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Some preliminaries on Cauchy-Riemann
geometry
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Tangential Cauchy-Riemann equations

Let M be a (2n + 1)−dimensional, differentiable manifold. An almost CR
structure (of hypersurface type) on M is a subbundle T1,0(M) of
complex rank n of T (M)⊗ C, such that

T1,0(M) ∩ T0,1(M) = (0), T0,1(M) = T1,0(M).

An almost CR structure is (formally) integrable if for each open set
U ⊂ M

Z ,W ∈ C∞ (U,T1,0(M)) =⇒ [Z ,W ] ∈ C∞ (U,T1,0(M)) .

A CR manifold is a differentiable manifold equipped with a CR structure
(an integrable, almost CR structure). The integer n is the CR dimension
of (M,T1,0(M)).
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Tangential Cauchy-Riemann equations

Let M be a (2n + 1)−dimensional, differentiable manifold. An almost CR
structure (of hypersurface type) on M is a subbundle T1,0(M) of
complex rank n of T (M)⊗ C, such that

T1,0(M) ∩ T0,1(M) = (0), T0,1(M) = T1,0(M).

An almost CR structure is (formally) integrable if for each open set
U ⊂ M

Z ,W ∈ C∞ (U,T1,0(M)) =⇒ [Z ,W ] ∈ C∞ (U,T1,0(M)) .

A CR manifold is a differentiable manifold equipped with a CR structure
(an integrable, almost CR structure). The integer n is the CR dimension
of (M,T1,0(M)).

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 4 / 50



Example

Consider a real hypersurface M ⊂ Cn+1. Then the complex structure of
the ambient space induces on M the following CR structure

T1,0(M) := [T (M)⊗ C] ∩ T 1,0
(
Cn+1

)
,

where T 1,0
(
Cn+1

)
denotes the holomorphic tangent bundle on Cn+1 [i.e.

the span of {∂/∂zj : 1 ≤ j ≤ n + 1}].
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The tangential Cauchy-Riemann operator is the first order differential
operator

∂b : C 1
(
U,C

)
→ C

(
U, T0,1(M)∗

)
,(

∂bf
)
Z = Z (f ), f ∈ C 1

(
U,C

)
, Z ∈ C∞

(
U, T1,0(M)

)
.

∂bf = 0 are the tangential Cauchy-Riemann equations and a solution
f ∈ C 1

(
U,C

)
is a CR function.

There is an obvious analogy between holomorphic functions (solutions to
∂F = 0) and CR functions (solutions to ∂bf = 0).

There is more than an analogy between the two concepts. Indeed, let
Ω ⊂ Cn+1, an open subset, and F : Ω→ C holomorphic. Then for every
embedded real hypersurface M ⊂ Cn+1 with U = Ω ∩M 6= ∅ :
F|U is a CR function.
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The Levi distribution is the distribution of rank 2n

H(M)x = Re {T1,0(M)x ⊕ T0,1(M)x} , x ∈ M,

equipped with the complex structure

J : H(M)→ H(M), J
(
Z + Z

)
= i

(
Z − Z

)
, Z ∈ T1,0(M).

Assume M orientable. Then there exist globally defined, differential
1-forms θ such that H(M) = Ker

(
θ
)

called pseudo-Hermitian
structures. Let P(M) be the set of all pseudohermitian structures.
If θ ∈ P(M), define the Levi form as

Gθ(X ,Y ) = (dθ)(X , JY ), X ,Y ∈ H(M).
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The Levi distribution is the distribution of rank 2n

H(M)x = Re {T1,0(M)x ⊕ T0,1(M)x} , x ∈ M,

equipped with the complex structure

J : H(M)→ H(M), J
(
Z + Z

)
= i

(
Z − Z

)
, Z ∈ T1,0(M).

Assume M orientable. Then there exist globally defined, differential
1-forms θ such that H(M) = Ker

(
θ
)

called pseudo-Hermitian
structures. Let P(M) be the set of all pseudohermitian structures.
If θ ∈ P(M), define the Levi form as

Gθ(X ,Y ) = (dθ)(X , JY ), X ,Y ∈ H(M).

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 7 / 50



If Gθ is non degenerate (resp. positive definite) for some θ ∈ P(M), then
(M,T1,0(M)) is said to be non degenerate (resp. strictly
pseudoconvex, s.p.c. for short).

By nondegeneracy and orientability there is a unique globally defined,
nowhere vanishing vector field T ∈ X(M) transverse to the Levi
distribution, determined by

θ(T ) = 1, T c(dθ) = 0.

