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Conventions

We use the following sign conventions for the rough Laplacian, that acts
on the set C

(
ϕ−1TN

)
of all sections of the pull-back bundle ϕ−1TN, and

for the curvature tensor field

∆ϕσ = −traceg∇2σ, R(X ,Y )Z = ∇X∇YZ −∇Y∇YZ −∇[X ,Y ]Z .

Also, by Sm(r) we indicate the m-dimensional Euclidean sphere of radius
r . When r = 1, we write Sm instead of Sm(1).
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Harmonic maps
Let (M, g = (gij)) and (N, h = (hαβ)) be Riemannian manifolds.

Let ϕ : M → N be a smooth map.

We define the energy functional E : C∞(M,N) → R by

E (ϕ) =
1

2

∫
M
|dϕ|2 vg =

1

2

∫
M
g ij ∂ϕ

α

∂x i
∂ϕβ

∂x j
hαβ(ϕ) vg .

E (ϕ) is invariant under conformal transformations on M if dimM = 2.

Harmonic maps are the critical points of E . They are characterised by
the equation

τ(ϕ) := traceg∇ϕdϕ = 0, τ(ϕ) ∈ C
(
ϕ−1TN

)
,

where ∇ϕ represents the connection on ϕ−1TN.

In terms of local coordinates we have

−∆Mϕ
α + g ij ∂ϕ

β

∂x i
∂ϕγ

∂x j
Γαβγ(ϕ) = 0.
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Existence of harmonic maps

Working with the L2-gradient flow

∂ϕt
∂t

= τ(ϕt), ϕ(·, 0) = ϕ0. (2.1)

Theorem 2.1 (Eells - Sampson, 1964)

Let M and N be closed Riemannian manifolds and assume that the
sectional curvature of N is non-positive. Then Equation (2.1) has a unique
smooth solution ϕt ∈ C∞ (M × [0,∞),N) for arbitrary ϕ0 ∈ C∞(M,N)
which for t → ∞, converges to a harmonic map ϕ∞ ∈ C∞(M,N) in
C 2(M,N).
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Harmonic homogeneous polynomial maps between spheres

Proposition 2.1

Let φ : Mm → Sn be an arbitrary smooth map and write Φ = i ◦ φ, where
i : Sn → Rn+1 is the inclusion map. Then φ is harmonic if and only if

∆Φ = νΦ,

where ν is a smooth function. Moreover, in this case, ν = |dΦ|2= |dφ|2.

Corollary 2.1

Let φ : M → Sn be a smooth map with constant energy density
e(φ) = (1/2) |dφ|2. Then φ is harmonic if and only if Φ is an eigenmap
with ν = 2e(φ).

Rareş-Mircea Ambrosie Classification of the biharmonic quadratic maps between spheres Diferential Geometry WorkshopSeptember 7th, 2023 7 / 38



Eigenmaps. We call a smooth map φ : M → Sn an eigenmap if the
components of Φ = i ◦ φ : M → Rm+1 are all eigenfunctions of the
Laplacian on M with the same eigenvalue. An eigenmap φ is a
harmonic map with constant energy density.

Spherical harmonics. Suppose that f̃ : Rm+1 → R is a harmonic
homogeneous polynomial of degree k ∈ N. Then, the restriction
f = f̃|Sm is an eigenfunction of the Laplacian ∆Sm

on the sphere with

an eigenvalue λk = k(k +m − 1). Such a function f is called a
spherical harmonic of order k .
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Let F : Rm+1 → Rn+1 be a vector valued function such that each
component is a homogeneous polynomial of degree k . We will assume
that F (Sm) ⊂ Sn. Such a map F is called form of degree k . When
k = 2, F is called a quadratic form. We will keep the same
terminology for φ.
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Proposition 2.2

Let F : Rm+1 → Rn+1 be a harmonic form of degree k ∈ N∗. Suppose
that F restricts to the map φ : Sm → Sn. Then φ is harmonic with
constant energy density e(φ) = k(k +m − 1)/2, i.e. φ is an eigenmap
with ν = k(k +m − 1).

We determine all eigenmaps between spheres.

