On the stability of Killing cylinders in hyperbolic space

Antonio Bueno ${ }^{1}$

CUD San Javier. Departamento de Ciencias

Joint work with Rafael López, University of Granada

Differential Geometry Workshop 2023
Alexandru Ioan Cuza University of Iasi

Centro
Universitario
de la Defensa

[^0]
(1) The partitioning problem

(2) Stability of Killing cylinders

The partitioning problem in \mathbb{H}^{3}

- Let W be a bounded domain in \mathbb{H}^{3} and Σ a compact surface with $\operatorname{int}(\Sigma) \subset \operatorname{int}(W)$ and $\partial \Sigma \subset \partial W$.
- Let D be one of the components of W determined by Σ and $\Omega=\partial D \cap \partial W$.
- Let N be the unit normal of Σ pointing towards D and \bar{N} the unit normal of Ω pointing outwards D.
- Let ν be the exterior unit conormal to Σ in $\partial \Sigma$ and $\bar{\nu}$ the exterior unit conormal to $\partial \Sigma$ in Ω

The partitioning problem in \mathbb{H}^{3}

- Let $\Psi(p, t)$ be a variation of $\Sigma, \Sigma_{t}:=p \mapsto \Psi(p, t), p \in \Sigma, t \in(-\epsilon, \epsilon)$.
- Let $\Omega(t)$ be the domain bounded by $\partial \Sigma_{t}$ in ∂W and

$$
V(t)=\int_{[0, t] \times M} \Psi^{*} d V
$$

- Define the energy functional $E:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ by

$$
E(t)=\operatorname{area}\left(\Sigma_{t}\right)-\cos \gamma \operatorname{area}(\Omega(t)), \quad \gamma \in(0, \pi)
$$

- The first variations of $E(t)$ and $V(t)$ are

$$
E^{\prime}(0)=-2 \int_{\Sigma} H u+\int_{\partial \Sigma}\langle\nu-\cos \gamma \bar{\nu}, \xi\rangle, \quad V^{\prime}(0)=\int_{\Sigma} u,
$$

where H is the mean curvature of $\Sigma, \xi=\frac{\partial \Psi}{\partial t}(p, 0)$ and $u=\langle\xi, N\rangle$.

- Ψ preserves the volume if $\int_{\Sigma} u=0$.

Definition

Σ is capillary if $E^{\prime}(0)=0$ for any volume-preserving variation.

Definition

Σ is capillary if $E^{\prime}(0)=0$ for any volume-preserving variation.

- Σ is capillary $\Leftrightarrow H$ and $\langle\bar{N}, N\rangle$ are constant. Moreover, $\cos \gamma=\langle\bar{N}, N\rangle$.
- The second variation of the energy is

$$
\begin{gathered}
Q[u]:=E^{\prime \prime}(0)=-\int_{\Sigma} u\left(\Delta u+\left(|A|^{2}-2\right) u\right)+\int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu}-\mathbf{q} u\right), \\
\mathbf{q}=\frac{1}{\sin \gamma} \bar{A}(\bar{\nu}, \bar{\nu})+\cot \gamma A(\nu, \nu) .
\end{gathered}
$$

Definition

Σ is capillary if $E^{\prime}(0)=0$ for any volume-preserving variation.

- Σ is capillary $\Leftrightarrow H$ and $\langle\bar{N}, N\rangle$ are constant. Moreover, $\cos \gamma=\langle\bar{N}, N\rangle$.
- The second variation of the energy is

$$
\begin{gathered}
Q[u]:=E^{\prime \prime}(0)=-\int_{\Sigma} u\left(\Delta u+\left(|A|^{2}-2\right) u\right)+\int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu}-\mathbf{q} u\right), \\
\mathbf{q}=\frac{1}{\sin \gamma} \bar{A}(\bar{\nu}, \bar{\nu})+\cot \gamma A(\nu, \nu) .
\end{gathered}
$$

Definition

- A capillary surface is strongly stable if $Q[u] \geq 0, \forall u \in C^{\infty}(\Sigma)$.
- A capillary surface is stable if $Q[u] \geq 0, \forall u \in \mathcal{M}$, where

$$
\mathcal{M}=\left\{u \in C^{\infty}(\Sigma): \int_{\Sigma} u=0\right\}
$$

Definition

Σ is capillary if $E^{\prime}(0)=0$ for any volume-preserving variation.

