On the stability of Killing cylinders in hyperbolic space

Antonio Bueno¹

CUD San Javier. Departamento de Ciencias

Joint work with Rafael López, University of Granada

Differential Geometry Workshop 2023 Alexandru Ioan Cuza University of Iasi

¹Partially supported by Fundación Séneca, 21937/PI/22 ... >

Antonio Bueno

10 de septiembre de 2023

Image: A matrix

The partitioning problem in \mathbb{H}^3

- Let W be a bounded domain in ℍ³ and Σ a compact surface with int(Σ) ⊂ int(W) and ∂Σ ⊂ ∂W.
- Let D be one of the components of W determined by Σ and $\Omega = \partial D \cap \partial W.$
- Let N be the unit normal of Σ pointing towards D and \overline{N} the unit normal of Ω pointing outwards D.
- Let ν be the exterior unit conormal to Σ in $\partial\Sigma$ and $\overline{\nu}$ the exterior unit conormal to $\partial\Sigma$ in Ω

The partitioning problem in \mathbb{H}^3

- Let $\Psi(p,t)$ be a variation of Σ , $\Sigma_t := p \mapsto \Psi(p,t), \ p \in \Sigma, t \in (-\epsilon,\epsilon).$
- Let $\Omega(t)$ be the domain bounded by $\partial \Sigma_t$ in ∂W and

$$V(t) = \int_{[0,t]\times M} \Psi^* dV.$$

 \bullet Define the energy functional $E:(-\epsilon,\epsilon)\to \mathbb{R}$ by

$$E(t) = \operatorname{area}(\Sigma_t) - \cos\gamma \operatorname{area}(\Omega(t)), \quad \gamma \in (0, \pi).$$

• The first variations of E(t) and V(t) are

$$E'(0) = -2\int_{\Sigma} Hu + \int_{\partial\Sigma} \langle \nu - \cos\gamma \,\overline{\nu}, \xi \rangle, \quad V'(0) = \int_{\Sigma} u_{\xi}$$

where H is the mean curvature of Σ , $\xi = \frac{\partial \Psi}{\partial t}(p, 0)$ and $u = \langle \xi, N \rangle$. • Ψ preserves the volume if $\int_{\Sigma} u = 0$.

 Σ is capillary if $E^\prime(0)=0$ for any volume-preserving variation.

3

イロト イヨト イヨト イヨト

 Σ is capillary if E'(0) = 0 for any volume-preserving variation.

- Σ is capillary $\Leftrightarrow H$ and $\langle \overline{N}, N \rangle$ are constant. Moreover, $\cos \gamma = \langle \overline{N}, N \rangle$.
- The second variation of the energy is

$$\begin{split} Q[u] &:= E''(0) = -\int_{\Sigma} u(\Delta u + (|A|^2 - 2)u) + \int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu} - \mathbf{q}u\right), \\ \mathbf{q} &= \frac{1}{\sin \gamma} \overline{A}(\overline{\nu}, \overline{\nu}) + \cot \gamma A(\nu, \nu). \end{split}$$

イロト イポト イヨト イヨト

 Σ is capillary if $E^\prime(0)=0$ for any volume-preserving variation.

- Σ is capillary $\Leftrightarrow H$ and $\langle \overline{N}, N \rangle$ are constant. Moreover, $\cos \gamma = \langle \overline{N}, N \rangle$.
- The second variation of the energy is

$$\begin{aligned} Q[u] &:= E''(0) = -\int_{\Sigma} u(\Delta u + (|A|^2 - 2)u) + \int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu} - \mathbf{q}u\right), \\ \mathbf{q} &= \frac{1}{\sin \gamma} \overline{A}(\overline{\nu}, \overline{\nu}) + \cot \gamma A(\nu, \nu). \end{aligned}$$

Definition

- A capillary surface is strongly stable if $Q[u] \ge 0, \ \forall u \in C^{\infty}(\Sigma)$.
- A capillary surface is stable if $Q[u] \ge 0, \ \forall u \in \mathcal{M}$, where

$$\mathcal{M} = \{ u \in C^{\infty}(\Sigma) \colon \int_{\Sigma} u = 0 \}.$$

Antonio Bueno

10 de septiembre de 2023

 Σ is capillary if E'(0) = 0 for any volume-preserving variation.

