$
\Delta_{b}=\sum_{a=1}^{2 n} E_{a}^{*} E_{a}
$$

where E_{a}^{*} is the formal adjoint of E_{a} with respect to $\psi=\theta \wedge(d \theta)^{n}$, so that the study of the (local properties of the) solutions to the Euler-Lagrange equations is performed within subelliptic theory and more generally within the theory of Hörmander systems of vector fields and associated Hörmander "sums of squares" of vector fields.

Harmonic maps of the Fefferman Spaces

Let \square be the Laplace-Beltrami operator of the Lorentzian manifold $\left(C(M), F_{\theta}\right)$ (the geometric wave operator). By a result of J.M. Lee the pushforward of \square is precisely the sublaplacian Δ_{b} of (M, θ) i.e.

$$
\pi_{*} \square=\Delta_{b}
$$

By a result of E. Barletta \& S. Dragomir \& H. Urakawa a C^{∞} map $\phi:(M, \theta) \rightarrow(N, h)$ is subelliptic harmonic if and only if its vertical lift $\Phi=\phi \circ \pi:\left(C(M), F_{\theta}\right) \rightarrow(N, h)$ is a harmonic map.

Harmonic morphisms from $\left(C(M), F_{\theta}\right)$

 \&
Subelliptic harmonic morphisms

Subelliptic harmonic morphisms

Let (M, θ) be a s.p.c. CR manifold of CR dimension n (i.e. $\operatorname{dim} M=2 n+1)$ and let (N, h) be a m-dimensioanal Riemannian manifold.

Definition

A continuous map ϕ of (M, θ) into (N, h) is a subelliptic harmonic morphism if for every open subset $V \subset N$, and every C^{2} function $v: V \rightarrow \mathbb{R}$, if $\Delta_{h} v=0$ in V then the pullback function $u=v \circ \phi$ is a distribution-solution to $\Delta_{b} u=0$ in $U=\phi^{-1}(V)$.

Here Δ_{h} is the Laplace-Beltrami operator on (V, h).

Proposition

Every subelliptic harmonic morphism ϕ of the pseudohermitian manifold (M, θ) into the Riemannian manifold (N, h) is smooth.

Levi conformal maps

Definition

A $C^{\infty} \operatorname{map} \phi: M \rightarrow N$ is Levi conformal if there is a continuous map $\lambda=\lambda(\phi): M \rightarrow[0,+\infty)$ (the θ-dilation of ϕ) such that λ^{2} is C^{∞} and

$$
G_{\theta}\left(\nabla^{H} \phi^{\alpha}, \nabla^{H} \phi^{\beta}\right)_{x}=\lambda(x)^{2} \delta^{\alpha \beta}
$$

for any $x \in M$ and any local normal coordinate $\operatorname{system}\left(V, y^{\alpha}\right)$ on N with center at $\phi(x) \in V$.

Levi conformal maps

Definition

A $C^{\infty} \operatorname{map} \phi: M \rightarrow N$ is Levi conformal if there is a continuous map $\lambda=\lambda(\phi): M \rightarrow[0,+\infty)$ (the θ-dilation of ϕ) such that λ^{2} is C^{∞} and

$$
G_{\theta}\left(\nabla^{H} \phi^{\alpha}, \nabla^{H} \phi^{\beta}\right)_{x}=\lambda(x)^{2} \delta^{\alpha \beta}
$$

for any $x \in M$ and any local normal coordinate $\operatorname{system}\left(V, y^{\alpha}\right)$ on N with center at $\phi(x) \in V$.

By a result of E . Barletta, a $C^{\infty} \operatorname{map} \phi: M \rightarrow N$ is a subelliptic harmonic morphism of (M, θ) into (N, h) if and only if ϕ is Levi conformal and a subelliptic harmonic map. Moreover

- if $m>2 n$ then every subelliptic harmonic morphism is a constant;
- if $m \leq 2 n$ then for every point $x \in M$ with $\lambda(x) \neq 0$ there is an open neighborhood U of x such that $\phi: U \rightarrow N$ is a C^{∞} submersion.

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism and let us set

$$
\mathscr{V}_{x}^{\phi}=\operatorname{Ker}\left(d_{x} \phi\right), \quad \mathscr{H}_{x}^{\phi}=\left(\mathscr{V}_{x}^{\phi}\right)^{\perp}, \quad x \in M,
$$

where the orthogonal complement is meant with respect to the inner product $g_{\theta, x}$.

