Spacelike hypersurfaces in the light cone of the Lorentz-Minkowski spacetime

Luis J. Alías¹

Departamento de Matemáticas Universidad de Murcia

Differential Geometry Workshop 2023

Alexandru Ioan Cuza University of Iasi Iasi, September 6-9, 2023

¹Partially supported by MICIN/FEDER project PID2021-124157NB-I00, Spain, and Fundación Séneca project reference 21899/PI/22, Spain.

The results I am going to introduce in this talk have been obtained in collaboration with the following colleagues:

- * Verónica L. Cánovas, from Universidad de Murcia (Spain).
- * Marco Rigoli, from Università degli Studi di Milano (Italy).
- They where motivated by previous work by Palomo and Romero (On spacelike surfaces in four-dimensional Lorentz-Minkowski spacetime through a light cone, Proc. R. Soc. Edinb. A 143 (2013), 881–892)
- Our results can be found in the following paper: Codimension two spacelike submanifolds of the Lorentz-Minkowski spacetime into the light cone, Proc. R. Soc. Edinb. A 149 (2019), 1523–1553.
- They were also part of Veronica's PhD thesis.

The Lorentz-Minkowski spacetime

 Let Lⁿ⁺² be the (n + 2)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_1)^2 + (dx_2)^2 + \cdots + (dx_{n+2})^2, \quad x = (x_1, x_2 \dots, x_{n+2})$$

• Consider on \mathbb{L}^{n+2} the time-orientation induced by the globally defined unit timelike vector field

$$\boldsymbol{e}_1 = (1, 0, \ldots, 0).$$

- Let Σ be a codimension-two spacelike submanifold immersed in \mathbb{L}^{n+2} . That is, Σ is an *n*-dimensional connected manifold admitting a smooth immersion $\psi: \Sigma \rightarrow \mathbb{L}^{n+2}$ such that the induced metric on Σ is Riemannian.
- In this talk, we are interested in the case where Σ is contained into the light cone of Lⁿ⁺².

The light cone of the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The light cone in \mathbb{L}^{n+2} is the degenerate hyperquadric

$$\Lambda = \{ x = (x_1, \ldots, x_{n+2}) \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x \neq \mathbf{0} \}.$$

- Geometrically, Λ corresponds to the subset of all points of the Lorentz-Minkowski space which can be reached from the origin 0 through a null geodesic starting at 0.
- The future component of Λ is

$$\Lambda^+ = \{ x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, \ x_1 > 0 \}.$$

Spacelike hypersurfaces of the light cone

- Let $\psi: \Sigma^n \to \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold and assume that $\psi(\Sigma)$ is contained into the future connected component of the light cone. When this happens, we will refer to Σ as a spacelike hypersurface of the light cone Λ^+ .
- In this case, there always exists a globally defined future-pointing normal null frame {k₊, k₋} on Σ.
- Define the positive function $u:\Sigma
 ightarrow(0,+\infty)$ by

$$u=-\langle\psi,\boldsymbol{e}_1\rangle=\psi_1>0.$$

Future-pointing normal null frame for a hypersurface of the light cone

In these conditions

$$\boldsymbol{k}_+ = \psi$$
 and $\boldsymbol{k}_- = -rac{1+\|
abla u\|^2}{2u^2}\boldsymbol{k}_+ + rac{1}{u}\boldsymbol{e}_1^{\perp}$

gives two future-pointing null normal vector fields globally defined on Σ with $\langle \mathbf{k}_+, \mathbf{k}_+ \rangle = \langle \mathbf{k}_-, \mathbf{k}_- \rangle = 0$ and $\langle \mathbf{k}_+, \mathbf{k}_- \rangle = -1$, where

$$\boldsymbol{e}_1 = \boldsymbol{e}_1^\top(\boldsymbol{p}) + \boldsymbol{e}_1^\perp(\boldsymbol{p}), \quad \boldsymbol{p} \in \Sigma.$$

The second fundamental form

Second fundamental form and mean curvature vector

Let $II : \mathfrak{X}(\Sigma) \times \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}^{\perp}(\Sigma)$ be the vector valued second fundamental form of the submanifold, that is the symmetric tensor

$$\amalg(X,Y)=-(\overline{\nabla}_XY)^{\perp}.$$

The mean curvature vector field of Σ is $\boldsymbol{H} = \frac{1}{n} \operatorname{trace}(\Pi) \in \mathfrak{X}^{\perp}(\Sigma)$.