- Σ is capillary \Leftrightarrow H and γ are constant.
- The second variation of the energy is

$$Q[u] := E''(0) = -\int_{\Sigma} u(\Delta u + (|A|^2 - 2)u) + \int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu} - \mathbf{q}u\right),$$
$$\mathbf{q} = \frac{1}{\sin\gamma} \overline{A}(\overline{\nu}, \overline{\nu}) + \cot\gamma A(\nu, \nu).$$

Definition

- A capillary surface is strongly stable if $Q[u] \ge 0, \ \forall u \in C^{\infty}(\Sigma)$.
- A capillary surface is stable if $Q[u] \ge 0, \ \forall u \in \mathcal{M}$, where

$$\mathcal{M} = \{ u \in C^{\infty}(\Sigma) \colon \int_{\Sigma} u = 0 \}.$$

Antonio Bueno

10 de septiembre de 2023

• The stability problem motivates to define the Jacobi operator $J = \Delta + |A|^2 - 2$ and consider the eigenvalue problem

$$\begin{cases} Ju + \lambda u = 0 & \text{in } \Sigma, \\ \frac{\partial u}{\partial \nu} - \mathbf{q}u = 0 & \text{in } \partial \Sigma. \end{cases}$$

• The index of Σ , $index(\Sigma)$, is the number of negative eigenvalues of J.

• The stability problem motivates to define the Jacobi operator $J = \Delta + |A|^2 - 2$ and consider the eigenvalue problem

$$\begin{cases} Ju + \lambda u = 0 & \text{in } \Sigma, \\ \frac{\partial u}{\partial \nu} - \mathbf{q}u = 0 & \text{in } \partial \Sigma. \end{cases}$$

• The index of Σ , $index(\Sigma)$, is the number of negative eigenvalues of J.

Theorem (Koiso, Tohoku Math. J. (2002))

- If $index(\Sigma) = 0$ ($\lambda_1 \ge 0$), then Σ is strongly stable.
- If index(Σ) = 2 (λ₂ < 0), there exists u ∈ M with Q[u] < 0. In particular, Σ is unstable.

< □ > < □ > < □ > < □ > < □ > < □ >

Stability and eigenvalues

Theorem (Koiso, Tohoku Math. J. (2002))

- If $\lambda_1 \ge 0$, then Σ is strongly stable.
- If $\lambda_2 < 0$, there exists $u \in \mathcal{M}$ with Q[u] < 0. In particular, Σ is unstable.
- If $\lambda_1 < 0$ and $\lambda_2 > 0$, there exists a solution to Ju = 1 and
 - If $\int_{\Sigma} u \ge 0$, then Σ is stable.
 - If $\int_{\Sigma} u < 0$, then Σ is unstable.

• If
$$\lambda_1 < 0$$
 and $\lambda_2 = 0$, then

- If there exists an eigenfunction g of λ_2 such that $\int_{\Sigma} g \neq 0$, then Σ is unstable.
- If $\int_{\Sigma} g = 0$ for every eigenfunction g of λ_2 , then there exists a solution to Ju = 1 and

* If
$$\int_{\Sigma} u \ge 0$$
, then Σ is stable.
* If $\int_{\Sigma} u < 0$, then Σ is unstable.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Should we study stable surfaces?

Theorem (Souam, Math Z (1997))

A capillary disk into a ball of \mathbb{H}^3 must be a totally geodesic disk or a spherical cap.