Proposition 2.3

Let φ : Sm → Sn be a harmonic map with constant energy density
e(φ) = α > 0. Then there exists a unique k ∈ N∗ such that
α = k(m + k − 1)/2 and there exists a unique vector valued function
F : Rm+1 → Rn+1 such that each component is either a harmonic
homogeneous polynomial of degree k , or the null polynomial, and F
restricts to φ.
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The special case of quadratic forms (k = 2)

Proposition 2.4

Let F : Rm+1 → Rn+1 be a quadratic form. Suppose that F restricts to
φ : Sm → Sn. Then, the following are equivalent

i) τ(φ) = 0,

ii)
o
∆F = 0,

iii) e(φ) = m + 1.
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Biharmonic maps

Let (M, g = (gij)) and (N, h = (hαβ)) be Riemannian manifolds.

For ϕ : M → N consider the bienergy

E2(ϕ) =

∫
M
|τ(ϕ)|2vg .

Critical points of E2 are called (intrinsic) biharmonic maps and are
characterized by the fourth order non-linear elliptic equation

τ2(ϕ) := −∆ϕτ(ϕ)− RN (dϕ(ei ), τ(ϕ)) dϕ(ei ) = 0,

where ∆ϕ is the rough Laplacian on ϕ−1TN.

Every harmonic map is biharmonic (in the compact case, a minimizer
for E2); a non-harmonic biharmonic map is called proper biharmonic.
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Examples

Any polynomial map of degree at most 3 between Euclidean spaces.

The Almansi Property provides a method for constructing proper
biharmonic maps by using harmonic ones. The Almansi property
states that if f : Rm → R is harmonic, then the product function
r2f : Rm → R is proper biharmonic, i.e.

∆f = 0 ⇒ ∆2
(
r2f
)
= 0.

Here r : Rm → R denotes the distance function from the origin
defined by

r
(
x1, x2, . . . , xm

)
=

√
(x1)2 + (x2)2 + · · ·+ (xm)2.
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Biharmonic maps into spheres

Theorem 3.1 (Loubeau - Oniciuc, 2007)

Let M be a compact manifold and consider ψ : M → Sn(r/
√
2) a

nonconstant map, where Sn(r/
√
2) is a small hypersphere of radius r/

√
2

of Sn+1(r). The map φ = i ◦ ψ : M → Sn+1(r), where i is the canonical
inclusion, is proper biharmonic if and only if ψ is harmonic and the energy
density e(ψ) is constant.

Remark. We need compactness only for the direct implication.
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Example

We can consider the map ψ : S3(
√
2) → S2(1/

√
2) as being the classical

Hopf map and then by composing with the inclusion of S2(1/
√
2) into S3,

we obtain that

φ : S3(
√
2) =

{
(z1, z2) ∈ C2 :

∣∣z1∣∣2 + ∣∣z2∣∣2 = 2
}
→ S3

given by

φ(z1, z2) =
1

2
√
2

(
2z1z2,

∣∣z1∣∣2 − ∣∣z2∣∣2 , 2) (3.1)

=
1

2
√
2

(
2z1z2,

∣∣z1∣∣2 − ∣∣z2∣∣2 , ∣∣z1∣∣2 + ∣∣z2∣∣2)
is a proper biharmonic map (see [22]). As homothetic changes of the
domain or codomain metrics preserves the harmoncity and biharmonicity,
we can assume that φ maps S3 into S3. We also note that the components
of φ are (restrictions of) homogeneous polynomials of degree 2.
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Theorem 3.2 (Oniciuc - Ou, 2018)

Let φ : (Mm, g) → Sn be a map and let i : Sn → Rn+1 be the standard
isometric embedding. Then, φ is a biharmonic map if and only if the
vector function Φ = i ◦ φ : (Mm, g) → Rn+1 solves the following PDE

τ2(Φ) + 2|dΦ|2τ(Φ) (3.2)

+
(
−∆|dΦ|2+2divθ♯ − |τ(Φ)|2+2|dΦ|4

)
Φ+ 2dΦ

(
grad|dΦ|2

)
= 0.

