Explicit harmonic self-maps of complex projective spaces

José Miguel Balado-Alves - University of Münster

September 7, 2023
DIFFERENTIAL GEOMETRY WORKSHOP 2023 - Alexandru Ioan Cuza University

Outline

(1) Harmonic maps and $\mathbb{C P}^{n}$

Outline

(1) Harmonic maps and $\mathbb{C P}^{n}$
(2) Reduction technique

Outline

(1) Harmonic maps and $\mathbb{C P}^{n}$
(2) Reduction technique
(3) Attacking the ODE

Outline

(1) Harmonic maps and $\mathbb{C P}^{n}$
(2) Reduction technique
(3) Attacking the ODE
(4) Energy

Outline

(1) Harmonic maps and $\mathbb{C P}^{n}$
(2) Reduction technique
(3) Attacking the ODE
(4) Energy
(5) Stability of solutions

Harmonic maps and $\mathbb{C P}{ }^{n}$

Harmonic maps and $\mathbb{C P}^{n}$

$\left(\mathbb{C P}^{n}, g_{F S}\right)$

Harmonic maps and $\mathbb{C P}^{n}$

$\left(\mathbb{C P}^{n}, g_{F S}\right)$
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \sec \leq 1$

Harmonic maps and $\mathbb{C P}^{n}$

($\mathbb{C P}^{n}, g_{F S}$)
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \sec \leq 1$
Goal: find maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ which are critical points of

$$
E(\psi):=\int_{\mathbb{C P}^{n}}|d \psi|^{2} d V_{g_{F S}}
$$

Harmonic maps and $\mathbb{C P}^{n}$

($\mathbb{C P}^{n}, g_{F S}$)
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \mathrm{sec} \leq 1$
Goal: find maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ which are critical points of

$$
E(\psi):=\int_{\mathbb{C P}^{n}}|d \psi|^{2} d V_{g_{F S}} .
$$

For that, we study the equation

$$
\tau(\psi):=\operatorname{trace} \nabla d \psi=0 .
$$

Harmonic maps and $\mathbb{C P}^{n}$

($\mathbb{C P}^{n}, g_{F S}$)
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \sec \leq 1$
Goal: find maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ which are critical points of

$$
E(\psi):=\int_{\mathbb{C P}^{n}}|d \psi|^{2} d V_{g_{F S}} .
$$

For that, we study the equation

$$
\tau(\psi):=\operatorname{trace} \nabla d \psi=0 .
$$

Harmonic maps and $\mathbb{C P}^{n}$

$\left(\mathbb{C P}^{n}, g_{F S}\right)$
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \sec \leq 1$
Goal: find maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ which are critical points of

$$
E(\psi):=\int_{\mathbb{C P}^{n}}|d \psi|^{2} d V_{g_{F S}}
$$

For that, we study the equation

$$
\tau(\psi):=\operatorname{trace} \nabla d \psi=0
$$

Remark:

$\triangleright($ Anti)holomorphic maps between Kähler manifolds are harmonic.

Harmonic maps and $\mathbb{C P}^{n}$

$\left(\mathbb{C P}^{n}, g_{F S}\right)$
\rightarrow Compact Kähler manifold with $\frac{1}{4} \leq \sec \leq 1$
Goal: find maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ which are critical points of

$$
E(\psi):=\int_{\mathbb{C P}^{n}}|d \psi|^{2} d V_{g_{F S}}
$$

For that, we study the equation

$$
\tau(\psi):=\operatorname{trace} \nabla d \psi=0
$$

Remark:

$\triangleright($ Anti)holomorphic maps between Kähler manifolds are harmonic.
\triangleright Holomorphic harmonic maps between compact Kähler manifolds are weakly stable.

Reduction technique

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$.