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism and let us set

$$
\mathscr{V}_{x}^{\phi}=\operatorname{Ker}\left(d_{x} \phi\right), \quad \mathscr{H}_{x}^{\phi}=\left(\mathscr{V}_{x}^{\phi}\right)^{\perp}, \quad x \in M,
$$

where the orthogonal complement is meant with respect to the inner product $g_{\theta, x}$.
A regular point in the set

$$
S(\phi)=\left\{x \in M \backslash \operatorname{Crit}(\phi): d_{x} \phi \text { is on-to }\right\}
$$

is called a submersive point of the morphism ϕ.
At every submersive point $x \in S(\phi)$

$$
\operatorname{dim}_{\mathbb{R}} \mathscr{H}_{X}^{\phi}=m, \quad \operatorname{dim}_{\mathbb{R}} \mathscr{V}_{X}^{\phi}=2 n-m+1
$$

For each $x \in M$ we set

$$
\mathscr{V}_{H, x}^{\phi}=H(M)_{x} \cap \mathscr{V}_{x}^{\phi}, \quad \mathscr{H}_{H, x}^{\phi}=H(M)_{x} \cap \mathscr{H}_{x}^{\phi} .
$$

If $x \in \operatorname{Crit}(\phi)$ then

$$
\mathscr{V}_{H, x}^{\phi}=H(M)_{x}, \quad \mathscr{H}_{H, x}^{\phi}=\{0\} .
$$

If $x \in M \backslash \operatorname{Crit}(\phi)$ then the differential $d_{x} \phi: T_{x}(M) \rightarrow T_{\phi(x)}(N)$ may, or may not, be an epimorphism.

For each $x \in M$ we set

$$
\mathscr{V}_{H, x}^{\phi}=H(M)_{x} \cap \mathscr{V}_{x}^{\phi}, \quad \mathscr{H}_{H, x}^{\phi}=H(M)_{x} \cap \mathscr{H}_{x}^{\phi} .
$$

If $x \in \operatorname{Crit}(\phi)$ then

$$
\mathscr{V}_{H, x}^{\phi}=H(M)_{x}, \quad \mathscr{H}_{H, x}^{\phi}=\{0\} .
$$

If $x \in M \backslash \operatorname{Crit}(\phi)$ then the differential $d_{x} \phi: T_{x}(M) \rightarrow T_{\phi(x)}(N)$ may, or may not, be an epimorphism.
For a subelliptic harmonic morphism, of θ-dilation $\sqrt{\Lambda}$. Then i)

$$
M \backslash Z(\Lambda) \subset S(\phi)
$$

ii) For every submersive point $x \in S(\phi)$

$$
m-1 \leq \operatorname{dim}_{\mathbb{R}} \mathscr{H}_{H, x}^{\phi} \leq m, \quad 2 n-m \leq \operatorname{dim}_{\mathbb{R}} \mathscr{V}_{H, x}^{\phi} \leq 2 n-m+1
$$

Here $Z(\Lambda)=\{x \in M: \Lambda(x)=0\}$.

A partition

For any $x \in S(\phi), x$ can belong to one of the following sets

$$
S(\phi)=\mathrm{I}_{m}(\phi) \cup \mathrm{II}_{m}(\phi) \cup \mathrm{III}_{m}(\phi):
$$

	$\mathrm{I}_{m}(\phi)$	$\mathrm{II}_{m}(\phi)$	$\mathrm{III}_{m}(\phi)$
$\operatorname{dim}_{\mathbb{R}} \mathscr{H}_{H, x}^{\phi}$	m	$m-1$	$m-1$
$\operatorname{dim}_{\mathbb{R}} \mathscr{V}_{H, x}^{\phi}$	$2 n-m$	$2 n-m+1$	$2 n-m$
$\Lambda(x)$	$\Lambda(x)>0$	$\Lambda(x)=0$	$\Lambda(x)>0$
T	$T_{x} \in \mathscr{V}_{x}^{\phi}$	$T_{x} \in \mathscr{H}_{x}^{\phi}$	transverse

Moreover
i) If $m=1$ then

$$
Z(\Lambda)=\mathrm{II}_{1}(\phi) \cup \operatorname{Crit}(\phi), \quad M \backslash S(\phi)=\operatorname{Crit}(\phi)
$$

ii) If $m \geq 2$ then

$$
\mathrm{II}_{m}(\phi)=\emptyset, \quad Z(\Lambda)=M \backslash S(\phi)
$$

A little notation

Let $\Phi: C(M) \rightarrow N$ be a C^{1} map, and let $p \in C(M)$ be a point. Φ is horizontally weakly conformal at p provided that
i) If $p \in C(M) \backslash \operatorname{Crit}(\Phi)$ and \mathscr{V}_{p}^{Φ} is nondegenerate, then the differential $d_{p} \Phi: \mathcal{H}_{p}^{\Phi} \rightarrow T_{\Phi(p)}(N)$ is on-to, and there is a unique nonzero number $L(p) \in \mathbb{R} \backslash\{0\}$ such that

$$
h_{\Phi(p)}\left(\left(d_{p} \Phi\right) X,\left(d_{p} \Phi\right) Y\right)=L(p) F_{\theta, p}(X, Y)
$$

for any $X, Y \in \mathcal{H}_{p}^{\Phi}$.
ii) If $p \in C(M)$ and \mathscr{V}_{p}^{Φ} is degenerate, then

$$
\mathscr{H}_{p}^{\Phi} \subset \mathscr{V}_{p}^{\Phi}
$$

[i.e. $F_{\theta, p}(X, Y)=0$ for any $X, Y \in \mathscr{H}_{p}^{\Phi}$]. The number $L(p)$ is the (square) dilation at p. It is customary to set $L(p)=0$ when $p \in \operatorname{Crit}(\Phi)$ or \mathscr{V}_{p}^{Φ} is degenerate.