The (0, 2)−tensor field gθ given by

gθ(X ,Y ) = Gθ(X ,Y ), gθ(T ,X ) = 0, gθ(T ,T ) = 1,

X ,Y ∈ H(M),

[followed by linear extension relying on T (M) = H(M)⊕ RT ] is a
semi-Riemannian metric on M. If M is s.p.c. then gθ is a Riemannian
metric (the Webster metric).
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The Tanaka-Webster connection

Let M be a strictly pseudoconvex CR manifold, of CR dimension n. For
every contact form θ ∈ P(M) there is a unique linear connection ∇ [the
Tanaka-Webster connection of (M, θ)] on M such that

i) the Levi distribution H(M) is parallel, i.e. ∇H(M) ⊂ H(M),
ii) the complex structure J along H(M), and the Webster metric gθ, are
parallel

∇J = 0, ∇gθ = 0,

iii) the torsion tensor field T∇ obeys to

T∇(Z , W ) = 0, T∇(Z , W ) = 2 i Gθ(Z , W )T ,

Z , W ∈ T1,0(M),

τ ◦ J + J ◦ τ = 0,

where
τ(X ) = T∇(T ,X ), X ∈ X(M).
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The Tanaka-Webster connection ∇ of (M, θ) and the Levi-Civita
connection ∇gθ of (M, gθ) are related by

∇gθ = ∇+
(
Ω− A

)
⊗ T + τ ⊗ θ + 2 (θ � J) .

where

tau is the pseudohermitian torsion of ∇;

Ω = −dθ;

A(X ,Y ) = gθ(X , τY ) for any X ,Y ∈ X(M).
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The Fefferman metric

Let Λp,0(M)→ M be the vector bundle whose cross-sections are
(p, 0)-forms on M, namely complex valued differential p-forms η on M
satisfying T0,1(M) c η = 0.

There is a natural free action of R+ = GL+(1,R) (the multiplicative
positive reals) on

K0(M) = Λn+1,0(M) \ {zero section}

(top degree (p, 0)-forms) and the quotient space

C (M) = K0(M)/R+

is the total space of a principal S1-bundle over M, referred to as the
canonical circle bundle over M.
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By a result of J.M. Lee, C (M) carries the Lorentzian metric Fθ [the
Fefferman metric of (M, θ)] given by

Fθ = π∗G̃θ + 2
(
π∗θ
)
� σ,

where

G̃θ is the (degenerate) extension of Gθ to the whole of T (M) got by
requiring that G̃θ = Gθ on H(M)⊗ H(M);

σ is the connection form given locally by

σ =
1

n + 2

{
dγ + π∗

(
i ωα

α − i

2
gαβ dgαβ −

ρ

4(n + 1)
θ

)}
with γ a local fibre coordinate on C (M) and ρ the pseudohermitian
scalar curvature of (M, θ).
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Subelliptic harmonic maps
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A. Lichnerowicz (1970): Every (anti) holomorphic map of compact
Kählerian manifolds is harmonic and an absolute minimum within its
homotopy class, hence stable.

If Φ : Ω ⊂ Cn → D ⊂ Cm is a holomorphic map between two open subsets
Ω,D and M ⊂ Ω, N ⊂ D are real hypersurfaces such that Φ(M) ⊂ N,
then φ = Φ|M : M → N is a CR map.

Any stricly pseudoconvex (s.p.c.) CR manifold M equipped with a
positively oriented contact form θ of vanishing pseudohermitian torsion is
Sasakian; hence a pair (M, θ) consisting of a s.p.c. CR manifold and a
contact form may be thought of as an odd dimensional analog to a
Kählerian manifold.
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Q: Is an (anti) CR map of s.p.c. CR manifolds φ : (M, θ)→ (N,Θ)
harmonic with respect to the Webster metrics gθ and gΘ?

A: H. Urakawa (1993) proved that φ is harmonic w.r.t gθ and gΘ if and
only if φ∗(T ) = TΘ, where T and TΘ are the Reeb vector fields of (M, θ)
and (N,Θ).

Y.L. Xin (1980): Every non-constant harmonic map from the sphere
S2n+1 into itself is unstable.