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$. Consider the action

$$
G=\mathrm{SU}(p+1) \times \mathrm{SU}(n-p) \curvearrowright \mathbb{C P}^{n}
$$

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$. Consider the action

$$
G=\mathrm{SU}(p+1) \times \mathrm{SU}(n-p) \curvearrowright \mathbb{C P}^{n}
$$

Define for $t \in\left[0, \frac{\pi}{2}\right]\left(\simeq \mathbb{C P}^{n} / G\right)$ the curve

$$
\gamma(t)=[\cos t: 0: \ldots: 0: \underbrace{\sin t}_{p+1}: 0: \ldots: 0] .
$$

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$. Consider the action

$$
G=\mathrm{SU}(p+1) \times \mathrm{SU}(n-p) \curvearrowright \mathbb{C P}^{n}
$$

Define for $t \in\left[0, \frac{\pi}{2}\right]\left(\simeq \mathbb{C P}^{n} / G\right)$ the curve

$$
\gamma(t)=[\cos t: 0: \ldots: 0: \underbrace{\sin t}_{p+1}: 0: \ldots: 0] .
$$

\rightarrow This is a unit-speed geodesic crossing each orbit orthogonally.

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$. Consider the action

$$
G=\mathrm{SU}(p+1) \times \mathrm{SU}(n-p) \curvearrowright \mathbb{C P}^{n}
$$

Define for $t \in\left[0, \frac{\pi}{2}\right]\left(\simeq \mathbb{C P}^{n} / G\right)$ the curve

$$
\gamma(t)=[\cos t: 0: \ldots: 0: \underbrace{\sin t}_{p+1}: 0: \ldots: 0] .
$$

\rightarrow This is a unit-speed geodesic crossing each orbit orthogonally.
Consider maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ of the form

$$
g \cdot \gamma(t) \mapsto g \cdot \gamma(r(t))
$$

where $r:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is smooth and $r(0)=0, r\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\pi \mathbb{Z}$.

Reduction technique

Fix $n, p \in \mathbb{N}, n>p$. Consider the action

$$
G=\mathrm{SU}(p+1) \times \mathrm{SU}(n-p) \curvearrowright \mathbb{C P}^{n}
$$

Define for $t \in\left[0, \frac{\pi}{2}\right]\left(\simeq \mathbb{C P}^{n} / G\right)$ the curve

$$
\gamma(t)=[\cos t: 0: \ldots: 0: \underbrace{\sin t}_{p+1}: 0: \ldots: 0] .
$$

\rightarrow This is a unit-speed geodesic crossing each orbit orthogonally.
Consider maps $\psi: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ of the form

$$
g \cdot \gamma(t) \mapsto g \cdot \gamma(r(t))
$$

where $r:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ is smooth and $r(0)=0, r\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\pi \mathbb{Z}$. The map ψ is well defined and smooth (Püttmann 2009).

Reduction technique

Reduction technique

Tension field

Take the biinvariant metric

$$
Q(X, Y)=-\frac{1}{2} \operatorname{trace} X Y
$$

for $X, Y \in \operatorname{Lie}(G)$ and $\operatorname{split} \operatorname{Lie}(G)=\operatorname{Lie}\left(G_{\gamma(t)}\right) \oplus \mathfrak{n}, t \in\left(0, \frac{\pi}{2}\right)$.

Reduction technique

Tension field

Take the biinvariant metric

$$
Q(X, Y)=-\frac{1}{2} \operatorname{trace} X Y
$$

for $X, Y \in \operatorname{Lie}(G)$ and $\operatorname{split} \operatorname{Lie}(G)=\operatorname{Lie}\left(G_{\gamma(t)}\right) \oplus \mathfrak{n}, t \in\left(0, \frac{\pi}{2}\right)$.
Define for every $t \in\left(0, \frac{\pi}{2}\right)$ the endomorphism $P_{t}: \mathfrak{n} \rightarrow \mathfrak{n}$ by

$$
Q\left(P_{t} X, Y\right)=g_{F S}\left(X^{*}, Y^{*}\right)_{\mid \gamma(t)}
$$

where $X_{\mid \gamma(t)}^{*}=\left.\frac{d}{d s}\right|_{s=0} \exp (s X) \cdot \gamma(t)$.