Main results

Theorem

Let M be a strictly pseudoconvex $C R$ manifold, of $C R$ dimension n, equipped with the positively oriented contact form $\theta \in \mathcal{P}_{+}(M)$, and let (N, h) be a m-dimensional Riemannian manifold. Let $\Phi: C(M) \rightarrow N$ be a continuous S^{1} invariant map, and let $\phi: M \rightarrow N$ be the corresponding base map. The following statements are equivalent
i) Φ is a harmonic morphism of the Lorentzian manifold $\left(C(M), F_{\theta}\right)$ into (N, h), of square dilation $\Lambda(\phi) \circ \pi$.
ii) ϕ is a subelliptic harmonic morphism of the pseudohermitian manifold (M, θ) into (N, h), of θ-dilation $\sqrt{\Lambda(\phi)}$.

Theorem (Continuation)

If this is the case then
a) Φ is nondegenerate at $p \Longleftrightarrow \pi(p) \in \Omega(\phi):=M \backslash Z[\Lambda(\phi)]$.
b) $p \in \operatorname{Crit}(\Phi) \Longleftrightarrow \pi(p) \in \operatorname{Crit}(\phi)$.
c) Φ is degenerate at $p \Longleftrightarrow$ either $m=1$ and $\pi(p) \in \mathrm{I}_{1}(\phi)$, or $m \geq 2$ and $\pi(p) \in M \backslash S(\phi)$.
d) Φ is a harmonic map of the Lorentzian manifold $\left(C(M), F_{\theta}\right)$ into the Riemannian manifold (N, h), while ϕ is a subelliptic harmonic map of the pseudohermitian manifold (M, θ) into (N, h).
e) Φ is horizontally weakly conformal, while ϕ is Levi conformal.

Theorem

Let M be a strictly pseudoconvex CR manifolds, equipped with the positively oriented contact form $\theta \in \mathscr{P}_{+}(M)$, and let N be a Riemannian manifold. Any nonconstant S^{1} invariant harmonic morphism $\Phi: C(M) \rightarrow N$ from the total space of the canonical circle bundle $S^{1} \rightarrow C(M) \rightarrow M$, endowed with the Lorentzian metric F_{θ} is smooth and an open map. Moreover, if M is compact and N is connected then N is compact and Φ is surjective.

Foliation theory

Assume $m \geq 2$. Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of (M, θ) into (N, h), of θ-dilation $\lambda(\phi)$, and let $\Phi=\phi \circ \pi$ be its vertical lift [a harmonic morphism of square dilation $L(\Phi)=\lambda^{2}(\phi) \circ \pi$]. The connected components of the fibres of $\phi: S(\phi) \rightarrow N$ are the leaves of a foliation \mathscr{F} of $S(\phi)$.

Foliation theory

Assume $m \geq 2$. Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of (M, θ) into (N, h), of θ-dilation $\lambda(\phi)$, and let $\Phi=\phi \circ \pi$ be its vertical lift [a harmonic morphism of square dilation $L(\Phi)=\lambda^{2}(\phi) \circ \pi$]. The connected components of the fibres of $\phi: S(\phi) \rightarrow N$ are the leaves of a foliation \mathscr{F} of $S(\phi)$.
Let us set

$$
S(\Phi):=\pi^{-1}[S(\phi)] \subset C(M)
$$

Then $\Phi: S(\Phi) \rightarrow N$ is a submersion and the corresponding foliation of $S(\Phi)$ is the pullback of \mathscr{F} by π i.e. the foliation $\pi^{*} \mathscr{F}$ of $C(M)$ whose tangent bundle is

$$
T\left(\pi^{*} \mathscr{F}\right)=T(\mathscr{F})^{\uparrow} \oplus \operatorname{Ker}(d \pi) .
$$

The horizontal lift is meant with respect to the Graham connection σ.