- Σ is capillary $\Leftrightarrow H$ and γ are constant.
- The second variation of the energy is

$$
\begin{aligned}
Q[u]:=E^{\prime \prime}(0)= & -\int_{\Sigma} u\left(\Delta u+\left(|A|^{2}-2\right) u\right)+\int_{\partial \Sigma} u\left(\frac{\partial u}{\partial \nu}-\mathbf{q} u\right), \\
\mathbf{q} & =\frac{1}{\sin \gamma} \bar{A}(\bar{\nu}, \bar{\nu})+\cot \gamma A(\nu, \nu) .
\end{aligned}
$$

Definition

- A capillary surface is strongly stable if $Q[u] \geq 0, \forall u \in C^{\infty}(\Sigma)$.
- A capillary surface is stable if $Q[u] \geq 0, \forall u \in \mathcal{M}$, where

$$
\mathcal{M}=\left\{u \in C^{\infty}(\Sigma): \int_{\Sigma} u=0\right\}
$$

- The stability problem motivates to define the Jacobi operator $J=\Delta+|A|^{2}-2$ and consider the eigenvalue problem

$$
\begin{cases}J u+\lambda u=0 & \text { in } \Sigma \\ \frac{\partial u}{\partial \nu}-\mathbf{q u}=0 & \text { in } \partial \Sigma .\end{cases}
$$

- The index of Σ, index (Σ), is the number of negative eigenvalues of J.
- The stability problem motivates to define the Jacobi operator $J=\Delta+|A|^{2}-2$ and consider the eigenvalue problem

$$
\begin{cases}J u+\lambda u=0 & \text { in } \Sigma \\ \frac{\partial u}{\partial \nu}-\mathbf{q u}=0 & \text { in } \partial \Sigma .\end{cases}
$$

- The index of Σ, index (Σ), is the number of negative eigenvalues of J.

Theorem (Koiso, Tohoku Math. J. (2002))

- If $\operatorname{index}(\Sigma)=0\left(\lambda_{1} \geq 0\right)$, then Σ is strongly stable.
- If index $(\Sigma)=2\left(\lambda_{2}<0\right)$, there exists $u \in \mathcal{M}$ with $Q[u]<0$. In particular, Σ is unstable.

Stability and eigenvalues

Theorem (Koiso, Tohoku Math. J. (2002))

- If $\lambda_{1} \geq 0$, then Σ is strongly stable.
- If $\lambda_{2}<0$, there exists $u \in \mathcal{M}$ with $Q[u]<0$. In particular, Σ is unstable.
- If $\lambda_{1}<0$ and $\lambda_{2}>0$, there exists a solution to $J u=1$ and

If $\int_{\Sigma} u \geq 0$, then Σ is stable.
If $\int_{\Sigma} u<0$, then Σ is unstable.

- If $\lambda_{1}<0$ and $\lambda_{2}=0$, then

If there exists an eigenfunction g of λ_{2} such that $\int_{\Sigma} g \neq 0$, then Σ is unstable.
If $\int_{\Sigma} g=0$ for every eigenfunction g of λ_{2}, then there exists a solution to $J u=1$ and

$$
\begin{aligned}
& \text { If } \int_{\Sigma} u \geq 0, \text { then } \Sigma \text { is stable. } \\
& \text { If } \int_{\Sigma} u<0, \text { then } \Sigma \text { is unstable. }
\end{aligned}
$$

Should we study stable surfaces?
Theorem (Souam, Math Z (1997))
A capillary disk into a ball of \mathbb{H}^{3} must be a totally geodesic disk or a spherical cap.