Reduction technique

Tension field

Take the biinvariant metric

$$
Q(X, Y)=-\frac{1}{2} \operatorname{trace} X Y
$$

for $X, Y \in \operatorname{Lie}(G)$ and $\operatorname{split} \operatorname{Lie}(G)=\operatorname{Lie}\left(G_{\gamma(t)}\right) \oplus \mathfrak{n}, t \in\left(0, \frac{\pi}{2}\right)$.
Define for every $t \in\left(0, \frac{\pi}{2}\right)$ the endomorphism $P_{t}: \mathfrak{n} \rightarrow \mathfrak{n}$ by

$$
Q\left(P_{t} X, Y\right)=g_{F S}\left(X^{*}, Y^{*}\right)_{\mid \gamma(t)}
$$

where $X_{\mid \gamma(t)}^{*}=\left.\frac{d}{d s}\right|_{s=0} \exp (s X) \cdot \gamma(t)$. In our case,

$$
P_{t}=\left(\begin{array}{ccc}
\cos ^{2} t \mathbb{1}_{2 p} & & \\
& \sin ^{2} t \mathbb{1}_{2(n-p-1)} & \\
& & \frac{\eta^{2}}{4} \sin ^{2} 2 t
\end{array}\right)
$$

Reduction technique

Tension field (Püttmann and Siffert 2019)

Reduction technique

Tension field (Püttmann and Siffert 2019)

$$
\tau_{\mid \gamma(t)}=\tau_{\mid \gamma(t)}^{\text {nor }}+\tau_{\mid \gamma(t)}^{\tan }
$$

Reduction technique

Tension field (Püttmann and Siffert 2019)

$$
\begin{array}{r}
\tau_{\mid \gamma(t)}=\tau_{\mid \gamma(t)}^{\mathrm{nor}}+\tau_{\mid \gamma(t)}^{\mathrm{tan}} \\
\triangleright \tau_{\mid \gamma(t)}^{\mathrm{tan}}=\left(P_{r(t)}^{-1} \sum_{\mu=1}^{n}\left[E_{\mu}, P_{r(t)} E_{\mu}\right]\right)_{\mid \gamma(r(t))}^{*}
\end{array}
$$

Reduction technique

Tension field (Püttmann and Siffert 2019)

$$
\begin{gathered}
\tau_{\mid \gamma(t)}=\tau_{\mid \gamma(t)}^{\mathrm{nor}}+\tau_{\mid \gamma(t)}^{\mathrm{tan}} \\
\triangleright \tau_{\mid \gamma(t)}^{\mathrm{tan}}=\left(P_{r(t)}^{-1} \sum_{\mu=1}^{n}\left[E_{\mu}, P_{r(t)} E_{\mu}\right]\right)_{\mid \gamma(r(t))}^{*} \underbrace{=}_{P_{t} \text { diag. }} 0
\end{gathered}
$$

Reduction technique

Tension field (Püttmann and Siffert 2019)

$$
\begin{gathered}
\tau_{\mid \gamma(t)}=\tau_{\mid \gamma(t)}^{\mathrm{nor}}+\tau_{\mid \gamma(t)}^{\mathrm{tan}} \\
\triangleright \tau_{\mid \gamma(t)}^{\mathrm{tan}}=\left(P_{r(t)}^{-1} \sum_{\mu=1}^{n}\left[E_{\mu}, P_{r(t)} E_{\mu}\right]\right)_{\mid \gamma(r(t))}^{*} \underbrace{=}_{P_{t} \text { diag. }} 0 \\
\triangleright \tau_{\mid \gamma(t)}^{\text {nor }}=\left[\ddot{r}(t)+\frac{1}{2} \dot{r}(t) \operatorname{tr} P_{t}^{-1} \dot{P}_{t}-\frac{1}{2} \operatorname{tr} P_{t}^{-1}(\dot{P})_{r(t)}\right] \dot{\gamma}(r(t))
\end{gathered}
$$

Reduction technique

Theorem

Consider the natural $\mathrm{SU}(p+1) \times \mathrm{SU}(n-p)$-action on $\mathbb{C P}^{n}$ with $0 \leq p<n$. The tension field of ψ vanishes if and only if r satisfies the boundary value problem

$$
\begin{align*}
\ddot{r}(t) & +[(2 n-2 p-1) \cot t-(2 p+1) \tan t] \dot{r}(t) \\
& +\left[\frac{p}{\cos ^{2} t}-\frac{(n-p-1)}{\sin ^{2} t}\right] \sin 2 r(t)-\frac{\sin 4 r(t)}{\sin ^{2} 2 t}=0 \tag{ODE}
\end{align*}
$$

for smooth functions $r:\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\lim _{t \rightarrow 0} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow \frac{\pi}{2}} r(t)=k \frac{\pi}{2} \tag{BC}
\end{equation*}
$$

where $k \in 2 \mathbb{Z}+1$.