Foliation theory

Assume $m \geq 2$. Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of (M, θ) into (N, h), of θ-dilation $\lambda(\phi)$, and let $\Phi=\phi \circ \pi$ be its vertical lift [a harmonic morphism of square dilation $L(\Phi)=\lambda^{2}(\phi) \circ \pi$]. The connected components of the fibres of $\phi: S(\phi) \rightarrow N$ are the leaves of a foliation \mathscr{F} of $S(\phi)$.
Let us set

$$
S(\Phi):=\pi^{-1}[S(\phi)] \subset C(M)
$$

Then $\Phi: S(\Phi) \rightarrow N$ is a submersion and the corresponding foliation of $S(\Phi)$ is the pullback of \mathscr{F} by π i.e. the foliation $\pi^{*} \mathscr{F}$ of $C(M)$ whose tangent bundle is

$$
T\left(\pi^{*} \mathscr{F}\right)=T(\mathscr{F})^{\uparrow} \oplus \operatorname{Ker}(d \pi) .
$$

The horizontal lift is meant with respect to the Graham connection σ. $C(M)$ is foliated by $(2 n-m+2)$-dimensional Lorentzian manifolds, whose normal bundles are spacelike.

Theorem

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of (M, θ) into (N, h), of θ-dilation $\lambda(\phi)$, and let $\Phi=\phi \circ \pi: C(M) \rightarrow N$ be its vertical lift (a harmonic morphism of square dilation $\left.\ell(\Phi)^{2}=[\lambda(\phi) \circ \pi]^{2}\right)$. The tension field of Φ is given by

$$
\tau_{F_{\theta}}(\Phi)=-(m-2) \Phi_{*} \nabla \log \ell(\Phi)-(2 n-m+2) \Phi_{*} \mu^{y^{\Phi}}
$$

everywhere in $S(\Phi)$

Theorem

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of (M, θ) into (N, h), of θ-dilation $\lambda(\phi)$, and let $\Phi=\phi \circ \pi: C(M) \rightarrow N$ be its vertical lift (a harmonic morphism of square dilation $\left.\ell(\Phi)^{2}=[\lambda(\phi) \circ \pi]^{2}\right)$. The tension field of Φ is given by

$$
\tau_{F_{\theta}}(\Phi)=-(m-2) \Phi_{*} \nabla \log \ell(\Phi)-(2 n-m+2) \Phi_{*} \mu^{V^{\Phi}}
$$

everywhere in $S(\Phi)$

Theorem

Let Φ be a harmonic morphism of the Lorentzian manifold $\left(C(M), F_{\theta}\right)$ into (N, h); if $m=2$ i.e. (N, h) is a real surface, then every leaf of the pullback foliation $\pi^{*} \mathscr{F}$ of $S(\Phi)$ [the foliation of $S(\Phi)$ tangent to \mathscr{V}^{Φ}] is a minimal submanifold of $\left(C(M), F_{\theta}\right)$.

A little notation

Let \mathscr{D}^{\perp} be the orthogonal complement of \mathscr{D}, and let $\pi^{\perp}: T(\mathfrak{M}) \rightarrow \mathscr{D}^{\perp}$ be the projection associated to the direct sum decomposition $T(M)=\mathscr{D} \oplus \mathscr{D}^{\perp}$. Let us consider the bilinear form $B_{\mathscr{D}}=B_{\mathscr{D}}(g, D)$ given by

$$
B_{\mathscr{D}}(X, Y)=\pi^{\perp} \mathscr{D} X Y, \quad X, Y \in \mathscr{D} .
$$

Next, let $\mu^{\mathscr{D}}=\mu^{\mathscr{D}}(g, D)$ be given by

$$
\mu^{\mathscr{D}}=\frac{1}{r} \operatorname{Trace}_{g} B_{\mathscr{D}} \in C^{\infty}\left(\mathscr{D}^{\perp}\right) .
$$

When $D=\nabla^{g}$ [the Levi-Civita connection of $\left.(\mathfrak{M}, g)\right] \mu^{\mathscr{D}}=\mu^{\mathscr{D}}\left(g, \nabla^{g}\right)$ is the mean curvature vector of \mathcal{D}

The "subelliptic" fundamental equation

The fundamental equation of Φ projects on

$$
\tau_{b}(\phi)=-\frac{m-2}{2} \phi_{*} \nabla^{H} \log \Lambda(\phi)-(2 n-m+1) \phi_{*} \mu^{\mathscr{V} \phi}\left(g_{\theta}, \nabla\right)+
$$

The "subelliptic" fundamental equation

The fundamental equation of Φ projects on

$$
\begin{gathered}
\tau_{b}(\phi)=-\frac{m-2}{2} \phi_{*} \nabla^{H} \log \Lambda(\phi)-(2 n-m+1) \phi_{*} \mu^{\mathscr{V} \phi}\left(g_{\theta}, \nabla\right)+ \\
-\phi_{*}\left\{\frac{2}{\theta(\mathscr{T})} J \mathscr{T}-\nabla_{\mathscr{T}} \mathscr{T}\right\} .
\end{gathered}
$$

Here

$$
\mathscr{T}:=\frac{1}{\left\|T^{\mathscr{V}}\right\|} T^{\mathscr{V}} \in C^{\infty}\left(\Omega(\phi), \mathscr{V}^{\phi}\right), \quad T^{\mathscr{V}}=\pi_{\mathscr{V} \phi} T .
$$