- As usual in relativity, we may decompose the second fundamental form into two scalar valued null second fundamental forms, the Weingarten (or shape) operators asociated to k₊ and k₋.
- That is, the symmetric operators $A_{k_+}, A_{k_-} : \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}(\Sigma)$ given by

$$\langle A_{\boldsymbol{k}_+}X,Y\rangle = \langle \amalg(X,Y),\boldsymbol{k}_+\rangle, \text{ and } \langle A_{\boldsymbol{k}_-}X,Y\rangle = \langle \amalg(X,Y),\boldsymbol{k}_-\rangle.$$

• Therefore, in terms of $\{\boldsymbol{k}_+, \boldsymbol{k}_-\}$ we have $\boldsymbol{H} = -\theta_- \boldsymbol{k}_+ - \theta_+ \boldsymbol{k}_-$, where

$$\theta_+ = \frac{1}{n} \operatorname{trace}(A_{k_+}) \quad \text{and} \quad \theta_- = \frac{1}{n} \operatorname{trace}(A_{k_-})$$

define the null mean curvatures (or null expansion scalars) of Σ .

Mean curvature vector for a hypersurface of the light cone

Null shape operators for a submanifold into the light cone

The corresponding null second forms associated to the global null frame $\{\boldsymbol{k}_{+}, \boldsymbol{k}_{-}\}$ are given by

$$A_{k_{+}} = I$$
 and $A_{k_{-}} = -\frac{1 + \|\nabla u\|^2}{2u^2}I + \frac{1}{u}\nabla^2 u$,

where $\nabla^2 u$ is the Hessian operator of u.

In particular, the null expansions are

$$heta_+=rac{1}{n} ext{tr}(A_{m{k}_+})=1>0$$

and

$$\theta_{-} = \frac{1}{n} \operatorname{tr}(A_{k_{-}}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2},$$

where Δu is the Laplacian of u.

• Therefore, the mean curvature vector field of Σ is given by

$$\boldsymbol{H} = -\frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2}\boldsymbol{k}_+ - \boldsymbol{k}_-$$

Totally umbilical hypersurfaces in Λ^+

- As a first main application of our approach, we derive a classification of the spacelike hypersurfaces of the light cone which are totally umbilical in Lⁿ⁺².
- Recall that a submanifold Σ is said to be totally umbilical if it is umbilical with respect to all possible normal directions ζ ∈ 𝔅[⊥](Σ).
- Let $\psi : \Sigma \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a spacelike hypersurface and consider $\{\mathbf{k}_+, \mathbf{k}_-\}$ the associated normal null frame.
- We already know that $A_{k_+} = I$, so that Σ is totally umbilical if and only if it is umbilical with respect to the normal direction k_- .
- That is, if and only if there exists a smooth function λ such that $A_{\mathbf{k}_{-}} = \lambda I$, where I = identity.
- A standard computation using Codazzi equation implies that λ is constant.
- Define $\boldsymbol{Q} = -\boldsymbol{k}_{-} + \lambda \boldsymbol{k}_{+}$. Then for every $X \in \mathfrak{X}(\Sigma)$

$$\overline{\nabla}_{X}\boldsymbol{Q} = -A_{\boldsymbol{k}_{-}}X + \lambda A_{\boldsymbol{k}_{+}}X = -\lambda X + \lambda X = 0,$$

which implies that $\boldsymbol{Q} \in \mathbb{L}^{n+2}$ is a constant vector, $\boldsymbol{Q} \neq 0$ with $\langle \boldsymbol{Q}, \boldsymbol{Q} \rangle = 2\lambda$.

- If $\lambda \neq 0$, define $\tau = 1/\sqrt{2|\lambda|} > 0$ and let $\boldsymbol{a} = \tau \boldsymbol{Q} \in \mathbb{L}^{n+2}$.
- Then $\langle \pmb{a},\pmb{a}
 angle=c=\pm 1$ and $\langle\psi,\pmb{a}
 angle= au$, which means that

$$\psi(\Sigma) \subset \Sigma(a, \tau) = \{x \in \Lambda^+ : \langle x, a \rangle = \tau \}.$$

- On the other hand, if $\lambda = 0$, let $\boldsymbol{a} = \boldsymbol{Q} = -\boldsymbol{k}_{-} \in \mathbb{L}^{n+2}$.
- Then $\langle \pmb{a},\pmb{a}
 angle=c=0$ and $\langle\psi,\pmb{a}
 angle=1$, which means that

$$\psi(\Sigma) \subset \Sigma(a, 1) = \{x \in \Lambda^+ : \langle x, a \rangle = 1\}.$$