Theorem (Souam, Math Z (1997))

A capillary stable surface of genus zero into a ball of \mathbb{H}^3 must be totally umbilical.

Should we study stable surfaces?

Theorem (Souam, Math Z (1997))

A capillary disk into a ball of \mathbb{H}^3 must be a totally geodesic disk or a spherical cap.

Theorem (Souam, Math Z (1997))

A capillary stable surface of genus zero into a ball of \mathbb{H}^3 must be totally umbilical.

Theorem (C. Wang, C. Xia, Math. Ann. (2019))

A capillary stable surface in a ball of \mathbb{H}^3 must be totally umbilical.

Theorem (J. Guo, G. Wang, C. Xia, Adv. Math. (2022))

A capillary stable surface in a horosphere of \mathbb{H}^3 must be totally umbilical.

ヘロト ヘヨト ヘヨト ヘヨ

- Besides umbilical surfaces, as far as we know, there are no works on explicit examples of capillary surfaces in domains of \mathbb{H}^3 .
- This contrasts with the great literature on capillary surfaces in a ball of ℝ³ (Nitsche (1985), Ros-Vergasta (1995), Fraser-Schoen (2011)).
- We emphasize the large amount of results concerning the stability of circular cylinders in different supports (R. López, Vogel).
- Objective: investigate the index of Killing cylinders supported on different umbilical surfaces.
- A Killing cylinder can be defined as:
 - The point set obtained by the movement of a circle by hyperbolic translations.
 - ② A surface of revolution.
 - The point-set of equidistant points from a given geodesic.

< □ > < □ > < □ > < □ > < □ > < □ >

The half-space model of \mathbb{H}^3

• We regard \mathbb{H}^3 as $\mathbb{R}^3_+=\{(x,y,z)\in\mathbb{R}^3\colon z>0\}$ endowed with the metric

$$\langle \cdot, \cdot \rangle = \frac{dx^2 + dy^2 + dz^2}{z^2}$$

• The Levi-Civita connections ∇ and ∇^e of \mathbb{H}^3 and $\mathbb{R}^3,$ respectively, are related by

$$\nabla_X Y = \nabla_X^e Y - \frac{X_3}{z} Y - \frac{Y_3}{z} X + \frac{\langle X, Y \rangle_e}{z} \mathbf{e}_3, \quad \mathbf{e}_3 = (0, 0, 1).$$

• The Euclidean mean curvature ${\cal H}_e$ and the hyperbolic one ${\cal H}$ are related by

$$H = zH_e + (N_e)_3 = zH_e + \frac{N_3}{z}.$$

Umbilical surfaces of \mathbb{H}^3

- The umbilical surfaces of H³ are, as point sets, the intersection of the umbilical surfaces of R³ with R³₊.
- They are:
 - Totally geodesic planes. Vertical planes $P_{\tau} = \{y = \tau, \tau > 0\}$ and hemispheres $S_{\tau} = \{x^2 + y^2 + z^2 = \tau^2, \tau > 0, z > 0\}$. H = 0.
 - **2** Equidistant surfaces. Slopped planes. Given $\theta \in (0, \pi/2)$, $\mathsf{E}_{\theta} = \{z = y \tan \theta\}$. 0 < H < 1.
 - **3** Horospheres. Horizontal planes $H_{\tau} = \{z = \tau, \tau > 0\}$. H = 1.
 - Geodesic spheres. Spheres included in \mathbb{R}^3_+ . For $0 < \rho < c$, $S(c, \rho) = \{x^2 + y^2 + (z - c)^2 = \rho^2\}$. $H = c/\rho > 1$.