Proposition

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism of the pseudohermitian manifold (M, θ) into the real surface (N, h).
i) If the Reeb foliation (the codimension $2 n$ foliation \mathscr{R} of M tangent to T) is a subfoliation of \mathscr{F}, then every leaf of \mathscr{F} is a minimal submanifold of the Riemannian manifold $\left(M, g_{\theta}\right)$.
ii) If $\left(d_{x} \phi\right) T_{x} \neq 0$ for some $x \in M \backslash \operatorname{Crit}(\phi)$, then

$$
(2 n-1) \mu^{\mathscr{V}^{\phi}}\left(g_{\theta}, \nabla\right)=\pi_{\mathscr{H} \phi}\left\{\nabla_{\mathscr{T}} \mathscr{T}-\frac{2}{\theta(\mathscr{T})} J \mathscr{T}\right\} .
$$

ϵ-contractions

Let $0<\epsilon<1$ and let g_{ϵ} be the Riemannian metric

$$
g_{\epsilon}(X, Y)=G_{\theta}(X, Y), \quad g_{\epsilon}(X, T)=0, \quad g_{\theta}(T, T)=\epsilon^{-2}
$$

for any $X, Y \in H(M)$. Equivalently

$$
g_{\epsilon}=g_{\theta}+\left(\frac{1}{\epsilon^{2}}-1\right) \theta \otimes \theta
$$

(the ϵ-contraction of G_{θ}).
The family of Riemannian metrics $\left\{g_{\epsilon}\right\}_{0<\epsilon<1}$ is devised such that $\left(M, d_{\epsilon}\right) \rightarrow\left(M, d_{H}\right)$ as $\epsilon \rightarrow 0^{+}$, in the Gromov-Hausdorff distance. Here d_{ϵ} and d_{H} are respectively the distance function of the Riemannian manifold $\left(M, g_{\epsilon}\right)$, and the Carnot-Carathéodory distance function associated to the sub-Riemannian structure $\left(H(M), G_{\theta}\right)$

Our strategy

Let us assume that, for every $0<\epsilon<1$, the map $\phi:\left(M, g_{\epsilon}\right) \rightarrow(N, h)$ is horizontally weakly conformal, with square dilation Λ_{ϵ} i.e. for any $x_{0} \in M \backslash \operatorname{Crit}(\phi)$ and any local coordinate system $\left(V, y^{\alpha}\right)$ on N with $\phi\left(x_{0}\right) \in V$

$$
m \Lambda_{\epsilon}=\left(h_{\alpha \beta} \circ \phi\right) g_{\epsilon}\left(\nabla^{\epsilon} \phi^{\alpha}, \nabla^{\epsilon} \phi^{\beta}\right) .
$$

Here ∇^{ϵ} is the gradient with respect to g_{ϵ}. Choose $V \subset N$ such that $U=\phi^{-1}(V) \subset M$ is a relatively compact domain.
The one can prove that

$$
\Lambda_{\epsilon} \rightarrow \frac{1}{m} G_{\theta}\left(\nabla^{H} \phi^{\alpha}, \nabla^{H} \phi^{\beta}\right) h_{\alpha \beta} \circ \phi, \quad \epsilon \rightarrow 0^{+}
$$

uniformly on U relatively compact domain, and the Levi conformality condition is got, in the limit as $\epsilon \rightarrow 0^{+}$, from the horizontal weak conformality condition on $\phi:\left(M, g_{\epsilon}\right) \rightarrow(N, h)$.

Let $\mu_{\epsilon}^{y^{\phi}}$ be the mean curvature vector of the vertical distribution \mathscr{V}^{ϕ} on the Riemannian manifold $\left(M, g_{\epsilon}\right)$.
Let us set by definition

$$
\begin{gather*}
\mu_{\mathrm{hor}}^{\mathscr{V} \phi}:=\pi_{\mathscr{H} \phi} H\left(\mathscr{V}^{\phi}\right), \tag{2}\\
(2 n-m+1) H\left(\mathscr{V}^{\phi}\right):=(2 n-m+1) \mu^{\mathscr{V}^{\phi}}\left(g_{\theta}, \nabla\right)+ \\
+\frac{2}{\theta(\mathscr{T})} \pi_{\mathscr{H} \phi} J \mathscr{T}-\pi_{\mathscr{H} \phi} \nabla_{\mathscr{T}} \mathscr{T}+ \\
-\left\{\operatorname{div}_{\mathscr{F}}(\mathscr{T})+\theta(\mathscr{T})\left[A(\mathscr{T}, \mathscr{T})-\operatorname{Trace}_{g_{\theta}} \Pi_{\mathscr{V} \phi} A\right]\right\} \mathscr{T} .
\end{gather*}
$$

One can prove that

$$
\lim _{\epsilon \rightarrow 0^{+}} \mu_{\epsilon}^{y^{\dagger}}=\mu_{\mathrm{hor}}^{y^{\phi}} .
$$

On the other hand, by the "subelliptic" fundamental equation becomes

$$
\tau_{b}(\phi)=-\frac{m-2}{2} \phi_{*} \log \Lambda(\phi)-(2 n-m+1) \phi_{*} \mu_{\mathrm{hor}}^{\mathscr{Y}^{\phi}}
$$

so that $\tau_{b}(\phi)=0$ and $m=2$ yield $\mu_{\text {hor }}^{y^{\phi}}=0$.