Lichnerowicz’s result doesn’t admit an immediate analog within the CR
category, when the Webster metrics and the ordinary (Riemannian)
concept of harmonic maps are involved.
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Subelliptic harmonic maps

E. Barletta, S. Dragomir & H. Urakawa (2001) introduced subelliptic
harmonic maps as smooth maps φ : (M, θ)→ (N, h), with (M, θ) a s.p.c.
CR manifold and (N, h) a Riemannian manifold which are critical points of
the functional

Eb,Ω(φ) =

∫
Ω
eb(φ) θ ∧ (dθ)n

with Ω a relatively compact domain in M (Ω ⊂⊂ M) and

eb(φ) =
1

2
traceGθ

(ΠHφ
∗h) ,

the pseudohermitian energy density. [Here, if B is a bilinear form on
T (M)⊗ T (M), ΠHB is the restriction of B to H(M)⊗ H(M)].

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 16 / 50



The pseudohermitian second fundamental form βb(φ) is

βb(φ)(X ,Y ) = Dφ
Xφ∗Y − φ∗∇XY , X ,Y ∈ X(M),

where ∇ is the Tanaka-Webster connection of (M, θ) and Dφ = φ−1∇h is
the pullback of the Levi-Civita connection ∇h of (N, h) [a connection in
the pullback bundle φ−1TN → M].

The pseudohermitian tension field is

τb(φ) = traceGθ

[
ΠH βb(φ)

]
∈ C∞(φ−1TN).

A C∞ map φ : M → N is subelliptic harmonic if

τb(φ) = 0.

A calculation shows that

τ(φ) = τb(φ) + Dφ
T φ∗ T (1)
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The Euler-Lagrange equations of the variational principle δ Eb,Ω(φ) = 0
are

−∆bφ
α +

2n∑
a=1

({
α

βγ

}
◦ φ
)

Ea

(
φβ
)
Ea

(
φγ
)

= 0,

for 1 ≤ α ≤ m.
Here {Ea : 1 ≤ a ≤ 2n} is a local Gθ-orthonormal frame for the H(M),

defined on some open subset U ⊂ M, and
{
α
βγ

}
are the Christoffel

symbols of hαβ.

Consider the volume form Ψ = θ ∧ (dθ)n.

∆bu = −div
(
∇Hu

)
, u ∈ C 2(M),

is the sublaplacian of (M, θ), where ∇Hu = ΠH∇u [the horizontal
gradient of u] while the divergence is computed w.r.t. Ψ.
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∆b is a positive, formally self adjoint, second order differential operator,
and degenerate elliptic yet

subelliptic of order ε = 1/2 i.e. for any x ∈ M there is an open
neighborhood U ⊂ M of x and a constant C > 0 such that

‖u‖2
ε ≤ C

(
(∆bu, u)L2 + ‖u‖2

L2

)
, ∀ u ∈ C∞0 (U),

‖ · ‖ε is the Sobolev norm of order ε i.e.

‖u‖ε =

(∫ (
1 + |ξ|2

)ε |û(ξ)|2 dξ
)1/2

û is the Fourier transform of u.

hypoelliptic i.e. if u is a distribution on M and ∆bu = f ∈ C∞(M)
(in the distribution sense), then u ∈ C∞ [i.e. u is the distribution
associated to some C∞ function].
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J. Jost & C-J. Xu (1998) started a program aiming to recover known
properties of solutions to quasi-linear systems of PDEs, of variational
origin, whose principal part is a second order linear elliptic operator, to the
case where the principal part is at least hypoelliptic.

Given a Hörmander system of vector fields X = {X1 , · · · , Xp} on
U ⊂ RN open set, a C∞ map φ : U → N into a Riemannian manifold
(N, h) is a subelliptic harmonic map (in the sense of J. Jost & C-J. Xu) if
φ is a critical point of the functional

EX (φ) =
1

2

∫
Ω

∣∣X (φ)
∣∣2 dµ, Ω ⊂⊂ U

where |X (φ)|2 =
∑p

a=1 Xa(φβ)Xa(φγ) hβγ(φ) and µ is the Lebesgue
measure on RN .
Such maps were recognized as local manifestations, with respect to a
given local Gθ-orthonormal frame of the Levi distribution, of subellitpic
harmonic maps (in the sense of E. Barletta et al.).
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For any local coordinate system χ : U ⊂ M → R2n+1, the pushforward
{χ∗Ea : 1 ≤ a ≤ 2n} is a Hörmander system of vector fields on
U = χ(U) ⊂ R2n+1 and

∆b =
2n∑
a=1

E ∗a Ea ,

where E ∗a is the formal adjoint of Ea with respect to Ψ = θ ∧ (dθ)n, so
that the study of the (local properties of the) solutions to the
Euler-Lagrange equations is performed within subelliptic theory and more
generally within the theory of Hörmander systems of vector fields and
associated Hörmander “sums of squares” of vector fields.
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Harmonic maps of the Fefferman Spaces

Let � be the Laplace-Beltrami operator of the Lorentzian manifold
(C (M),Fθ) (the geometric wave operator). By a result of J.M. Lee the
pushforward of � is precisely the sublaplacian ∆b of (M, θ) i.e.