Sketch of the work

- Fix an umbilical surface as support surface and a Killing cylinder, Σ, supported in the umbilical surface.
- ② Explicitly compute the eigenvalues of the problem

$$\begin{cases} Ju + \lambda u = 0 & \text{in } \Sigma, \qquad J = \Delta + |A|^2 - 2, \\ \frac{\partial u}{\partial \nu} - \mathbf{q}u = 0 & \text{in } \partial \Sigma, \qquad \mathbf{q} = \frac{1}{\sin \gamma} \overline{A}(\overline{\nu}, \overline{\nu}) + \cot \gamma A(\nu, \nu). \end{cases}$$

- Main difficulty: the computation of q.
- Advantage: the symmetries of the Killing cylinder simplify the geometric quantities appearing in q.

Theorem (Strong stability of horospheres)

A horosphere H_{τ} is strongly stable, when supported between two totally geodesic planes, or between two equidistant surfaces.

Sketch of the proof

- In both cases $\mathbf{q} = 0$. Same eigenvalue problem.
- We solve explicitly the eigenvalue problem, exhibiting their positiveness, hence the strong stability of H_{τ} .

∃ ► < ∃ ►</p>

• • • • • • • •

Killing cylinders in \mathbb{H}^3

• Let Γ_R be a circle of radius R > 0 parametrized by

 $\theta \mapsto (r \cos \theta, r \sin \theta, 1), \quad r = \sinh R.$

- The Killing cylinder C_R is the image of Γ_R under the hyperbolic translations from $\mathbf{o} = (0, 0, 0)$ (homotheties from \mathbf{o}).
- A parametrization for C_R is

$$\psi(t,\theta) = e^t(r\cos\theta, r\sin\theta, 1), \quad t,\theta \in \mathbb{R}.$$

We define C_R^T when $t \in [0, T]$.

Some interesting geometric quantities are

$$N = \frac{e^t}{\sqrt{1+r^2}}(-\cos\theta, -\sin\theta, r), \qquad H = \frac{1+2r^2}{2r\sqrt{1+r^2}}, g = \begin{pmatrix} 1+r^2 & 0\\ 0 & r^2 \end{pmatrix}, \qquad J = \frac{1}{1+r^2}\partial_t^2 + \frac{1}{r^2}\partial_\theta^2 + \frac{1}{r^2(1+r^2)}.$$

The stability problem for fixed boundary

Theorem (Plateau-Rayleigh instability of CMC cylinders in \mathbb{R}^3)

Let C_r^L be a circular cylinder of radius r and length L in \mathbb{R}^3 .

- If $L > \pi r$, then C_r^L is not strongly stable.
- If $L > 2\pi r$, then C_r^L is not stable.

The stability problem for fixed boundary

Theorem (Plateau-Rayleigh instability of CMC cylinders in \mathbb{R}^3)

Let C_r^L be a circular cylinder of radius r and length L in \mathbb{R}^3 .

- If $L > \pi r$, then C_r^L is not strongly stable.
- If $L > 2\pi r$, then C_r^L is not stable.

Theorem (Bueno-López)

Let R, T > 0 and define

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} \colon m < \frac{T}{\pi \sinh R}\}.$$

Then, $index(C_R^T) = \eta(T)$. In consequence,

- If $T > \pi \sinh R$, then C_R^T is not strongly stable.
- It $T > 2\pi \sinh R$, then C_R^T is not stable.

э

・ロト ・四ト ・ヨト ・ヨト

- We consider C_R^T supported on either $S_{\tau_0} \cup S_{\tau_2}$ or $H_1 \cup H_{\tau_1}$.
- We can consider C_R^T supported on $S_{\tau_0} \cup H_{\tau_1}$ or $H_1 \cup S_{\tau_2}$. Not addressed in this paper.
- The boundary of $C_{\!R}^T$ is included in two totally geodesic planes or in two horospheres.

$$\begin{split} \Gamma_R \subset \mathsf{H}_1 \cap \mathsf{S}_{\tau_0}, \quad \tau_0 = \sqrt{1+r^2}, \\ \Gamma_R' \subset \mathsf{H}_{\tau_1} \cap \mathsf{S}_{\tau_2}, \quad \tau_1 = e^T, \ \tau_2 = \tau_0 e^T \end{split}$$