Theorem 1

The only spacelike hypersurfaces of the light cone Λ^+ which are totally umbilical in \mathbb{L}^{n+2} are open pieces of the following submanifolds

$$\Sigma(\mathbf{a}, \tau) = \{x \in \Lambda^+ : \langle x, \mathbf{a} \rangle = \tau\}$$

with $\mathbf{a} \in \mathbb{L}^{n+2}$, $\mathbf{a} \neq 0$, $\langle \mathbf{a}, \mathbf{a} \rangle = c \in \{-1, 0, 1\}$, with $\tau \in (0, +\infty)$ if $c = \pm 1$ and $\tau = 1$ if c = 0.

- It is not difficult to see that if c = 0 then Σ(a, 1) is isometric to the flat Euclidean space Rⁿ.
- On the other hand, when c = −1, Σ(a, τ) is isometric to the Euclidean sphere Sⁿ(τ) with constant sectional curvature 1/τ².
- Finally, when c = 1, $\Sigma(\mathbf{a}, \tau)$ is isometric to the hyperbolic space $\mathbb{H}^n(\tau)$ with constant sectional curvature $-1/\tau^2$.
- In particular, the only compact spacelike hypersurfaces of Λ^+ which are totally umbilical in \mathbb{L}^{n+2} are the submanifolds $\Sigma(\mathbf{a}, \tau)$ with $\langle \mathbf{a}, \mathbf{a} \rangle = -1$.

Compactness of hypersurfaces into the light cone

• We have the following compactness criteria for a spacelike hypersurface of the light cone, under an appropriate bound on the growth of the function *u*.

Proposition 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a spacelike hypersurface of the light cone Λ^+ . Assume that Σ is complete and that the positive function $u = -\langle \psi, \boldsymbol{e}_1 \rangle$ satisfies

$$u(p) \leq C r(p) \log(r(p)), \quad r(p) \gg 1$$

where C is a positive constant and r denotes the Riemannian distance function from a fixed origin $o \in \Sigma$. Then Σ is compact and conformally diffeomorphic to the sphere \mathbb{S}^n . In particular, this holds if $\sup_{\Sigma} u < +\infty$ and, more generally, if $\limsup_{r \to +\infty} \frac{u}{r \log(r)} < +\infty$.

• For the proof of Proposition 1 we need the following technical lemma about completeness of conformal metrics, which is a slight generalization of Lemma 5.2 in [AMc]²

Lemma 1

Let g be a complete metric on a Riemannian manifold Σ and let r denote the Riemannian distance function from a fixed origin $o \in \Sigma$. If a function w satisfies

$$w^{2/(n-2)}(p) \ge rac{C}{r(p)\log(r(p))}, \quad r(p) \gg 1,$$

with C a positive constant, then the conformal metric $\tilde{g} = w^{4/(n-2)}g$ is also complete.

• In [AMc] the result is stated under the stronger hypothesis

$$w^{2/(n-2)}(p) \geq rac{C}{r(p)}, \quad r(p) \gg 1,$$

but the proof is similar under our weaker hypothesis.

 2 [AMc] P. Aviles and R.C. McOwen, Conformal deformations to constant negative scalar curvature on noncompact Riemannian manifolds. JDG 27 (1988), 225–239

Proof of Proposition 1

- Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a spacelike hypersurface of Λ^+ .
- Then $\psi(p) = (u(p), \psi_2(p), \dots, \psi_{n+2}(p))$ with

$$\sum_{i=2}^{n+2}\psi_i^2(p) = u^2(p) > 0.$$

• Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by

$$\Psi(p)=\frac{1}{u(p)}(\psi_2(p),\ldots,\psi_{n+2}(p)).$$

• Then we can see that

$$\left\langle d\Psi_{p}(oldsymbol{v}),d\Psi_{p}(oldsymbol{w})
ight
angle _{0}=rac{1}{u^{2}(p)}\langleoldsymbol{v},oldsymbol{w}
angle$$

for every $p \in \Sigma$ and $\boldsymbol{v}, \boldsymbol{w} \in T_p \Sigma$, where \langle, \rangle_0 denotes the standard metric of the round sphere.

