
Spacelike hypersurfaces in the light cone of
the Lorentz-Minkowski spacetime

Luis J. Aĺıas1
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The results I am going to introduce in this talk have been obtained
in collaboration with the following colleagues:

? Verónica L. Cánovas, from Universidad de Murcia (Spain).

? Marco Rigoli, from Università degli Studi di Milano (Italy).

They where motivated by previous work by Palomo and Romero (On
spacelike surfaces in four-dimensional Lorentz-Minkowski spacetime
through a light cone, Proc. R. Soc. Edinb. A 143 (2013), 881–892)

Our results can be found in the following paper: Codimension two
spacelike submanifolds of the Lorentz-Minkowski spacetime into the
light cone, Proc. R. Soc. Edinb. A 149 (2019), 1523–1553.

They were also part of Veronica’s PhD thesis.
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The Lorentz-Minkowski spacetime

Let Ln+2 be the (n + 2)-dimensional Lorentz-Minkowski space,
endowed with the Lorentzian metric

〈, 〉 = −(dx1)2 + (dx2)2 + · · ·+ (dxn+2)2, x = (x1, x2 . . . , xn+2)

Consider on Ln+2 the time-orientation induced by the globally
defined unit timelike vector field

eee1 = (1, 0, . . . , 0).

Let Σ be a codimension-two spacelike submanifold immersed in
Ln+2. That is, Σ is an n-dimensional connected manifold admitting
a smooth immersion ψ : Σ→Ln+2 such that the induced metric on Σ
is Riemannian.

In this talk, we are interested in the case where Σ is contained into
the light cone of Ln+2.

Luis J. Aĺıas Spacelike hypersurfaces in the light cone of the Lorentz-Minkowski space



The light cone of the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The light cone in Ln+2 is the degenerate hyperquadric

Λ = {x = (x1, . . . , xn+2) ∈ Ln+2 : 〈x , x〉 = 0, x 6= 000}.

Geometrically, Λ corresponds to the subset of all points of the
Lorentz-Minkowski space which can be reached from the origin 000
through a null geodesic starting at 000.

The future component of Λ is

Λ+ = {x ∈ Ln+2 : 〈x , x〉 = 0, x1 > 0}.
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Spacelike hypersurfaces of the light cone

Let ψ : Σn → Ln+2 be a codimension-two spacelike submanifold and
assume that ψ(Σ) is contained into the future connected component
of the light cone. When this happens, we will refer to Σ as a
spacelike hypersurface of the light cone Λ+.

In this case, there always exists a globally defined future-pointing
normal null frame {kkk+,kkk−} on Σ.

Define the positive function u : Σ→ (0,+∞) by

u = −〈ψ,eee1〉 = ψ1 > 0.

Future-pointing normal null frame for a hypersurface of the light cone

In these conditions

kkk+ = ψ and kkk− = −1 + ‖∇u‖2

2u2
kkk+ +

1

u
eee⊥1

gives two future-pointing null normal vector fields globally defined on Σ
with 〈kkk+,kkk+〉 = 〈kkk−,kkk−〉 = 0 and 〈kkk+,kkk−〉 = −1, where

eee1 = eee>1 (p) + eee⊥1 (p), p ∈ Σ.
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The second fundamental form

Second fundamental form and mean curvature vector

Let q : X(Σ)× X(Σ)→X⊥(Σ) be the vector valued second fundamental
form of the submanifold, that is the symmetric tensor

q(X ,Y ) = −(∇XY )⊥.

The mean curvature vector field of Σ is HHH = 1
n trace(q) ∈ X⊥(Σ).

As usual in relativity, we may decompose the second fundamental
form into two scalar valued null second fundamental forms, the
Weingarten (or shape) operators asociated to kkk+ and kkk−.

That is, the symmetric operators Akkk+
,Akkk− : X(Σ)→X(Σ) given by

〈Akkk+
X ,Y 〉 = 〈q(X ,Y ),kkk+〉, and 〈Akkk−X ,Y 〉 = 〈q(X ,Y ),kkk−〉.

Therefore, in terms of {kkk+,kkk−} we have HHH = −θ−kkk+ − θ+kkk−,
where

θ+ =
1

n
trace(Akkk+

) and θ− =
1

n
trace(Akkk−)

define the null mean curvatures (or null expansion scalars) of Σ.
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Mean curvature vector for a hypersurface of the light cone

Null shape operators for a submanifold into the light cone

The corresponding null second forms associated to the global null frame
{kkk+,kkk−} are given by

Akkk+
= I and Akkk− = −1 + ‖∇u‖2

2u2
I +

1

u
∇2u,

where ∇2u is the Hessian operator of u.