π∗� = ∆b .

By a result of E. Barletta & S. Dragomir & H. Urakawa a C∞ map
φ : (M, θ)→ (N, h) is subelliptic harmonic if and only if its vertical lift
Φ = φ ◦ π : (C (M),Fθ)→ (N, h) is a harmonic map.
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Harmonic morphisms from (C (M), Fθ)
&

Subelliptic harmonic morphisms

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 23 / 50



Subelliptic harmonic morphisms

Let (M, θ) be a s.p.c. CR manifold of CR dimension n (i.e.
dimM = 2n + 1) and let (N, h) be a m−dimensioanal Riemannian
manifold.

Definition

A continuous map φ of (M, θ) into (N, h) is a subelliptic harmonic
morphism if for every open subset V ⊂ N, and every C 2 function
v : V → R, if ∆hv = 0 in V then the pullback function u = v ◦ φ is a
distribution-solution to ∆bu = 0 in U = φ−1(V ).

Here ∆h is the Laplace-Beltrami operator on (V , h).

Proposition

Every subelliptic harmonic morphism φ of the pseudohermitian manifold
(M, θ) into the Riemannian manifold (N, h) is smooth.
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Levi conformal maps

Definition

A C∞ map φ : M → N is Levi conformal if there is a continuous map
λ = λ(φ) : M → [0,+∞) (the θ-dilation of φ) such that λ2 is C∞ and

Gθ
(
∇Hφα , ∇Hφβ

)
x

= λ(x)2 δαβ

for any x ∈ M and any local normal coordinate system (V , yα) on N
with center at φ(x) ∈ V .

By a result of E. Barletta, a C∞ map φ : M → N is a subelliptic harmonic
morphism of (M, θ) into (N, h) if and only if φ is Levi conformal and a
subelliptic harmonic map. Moreover

if m > 2n then every subelliptic harmonic morphism is a constant;

if m ≤ 2n then for every point x ∈ M with λ(x) 6= 0 there is an open
neighborhood U of x such that φ : U → N is a C∞ submersion.

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 25 / 50
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Let φ : M → N be a subelliptic harmonic morphism and let us set

V φ
x = Ker(dxφ), H φ

x =
(
V φ
x

)⊥
, x ∈ M,

where the orthogonal complement is meant with respect to the inner
product gθ, x .

A regular point in the set

S(φ) =
{
x ∈ M \ Crit(φ) : dxφ is on-to

}
is called a submersive point of the morphism φ.
At every submersive point x ∈ S(φ)

dimR H φ
x = m, dimR V φ

x = 2n −m + 1.
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Let φ : M → N be a subelliptic harmonic morphism and let us set

V φ
x = Ker(dxφ), H φ

x =
(
V φ
x

)⊥
, x ∈ M,

where the orthogonal complement is meant with respect to the inner
product gθ, x .
A regular point in the set

S(φ) =
{
x ∈ M \ Crit(φ) : dxφ is on-to

}
is called a submersive point of the morphism φ.
At every submersive point x ∈ S(φ)

dimR H φ
x = m, dimR V φ

x = 2n −m + 1.

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 26 / 50



For each x ∈ M we set

V φ
H, x = H(M)x ∩ V φ

x , H φ
H, x = H(M)x ∩H φ

x .

If x ∈ Crit(φ) then

V φ
H, x = H(M)x , H φ

H, x = {0}.

If x ∈ M \ Crit(φ) then the differential dxφ : Tx(M)→ Tφ(x)(N) may, or
may not, be an epimorphism.

For a subelliptic harmonic morphism, of θ-dilation
√

Λ. Then i)

M \ Z (Λ) ⊂ S(φ).

ii) For every submersive point x ∈ S(φ)

m − 1 ≤ dimR H φ
H, x ≤ m, 2n −m ≤ dimR V φ

H, x ≤ 2n −m + 1.