- In particular, Ψ: (Σ, ⟨, ⟩)→(Sⁿ, ⟨, ⟩₀) is conformal map and a local diffeomorphism.
- Assume now that Σ is complete (that is, \langle,\rangle is a complete Riemannian metric on Σ) and $u \leq Cr \log(r)$, $r \gg 1$.
- Therefore, by Lemma 1 applied to the function w = u^{-(n-2)/2}, we know that the conformal metric ζ, ζ = 1/μ² ζ, ζ is also complete on Σ.
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

is a local isometry between complete Riemannian manifolds.

 Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.

Compact spacelike hypersurfaces in Λ^+

Example 1

For each positive smooth function f : Sⁿ→(0, +∞), consider the embedding ψ_f : Sⁿ→Λ⁺ ⊂ Lⁿ⁺² given by

$$\psi_f(p) = (f(p), f(p)p).$$

• It is not difficult to see that for every $m{v},m{w}\in T_p\mathbb{S}^n$

$$\langle d(\psi_f)_p(\mathbf{v}), d(\psi_f)_p(\mathbf{w}) \rangle = f^2(p) \langle \mathbf{v}, \mathbf{w} \rangle_0$$

That is ψ^{*}_f(⟨,⟩) = f²⟨,⟩₀, which means that ψ_f defines a spacelike immersion of Sⁿ into Λ⁺ with induced metric conformal to ⟨,⟩₀.

• We already know that
$$\theta_{\mathbf{k}_+} = 1$$
.

• Moreover, we can also compute $\theta_{\mathbf{k}_{-}}$ to see that

$$\theta_{\mathbf{k}_{-}} = \frac{2f\Delta_0 f + (n-4)\|\nabla^0 f\|_0^2 - nf^2}{2nf^4},$$

where $\|\cdot\|_0^2$, ∇^0 and Δ_0 denote the norm, the gradient and the Laplacian on \mathbb{S}^n with respect to the standard metric \langle,\rangle_0 .

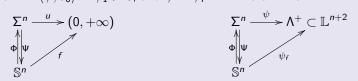
As a consequence of Proposition 1, we observe that every compact spacelike hypersurface in Λ^+ is, up to a conformal diffeomorphism, as in Example 1.

Theorem 2

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a compact spacelike hypersurface of the light cone Λ^+ . There exists a conformal diffeomorphism

$$\Psi:(\Sigma^n,\langle,\rangle)\to (\mathbb{S}^n,\langle,\rangle_0) \quad \text{such that} \quad \langle,\rangle=u^2\Psi^*(\langle,\rangle_0),$$

with $u = -\langle \psi, \boldsymbol{e}_0 \rangle = \psi_1 > 0$, and $\psi = \psi_f \circ \Psi$ where $f = u \circ \Psi^{-1}$.



In particular, the immersion ψ is an embedding.

Proof of Theorem 2

 For the proof of Theorem 2, simply consider u and Ψ as in the proof of Proposition 1, and recall that in this situation

 $\Psi: \left(\Sigma^n, \langle, \rangle\right) \to \left(\mathbb{S}^n, \langle, \rangle_0\right)$

is a conformal diffeomorphism with

$$\Psi^*(\langle,\rangle_0)=\frac{1}{u^2}\langle,\rangle.$$

• Let $\Phi : \mathbb{S}^n \to \Sigma^n$ be the inverse of Ψ .

• Then taking $f = u \circ \Phi$ one has $f \circ \Psi = u$ and $\psi = \psi_f \circ \Psi$, since

$$\psi_f \circ \Psi(p) = (f(\Psi(p)), f(\Psi(p))\Psi(p))$$

= $(u(p), \psi_2(p), \dots, \psi_{n+2}(p))$
= $\psi(p).$

Trapped submanifolds in the Lorentz-Minkowski space

A codimension-two spacelike submanifold $\boldsymbol{\Sigma}$ in the Lorentz-Minkowski space is said to be

- Future (past) trapped if *H* is timelike and future-pointing (past-pointing) on Σ.
- Future (past) marginally trapped if H is null and future-pointing (past-pointing) on Σ .
- Future (past) weakly trapped if \boldsymbol{H} is causal and future-pointing (past-pointing) on $\boldsymbol{\Sigma}$.
- The extreme case H = 0 corresponds to a minimal submanifold.