Theorem

Let $\phi: M^{2 n+1} \rightarrow N^{2}$ be a non-constant subelliptic harmonic morphism, of the pseudohermitian manifold (M, θ) into the real surface (N, h). Let $\mu_{\epsilon}^{\mathscr{V}^{\phi}}$ be the mean curvature vector of \mathscr{V}^{ϕ}, as a distribution on the Riemannian manifold $\left(M, g_{\epsilon}\right)$. Then $\pi_{\mathscr{H}^{\phi}} \mu_{\epsilon}^{\mathscr{V}^{\phi}} \rightarrow 0$ as $\epsilon \rightarrow 0^{+}$, uniformly on any relatively compact domain $U \subset M$.

Scalar valued subelliptic harmonic morphisms

Let $\phi: M \rightarrow N$ be a subelliptic harmonic morphism, of the pseudohermitian manifold (M, θ) into the Riemannian manifold (N, h). Let \mathscr{F} be the foliation of $S(\phi)$ by maximal integral manifolds of \mathscr{V}^{ϕ}. A point $x \in S(\phi)$ is a characteristic point of \mathscr{F} if

$$
\begin{equation*}
H(M)_{x} \subset \mathscr{V}_{x}^{\phi} \tag{3}
\end{equation*}
$$

Let $\Sigma(\mathscr{F})$ be the set of all characteristic points of \mathscr{F}. If $x \in \Sigma(\mathscr{F})$ and $L \in S(\phi) / \mathscr{F}$ is the leaf of \mathscr{F} passing through x, then x is a characteristic point of L, e.g. in the sense of L. Capogna \& G. Citti . It can be proved that

$$
\Sigma(\mathscr{F}) \neq \emptyset \Longrightarrow m=1
$$

Let $\left\{g_{\epsilon}\right\}_{0<\epsilon<1}$ be the family of ϵ-contractions of the Levi form G_{θ}, and let $\mathbf{n}^{\epsilon} \in C^{\infty}\left(S(\phi), \mathscr{H}_{\epsilon}^{\phi}\right)$ such that $g_{\epsilon}\left(\mathbf{n}^{\epsilon}, \mathbf{n}^{\epsilon}\right)=1$. Next, let

$$
\nu^{\epsilon}:=\Pi_{H} \mathbf{n}^{\epsilon}=\mathbf{n}^{\epsilon}-\theta\left(\mathbf{n}^{\epsilon}\right) T
$$

For every $x \in S(\phi)$,

$$
x \in \Sigma(\mathscr{F}) \quad \Longleftrightarrow \quad \nu_{x}^{\epsilon}=0 \text { for any } 0<\epsilon<1
$$

Let $\left\{g_{\epsilon}\right\}_{0<\epsilon<1}$ be the family of ϵ-contractions of the Levi form G_{θ}, and let $\mathbf{n}^{\epsilon} \in C^{\infty}\left(S(\phi), \mathscr{H}_{\epsilon}^{\phi}\right)$ such that $g_{\epsilon}\left(\mathbf{n}^{\epsilon}, \mathbf{n}^{\epsilon}\right)=1$. Next, let

$$
\nu^{\epsilon}:=\Pi_{H} \mathbf{n}^{\epsilon}=\mathbf{n}^{\epsilon}-\theta\left(\mathbf{n}^{\epsilon}\right) T
$$

For every $x \in S(\phi)$,

$$
x \in \Sigma(\mathscr{F}) \quad \Longleftrightarrow \quad \nu_{x}^{\epsilon}=0 \text { for any } 0<\epsilon<1
$$

Let us set

$$
\begin{aligned}
\mathbf{n}^{0}(x) & :=\frac{1}{\sqrt{f_{\epsilon}(x)}} \nu_{x}^{\epsilon}, \quad x \in \Omega \backslash \Sigma(\mathscr{F}) \\
f_{\epsilon} & :=g_{\epsilon}\left(\nu^{\epsilon}, \nu^{\epsilon}\right) \in C^{\infty}\left(\Omega, \mathbb{R}_{+}\right)
\end{aligned}
$$

with $\mathbb{R}_{+}=[0,+\infty)$. According to the terminology by L. Capogna et al. \mathbf{n}^{0} is the horizontal normal (on the leaves of \mathscr{F}).
One can prove that $\mathbf{n}^{0}(x)$ doesn't depend on $0<\epsilon<1$.