Attacking the ODE

Attacking the ODE

\triangleright Initial strategy: ODE methods

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem:

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem: Holomorphic maps:

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem: Holomorphic maps:

$$
d \psi \circ J=J \circ d \psi
$$

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem: Holomorphic maps:

$$
d \psi \circ J=J \circ d \psi
$$

In this case: 2 nd order ODE $\rightsquigarrow 1$ st order ODE

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem: Holomorphic maps:

$$
d \psi \circ J=J \circ d \psi
$$

In this case: 2 nd order ODE $\rightsquigarrow 1$ st order ODE $\rightsquigarrow r_{\rho}(t)=\arctan (\rho \tan t), \rho>0, t \in\left(0, \frac{\pi}{2}\right)$.
Use the symmetry:

Attacking the ODE

\triangleright Initial strategy: ODE methods (did not work out)
(1) Symmetry $r \rightarrow-r$ (if r is a solution of (ODE), then $-r$ is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

$$
\lim _{t \rightarrow 0^{+}} r(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} \dot{r}(t)=\rho
$$

(Idea: Gastel 2004)
\triangleright Simplify the problem: Holomorphic maps:

$$
d \psi \circ J=J \circ d \psi
$$

In this case: 2 nd order ODE $\rightsquigarrow 1$ st order ODE
$\rightsquigarrow r_{\rho}(t)=\arctan (\rho \tan t), \rho>0, t \in\left(0, \frac{\pi}{2}\right)$.
Use the symmetry:
$\rightsquigarrow r_{\rho}(t)=\arctan (\rho \tan t), \rho<0, t \in\left(0, \frac{\pi}{2}\right)$.

Attacking the ODE

Theorem
Let $\rho \in \mathbb{R}$ and $\ell \in \mathbb{Z}$, the functions defined by

$$
r_{\rho, \ell}(t)=\arctan (\rho \tan t)+\ell \pi, \quad \kappa_{\ell}(t)=\ell \frac{\pi}{2}
$$

for every $t \in\left(0, \frac{\pi}{2}\right)$ satisfy the following properties:

Attacking the ODE

Theorem
Let $\rho \in \mathbb{R}$ and $\ell \in \mathbb{Z}$, the functions defined by

$$
r_{\rho, \ell}(t)=\arctan (\rho \tan t)+\ell \pi, \quad \kappa_{\ell}(t)=\ell \frac{\pi}{2}
$$

for every $t \in\left(0, \frac{\pi}{2}\right)$ satisfy the following properties:

1. As ρ goes to $\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell+1}$. As ρ goes to $-\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell-1}$.

Attacking the ODE

Theorem
Let $\rho \in \mathbb{R}$ and $\ell \in \mathbb{Z}$, the functions defined by

$$
r_{\rho, \ell}(t)=\arctan (\rho \tan t)+\ell \pi, \quad \kappa_{\ell}(t)=\ell \frac{\pi}{2}
$$

for every $t \in\left(0, \frac{\pi}{2}\right)$ satisfy the following properties:

1. As ρ goes to $\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell+1}$. As ρ goes to $-\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell-1}$.
2. The functions $r_{\rho, \ell}$ and $\kappa_{\rho, \ell}$ are solutions for the ordinary differential equation (ODE).