Here Z (Λ) = {x ∈ M : Λ(x) = 0}.
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A partition

For any x ∈ S(φ), x can belong to one of the following sets

S(φ) = Im(φ) ∪ IIm(φ) ∪ IIIm(φ) :

Im(φ) IIm(φ) IIIm(φ)

dimR H φ
H, x m m − 1 m − 1

dimR V φ
H, x 2n −m 2n −m + 1 2n −m

Λ(x) Λ(x) > 0 Λ(x) = 0 Λ(x) > 0

T Tx ∈ V φ
x Tx ∈H φ

x transverse

Moreover

i) If m = 1 then

Z (Λ) = II1(φ) ∪ Crit(φ), M \ S(φ) = Crit(φ).

ii) If m ≥ 2 then

IIm(φ) = ∅, Z (Λ) = M \ S(φ).
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A little notation

Let Φ : C (M)→ N be a C 1 map, and let p ∈ C (M) be a point. Φ is
horizontally weakly conformal at p provided that

i) If p ∈ C (M) \ Crit(Φ) and V Φ
p is nondegenerate, then the differential

dpΦ : HΦ
p → TΦ(p)(N) is on-to, and there is a unique nonzero number

L(p) ∈ R \ {0} such that

hΦ(p)

(
(dpΦ)X , (dpΦ)Y

)
= L(p)Fθ, p(X ,Y )

for any X ,Y ∈ HΦ
p .

ii) If p ∈ C (M) and V Φ
p is degenerate, then

H Φ
p ⊂ V Φ

p

[i.e. Fθ, p(X ,Y ) = 0 for any X ,Y ∈H Φ
p ]. The number L(p) is the

(square) dilation at p. It is customary to set L(p) = 0 when p ∈ Crit(Φ)
or V Φ

p is degenerate.
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Main results

Theorem

Let M be a strictly pseudoconvex CR manifold, of CR dimension n,
equipped with the positively oriented contact form θ ∈ P+(M), and let
(N, h) be a m-dimensional Riemannian manifold. Let Φ : C (M)→ N be a
continuous S1 invariant map, and let φ : M → N be the corresponding
base map. The following statements are equivalent

i) Φ is a harmonic morphism of the Lorentzian manifold (C (M), Fθ) into
(N, h), of square dilation Λ(φ) ◦ π.

ii) φ is a subelliptic harmonic morphism of the pseudohermitian manifold
(M, θ) into (N, h), of θ-dilation

√
Λ(φ).
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Theorem (Continuation)

If this is the case then

a) Φ is nondegenerate at p ⇐⇒ π(p) ∈ Ω(φ) := M \ Z
[
Λ(φ)

]
.

b) p ∈ Crit(Φ)⇐⇒ π(p) ∈ Crit(φ).

c) Φ is degenerate at p ⇐⇒ either m = 1 and π(p) ∈ II1(φ), or m ≥ 2
and π(p) ∈ M \ S(φ).

d) Φ is a harmonic map of the Lorentzian manifold (C (M), Fθ) into the
Riemannian manifold (N, h), while φ is a subelliptic harmonic map of the
pseudohermitian manifold (M, θ) into (N, h).

e) Φ is horizontally weakly conformal, while φ is Levi conformal.
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Theorem

Let M be a strictly pseudoconvex CR manifolds, equipped with the
positively oriented contact form θ ∈P+(M), and let N be a Riemannian
manifold. Any nonconstant S1 invariant harmonic morphism
Φ : C (M)→ N from the total space of the canonical circle bundle
S1 → C (M)→ M, endowed with the Lorentzian metric Fθ is smooth and
an open map. Moreover, if M is compact and N is connected then N is
compact and Φ is surjective.
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Foliation theory

Assume m ≥ 2. Let φ : M → N be a subelliptic harmonic morphism of
(M, θ) into (N, h), of θ-dilation λ(φ), and let Φ = φ ◦ π be its vertical lift
[a harmonic morphism of square dilation L(Φ) = λ2(φ) ◦ π]. The
connected components of the fibres of φ : S(φ)→ N are the leaves of a
foliation F of S(φ).

Let us set
S(Φ) := π−1

[
S(φ)

]
⊂ C (M).

Then Φ : S(Φ)→ N is a submersion and the corresponding foliation of
S(Φ) is the pullback of F by π i.e. the foliation π∗F of C (M) whose
tangent bundle is

T (π∗F ) = T (F )↑ ⊕Ker(dπ).