Recall that, in terms of a null frame $\{k_+, k_-\}$ on Σ , we have

$$\boldsymbol{H} = -\theta_{-}\boldsymbol{k}_{+} - \theta_{+}\boldsymbol{k}_{-}.$$

In particular

$$\langle \boldsymbol{H}, \boldsymbol{H} \rangle = -2\theta_{+}\theta_{-}.$$

Therefore, since $\langle \pmb{H}, \pmb{H} \rangle = -2\theta_+\theta_-$, we have that

- Σ is a trapped submanifold if and only if
 - i) either both $\theta_+ < 0$ and $\theta_- < 0$ (future trapped),
 - ii) or both $\theta_+ > 0$ and $\theta_- > 0$ (past trapped).
- Σ is a marginally trapped submanifold if and only if
 - i) either $\theta_+ = 0$ and $\theta_- \neq 0$ (marginally future trapped if $\theta_- < 0$ and marginally past trapped if $\theta_- > 0$),
 - ii) or $\theta_+ \neq 0$ and $\theta_- = 0$ (marginally future trapped if $\theta_+ < 0$ and marginally past trapped if $\theta_+ > 0$).
- Σ is a weakly trapped submanifold if and only if
 - i) either both $\theta_+ \leq 0$ and $\theta_- \leq 0$ with $\theta_+^2 + \theta_-^2 > 0$ (weakly futur trapped),
 - ii) or both $\theta_+ \ge 0$ and $\theta_- \ge 0$ with $\theta_+^2 + \theta_-^2 > 0$ (weakly past trapped).
- This was the original formulation of trapped surfaces given by Penrose (1965) in terms of the signs or the vanishing of the null expansions.

Trapped submanifolds into Λ^+

Recall that for a spacelike hypersurface Σ of the light cone Λ^+ we already know that $\theta_+ = \frac{1}{n} tr(A_{k_+}) = 1 > 0$ and

$$\theta_{-} = \frac{1}{n} \operatorname{tr}(A_{k_{-}}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2}$$

Corollary 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a spacelike hypersurface of the light cone of the Lorentz-Minkowski space.

• Σ is (necessarily past) marginally trapped if and only if $u = -\langle \psi, \mathbf{e}_0 \rangle$ satisfies the differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0 \quad \text{on } \Sigma.$$

• Σ is (necessarily past) weakly trapped if and only if $u = -\langle \psi, \mathbf{e}_0 \rangle$ satisfies the differential inequality

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0$$
 on Σ .

 On the other hand, it follows from the Gauss equation that the Ricci and the scalar curvatures of Σ are given by

$$\operatorname{Ric}(X,Y) = (n-1)\langle \boldsymbol{H}, \boldsymbol{H} \rangle \langle X, Y \rangle + \frac{n-2}{nu} (\Delta u \langle X, Y \rangle - n \operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)\langle \boldsymbol{H}, \boldsymbol{H}
angle = -(n-1)rac{2u\Delta u - n(1+\|
abla u\|^2)}{u^2}$$

Corollary 2

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a spacelike hypersurface of the light cone of the Lorentz-Minkowski space. Let u be the positive function $u = -\langle \psi, \boldsymbol{e}_1 \rangle$. The following are equivalent:

- i) Σ is marginally (resp. weakly) trapped.
- ii) u satisfies the differential equation (resp. inequality) on Σ

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0$$
 (resp. ≥ 0).

iii) Σ has zero scalar curvature, Scal = 0 (resp. Scal \leq 0).

Examples of trapped hypersurfaces in the light cone Λ^+

Example 2 (B.Y. Chen and J. Van der Veken, HJM 36 (2010), 421-449)

• Let $\psi: \mathbb{R}^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(p) = \left(\frac{\|p\|^2+1}{2}, \frac{\|p\|^2-1}{2}, p\right), \quad u(p) = \frac{\|p\|^2+1}{2}.$$

• Is is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in T_{p}\mathbb{R}^{n}$,

$$\langle d\psi_{
m p}({f v}), d\psi_{
m p}({f w})
angle = \langle {f v}, {f w}
angle_{{\mathbb R}^n}.$$

- That is ψ^{*}(⟨, ⟩) = ⟨, ⟩_{ℝⁿ}, which means that ψ is an isometric immersion of (ℝⁿ, ⟨, ⟩_{ℝⁿ}) into Λ⁺ ⊂ Lⁿ⁺².
- In particular, $\nabla u(p) = \nabla^{\mathbb{R}^n} u(p) = p$ and $\Delta u(p) = \Delta_{\mathbb{R}^n} u(p) = n$, and u satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) = n(\|p\|^2 + 1) - n(1 + \|p\|^2) = 0$$

which means ψ is a marginally trapped immersion of \mathbb{R}^n into Λ^+ .