Theorem (Souam, Math Z (1997))
A capillary stable surface of genus zero into a ball of \mathbb{H}^{3} must be totally umbilical.

Should we study stable surfaces?

Theorem (Souam, Math Z (1997))
A capillary disk into a ball of \mathbb{H}^{3} must be a totally geodesic disk or a spherical cap.

Theorem (Souam, Math Z (1997))
A capillary stable surface of genus zero into a ball of \mathbb{H}^{3} must be totally umbilical.

Theorem (C. Wang, C. Xia, Math. Ann. (2019))
A capillary stable surface in a ball of \mathbb{H}^{3} must be totally umbilical.

Theorem (J. Guo, G. Wang, C. Xia, Adv. Math. (2022))
A capillary stable surface in a horosphere of \mathbb{H}^{3} must be totally umbilical.

- Besides umbilical surfaces, as far as we know, there are no works on explicit examples of capillary surfaces in domains of \mathbb{H}^{3}.
- This contrasts with the great literature on capillary surfaces in a ball of \mathbb{R}^{3} (Nitsche (1985), Ros-Vergasta (1995), Fraser-Schoen (2011)).
- We emphasize the large amount of results concerning the stability of circular cylinders in different supports (R. López, Vogel).
- Objective: investigate the index of Killing cylinders supported on different umbilical surfaces.
- A Killing cylinder can be defined as:
(1) The point set obtained by the movement of a circle by hyperbolic translations.
(2) A surface of revolution.
(3) The point-set of equidistant points from a given geodesic.

The half-space model of \mathbb{H}^{3}

- We regard \mathbb{H}^{3} as $\mathbb{R}_{+}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ endowed with the metric

$$
\langle\cdot, \cdot\rangle=\frac{d x^{2}+d y^{2}+d z^{2}}{z^{2}}
$$

- The Levi-Civita connections ∇ and ∇^{e} of \mathbb{H}^{3} and \mathbb{R}^{3}, respectively, are related by

$$
\nabla_{X} Y=\nabla_{X}^{e} Y-\frac{X_{3}}{z} Y-\frac{Y_{3}}{z} X+\frac{\langle X, Y\rangle_{e}}{z} \mathbf{e}_{3}, \quad \mathbf{e}_{3}=(0,0,1)
$$

- The Euclidean mean curvature H_{e} and the hyperbolic one H are related by

$$
H=z H_{e}+\left(N_{e}\right)_{3}=z H_{e}+\frac{N_{3}}{z} .
$$

Umbilical surfaces of \mathbb{H}^{3}

- The umbilical surfaces of \mathbb{H}^{3} are, as point sets, the intersection of the umbilical surfaces of \mathbb{R}^{3} with \mathbb{R}_{+}^{3}.
- They are:
(1) Totally geodesic planes. Vertical planes $\mathrm{P}_{\tau}=\{y=\tau, \tau>0\}$ and hemispheres $\mathrm{S}_{\tau}=\left\{x^{2}+y^{2}+z^{2}=\tau^{2}, \tau>0, z>0\right\}$. $H=0$.
(2) Equidistant surfaces. Slopped planes. Given $\theta \in(0, \pi / 2)$,

$$
\mathrm{E}_{\theta}=\{z=y \tan \theta\} .0<H<1 .
$$

(3) Horospheres. Horizontal planes $\mathrm{H}_{\tau}=\{z=\tau, \tau>0\}$. $H=1$.
(9) Geodesic spheres. Spheres included in \mathbb{R}_{+}^{3}. For $0<\rho<c$, $\mathrm{S}(c, \rho)=\left\{x^{2}+y^{2}+(z-c)^{2}=\rho^{2}\right\} . H=c / \rho>1$.