The horizontal mean curvature of \mathcal{F} is

$$
K_{0}=\operatorname{div}\left(\mathbf{n}^{0}\right) \in C^{\infty}(\Omega)
$$

Theorem

Let $\phi: M \rightarrow N^{1}$ be a subelliptic harmonic morphism, of square dilation Λ. Then
i) For every local coordinate system $\left(V, y^{1}\right)$ on N such that $U=\phi^{-1}(V) \subset \Omega$

$$
\mathbf{n}^{0}=\frac{1}{\sqrt{\Lambda_{0}}} \nabla^{H} \phi^{1}, \quad \Lambda_{0}=\frac{\Lambda}{h_{11} \circ \phi}, \quad \phi^{1}=y^{1} \circ \phi
$$

so that

$$
\begin{gathered}
K_{0}=\operatorname{div}\left(\frac{1}{\sqrt{\Lambda_{0}}} \nabla^{H} \phi^{1}\right)= \\
=-\frac{1}{\sqrt{\Lambda_{0}}}\left\{\Delta_{b} \phi^{1}+\left(\nabla^{H} \phi^{1}\right) \log \sqrt{\Lambda_{0}}\right\}
\end{gathered}
$$

everywhere in U.

Theorem (Continuation)

ii) The vector field $\mu_{\text {hor }}^{y \phi}$ and the mean curvature K_{0} are related by

$$
\begin{gathered}
2 n g_{\theta}\left(\mu_{\mathrm{hor}}^{\mathscr{Y} \phi}, \mathbf{n}^{0}\right)=\left\{\varphi T\left(\phi^{1}\right)-1\right\} K_{0}, \\
\varphi^{2}\left\{\Lambda_{0}+T\left(\phi^{1}\right)^{2}\right\}=1-\theta(\mathscr{T})^{2}, \quad \mathscr{T}=\left\|T^{\mathscr{Y}}\right\|^{-1} T^{\mathscr{V}} .
\end{gathered}
$$

Consequently

$$
2 n \mu_{\mathrm{hor}}^{\mathscr{Y}}=\alpha \nabla \phi^{1}, \quad \alpha:=-\frac{\Delta_{b} \phi^{1}+\sqrt{\Lambda_{0}} K_{0}}{\Lambda_{0}+T\left(\phi^{1}\right)^{2}} .
$$

In particular, for any local harmonic coordinate system $\left(V, y^{1}\right)$ on N [i.e.
$\Delta_{h} y^{1}=0$ in V] with $U=\phi^{-1}(V) \subset \Omega$

$$
2 n \Pi_{H} \mu_{\text {hor }}^{\mathscr{Y}^{\phi}}=-\frac{\Lambda_{0}}{\Lambda_{0}+T\left(\phi^{1}\right)^{2}} K_{0} \mathbf{n}^{0} \quad \text { on } U .
$$

Example: s.h.m. from the Heisenberg group

Let \mathbb{H}_{n} be the Heisenberg group i.e. the noncommutative Lie group $\mathbb{H}_{n}=\mathbb{C}^{n} \times \mathbb{R}$ with the group law

$$
\begin{aligned}
& (z, t) \cdot(w, s)=(z+w, t+s+2 \operatorname{Im}(z \cdot \bar{w})) \\
& t, s \in \mathbb{R}, \quad z, w \in \mathbb{C}^{n}, \quad z \cdot \bar{w}=\delta^{\alpha \beta} z_{\alpha} \bar{w}_{\beta}
\end{aligned}
$$

equipped with the strictly pseudoconvex, left invariant, CR structure $T_{1,0}\left(\mathbb{H}_{n}\right)$ spanned by

$$
L_{\alpha} \equiv \frac{\partial}{\partial z_{\alpha}}+i \bar{z}_{\alpha} \frac{\partial}{\partial t}, \quad 1 \leq \alpha \leq n
$$

[so that \bar{L}_{α} are the Lewy operators] and with the contact form

$$
\theta_{0}=d t+i \sum_{\alpha=1}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right) \in \mathscr{P}_{+}\left(\mathbb{H}_{n}\right)
$$

Let us set $f(z, t)=|z|^{2}-i t$, so that f is a CR function on \mathbb{H}_{n} i.e.
$\bar{L}_{\alpha} f=0$ for any $1 \leq \alpha \leq n$.