We denoted θ = ⟨dΦ, τ(Φ)⟩ = ⟨dφ, τ(φ)⟩.
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Biharmonic homogeneous polynomial maps between
spheres

Next, we give an application of Theorem 3.2 for a particular class of maps.
Consider the diagram below

where F : Rm+1 → Rn+1 is a form of degree k . As usual, we assume that
φ is not constant.
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Theorem 3.3

The bitension field of the map φ is given by

τ2(φ) =
o
∆

o
∆F + 2

(
mk + 2k2 − 3k −m + 3−

∣∣∣∣odF ∣∣∣∣2
)

o
∆F

+

(
−2

o
∆

(∣∣∣∣odF ∣∣∣∣2
)

− 2

∣∣∣∣ o∇o
dF

∣∣∣∣2 + ∣∣∣ o∆F
∣∣∣2 + 2

∣∣∣∣odF ∣∣∣∣4 (3.3)

−2
(
2mk + 6k2 − 6k −m + 3

) ∣∣∣∣odF ∣∣∣∣2 + 4k2(m + 2k − 1)

)
Φ

+ 2
o
dF

(
o

grad

(∣∣∣∣odF ∣∣∣∣2
))

,

where
o
d,

o
∇,

o
∆ and

o
grad denote operators that act on Rm+1.
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Biharmonic quadratic maps between spheres

Let F : Rm+1 → Rn+1 be a quadratic form. Then, F can be written
in the form

F (x) =
(
X tA1X ,X

tA2X , . . . ,X
tAn+1 X

)
,

where x =
(
x1, x2, . . . , xm+1

)
coresponds to X t =

[
x1 x2 . . . xm+1

]
,

and A1, ..., An+1 are square symmetric matrices of order m + 1.
Assume that if |x |= 1, then |F (x)|= 1.

Since φ is not a constant map, therefore there exist
i0 ∈ {1, 2, . . . , n + 1} such that Ai0 is not Im+1 multiplied by a
non-zero real constant.
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We obtain that on Rm+1∣∣∣∣odF (x)∣∣∣∣2 = 4X t
(
A2
1 + A2

2 + · · ·+ A2
n+1

)
X = 4X tSX ,

o
∆F = − (2trA1, 2trA2, . . . , 2trAn+1) ,

o
∆

(∣∣∣∣odF ∣∣∣∣2
)

= −8tr
(
A2
1 + A2

2 + · · ·+ A2
n+1

)
= −8trS , (3.4)∣∣∣∣ o∇o

dF

∣∣∣∣2 = 4
(
|A1|2+|A2|2+ · · ·+ |An+1|2

)
,

o
grad

(∣∣∣∣odF ∣∣∣∣2
)

= 8X t
(
A2
1 + A2

2 + · · ·+ A2
n+1

)
= 8X tS ,

o
dF

(
o

grad

(∣∣∣∣odF ∣∣∣∣2
))

= 16
(
X tA1SX ,X

tA2SX , . . . ,X
tAn+1SX

)
.
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We observe that, since the matrices A1, ..., An+1 are symmetric, then

|A1|2+ · · ·+ |An+1|2= trS .

We note that, the condition S = αIm+1, where the real constant α

has to be greater than 1, is equivalent to |dφ|2, or
∣∣∣∣odF ∣∣∣∣2 restricted to

Sm, is constant.

Since F is a quadratic map, it follows that
o
∆F is constant on Rm+1.

Proposition 3.1

Let F : Rm+1 → Rn+1 be an arbitrary quadratic form. Then, with the
above notations,

8trS +
∣∣∣ o∆F

∣∣∣2 = 4(m + 1)(m + 3). (3.5)
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Theorem 3.4 (R.A., Oniciuc, Ou, 2023)

Let F : Rm+1 → Rn+1 be a quadratic form given by

F (x) =
(
X tA1X ,X

tA2X , . . . ,X
tAn+1 X

)
,

such that if |x |= 1 then |F (x)|= 1. We consider φ : Sm → Sn defined by
φ(x) = F (x) and Φ = i ◦ φ : Sm → Rn+1. Then, at a point x ∈ Sm, the
bitension field of φ has the following expression

τ2(φ)x =− 4
(
m + 5− 4X tSX

)
(trA1, trA2, . . . , trAn+1) (3.6)

+ 4
(
(m + 3)(m + 5)− 6(m + 5)X tSX + 8

(
X tSX

)2)
Φ(x)

+ 32
(
X tA1SX ,X

tA2SX , . . . ,X
tAn+1SX

)
.
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Proposition 3.2 (R.A., Oniciuc, Ou, 2023)

If the quadratic form φ has constant energy density, then φ is proper
biharmonic if and only if we have

e(φ) =
m + 1

2
. (3.7)