Sketch of the work

(1) Fix an umbilical surface as support surface and a Killing cylinder, Σ, supported in the umbilical surface.
(2) Explicitly compute the eigenvalues of the problem

$$
\left\{\begin{array}{lll}
J u+\lambda u=0 & \text { in } \Sigma, & J=\Delta+|A|^{2}-2 . \\
\frac{\partial u}{\partial \nu}-\mathbf{q u}=0 & \text { in } \partial \Sigma, & \mathbf{q}=\frac{1}{\sin \gamma} \bar{A}(\bar{\nu}, \bar{\nu})+\cot \gamma A(\nu, \nu)
\end{array}\right.
$$

(3) Main difficulty: the computation of \mathbf{q}.
(9) Advantage: the symmetries of the Killing cylinder simplify the geometric quantities appearing in \mathbf{q}.

Theorem (Strong stability of horospheres)

A horosphere H_{τ} is strongly stable, when supported between two totally geodesic planes, or between two equidistant surfaces.

Sketch of the proof

- In both cases $\mathbf{q}=0$. Same eigenvalue problem.
- We solve explicitly the eigenvalue problem, exhibiting their positiveness, hence the strong stability of H_{τ}.

(1) The partitioning problem

(2) Stability of Killing cylinders

Killing cylinders in \mathbb{H}^{3}

- Let Γ_{R} be a circle of radius $R>0$ parametrized by

$$
\theta \mapsto(r \cos \theta, r \sin \theta, 1), \quad r=\sinh R .
$$

- The Killing cylinder C_{R} is the image of Γ_{R} under the hyperbolic translations from $\mathbf{o}=(0,0,0)$ (homotheties from \mathbf{o}).
- A parametrization for C_{R} is

$$
\psi(t, \theta)=e^{t}(r \cos \theta, r \sin \theta, 1), \quad t, \theta \in \mathbb{R}
$$

We define C_{R}^{T} when $t \in[0, T]$.

- Some interesting geometric quantities are

$$
\begin{aligned}
& N=\frac{e^{t}}{\sqrt{1+r^{2}}}(-\cos \theta,-\sin \theta, r), \\
& g=\left(\begin{array}{cc}
1+r^{2} & 0 \\
0 & r^{2}
\end{array}\right), \quad J=\frac{1+2 r^{2}}{2 r \sqrt{1+r^{2}}}, \\
& g=\frac{1}{1+r^{2}} \partial_{t}^{2}+\frac{1}{r^{2}} \partial_{\theta}^{2}+\frac{1}{r^{2}\left(1+r^{2}\right)} .
\end{aligned}
$$

The stability problem for fixed boundary

Theorem (Plateau-Rayleigh instability of CMC cylinders in \mathbb{R}^{3})
Let C_{r}^{L} be a circular cylinder of radius r and length L in \mathbb{R}^{3}.

- If $L>\pi r$, then C_{r}^{L} is not strongly stable.
- If $L>2 \pi r$, then C_{r}^{L} is not stable.

The stability problem for fixed boundary

Theorem (Plateau-Rayleigh instability of CMC cylinders in \mathbb{R}^{3})
Let C_{r}^{L} be a circular cylinder of radius r and length L in \mathbb{R}^{3}.

- If $L>\pi r$, then C_{r}^{L} is not strongly stable.
- If $L>2 \pi r$, then C_{r}^{L} is not stable.

Theorem (Bueno-López)
Let $R, T>0$ and define

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: m<\frac{T}{\pi \sinh R}\right\} .
$$

Then, index $\left(C_{R}^{T}\right)=\eta(T)$. In consequence,

- If $T>\pi \sinh R$, then C_{R}^{T} is not strongly stable.
- It $T>2 \pi \sinh R$, then C_{R}^{T} is not stable.