The horizontal lift is meant with respect to the Graham connection σ.
C (M) is foliated by (2n −m + 2)-dimensional Lorentzian manifolds,
whose normal bundles are spacelike.
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Theorem

Let φ : M → N be a subelliptic harmonic morphism of (M, θ) into (N, h),
of θ-dilation λ(φ), and let Φ = φ ◦ π : C (M)→ N be its vertical lift

(
a

harmonic morphism of square dilation `(Φ)2 =
[
λ(φ) ◦ π

]2)
. The tension

field of Φ is given by

τFθ
(Φ) = −(m − 2) Φ∗∇ log `(Φ)− (2n −m + 2) Φ∗ µ

V Φ

everywhere in S(Φ)

Theorem

Let Φ be a harmonic morphism of the Lorentzian manifold (C (M), Fθ)
into (N, h); if m = 2 i.e. (N, h) is a real surface, then every leaf of the
pullback foliation π∗F of S(Φ) [the foliation of S(Φ) tangent to V Φ] is a
minimal submanifold of

(
C (M), Fθ

)
.
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A little notation

Let D⊥ be the orthogonal complement of D , and let π⊥ : T (M)→ D⊥

be the projection associated to the direct sum decomposition
T (M) = D ⊕D⊥. Let us consider the bilinear form BD = BD(g , D) given
by

BD(X , Y ) = π⊥ DXY , X , Y ∈ D .

Next, let µD = µD(g , D) be given by

µD =
1

r
Traceg BD ∈ C∞

(
D⊥
)
.

When D = ∇g [the Levi-Civita connection of (M, g)] µD = µD(g , ∇g ) is
the mean curvature vector of D
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The ”subelliptic” fundamental equation

The fundamental equation of Φ projects on

τb(φ) = −m − 2

2
φ∗∇H log Λ(φ)− (2n −m + 1)φ∗ µ

V φ(
gθ , ∇

)
+

−φ∗
{ 2

θ(T )
J T −∇T T

}
.

Here

T :=
1

‖TV ‖
TV ∈ C∞

(
Ω(φ), V φ

)
, TV = πV φT .
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Proposition

Let φ : M → N be a subelliptic harmonic morphism of the
pseudohermitian manifold (M, θ) into the real surface (N, h).

i) If the Reeb foliation (the codimension 2n foliation R of M tangent to
T ) is a subfoliation of F , then every leaf of F is a minimal submanifold
of the Riemannian manifold (M, gθ).

ii) If (dxφ)Tx 6= 0 for some x ∈ M \ Crit(φ), then

(2n − 1)µV φ(
gθ , ∇

)
= πH φ

{
∇T T − 2

θ(T )
J T

}
.
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ε−contractions

Let 0 < ε < 1 and let gε be the Riemannian metric

gε(X ,Y ) = Gθ(X ,Y ), gε(X ,T ) = 0, gθ(T ,T ) = ε−2,

for any X , Y ∈ H(M). Equivalently

gε = gθ +

(
1

ε2
− 1

)
θ ⊗ θ

(the ε-contraction of Gθ).

The family of Riemannian metrics {gε}0<ε<1 is devised such that(
M, dε

)
→
(
M, dH

)
as ε→ 0+, in the Gromov-Hausdorff distance. Here

dε and dH are respectively the distance function of the Riemannian
manifold

(
M, gε

)
, and the Carnot-Carathéodory distance function

associated to the sub-Riemannian structure
(
H(M), Gθ

)
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Our strategy

Let us assume that, for every 0 < ε < 1, the map φ : (M, gε)→ (N, h) is
horizontally weakly conformal, with square dilation Λε i.e. for any
x0 ∈ M \ Crit(φ) and any local coordinate system

(
V , yα

)
on N with

φ(x0) ∈ V
m Λε =

(
hαβ ◦ φ

)
gε
(
∇ε φα , ∇ε φβ

)
.

Here ∇ε is the gradient with respect to gε. Choose V ⊂ N such that
U = φ−1(V ) ⊂ M is a relatively compact domain.
The one can prove that

Λε →
1

m
Gθ
(
∇H φα , ∇H φβ

)
hαβ ◦ φ , ε→ 0+ ,

uniformly on U relatively compact domain, and the Levi conformality
condition is got, in the limit as ε→ 0+, from the horizontal weak
conformality condition on φ : (M, gε)→ (N, h).
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Let µV φ

ε be the mean curvature vector of the vertical distribution V φ on
the Riemannian manifold (M, gε).
Let us set by definition

µV φ

hor := πH φ H
(
V φ
)
, (2)

(2n −m + 1) H
(
V φ
)

:= (2n −m + 1) µV φ(
gθ , ∇

)
+

+
2

θ(T )
πH φ J T − πH φ ∇T T +

−
{
divF (T ) + θ(T )

[
A(T , T )− Tracegθ ΠV φ A

]}
T .