Proof. Since the map φ is not harmonic and has constant energy density,

it follows that
o
∆F ̸= 0 and S = αIm+1, for some α > 1. Using Equation

(3.6), we immediately obtain

τ2(φ)x =8

(
m + 5

4
− α

)
o
∆F + 32

(
α− m + 5

4

)(
α− m + 3

2

)
Φ(x)

The conclusion follows.
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Theorem 3.5 (R.A.,Oniciuc, Ou, 2023)

Up to orthogonal transformations of the domain and/or the codomain, the
only proper biharmonic quadratic form φ : S1 → Sn, n ≥ 2, is obtained
from the restriction of the quadratic form F : R2 → Rn+1, given by

F (x , y) =
(
x2, c1y2 + 2γ1xy , . . . , cny2 + 2γnxy

)
,

such that (
c1
)2

+ · · ·+ (cn)2 = 1, c1γ1 + · · ·+ cnγn = 0

and (
γ1
)2

+ · · ·+ (γn)2 =
1

2
.

Moreover, the image of φ is the circle of radius 1/
√
2 of Sn.
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Theorem 3.6 (R.A., Oniciuc, Ou, 2023)

There are no proper biharmonic quadratic forms from Sm to S2, m ≥ 2.

Theorem 3.7 (R.A., Oniciuc, Ou, 2023)

Up to homothetic transformations of the domain and/or codomain, the
only proper biharmonic quadratic form from Sm to S3, m ≥ 2, is the Hopf
fibration ψ : S3 → S2 followed by the inclusion, as described in example
(3.1).

Rareş-Mircea Ambrosie Classification of the biharmonic quadratic maps between spheres Diferential Geometry WorkshopSeptember 7th, 2023 25 / 38



Open Problem

All results obtained in the first paper1 suggested the following

Open Problem. If φ : Sm → Sn is a proper biharmonic quadratic form
then, up to an isometry of Sn, the first n components of φ are harmonic
polynomials on Rm+1 and form a map ψ : Sm → Sn−1(1/

√
2).

Using the results presented above, we can give a positive answer to this
problem.

1R. A., C. Oniciuc, Y.-L. Ou, Biharmonic homogeneous polynomial maps between
spheres, Results Math. 78 (2023), no. 4, Paper No. 159.
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Recall that if a quadratic form φ has constant energy density, then φ is
proper biharmonic if and only if we have e(φ) = (m + 1)/2.

Theorem 4.1 (R.A., Oniciuc, 2023)

Let φ : Sm → Sn be a quadratic form. Then φ is proper biharmonic if and
only if e(φ) = (m + 1)/2.

Proof. By using the standard coordinates, any quadratic form
F : Rm+1 → Rn+1 can be written as

F (x) =
m+1∑
i=1

ai
(
x i
)2

+
∑

1≤i<j≤m+1

aijx
ix j ,

where ai ∈ Rn+1, for i = 1, . . . ,m + 1, and aij ∈ Rn+1, for
1 ≤ i < j ≤ m + 1 satisfy 5 conditions (see 2).

2G. Toth, Quadratic Eigenmaps between Spheres, Geometriae Dedicata, 56 (1995),
35–52
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Proof

We transform the non-homogeneous polynomial map τ2(φ) from Equation
(3.6) into a homogeneous polynomial map of degree 6 because it is well
known that if a homogeneous polynomial vanishes on the sphere Sm, then
it vanishes on Rm+1. Thus, we obtain

− 4
∣∣x |4((m + 5)|x |2−4X tSX

)
(trA1, trA2, . . . , trAn+1) (4.1)

+ 4
(
(m + 3)(m + 5)|x |4−6(m + 5)|x |2X tSX + 8

(
X tSX

)2)
F (x)

+ 32|x |4
(
X tA1SX ,X

tA2SX , . . . ,X
tAn+1SX

)
= 0, on Rm+1

The matrix S defines a quadratic map. We perform an orthogonal change
of the domain variables x1, x2, . . ., xm+1 which brings S in diagonal form,
S = (si )1≤i≤m+1 . We analyse the coefficient list for each component of
the above homogeneous polynomial equation.
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Proof

For any i ∈ {1, 2, . . . , n + 1} we notice that the coefficient of (xk)6, which
has to vanish, gives