Stability of Killing cylinders in bounded domains

- We consider C_{R}^{T} supported on either $\mathrm{S}_{\tau_{0}} \cup \mathrm{~S}_{\tau_{2}}$ or $\mathrm{H}_{1} \cup \mathrm{H}_{\tau_{1}}$.
- We can consider C_{R}^{T} supported on $\mathrm{S}_{\tau_{0}} \cup \mathrm{H}_{\tau_{1}}$ or $\mathrm{H}_{1} \cup \mathrm{~S}_{\tau_{2}}$. Not addressed in this paper.
- The boundary of C_{R}^{T} is included in two totally geodesic planes or in two horospheres.

$$
\begin{aligned}
\Gamma_{R} \subset \mathrm{H}_{1} \cap \mathrm{~S}_{\tau_{0}}, & \tau_{0}=\sqrt{1+r^{2}} \\
\Gamma_{R}^{\prime} \subset \mathrm{H}_{\tau_{1}} \cap \mathrm{~S}_{\tau_{2}}, & \tau_{1}=e^{T}, \quad \tau_{2}=\tau_{0} e^{T}
\end{aligned}
$$

Stability of Killing cylinders in bounded domains

Theorem (Bueno-López)
Let $R, T>0$ and

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: m<\frac{T}{\pi \sinh R}\right\}
$$

Consider C_{R}^{T} supported in either $\mathrm{S}_{\tau_{0}} \cup \mathrm{~S}_{\tau_{2}}$ or $\mathrm{H}_{1} \cup \mathrm{H}_{\tau_{1}}$. Then,

$$
\operatorname{index}\left(C_{R}^{T}\right)=\left\{\begin{array}{lll}
\eta(T) & \text { in } \mathrm{S}_{\tau_{0}} \cup \mathrm{~S}_{\tau_{2}} \\
\eta(T)+1 & \text { in } \mathrm{H}_{1} \cup \mathrm{H}_{\tau_{1}}
\end{array}\right.
$$

Stability of Killing cylinders in bounded domains

Theorem (Bueno-López)
Let $R, T>0$ and

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: m<\frac{T}{\pi \sinh R}\right\}
$$

Consider C_{R}^{T} supported in either $\mathrm{S}_{\tau_{0}} \cup \mathrm{~S}_{\tau_{2}}$ or $\mathrm{H}_{1} \cup \mathrm{H}_{\tau_{1}}$. Then,

$$
\operatorname{index}\left(C_{R}^{T}\right)=\left\{\begin{array}{lll}
\eta(T) & \text { in } \mathrm{S}_{\tau_{0}} \cup \mathrm{~S}_{\tau_{2}} \\
\eta(T)+1 & \text { in } & \mathrm{H}_{1} \cup \mathrm{H}_{\tau_{1}}
\end{array}\right.
$$

In consequence, if C_{R}^{T} is supported between geodesic spheres, then

- if $T>\pi \sinh R$, then C_{R}^{T} is not strongly stable;
- if $T>2 \pi \sinh R$, then C_{R}^{T} is not stable.

If C_{R}^{T} is supported between horospheres, then is not strongly stable regardless of T, and if $T>\pi \sinh R$ then is not stable.

Stability of Killing cylinders in unbounded domains

- Next, we investigate the index of a Killing cylinder in unbounded domains of \mathbb{H}^{3} determined by horospheres, equidistant surfaces and geodesic planes.
- First, assume that the support is the horosphere H_{1} and W is the domain over H_{1}. This domain is not isometric to the one below H_{1}.

Stability of Killing cylinders in unbounded domains

Theorem (Bueno-López)

Let be $R, T>0$ and

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: \delta_{m}<\frac{1}{\sinh R}\right\},
$$

where δ_{m} is the only solution of the equation $x=\tan (T x)$ in each $I_{m}=\left(\frac{(2 m-1) \pi}{2 T}, \frac{(2 m+1) \pi}{2 T}\right), m \geq 1$. Here, δ_{0} is the solution of such equation in $\left(0, \frac{\pi}{2 T}\right)$ in the case that $T>1$, and $\delta_{0}=0$ if $T \leq 1$. Then,

$$
\operatorname{index}\left(C_{R}^{T}\right)= \begin{cases}\eta(T) & T<1 \\ 1+\eta(T) & T \geq 1\end{cases}
$$

In particular, C_{R} is not stable.