Theorem (Bueno-López)

Let R, T > 0 and

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} \colon m < \frac{T}{\pi \sinh R}\}.$$

Consider C_R^T supported in either $S_{\tau_0} \cup S_{\tau_2}$ or $H_1 \cup H_{\tau_1}$. Then,

$$\operatorname{index}(C_R^T) = \begin{cases} \eta(T) & \text{in } \mathsf{S}_{\tau_0} \cup \mathsf{S}_{\tau_2}, \\ \eta(T) + 1 & \text{in } \mathsf{H}_1 \cup \mathsf{H}_{\tau_1}. \end{cases}$$

Theorem (Bueno-López)

Let ${\cal R}, T>0$ and

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} \colon m < \frac{T}{\pi \sinh R}\}.$$

Consider C_R^T supported in either $S_{\tau_0} \cup S_{\tau_2}$ or $H_1 \cup H_{\tau_1}$. Then,

$$\operatorname{index}(C_R^T) = \begin{cases} \eta(T) & \text{in } \mathsf{S}_{\tau_0} \cup \mathsf{S}_{\tau_2}, \\ \eta(T) + 1 & \text{in } \mathsf{H}_1 \cup \mathsf{H}_{\tau_1}. \end{cases}$$

In consequence, if C_R^T is supported between geodesic spheres, then

- if $T > \pi \sinh R$, then C_R^T is not strongly stable;
- if $T > 2\pi \sinh R$, then C_R^T is not stable.

If C_R^T is supported between horospheres, then is not strongly stable regardless of T, and if $T > \pi \sinh R$ then is not stable.

- Next, we investigate the index of a Killing cylinder in unbounded domains of \mathbb{H}^3 determined by horospheres, equidistant surfaces and geodesic planes.
- First, assume that the support is the horosphere H₁ and W is the domain over H₁. This domain is not isometric to the one below H₁.

Theorem (Bueno-López)

Let be R, T > 0 and

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} \colon \delta_m < \frac{1}{\sinh R}\},\$$

where δ_m is the only solution of the equation $x = \tan(Tx)$ in each $I_m = \left(\frac{(2m-1)\pi}{2T}, \frac{(2m+1)\pi}{2T}\right), m \ge 1$. Here, δ_0 is the solution of such equation in $(0, \frac{\pi}{2T})$ in the case that T > 1, and $\delta_0 = 0$ if $T \le 1$. Then,

$$\operatorname{index}(C_R^T) = \begin{cases} \eta(T) & T < 1, \\ 1 + \eta(T) & T \ge 1. \end{cases}$$

In particular, C_R is not stable.

э

• Next, we assume C_R supported on an equidistant surface, regarded as a spherical cap

$$\mathsf{E}_{H_0} = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 + (z + c)^2 = \rho^2\}, \ 0 < c < \rho,$$

whose mean curvature is $H_0 = c/\rho \in (0, 1)$.

• We define $\Theta = \frac{H_0}{\sqrt{1+r^2(1-H_0^2)}}.$

Theorem

Let be R, T > 0 and define

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} : \delta_m < \frac{1}{\sinh R}\},\$$

where δ_m is the only solution of the equation $x/\Theta = \tan(Tx)$ in each interval $I_m, m \ge 1$. Here δ_0 is the root of the equation in the interval $(0, \frac{\pi}{2T})$ in case that $T\Theta > 1$, and $\delta_0 = 0$ otherwise. Consider C_R^T as a capillary surface supported in E_{H_0} . Then

$$\operatorname{index}(C_R^T) = \begin{cases} \eta(T) & T\Theta < 1, \\ 1 + \eta(T) & T\Theta \ge 1. \end{cases}$$

In consequence, C_R is not stable.