4 (5 +m − 4sk)
(
aik (3 +m − 2sk)− trAi

)
= 0, ∀k ∈ {1, 2, . . . ,m + 1},

(4.2)

Thus, for any k arbitrarily fixed, we have either

sk =
m + 5

4
,

or
aik (3 +m − 2sk)− trAi = 0, ∀i ∈ {1, 2, . . . , n + 1}.
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Corollary 4.1

Let φ : Sm → Sn be a proper biharmonic quadratic form. Then∣∣∣ o∆F
∣∣∣2 = 2(m + 1)2.
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The answer to the open problem

Theorem 4.2 (R.A., Oniciuc, 2023)

If φ : Sm → Sn is a proper biharmonic quadratic form then, up to an
isometry of Sn, the first n components of φ are harmonic polynomials on
Rm+1 and form a map ψ : Sm → Sn−1(1/

√
2).
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Applications

Using the result of Calabi concerning the uniqueness of compact minimal
2-dimensional round spheres in Sn, i.e. the uniqueness of the Boruvka
spheres (see 3 and also 4 and 5), we obtain

Theorem 4.3

Let φ : S2 → Sn be a full quadratic map. Assume that φ is homothetic.
Then φ is proper biharmonic if and only if n = 5, φ

(
S2
)
⊂ S4

(
1/
√
2
)
,

and up to homothetic changes of domain and codomain,
ψ : S2 → S4

(
1/

√
2
)
is the Veronese map.

3E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential
Geometry 1 (1967), 111–125

4R.L. Bryant, Minimal surfaces of constant curvature in Sn, Trans. Amer. Math.
Soc. 290 (1985), no. 1, 259–271

5K. Kenmotsu, Minimal surfaces with constant curvature in 4-dimensional space
forms, Proc. Amer. Math. Soc. 89 (1983), no. 1, 133–138
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Theorem 4.4 (Toth, 1987)

Full quadratic harmonic maps of S3 into Sn exist only if 2 ≤ n ≤ 8 and n ̸= 3. Moreover, if φ : S3 → Sn is such a map, then

there exist U ∈ O(4), V ∈ O(n + 1) and a symmetric positive definite matrix B ∈ S2
(
Rn+1

)
such that

V ◦ φ ◦ U = B ◦ φn,

where φn : S3 → Sn is defined by

φn (x) =



((
x1

)2
+

(
x2

)2
−

(
x3

)2
−

(
x4

)2
, 2

(
x1x3 − x2x4

)
, 2

(
x1x4 + x2x3

))
, n = 2((

x1
)2

+
(
x2

)2
−

(
x3

)2
−

(
x4

)2
, 2x1x3, 2x1x4, 2x2x3, 2x2x4

)
, n = 4((

x1
)2

−
(
x2

)2
,
(
x3

)2
−

(
x4

)2
, 2x1x2,

√
2
(
x1x3 + x2x4

)
,

√
2
(
x2x3 − x1x4

)
, 2x3x4

)
, n = 5(

1√
2

((
x1

)2
+

(
x2

)2
−

(
x3

)2
−

(
x4

)2
)

, 1√
2

((
x1

)2
−

(
x2

)2
)

,

1√
2

((
x3

)2
−

(
x4

)2
)

,
√
2x1x2,

√
3
(
x1x3 + x2x4

)
,

√
3
(
x2x3 − x1x4

)
,
√

2x3x4
)
, n = 6((

x1
)2

−
(
x2

)2
,
(
x3

)2
−

(
x4

)2
, 2x1x2,

√
2x1x3,

√
2x1x4,

√
2x2x3,

√
2x2x4, 2x3x4

)
, n = 7

φλ2

(
x1, x2, x3, x4

)
, (φλ2

= a standard minimal immersion) n = 8
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Proposition 4.1

Full quadratic proper biharmonic maps of S3 into Sn exist only if
3 ≤ n ≤ 9 and n ̸= 4. Moreover, if φ : S3 → Sn is such a map, then there
exist U ∈ O(4), V ∈ O(n + 1) and a symmetric positive definite matrix
B ∈ S2

(
Rn+1

)
such that

V ◦ φ ◦ U = B ◦
(

1√
2
φn,

1√
2

)
.

Also,

Proposition 4.2

There is no full quadratic proper biharmonic maps of S3 into S4.
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Thank You!
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