Stability of Killing cylinders in unbounded domains

- Next, we assume C_{R} supported on an equidistant surface, regarded as a spherical cap

$$
\mathrm{E}_{H_{0}}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+(z+c)^{2}=\rho^{2}\right\}, 0<c<\rho,
$$

whose mean curvature is $H_{0}=c / \rho \in(0,1)$.

- We define $\Theta=\frac{H_{0}}{\sqrt{1+r^{2}\left(1-H_{0}^{2}\right)}}$.

Stability of Killing cylinders in unbounded domains

Theorem

Let be $R, T>0$ and define

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: \delta_{m}<\frac{1}{\sinh R}\right\},
$$

where δ_{m} is the only solution of the equation $x / \Theta=\tan (T x)$ in each interval $I_{m}, m \geq 1$. Here δ_{0} is the root of the equation in the interval $\left(0, \frac{\pi}{2 T}\right)$ in case that $T \Theta>1$, and $\delta_{0}=0$ otherwise. Consider C_{R}^{T} as a capillary surface supported in $\mathrm{E}_{H_{0}}$. Then

$$
\operatorname{index}\left(C_{R}^{T}\right)= \begin{cases}\eta(T) & T \Theta<1 \\ 1+\eta(T) & T \Theta \geq 1\end{cases}
$$

In consequence, C_{R} is not stable.

Stability of Killing cylinders in unbounded domains

- Finally, we assume C_{R} supported on the totally geodesic plane $\mathrm{S}_{\tau_{0}}$, where $\tau_{0}=\sqrt{1+r^{2}}$.
- This time, W is the domain above $\mathrm{S}_{\tau_{0}}$ and it is isometric to the domain inside $\mathrm{S}_{\tau_{0}}$.

Stability of Killing cylinders in unbounded domains

Theorem (Bueno-López)

Let be $R, T>0$ and

$$
\eta(T)=\operatorname{máx}\left\{m \in \mathbb{N} \cup\{0\}: 2 m-1<\frac{2 T}{\pi \sinh R}\right\} .
$$

Consider C_{R}^{T} as a capillary surface supported in $\mathrm{S}_{\tau_{0}}$. Then, index $\left(C_{R}^{T}\right)=\eta(T)$. Moreover,

- if $T>\pi \sinh R / 2$, then C_{R}^{T} is not stable;
- if $T>3 \pi \sinh R / 2$, then C_{R}^{T} is not stable.

Stability of Killing cylinders in a ball

Theorem (Souam, Math Z (1997))

A capillary stable surface of genus zero into a ball of \mathbb{H}^{3} must be totally umbilical.

- It is natural to ask by the index of a Killing cylinder in a ball, since it is not umbilical and there are no explicit computations of the index of a capillary surface in a ball of \mathbb{H}^{3}.
- The index of the critical catenoid or of circular cylinders in an Euclidean ball has been computed:
P. Sternberg, K. Zumbrun (J. Reine Angew. Math., 1998).
B. Debyver (Geom. Dedicata, 2019).
H. Tran (Comm. Anal. Geom., 2020).