Example 3 (B.Y. Chen and J. Van der Veken, HJM 36 (2010), 421-449)

- Let $\phi: (0, +\infty) \times \mathbb{H}^{n-1} \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by $\psi(t, p) = (p, \cos(t), \sin(t)), \quad u(p) = p_1.$
- Is is not difficult to see that φ^{*}(⟨, ⟩) = dt² + ⟨, ⟩_{ℍⁿ⁻¹}, which means that φ gives an isometric immersion of the Riemannian product manifold (0, +∞) × ℍⁿ⁻¹ into Λ⁺ ⊂ Lⁿ⁺².
- In particular, and after some computations, we have

$$\|
abla u\|^2 = -1 + u^2$$
 and $\Delta u = (n-1)u$,

which implies that

$$2u\Delta u - n(1 + \|\nabla u\|^2) = (n-2)u^2 \ge 0.$$

 Therefore, Σ is a weakly trapped submanifold, and it is marginally trapped if, and only if n = 2.

Non-existence of weakly trapped hypersurfaces in Λ^+

Proposition 2

There exists no compact hypersurface in Λ^+ which is weakly trapped in \mathbb{L}^{n+2} .

• The proof of Proposition 2 follows from that fact that

$$\langle \boldsymbol{H}, \boldsymbol{H} \rangle = -\frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{nu^2}$$

- Assume that Σ is compact and let p₀ ∈ Σ a point where u attains its maximum.
- At the point p_0 we have $\|\nabla u(p_0)\| = 0$ and $\Delta u(p_0) \le 0$, so that

$$\langle \boldsymbol{H}, \boldsymbol{H} \rangle(p_0) = rac{n-2u(p_0)\Delta u(p_0)}{nu^2(p_0)} \geq rac{1}{u^2(p_0)} > 0$$

what implies that $H(p_0)$ is spacelike and Σ cannot be weakly trapped.

Non-existence of weakly trapped hypersurfaces in Λ^+

As a consequence, using our compactness result for spacelike hypersurfaces of the light cone given in Proposition 1, we have

Corollary 3

There exists no complete hypersurface in Λ^+ which is weakly trapped in \mathbb{L}^{n+2} for which the positive function $u = -\langle \psi, e_1 \rangle$ satisfies

$$u \leq Cr \log r, \qquad r >> 1.$$

In particular, there is no complete hypersurface in Λ^+ which is weakly trapped in \mathbb{L}^{n+2} for which the positive function u is bounded from above.

More generally, with the aid of the weak maximum principle we can extend this non-existence result to the case of stochastically complete hypersurfaces as follows

Theorem 3

There exists no stochastically complete hypersurface in Λ^+ which is weakly trapped in \mathbb{L}^{n+2} for which the positive function u is bounded from above.

Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $\sup_{\Sigma} u = u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$.

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on a (non-necessarily complete) Riemannian manifold Σ if and only if Σ is stochastically complete.
- We recall that Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.
- This is equivalent (among other conditions) to the fact that for every $\lambda > 0$, the only non-negative bounded smooth solution u of $\Delta u \ge \lambda u$ on Σ is the constant u = 0.
- In particular, every parabolic manifold is stochastically complete. Hence, the weak max principle holds on every parabolic manifold.

Proof of Theorem 3

- Let ψ : Σⁿ → Λ⁺ ⊂ Lⁿ⁺² be a stochastically complete hypersurface in Λ⁺ which is weakly trapped in Lⁿ⁺².
- Consider $u=-\langle\psi, {m e}_1
 angle$ as usual, which satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0.$$
 (1)

Supose that u^{*} = sup_Σ u < +∞. Since Σ is stochastically complete, by the weak maximum principle there exists a sequence {p_k}_{k∈ℕ} ⊂ Σ with

$$\Delta u(p_k) < rac{1}{k} \quad ext{for every} \ \ k \in \mathbb{N}$$

• Putting this into (1) we obtain

$$n \leq n(1+\|
abla u(p_k)\|^2) \leq 2u(p_k)\Delta u(p_k) < 2rac{u(p_k)}{k},$$

and making $k \to +\infty$ we get

$$n \leq 0$$

which is not possible.

That's all !!

Thank you very much for your attention