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Elastic curves (elastica)

Given x, y ∈ Rn and v,w ∈ Sn−1 (n ≥ 2)
Suppose there exists a C∞ unit speed curve c : [a, b]→ Rn with the
property

c(a) = x, c ′(a) = v, c(b) = y, c ′(b) = w .

Such a curve has length L(c) = b − a and is said to be feasible for
a, b, x, y, v,w. An Euler-Bernouilli (fixed length) elastica is defined to be a
critical point of the functional

K (c) =
1

2

∫ b

a
||c ′′(s)||2ds ,

as c varies over feasible curves.
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Elastic curve - example

x y

v w
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Euler-Lagrange equations

A feasible curve is an elastica when, for some C∞ function µ : [a, b]→ R,

c ′′′′(s) + (µ(s)c ′(s))′ = 0 ⇔ γ′′(s) + µ(s)γ(s) = C (1)

where γ(s) = c ′(s) and C ∈ Rn is constant.
Taking the inner product with γ(s) ∈ Sn−1:

µ(s) = 〈C , γ(s)〉 − 〈γ′′, γ〉 = 〈C , γ(s)〉+ κ(s)2

where the curvature κ : [a, b]→ R is defined by κ(s) = ||γ′′(s)||.
Taking the inner product with γ′(s):

〈γ′′(s), γ′(s)〉 = 〈C , γ′(s)〉 ⇒ 〈C , γ(s)〉 =
κ(s)2 − a

2
⇒ µ(s) =

3κ(s)2 − a

2

for a constant a ∈ R.

Paul Baird (LMBA, Université de Brest) Polygonal elastica 4 / 23



Planar elastica

Suppose n = 2. Diff (1) and take the inner product with γ′(s),

0 = 〈γ′′′, γ′〉+ µκ2 = κκ′′ + (κ′)2 − 〈γ′′, γ′′〉+ µκ2

=
κ(s)

2

(
2κ′′(s) + κ3(s)− aκ(s)

)
since γ′′ = −κ2γ + κ′ν where ν is the normal to γ (planar curve).
Therefore

2κ′′(s) = aκ(s)− κ(s)3 .

Excluding circles (κ const.) solutions are given by

κ(s)2 = κ0

(
1− p2

w2
sn2
( κ0

2w
(s − s0), p

))
where sn denotes elliptic sine, w is either p or 1, and a is related to the
parameters κ0, p by

2a =
κ0

2

w2
(3w2 − p2 − 1) .
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Discrete approximation

The discrete analogue of a unit speed curve is a polygonal curve with sides
of equal (unit) length.

θ1

θ2

The curvature at a vertex is the modulus of the exterior angle: |θ|, and the
total square curvature is the sum

∑n
i=1 θi

2 .
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The discrete problem

Given two points x and y and unit directions at those two points v and w,
find a polygonal curve of length n with sides of unit length beginning and
ending in the given directions, which extremizes the discrete total square
curvature amongst such curves.

x

v

y
w
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Strategy to approximate smooth elastica

Take smooth candidate curve satifying the required boundary and
length conditions.

Approximate this curve with a polygonal curve with sides of equal
length.

Perform a procedure (see below) on the polygonal curve to approach
a discrete elastica.

x

y
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Optimizing the polygonal curve - leapfrog

Start at x and choose a segment of the curve of fixed length, fixing the
first and last edge, and improve it. Say, choose a segment of four edges.

x

y

x

v

w1

v2

w2

In general there are just two choices: keep as is, or flip. In the example, a
flip will increase the curvature, so keep as is. Then move on one edge and
repeat. When one arrives at the far end, return doing the same procedure.
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Leapfrog with 5 edges

Take a segment of five edges. Now have continuous flexibility for the
middle three edges.

x

v

w1
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Parametrization of a configuration of five unit edge with
boundary conditions

0

ξ

η

θ = θ1

θ2

θ3

θ4

β

The parameter θ = θ1 is variable and determines the configuration.
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Extremization problem

Problem: extremize (minimize) the total curvature: θ1
2 + θ2

2 + θ3
2 + θ4

2.

However, cos θ = 1− θ2

2 +O(θ4), so if we suppose we have chosen a large
number of edges so the angles are small, instead maximize:

E := 2(cos θ + cos θ2 + cos θ3 + cos θ4)

Constraints:
(i) e iθ1 + e i(θ1+θ2) + e i(θ1+θ2+θ3) = ξ ∈ C fixed;
(ii) e i(θ1+θ2+θ3+θ4) = η ∈ S1 ⊂ C fixed.

Geometry implies

E = −2 + 2 cos θ +
2

|ξ − e iθ|
Re {e−iβ(ξ − e iθ)(ξ − η)}+ 2Re {ξη − e iθη} .

where cosβ = 1
2 |ξ − e iθ|.
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Extremization problem cont.

Find the maximum of the function (for given ξ and η) :

F := cos θ + 1
|ξ−eiθ|Re {e

−iβ(ξ − e iθ)(ξ − η)} − Re {e−iθη}

where cosβ = 1
2 |ξ − e iθ|.

F ′(θ) = Im {e iθ(ξ + η − 2)}

− 1

sin 2β(1 + cos 2β)

{
Im {e iθξ}Im {(ξ − e iθ)(ξ − η)}

+(sin2 2β)Re {e iθ(ξ − η)}
}

Check: If the boundary conditions correspond to the configuration required
for a regular polygon of n sides, then it is easily confirmed that the above
expression has F ′(2π/n) = 0.
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Appropximate solution

For ease of notation, define six real constants:

A := |ξ − 1|, B :=
√

4− |ξ − 1|2, C := ξ + ξ,

D := η + η, E := −i(ξ − ξ), F := −i(η − η) .