Stability of Killing cylinders in a ball

- The Killing cylinder is given by $C_{r}\left(\left[t_{-}, t_{+}\right]\right)=\psi(t, \theta)$, where $r \in\left(0,1 / \sqrt{H_{0}^{2}-1}\right)$ and $t_{ \pm}$are such that

$$
e^{t_{ \pm}}=\frac{\rho}{1+r^{2}}\left(H_{0} \pm \sqrt{1-r^{2}\left(H_{0}^{2}-1\right)}\right), \quad H_{0}=c / \rho>1
$$

Stability of Killing cylinders in a ball

Theorem (Bueno-López)

Consider the Killing cylinder $C_{r}\left(\left[t_{-}, t_{+}\right]\right)$in $\mathrm{S}(c, \rho)$. Then, $\operatorname{index}\left(C_{r}\left[t_{-}, t_{+}\right]\right) \geq 1$. Moreover,

- The index grows to ∞ as $r \rightarrow 0$.
- There exists r_{0} close to $\frac{1}{\sqrt{H_{0}^{2}-1}}$ such that index $\left(C_{r}\left[t_{-}, t_{+}\right]\right)=1$ for all $r \in\left(r_{0}, \frac{1}{\sqrt{H_{0}^{2}-1}}\right)$.
- The function $r \mapsto \operatorname{index}\left(C_{r}\left(\left[t_{-}, t_{+}\right]\right)\right.$is decreasing in the interval ($0, \frac{1}{\sqrt{H_{0}^{2}-1}}$).

Stability of Killing cylinders in a ball

Theorem (Bueno-López)

Consider the Killing cylinder $C_{r}\left(\left[t_{-}, t_{+}\right]\right)$in $\mathrm{S}(c, \rho)$. Then, $\operatorname{index}\left(C_{r}\left[t_{-}, t_{+}\right]\right) \geq 1$. Moreover,

- The index grows to ∞ as $r \rightarrow 0$.
- There exists r_{0} close to $\frac{1}{\sqrt{H_{0}^{2}-1}}$ such that index $\left(C_{r}\left[t_{-}, t_{+}\right]\right)=1$ for all $r \in\left(r_{0}, \frac{1}{\sqrt{H_{0}^{2}-1}}\right)$.
- The function $r \mapsto \operatorname{index}\left(C_{r}\left(\left[t_{-}, t_{+}\right]\right)\right.$is decreasing in the interval ($0, \frac{1}{\sqrt{H_{0}^{2}-1}}$.
- If r approaches to zero, the Killing cylinder is not stable.
- If r is close to $\frac{1}{\sqrt{H_{0}^{2}-1}}$, the index is 1 . From the work of Souam we know that the Killing cylinder is not stable.

Sketch of the proof

- We apply the method of separation of variables $u(t, \theta)=f(t) g(\theta)$. After some effort, the eigenvalue problem takes the form

$$
\left\{\begin{array}{l}
\frac{1}{1+r^{2}} f^{\prime \prime} g+\frac{1}{r^{2}} f g^{\prime \prime}+(\varpi+\lambda) f g=0 \quad \text { in }\left[t_{-}, t_{+}\right] \times[0,2 \pi] \\
f^{\prime}\left(t_{-}\right)+\frac{H_{0}}{\alpha} f\left(t_{-}\right)=0 \\
f^{\prime}\left(t_{+}\right)-\frac{H_{0}}{\alpha} f\left(t_{+}\right)=0
\end{array}\right.
$$

where $\varpi=\frac{1}{r^{2}\left(1+r^{2}\right)}$ and $\alpha=\sqrt{1-r^{2}\left(H_{0}^{2}-1\right)}$.

- Hence,

$$
\frac{g^{\prime \prime}}{r^{2} g}=\mu=-\frac{f^{\prime \prime}}{\left(1+r^{2}\right) f}-(\varpi+\lambda), \quad \mu \in \mathbb{R}
$$

Then, $g(\theta)=c_{1} \cos (n \theta)+c_{2} \sin (n \theta), \mu=-n^{2} / r^{2}, n \in \mathbb{N}$, and f satisfies

$$
f^{\prime \prime}+\left(1+r^{2}\right)\left(\varpi-\frac{n^{2}}{r^{2}}+\lambda\right) f=0
$$

