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Harmonic maps and CP”

(C]PnrgFS)
— Compact Kahler manifold with % <sec<1

Goal: find maps ) : CP" — CP" which are critical points of

E(w) = / |dp|? dV g
CP"
For that, we study the equation
7(¢) := traceVdy = 0.
Remark:

> (Anti)holomorphic maps between Kahler manifolds are harmonic.

> Holomorphic harmonic maps between compact Kahler manifolds
are weakly stable.
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Fix n,p € N, n > p.Consider the action
G =SU(p+1) x SU(n — p) ~ CP".
Define for t € [0, 5](~ CP"/G) the curve

v(t) =[cost:0:...:0:sint:0:...:0].
<~
p+1

— This is a unit-speed geodesic crossing each orbit orthogonally.
Consider maps v : CP" — CP" of the form
g - (t) = g - y(r(t))

where r : [0, 5] — R is smooth and r(0) =0, r(5) = 5 + 7Z. The
map 1 is well defined and smooth (Piittmann 2009).
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Tension field
Take the biinvariant metric

Q(X,Y) = —JtraceXY

for X, Y € Lie(G) and split Lie(G) = Lie(Gy)) @ n, t € (0, 7).

Define for every t € (0, 5) the endomorphism P; : n — n by

Q(P:X,Y) = grs(X*, Y™) 1yt

where X7 ) = 4 0exp(sX) -(t) . In our case,

s=
cos? t 1o,
0 D -
[2r = sin® tlp(h_p_1)

2
7 sin2
4sm2t
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Tension field (Piittmann and Siffert 2019)

Th(e) = Thie) + Tia(e)

n _ =il n & _
> 75t = (Prey 2= B Pro Bd) [y o ©
P: diag.

o i = [H(0) + S0Pt Be— 3P (B 4((0)



Reduction technique

Theorem
Consider the natural SU(p + 1) x SU(n — p)-action on CP" with

0 < p < n. The tension field of v vanishes if and only if r satisfies
the boundary value problem

F(t)+[(2n—2p —1)cott — (2p + 1) tan t] F(t)
p (n—p—-1) sin4r(t) (ODE)

— sin2r(t) — ———=> =0
cos? t sin? t (t) sin? 2t

for smooth functions r : (0,5) — R with

limr(t) =0 and lim r(t) = k7, (BQO)

t—0 t—)%

where k € 27 + 1.
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> Initial strategy: ODE methods (did not work out)
(1) Symmetry r — —r (if r is a solution of (ODE), then —r is also
a solution)
(2) Uniqueness of the singular initial value problem: (ODE) +

lim r(t)=0 and lim F(t)=p
t—0"

t—0*
(Idea: Gastel 2004)
> Simplify the problem:
Holomorphic maps:

dyoJ=Jody.
In this case: 2nd order ODE ~~ 1st order ODE
~ r,(t) = arctan(ptant), p > 0,t € (0, 5).
Use the symmetry:
~ r,(t) = arctan(ptant), p < 0,t € (0, %).
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Attacking the ODE

Theorem
Let p € R and ¢ € Z, the functions defined by

roo(t) = arctan(ptant) + 4m, re(t) =4

ISIE}

for every t € (0, 5) satisfy the following properties:

1. As p goes to oo, r,¢ converges uniformly to rpsi1. As p goes
to —oo, r, ¢ converges uniformly to rps_1.

2. The functions r,, and k, are solutions for the ordinary
differential equation (ODE).

3. If p # 0, the function r, g is the unique solution for the
boundary value problem (ODE), (BC) satisfying r(t) — p as
t— 0.
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Attacking the ODE

Remark
1. If p>0, ¢, is a holomorphic harmonic map.

2. If p <0, 9, is a non-holomorphic, non-antiholomorphic
harmonic map.

11
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A straightforward computations shows £(v,) = E(¥— ).
Rate of change of E(v,):

d d
—E(,))= — —),, dVg..— 0.
d[) (l‘ /) /(;]P)n &5 (dpwp T(¢p)> &R

~» For every p # 0, E(¢,) = E(¢1) = E(id)

Proposition

For p # 0, the energy of the harmonic map %), constructed above
is given by

E(t,) = nVol(CP") = -2y;.
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Stability

> Any holomorphic harmonic map between compact Kahler
manifolds is weakly stable = 1), p > 0, is weakly stable.

Equivariant stability
Variations that are invariant under the cohomogeneity one action.
We study equivariant stability by the following Sturm-Liouville

problem:

&(t)+ %trace(P;IPt) f(t) — %trace(Pfllsr(t))f(t) + () =0
where £ € C5°([0, 5]) (Branding and Siffert 2023).

Theorem
For every p # 0, the map ¢, : CP" — CP" is equivariantly weakly

stable.
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Take p = 251, After the substitution t(x) = arctan €*, the

problem reads
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Stability

Equivariant spectrum for ; and ¢ _1

Take p = 251, After the substitution t(x) = arctan €*, the

problem reads
£(x) — (n — 1) tanh x€(x) — ntanh® x &(x) + (3 + 1) &(x) =0 (1)
for £ € C°(R).

Theorem
The spectral problem (1) describing the equivariant stability of the

maps 1 and _1, is solved by

ntl ntl

§j(x) = coslhx Pj 202 (tanhX), )\j = 4](] +n+ 2)

i (nf1 nly . .
for j € N, where P; * " 2 7 are the so-called Jacobi polynomials.

J

14
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