Lemma

(i)

sin 2β ∼ 1

2

(
AB +

E

2

(
A

B
− B

A

)
θ

)
.

(ii)

1 + cos 2β ∼ 1

2
(A2 − Eθ) .
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Approximate solution cont.

To first order, the solution is given by,

Lemma

F ′(θ) ∼ −A3B(E + F ) + 2E (E − F )− E (ED − FC ))− A2B2(C − D)

+θ

{
E (E + F )

2

(
3AB − A3

B

)
+ A3B(C + D − 4)

−2E (C − D)− 2C (E − F ) + C (ED − FC ))

−E (A2 − B2)(C − D)− A2B2(E − F )

}

Questions: 1. Is there a simpler way to find an approximate solution?
2. Is there a geometric construction which determines an improved
configuration?
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Generalization to 2-dimensions

The Willmore energy of a closed surface S embedded in R3 is given by

W =

∫
S
H2dσ −

∫
S
Kdσ =

1

4

∫
S

(k1 − k2)2dσ =

∫
S
H2dσ − 2πχ(S)

Elastic energy: Wish to find critical points of the energy

E =

∫
S
H2dσ

ranging over surfaces with fixed boundary c = ∂S and fixed area A, which
leave the bondary in a given direction, i.e. we define a vector field v along
c , transverse to c and require this be tangent to the surface along c .

An approach using invariant frameworks:
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A curious formula

For a unit speed curve in the plane c(s) we have
c ′′(s) = ±iκ(s)c ′(s)⇒ (c ′′(s))2 = −κ(s)2(c ′(s)2.
Let ϕ : (Mm, g)→ Rn+1 be a smooth isometric embedding and let
π : Rn+1 → C be any orthog. projection to the the complex plane. Set
Φ = π ◦ ϕ : (Mn, g)→ C where H is the mean curvature of ϕ(Mm). Then

Lemma

(∆gΦ)2 = −H2(∇gΦ)2

Proof.

Let n denote the unit normal to the hypersurface. On the one hand

∆g (π ◦ ϕ) = dπ(∆gϕ) + Tr∇dπ(dϕ, dϕ) = Hdπ(n)

since π is totally geodesic. On the other hand if {ei} is an o.n. basis on Mm and fi = dϕ(ei ), then {fi , n} is an o.n. basis in

Rn+1, and

∇g (π ◦ ϕ)2 =
∑
i

dπ(dϕ(ei ))2 =
∑
i

dπ(fi )
2 = −dπ(n)2

since π is a Riemannian submersion.
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Discrete version for frameworks

ϕ

C

ϕ : {vertices} → C. Set

∆ϕ := 1
dx

∑
y∼x

(
ϕ(y)− ϕ(x)

)
(∇ϕ)2 :=
1
dx

∑
y∼x

(
ϕ(x)− ϕ(y)

)2

At a given vertex x , consider
the equation

γ(x)

dx

{∑
y∼x

(
ϕ(y)− ϕ(x)

)}2
=

∑
y∼x

(
ϕ(x)− ϕ(y)

)2
(2)

⇐⇒ γ(∆ϕ)2 = (∇ϕ)2

where dx is the degree of vertex x and γ : {vertices} → R is a real
function on the vertices. For cube γ ≡ 0 and this is essentially the Gauss
Theorem of Axonometry (1876).
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Regular polytopes

The regular polytopes in Euclidean space satisfy (2) with some examples
of γ given in the following table:

polyhedron γ

tetrahedron 3/4
cube 0

octahedron 1/2

icosahedron 2−
√

5
3−
√

5
< 0

dodecahedron 3(1−
√

5)

2(3−
√

5)
< 0

600-cell 5(1−2
√

5)
3 < 0

The 600-cell is a convex 4-dimensional regular polytope made up of 600
tetrahedral 3-polytopes. It has 120 vertices and 720 edges.

We will interpret γ as a curvature – see below.
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Invariant frameworks

A framework F in RN is a finite collection of points {~x1, . . . , ~xn} connected
in various ways by edges (bars) which are straight line segments.

Let ϕ : RN → C be an orthogonal projection. Then say that the
framework is invariant if ϕ satisfies (2) for some fixed function γ : V → R,
independently of any similitude of the framework.

Two requirements: that γ be real and that the equation be satisfied
independent of the orthogonal projection. For a curve in the plane, there is
only the reality requirement which is satisfied if and only if the edges have
equal length.

The property of invariance means that geometry is intrinsic to the
structure and not dependent on how it is embedded in space.

Under the assumption of invariance, for a given graph, we may be able to
recover its “shape” from its combinatorial structure and the function
γ : V → R.
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Framework invariance

Only certain frameworks fit the invariance requirement: for a double
pyramid on a regular polygon it has a unique height for which it is
invariant.

The height decreases to zero with the number n of vertices of the regular
polygon so it converges to a disc as n→∞.
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Program for elastic surfaces

Given an initial surface of area A satisfying required boundary
conditions, approximate it with an invariant framework (triangular,
rectangular, ... ). Is this possible?

Adjust the framework locally to decrease the total squared mean
curvature. Is this possible while maintaining area and invariance?

Take a pragmatic approach: for simplicity assume the surface is a
topological disc - decompose it with a suitable rectangular tiling;
don’t worry about invariance, but use (2) anyway to calculate mean
curvature; systematically improve the mean curvature while keeping
the area constant, as one might attempt to deform chain mail, for
example by spiralling into the centre and spiralling out again,
repeating the procedure.

Thank you for your attention!
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