Sketch of the proof

- Case $\varpi-\frac{n^{2}}{r^{2}}+\lambda=0$. Then, $f(t)=a t+b$ and the boundary condition yields to a contradiction (after some effort!).
- Case $\varpi-\frac{n^{2}}{r^{2}}+\lambda=-\delta^{2}, \delta>0$. Then, $f(t)=a e^{\delta t}+b e^{-\delta t}$ and the boundary condition is equivalent to the existence of a solution to

$$
\left(\frac{H_{0}+\alpha}{H_{0}-\alpha}\right)^{\delta}\left(\frac{H_{0}-\alpha \delta}{H_{0}+\alpha \delta}\right)=1
$$

Again, after some more effort we see that $\delta=1$ is the unique solution.

- The eigenvalues are $\lambda_{n}=\frac{n^{2}-1}{r^{2}}$ and $n=0$ gives the only negative eigenvalue in this case.
- This proves the first statement of the theorem (the index is at least 1).
- Case $\varpi-\frac{n^{2}}{r^{2}}+\lambda=\delta^{2}, \delta>0$. Then, $f(t)=a \cos (\delta t)+b \sin (\delta t)$.
- The boundary condition is equivalent to

$$
\tan (\delta T)=\frac{2 H_{0} \alpha \delta}{H_{0}^{2}-\alpha^{2} \delta^{2}}, \quad T=t_{+}-t_{-}=\log \frac{H_{0}+\alpha}{H_{0}-\alpha}
$$

- Let $p(\delta)=\tan (\delta T)$ and $q(\delta)=\frac{2 H_{0} \alpha \delta}{H_{0}^{2}-\alpha^{2} \delta^{2}}$. Denote to $I_{0}=\left(0, \frac{\pi}{2 T}\right)$ and

$$
I_{m}=\left(\frac{(2 m-1) \pi}{2 T}, \frac{(2 m+1) \pi}{2 T}\right) .
$$

- The equation $p(\delta)=q(\delta)$ has at most one solution δ_{m} at each $I_{m}, m \geq 0$. After some (a little more) effort, we prove that no solution exists at I_{0}.

Sketch of the proof

- The eigenvalues are $\lambda_{m, n}=\frac{\delta_{m}^{2}}{1+r^{2}}+\frac{n^{2}}{r^{2}}-\frac{1}{r^{2}\left(1+r^{2}\right)}$. The negative ones appear if and only if $n=0$, that is if and only if $\delta_{m}<1 / r$.
- If $r \rightarrow 0$, then $1 / r \rightarrow \infty$ and the number of $\delta_{m}<1 / r$ increases to ∞.
- If $r \rightarrow 1 / \sqrt{H_{0}^{2}-1}$, after a final effort, the solutions $\delta_{m}<1 / r$ would correspond to a intersection between both positive branches, a contradiction.
- The infinite roots δ_{m} form a discrete set going to ∞. Since the negative ones correspond to $\delta_{m}<1 / r$, this number is a decreasing function of r varying from ∞ to 1 .

囲 A．Bueno．R．López，On the stability of Killing cylinders in hyperbolic space，submitted．

雷 J．Nitsche，Stationary partitioning of convex bodies．Arch．Ration． Mech．Anal． 89 （1985），1－19．
（R．Ros，E．Vergasta，Stability for hypersurfaces of constant mean curvature with free boundary．Geom．Dedic． 56 （1995），19－33．

目 R．Souam，On stability of stationary hypersurfaces for the partitioning problem for balls in space forms．Math．Z． 224 （1997），195－208．

囯 T．I．Vogel，Liquid bridges between contacting balls．J．Math．Fluid Mech． 16 （2014），737－744．

國 T．I．Vogel，Capillary surfaces in circular cylinders．J．Math．Fluid Mech． 23 （2021），Paper No．68， 13 pp．

Thank you for your attention!

[^0]: ${ }^{1}$ Partially supported by Fundación Séneca, 21937/PI/22