< □ > < □ > < □ > < □ > < □ > < □ >

- Finally, we assume C_R supported on the totally geodesic plane S_{τ_0} , where $\tau_0 = \sqrt{1+r^2}$.
- This time, W is the domain above S_{τ_0} and it is isometric to the domain inside $\mathsf{S}_{\tau_0}.$

Theorem (Bueno-López)

Let be R, T > 0 and

$$\eta(T) = \max\{m \in \mathbb{N} \cup \{0\} \colon 2m - 1 < \frac{2T}{\pi \sinh R}\}.$$

Consider C_R^T as a capillary surface supported in S_{τ_0} . Then, $index(C_R^T) = \eta(T)$. Moreover,

- if $T > \pi \sinh R/2$, then C_R^T is not stable;
- if $T > 3\pi \sinh R/2$, then C_R^T is not stable.

Theorem (Souam, Math Z (1997))

A capillary stable surface of genus zero into a ball of \mathbb{H}^3 must be totally umbilical.

- It is natural to ask by the index of a Killing cylinder in a ball, since it is not umbilical and there are no explicit computations of the index of a capillary surface in a ball of ℍ³.
- The index of the critical catenoid or of circular cylinders in an Euclidean ball has been computed:
 - P. Sternberg, K. Zumbrun (J. Reine Angew. Math., 1998).
 - B. Debyver (Geom. Dedicata, 2019).
 - H. Tran (Comm. Anal. Geom., 2020).

• The Killing cylinder is given by $C_r([t_-,t_+])=\psi(t,\theta),$ where $r\in(0,1/\sqrt{H_0^2-1})$ and t_\pm are such that

$$e^{t_{\pm}} = \frac{\rho}{1+r^2} \left(H_0 \pm \sqrt{1-r^2(H_0^2-1)} \right), \quad H_0 = c/\rho > 1.$$

Theorem (Bueno-López)

Consider the Killing cylinder $C_r([t_-, t_+])$ in $S(c, \rho)$. Then, $index(C_r[t_-, t_+]) \ge 1$. Moreover,

• The index grows to ∞ as $r \to 0$.

• There exists
$$r_0$$
 close to $\frac{1}{\sqrt{H_0^2-1}}$ such that $index(C_r[t_-, t_+]) = 1$ for all $r \in (r_0, \frac{1}{\sqrt{H_0^2-1}})$.

• The function $r \mapsto \operatorname{index}(C_r([t_-, t_+]))$ is decreasing in the interval $(0, \frac{1}{\sqrt{H_0^2 - 1}}).$

・ロト ・四ト ・ヨト ・ヨト

Theorem (Bueno-López)

Consider the Killing cylinder $C_r([t_-, t_+])$ in $S(c, \rho)$. Then, index $(C_r[t_-, t_+]) \ge 1$. Moreover,

• The index grows to ∞ as $r \to 0$.

• There exists
$$r_0$$
 close to $\frac{1}{\sqrt{H_0^2-1}}$ such that $index(C_r[t_-, t_+]) = 1$ for all $r \in (r_0, \frac{1}{\sqrt{H_0^2-1}})$.

• The function
$$r \mapsto \operatorname{index}(C_r([t_-, t_+]))$$
 is decreasing in the interval $(0, \frac{1}{\sqrt{H_0^2 - 1}}).$

- If r approaches to zero, the Killing cylinder is not stable.
- If r is close to $\frac{1}{\sqrt{H_0^2-1}}$, the index is 1. From the work of Souam we know that the Killing cylinder is not stable.