Attacking the ODE

Theorem

Let $\rho \in \mathbb{R}$ and $\ell \in \mathbb{Z}$, the functions defined by

$$
r_{\rho, \ell}(t)=\arctan (\rho \tan t)+\ell \pi, \quad \kappa_{\ell}(t)=\ell \frac{\pi}{2}
$$

for every $t \in\left(0, \frac{\pi}{2}\right)$ satisfy the following properties:

1. As ρ goes to $\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell+1}$. As ρ goes to $-\infty, r_{\rho, \ell}$ converges uniformly to $\kappa_{2 \ell-1}$.
2. The functions $r_{\rho, \ell}$ and $\kappa_{\rho, \ell}$ are solutions for the ordinary differential equation (ODE).
3. If $\rho \neq 0$, the function $r_{\rho, 0}$ is the unique solution for the boundary value problem (ODE), (BC) satisfying $\dot{r}(t) \rightarrow \rho$ as $t \rightarrow 0^{+}$.

Attacking the ODE

Remark

1. If $\rho>0, \psi_{\rho}$ is a holomorphic harmonic map.
2. If $\rho<0, \psi_{\rho}$ is a non-holomorphic, non-antiholomorphic harmonic map.

Energy

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.
Rate of change of $E\left(\psi_{\rho}\right)$:

$$
\frac{d}{d \rho} E\left(\psi_{\rho}\right)
$$

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.
Rate of change of $E\left(\psi_{\rho}\right)$:

$$
\frac{d}{d \rho} E\left(\psi_{\rho}\right)=-\int_{\mathbb{C P}^{n}} g_{F S}\left(\frac{d}{d \rho} \psi_{\rho}, \tau\left(\psi_{\rho}\right)\right) d V_{g_{F S}}
$$

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.
Rate of change of $E\left(\psi_{\rho}\right)$:

$$
\frac{d}{d \rho} E\left(\psi_{\rho}\right)=-\int_{\mathbb{C P}^{n}} g_{F S}\left(\frac{d}{d \rho} \psi_{\rho}, \tau\left(\psi_{\rho}\right)\right) d V_{g_{F S}}=0
$$

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.
Rate of change of $E\left(\psi_{\rho}\right)$:

$$
\frac{d}{d \rho} E\left(\psi_{\rho}\right)=-\int_{\mathbb{C P}^{n}} g_{F S}\left(\frac{d}{d \rho} \psi_{\rho}, \tau\left(\psi_{\rho}\right)\right) d V_{g_{F S}}=0
$$

\rightsquigarrow For every $\rho \neq 0, E\left(\psi_{\rho}\right)=E\left(\psi_{1}\right)=E(\mathrm{id})$

Energy

A straightforward computations shows $E\left(\psi_{\rho}\right)=E\left(\psi_{-\rho}\right)$.
Rate of change of $E\left(\psi_{\rho}\right)$:

$$
\frac{d}{d \rho} E\left(\psi_{\rho}\right)=-\int_{\mathbb{C P}^{n}} g_{F S}\left(\frac{d}{d \rho} \psi_{\rho}, \tau\left(\psi_{\rho}\right)\right) d V_{g_{F S}}=0
$$

\rightsquigarrow For every $\rho \neq 0, E\left(\psi_{\rho}\right)=E\left(\psi_{1}\right)=E(\mathrm{id})$

Proposition

For $\rho \neq 0$, the energy of the harmonic map ψ_{ρ} constructed above is given by

$$
E\left(\psi_{\rho}\right)=n \operatorname{Vol}\left(\mathbb{C P}^{n}\right)=\frac{\pi^{n}}{(n-1)!}
$$

Stability

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable $\Rightarrow \psi_{\rho}, \rho>0$, is weakly stable.

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable $\Rightarrow \psi_{\rho}, \rho>0$, is weakly stable.

Equivariant stability

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable $\Rightarrow \psi_{\rho}, \rho>0$, is weakly stable.

Equivariant stability

Variations that are invariant under the cohomogeneity one action.

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable $\Rightarrow \psi_{\rho}, \rho>0$, is weakly stable.

Equivariant stability

Variations that are invariant under the cohomogeneity one action.
We study equivariant stability by the following Sturm-Liouville problem:

$$
\ddot{\xi}(t)+\frac{1}{2} \operatorname{trace}\left(P_{t}^{-1} \dot{P}_{t}\right) \dot{\xi}(t)-\frac{1}{2} \operatorname{trace}\left(P_{t}^{-1} \ddot{P}_{r(t)}\right) \xi(t)+\lambda \xi(t)=0
$$

where $\xi \in C_{0}^{\infty}\left(\left[0, \frac{\pi}{2}\right]\right)$ (Branding and Siffert 2023).