One can prove that

lim
ε→0+

µV φ

ε = µV φ

hor .
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On the other hand, by the ”subelliptic” fundamental equation becomes

τb(φ) = −m − 2

2
φ∗ log Λ(φ)− (2n −m + 1)φ∗ µ

V φ

hor

so that τb(φ) = 0 and m = 2 yield µV φ

hor = 0.

Theorem

Let φ : M2n+1 → N2 be a non-constant subelliptic harmonic morphism, of
the pseudohermitian manifold (M, θ) into the real surface (N, h). Let

µV φ

ε be the mean curvature vector of V φ, as a distribution on the

Riemannian manifold (M, gε). Then πH φ µV φ

ε → 0 as ε→ 0+, uniformly
on any relatively compact domain U ⊂ M.
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Scalar valued subelliptic harmonic morphisms

Let φ : M → N be a subelliptic harmonic morphism, of the
pseudohermitian manifold (M, θ) into the Riemannian manifold (N, h).
Let F be the foliation of S(φ) by maximal integral manifolds of V φ. A
point x ∈ S(φ) is a characteristic point of F if

H(M)x ⊂ V φ
x . (3)

Let Σ(F ) be the set of all characteristic points of F . If x ∈ Σ(F ) and
L ∈ S(φ)/F is the leaf of F passing through x , then x is a characteristic
point of L, e.g. in the sense of L. Capogna & G. Citti . It can be proved
that

Σ(F ) 6= ∅ =⇒ m = 1.
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Let {gε}0<ε<1 be the family of ε−contractions of the Levi form Gθ , and

let nε ∈ C∞
(
S(φ), H φ

ε

)
such that gε

(
nε , nε

)
= 1. Next, let

νε := ΠH nε = nε − θ
(
nε
)
T

For every x ∈ S(φ),

x ∈ Σ(F ) ⇐⇒ νεx = 0 for any 0 < ε < 1 .

Let us set

n0(x) :=
1√
fε(x)

νεx , x ∈ Ω \ Σ(F ),

fε := gε
(
νε , νε

)
∈ C∞

(
Ω, R+

)
,

with R+ = [0, +∞). According to the terminology by L. Capogna et al.
n0 is the horizontal normal (on the leaves of F ).
One can prove that n0(x) doesn’t depend on 0 < ε < 1.
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Let {gε}0<ε<1 be the family of ε−contractions of the Levi form Gθ , and

let nε ∈ C∞
(
S(φ), H φ

ε

)
such that gε

(
nε , nε

)
= 1. Next, let

νε := ΠH nε = nε − θ
(
nε
)
T

For every x ∈ S(φ),

x ∈ Σ(F ) ⇐⇒ νεx = 0 for any 0 < ε < 1 .

Let us set

n0(x) :=
1√
fε(x)

νεx , x ∈ Ω \ Σ(F ),

fε := gε
(
νε , νε

)
∈ C∞

(
Ω, R+

)
,

with R+ = [0, +∞). According to the terminology by L. Capogna et al.
n0 is the horizontal normal (on the leaves of F ).
One can prove that n0(x) doesn’t depend on 0 < ε < 1.

F. Esposito (Unibas) Harmonic morphisms from Fefferman spaces IAŞI 2023 43 / 50



The horizontal mean curvature of F is

K0 = div
(
n0
)
∈ C∞(Ω) .

Theorem

Let φ : M → N1 be a subelliptic harmonic morphism, of square dilation Λ.
Then

i) For every local coordinate system (V , y1) on N such that
U = φ−1(V ) ⊂ Ω

n0 =
1√
Λ0
∇Hφ1 , Λ0 =

Λ

h11 ◦ φ
, φ1 = y1 ◦ φ,

so that

K0 = div
( 1√

Λ0
∇Hφ1

)
=

= − 1√
Λ0

{
∆bφ

1 +
(
∇Hφ1

)
log
√

Λ0

}
everywhere in U.
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Theorem (Continuation)

ii) The vector field µV φ

hor and the mean curvature K0 are related by

2n gθ
(
µV φ

hor , n0
)

=
{
ϕT (φ1)− 1

}
K0 ,

ϕ2
{

Λ0 + T (φ1)2
}

= 1− θ(T )2 , T = ‖TV ‖−1 TV .