< □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the proof

• We apply the method of separation of variables $u(t, \theta) = f(t)g(\theta)$. After some effort, the eigenvalue problem takes the form

$$\begin{cases} \frac{1}{1+r^2} f''g + \frac{1}{r^2} fg'' + (\varpi + \lambda) fg = 0 & \text{in } [t_-, t_+] \times [0, 2\pi], \\ f'(t_-) + \frac{H_0}{\alpha} f(t_-) = 0, \\ f'(t_+) - \frac{H_0}{\alpha} f(t_+) = 0, \end{cases}$$

where
$$\varpi = rac{1}{r^2(1+r^2)}$$
 and $\alpha = \sqrt{1-r^2(H_0^2-1)}.$

Hence,

$$\frac{g''}{r^2g} = \mu = -\frac{f''}{(1+r^2)f} - (\varpi + \lambda), \quad \mu \in \mathbb{R}.$$

Then, $g(\theta) = c_1 \cos(n\theta) + c_2 \sin(n\theta)$, $\mu = -n^2/r^2$, $n \in \mathbb{N}$, and f satisfies

$$f'' + (1 + r^2)(\varpi - \frac{n^2}{r^2} + \lambda)f = 0.$$

Sketch of the proof

- Case $\varpi \frac{n^2}{r^2} + \lambda = 0$. Then, f(t) = at + b and the boundary condition yields to a contradiction (after some effort!).
- Case $\varpi \frac{n^2}{r^2} + \lambda = -\delta^2$, $\delta > 0$. Then, $f(t) = ae^{\delta t} + be^{-\delta t}$ and the boundary condition is equivalent to the existence of a solution to

$$\left(\frac{H_0+\alpha}{H_0-\alpha}\right)^{\delta} \left(\frac{H_0-\alpha\delta}{H_0+\alpha\delta}\right) = 1.$$

Again, after some more effort we see that $\delta = 1$ is the unique solution.

- The eigenvalues are $\lambda_n = \frac{n^2 1}{r^2}$ and n = 0 gives the only negative eigenvalue in this case.
- This proves the first statement of the theorem (the index is at least 1).

(日)

• Case $\varpi - \frac{n^2}{r^2} + \lambda = \delta^2$, $\delta > 0$. Then, $f(t) = a\cos(\delta t) + b\sin(\delta t)$. • The boundary condition is equivalent to

$$\tan(\delta T) = \frac{2H_0\alpha\delta}{H_0^2 - \alpha^2\delta^2}, \quad T = t_+ - t_- = \log\frac{H_0 + \alpha}{H_0 - \alpha}$$

• The equation $p(\delta) = q(\delta)$ has at most one solution δ_m at each $I_m, m \ge 0$. After some (a little more) effort, we prove that no solution exists at I_0 .

Antonio Bueno

Sketch of the proof

- The eigenvalues are $\lambda_{m,n} = \frac{\delta_m^2}{1+r^2} + \frac{n^2}{r^2} \frac{1}{r^2(1+r^2)}$. The negative ones appear if and only if n = 0, that is if and only if $\delta_m < 1/r$.
- If $r \to 0$, then $1/r \to \infty$ and the number of $\delta_m < 1/r$ increases to ∞ .
- If $r \to 1/\sqrt{H_0^2 1}$, after a final effort, the solutions $\delta_m < 1/r$ would correspond to a intersection between both positive branches, a contradiction.
- The infinite roots δ_m form a discrete set going to ∞ . Since the negative ones correspond to $\delta_m < 1/r$, this number is a decreasing function of r varying from ∞ to 1.

- **A.** Bueno. R. López, On the stability of Killing cylinders in hyperbolic space, submitted.
- J. Nitsche, Stationary partitioning of convex bodies. Arch. Ration. Mech. Anal. 89 (1985), 1–19.
- A. Ros, E. Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary. Geom. Dedic. 56 (1995), 19–33.
- R. Souam, On stability of stationary hypersurfaces for the partitioning problem for balls in space forms. Math. Z. 224 (1997), 195–208.
- T. I. Vogel, Liquid bridges between contacting balls. J. Math. Fluid Mech. 16 (2014), 737–744.
- T. I. Vogel, Capillary surfaces in circular cylinders. J. Math. Fluid Mech. 23 (2021), Paper No. 68, 13 pp.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

Image: A matrix