Stability

\triangleright Any holomorphic harmonic map between compact Kähler manifolds is weakly stable $\Rightarrow \psi_{\rho}, \rho>0$, is weakly stable.

Equivariant stability

Variations that are invariant under the cohomogeneity one action.
We study equivariant stability by the following Sturm-Liouville problem:

$$
\ddot{\xi}(t)+\frac{1}{2} \operatorname{trace}\left(P_{t}^{-1} \dot{P}_{t}\right) \dot{\xi}(t)-\frac{1}{2} \operatorname{trace}\left(P_{t}^{-1} \ddot{P}_{r(t)}\right) \xi(t)+\lambda \xi(t)=0
$$

where $\xi \in C_{0}^{\infty}\left(\left[0, \frac{\pi}{2}\right]\right)$ (Branding and Siffert 2023).

Theorem

For every $\rho \neq 0$, the map $\psi_{\rho}: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ is equivariantly weakly stable.

Stability

Equivariant spectrum for ψ_{1} and ψ_{-1}

Stability

Equivariant spectrum for ψ_{1} and ψ_{-1}
Take $p=\frac{n-1}{2}$.

Stability

Equivariant spectrum for ψ_{1} and ψ_{-1}
Take $p=\frac{n-1}{2}$. After the substitution $t(x)=\arctan e^{x}$

Stability

Equivariant spectrum for ψ_{1} and ψ_{-1}
Take $p=\frac{n-1}{2}$. After the substitution $t(x)=\arctan e^{x}$, the problem reads

$$
\ddot{\xi}(x)-(n-1) \tanh x \dot{\xi}(x)-n \tanh ^{2} x \xi(x)+\left(\frac{\lambda}{4}+1\right) \frac{1}{\cosh ^{2} x} \xi(x)=0
$$

$$
\text { for } \xi \in C_{0}^{\infty}(\mathbb{R})
$$

Stability

Equivariant spectrum for ψ_{1} and ψ_{-1}

Take $p=\frac{n-1}{2}$. After the substitution $t(x)=\arctan e^{x}$, the problem reads

$$
\begin{equation*}
\ddot{\xi}(x)-(n-1) \tanh x \dot{\xi}(x)-n \tanh ^{2} x \xi(x)+\left(\frac{\lambda}{4}+1\right) \frac{1}{\cosh ^{2} x} \xi(x)=0 \tag{1}
\end{equation*}
$$

for $\xi \in C_{0}^{\infty}(\mathbb{R})$.

Theorem

The spectral problem (1) describing the equivariant stability of the maps ψ_{1} and ψ_{-1}, is solved by

$$
\xi_{j}(x)=\frac{1}{\cosh x} P_{j}^{\left(\frac{n+1}{2}, \frac{n+1}{2}\right)}(\tanh x), \quad \lambda_{j}=4 j(j+n+2)
$$

for $j \in \mathbb{N}$, where $P_{j}^{\left(\frac{n+1}{2}, \frac{n+1}{2}\right)}$ are the so-called Jacobi polynomials.

Mulțumesc mult!
Thanks a lot!

Bibliography

[1] Püttmann, T. (2009). Cohomogeneity one manifolds and self-maps of nontrivial degree. Transformation Groups, 14(1), 225-247.
[2] Püttmann, T., and Siffert, A. (2019). Harmonic self-maps of cohomogeneity one manifolds. Mathematische Annalen, 375(1-2), 247-282.
[3] Gastel, A. (2004). On the harmonic Hopf construction. Proceedings of the American Math. Society, 132(2), 607-615.
[4] Branding, V., and Siffert, A. (2023). On the equivariant stability of harmonic self-maps of cohomogeneity one manifolds. Journal of Mathematical Analysis and Applications, 517(2), 126635.
[5] Balado-Alves, J. M. (2023). Explicit harmonic self-maps of complex projective spaces. arXiv preprint arXiv:2304.00851.