Theorem

Let $\phi: \mathbb{H}_{n} \backslash\{0\} \rightarrow \mathbb{R}$ be the C^{∞} map given by

$$
\phi=1 /(f \bar{f})^{n / 2} .
$$

Then
i) ϕ is a subelliptic harmonic morphism of the pseudohermitian manifold $\left(\mathbb{H}_{n} \backslash\{0\}, \theta_{0}\right)$ into the Riemannian manifold $\left(\mathbb{R}, d y^{1} \otimes d y^{1}\right)$.
ii) $\operatorname{Crit}(\phi)=\emptyset$ and $S(\phi)=\mathbb{H}_{n} \backslash\{0\}$.
iii) $\mathrm{I}_{1}(\phi)=\mathbb{C}^{*} \times\{0\}$ where $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$.
iv) ϕ is a subelliptic harmonic map of $\left(\mathbb{H}_{n} \backslash\{0\}, \theta_{0}\right)$ into $\left(\mathbb{R}, d y^{1} \otimes d y^{1}\right)$, and a Levi conformal map of square dilation

$$
\Lambda(x)=\frac{2 n^{2}|z|^{2}}{|x|^{2 Q}}, \quad x=(z, t) \in \mathbb{H}_{n}, \quad x \neq 0
$$

Theorem (Continuation)

Consequently

$$
\mathrm{II}_{1}(\phi)=\{0\} \times \mathbb{R}^{*}, \quad \mathrm{III}_{1}(\phi)=\mathbb{C}^{*} \times \mathbb{R}^{*}, \quad \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}
$$

v) The horizontal mean curvature of the leaves of \mathscr{F} is

$$
K_{0}=\frac{1}{2 \sqrt{2}|z|}(f \bar{f})^{-1 / 2}\left[f+\bar{f}-2 Q|z|^{2}\right]=-\frac{(Q-1)|z|}{\sqrt{2}|x|^{2}} .
$$

Here $Q=2 n+2$ (the homogeneous dimension of \mathbb{H}_{n}) and $|x|=\left(|z|^{4}+t^{2}\right)^{1 / 4}$ [the Heisenberg norm of $\left.x=(z, t) \in \mathbb{H}_{n}\right]$.

Example: the Hopf fibration

Let $S^{2}=\left\{\left(y^{1}, y^{2}, y^{3}\right) \in \mathbb{R}^{3}: \sum_{j=1}^{3}\left(y^{j}\right)^{2}=1\right\}$ and
$S^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\}$, and let $\pi: S^{3} \rightarrow S^{2}$ be the Hopf fibration i.e. $\pi(z, w)=\left(y^{1}, y^{2}, y^{3}\right)$

$$
\left\{\begin{array}{l}
y^{1}=|z|^{2}-|w|^{2} \\
y^{2}=z \bar{w}+\bar{z} w \\
y^{3}=-i(z \bar{w}-\bar{z} w)
\end{array}\right.
$$

Let $h_{S^{N}}=\mathbf{j}^{*} g_{0}$ be the first fundamental form of $\mathbf{j}: S^{N} \hookrightarrow \mathbb{R}^{N+1}$, where g_{0} is the Euclidean metric on \mathbb{R}^{N+1}. Let S^{3} be equipped with the standard CR structure $T_{1,0}\left(S^{3}\right)$ [induced by the complex structure of \mathbb{C}^{2}], and with the canonical contact form

$$
\theta=\frac{i}{2}\{-\bar{z} d z+z d \bar{z}-\bar{w} d w+w d \bar{w}\} \in \mathscr{P}_{+}\left(S^{3}\right)
$$

$T_{1,0}\left(S^{3}\right)$ is the span of $L=\bar{w}(\partial / \partial z)-\bar{z}(\partial / \partial w)$. Let us set

$$
L_{t}=L+t \bar{L}, \quad|t|<1
$$

and let H_{t} be CR structure on S^{3} spanned by $L_{t}\left[\left\{\left(S^{3}, H_{t}\right)\right\}_{|t|<1}\right.$ are the Rossi spheres]. By a result due to H . Rossi, the CR manifold $\left(S^{3}, H_{t}\right)$ is globally embeddable in \mathbb{C}^{2} if and only if $t=0$.
$T_{1,0}\left(S^{3}\right)$ is the span of $L=\bar{w}(\partial / \partial z)-\bar{z}(\partial / \partial w)$. Let us set

$$
L_{t}=L+t \bar{L}, \quad|t|<1
$$

and let H_{t} be CR structure on S^{3} spanned by $L_{t}\left[\left\{\left(S^{3}, H_{t}\right)\right\}_{|t|<1}\right.$ are the Rossi spheres]. By a result due to H . Rossi, the CR manifold $\left(S^{3}, H_{t}\right)$ is globally embeddable in \mathbb{C}^{2} if and only if $t=0$.

Theorem

i) The Hopf map $\pi: S^{3} \rightarrow S^{2}$ is a subelliptic harmonic morphism of $\left(S^{3}, T_{1,0}\left(S^{3}\right), \theta\right)$ into $\left(S^{2}, h_{S^{2}}\right)$.
ii) π is a subelliptic harmonic morphism of $\left(S^{3}, H_{t}, \theta\right)$ into $\left(S^{2}, h_{S^{2}}\right)$ if and only if $t=0$.