Consequently

2n µV φ

hor = α∇φ1 , α := −∆bφ
1 +
√

Λ0 K0

Λ0 + T (φ1)2
.

In particular, for any local harmonic coordinate system (V , y1) on N [i.e.
∆hy

1 = 0 in V ] with U = φ−1(V ) ⊂ Ω

2nΠH µ
V φ

hor = − Λ0

Λ0 + T (φ1)2
K0 n0 onU .
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Example: s.h.m. from the Heisenberg group

Let Hn be the Heisenberg group i.e. the noncommutative Lie group
Hn = Cn × R with the group law

(z , t) · (w , s) =
(
z + w , t + s + 2 Im(z · w)

)
,

t, s ∈ R, z , w ∈ Cn , z · w = δαβ zα wβ ,

equipped with the strictly pseudoconvex, left invariant, CR structure
T1,0(Hn) spanned by

Lα ≡
∂

∂zα
+ i zα

∂

∂t
, 1 ≤ α ≤ n,

[so that Lα are the Lewy operators] and with the contact form

θ0 = dt + i
n∑

α=1

(
zα dzα − zα dzα

)
∈P+(Hn).

Let us set f (z , t) = |z |2 − i t, so that f is a CR function on Hn i.e.
Lαf = 0 for any 1 ≤ α ≤ n.
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Theorem

Let φ : Hn \ {0} → R be the C∞ map given by

φ = 1
/(

f f
)n/2

.

Then

i) φ is a subelliptic harmonic morphism of the pseudohermitian manifold(
Hn \ {0}, θ0

)
into the Riemannian manifold

(
R, dy1 ⊗ dy1

)
.

ii) Crit(φ) = ∅ and S(φ) = Hn \ {0}.

iii) I1(φ) = C∗ × {0} where C∗ = C \ {0}.

iv) φ is a subelliptic harmonic map of (Hn \ {0}, θ0) into (R, dy1 ⊗ dy1),
and a Levi conformal map of square dilation

Λ(x) =
2n2 |z |2

|x |2Q
, x = (z , t) ∈ Hn , x 6= 0.
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Theorem (Continuation)

Consequently

II1(φ) = {0} × R∗ , III1(φ) = C∗ × R∗ , R∗ = R \ {0}.

v) The horizontal mean curvature of the leaves of F is

K0 =
1

2
√

2 |z |
(
f f
)−1/2 [

f + f − 2Q |z |2
]

= −(Q − 1) |z |√
2 |x |2

.

Here Q = 2n + 2 (the homogeneous dimension of Hn) and

|x | =
(
|z |4 + t2

)1/4
[the Heisenberg norm of x = (z , t) ∈ Hn].
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Example: the Hopf fibration

Let S2 =
{(

y1 , y2 , y3
)
∈ R3 :

∑3
j=1(y j)2 = 1

}
and

S3 =
{

(z , w) ∈ C2 : |z |2 + |w |2 = 1
}

, and let π : S3 → S2 be the Hopf
fibration i.e. π(z , w) =

(
y1 , y2 , y3

)

y1 = |z |2 − |w |2 ,
y2 = z w + z w ,

y3 = −i (zw − z w) .

Let hSN = j∗ g0 be the first fundamental form of j : SN ↪→ RN+1, where g0

is the Euclidean metric on RN+1. Let S3 be equipped with the standard
CR structure T1,0(S3) [induced by the complex structure of C2], and with
the canonical contact form

θ =
i

2

{
− z dz + z dz − w dw + w dw

}
∈P+(S3).
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T1,0(S3) is the span of L = w
(
∂/∂z

)
− z

(
∂/∂w

)
. Let us set

Lt = L + t L, |t| < 1,

and let Ht be CR structure on S3 spanned by Lt [{(S3 , Ht)}|t|<1 are the
Rossi spheres]. By a result due to H. Rossi, the CR manifold (S3 , Ht) is
globally embeddable in C2 if and only if t = 0.

Theorem

i) The Hopf map π : S3 → S2 is a subelliptic harmonic morphism of(
S3 , T1,0(S3), θ

)
into (S2 , hS2

)
.

ii) π is a subelliptic harmonic morphism of
(
S3 , Ht , θ

)
into (S2 , hS2

)
if

and only if t = 0.
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