In particular, the null expansions are

θ+ =
1

n
tr(Akkk+

) = 1 > 0

and

θ− =
1

n
tr(Akkk−) =

2u∆u − n(1 + ‖∇u‖2)

2nu2
,

where ∆u is the Laplacian of u.
Therefore, the mean curvature vector field of Σ is given by

HHH = −2u∆u − n(1 + ‖∇u‖2)

2nu2
kkk+ − kkk−.
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Totally umbilical hypersurfaces in Λ+

As a first main application of our approach, we derive a classification
of the spacelike hypersurfaces of the light cone which are totally
umbilical in Ln+2.

Recall that a submanifold Σ is said to be totally umbilical if it is
umbilical with respect to all possible normal directions ζ ∈ X⊥(Σ).

Let ψ : Σ→ Λ+ ⊂ Ln+2 be a spacelike hypersurface and consider
{kkk+,kkk−} the associated normal null frame.

We already know that Akkk+
= I , so that Σ is totally umbilical if and

only if it is umbilical with respect to the normal direction kkk−.

That is, if and only if there exists a smooth function λ such that
Akkk− = λI , where I = identity.

A standard computation using Codazzi equation implies that λ is
constant.

Define QQQ = −kkk− + λkkk+. Then for every X ∈ X(Σ)

∇XQQQ = −Akkk−X + λAkkk+
X = −λX + λX = 0,

which implies that QQQ ∈ Ln+2 is a constant vector, QQQ 6= 0 with
〈QQQ,QQQ〉 = 2λ.
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If λ 6= 0, define τ = 1/
√

2|λ| > 0 and let aaa = τQQQ ∈ Ln+2.

Then 〈aaa,aaa〉 = c = ±1 and 〈ψ,aaa〉 = τ , which means that

ψ(Σ) ⊂ Σ(aaa, τ) = {x ∈ Λ+ : 〈x ,aaa〉 = τ}.

.

On the other hand, if λ = 0, let aaa = QQQ = −kkk− ∈ Ln+2.

Then 〈aaa,aaa〉 = c = 0 and 〈ψ,aaa〉 = 1, which means that

ψ(Σ) ⊂ Σ(aaa, 1) = {x ∈ Λ+ : 〈x ,aaa〉 = 1}.

.
Theorem 1

The only spacelike hypersurfaces of the light cone Λ+ which are totally
umbilical in Ln+2 are open pieces of the following submanifolds

Σ(aaa, τ) = {x ∈ Λ+ : 〈x ,aaa〉 = τ}

with aaa ∈ Ln+2, aaa 6= 0, 〈aaa,aaa〉 = c ∈ {−1, 0, 1}, with τ ∈ (0,+∞) if
c = ±1 and τ = 1 if c = 0.
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It is not difficult to see that if c = 0 then Σ(aaa, 1) is isometric to the
flat Euclidean space Rn.

On the other hand, when c = −1, Σ(aaa, τ) is isometric to the
Euclidean sphere Sn(τ) with constant sectional curvature 1/τ 2.

Finally, when c = 1, Σ(aaa, τ) is isometric to the hyperbolic space
Hn(τ) with constant sectional curvature −1/τ 2.

In particular, the only compact spacelike hypersurfaces of Λ+ which
are totally umbilical in Ln+2 are the submanifolds Σ(aaa, τ) with
〈aaa,aaa〉 = −1.
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Compactness of hypersurfaces into the light cone

We have the following compactness criteria for a spacelike
hypersurface of the light cone, under an appropriate bound on the
growth of the function u.

Proposition 1

Let ψ : Σn → Λ+ ⊂ Ln+2 be a spacelike hypersurface of the light cone
Λ+. Assume that Σ is complete and that the positive function
u = −〈ψ,eee1〉 satisfies

u(p) ≤ C r(p) log(r(p)), r(p)� 1

where C is a positive constant and r denotes the Riemannian distance
function from a fixed origin o ∈ Σ. Then Σ is compact and conformally
diffeomorphic to the sphere Sn. In particular, this holds if supΣ u < +∞
and, more generally, if ĺım sup

r→+∞

u

r log(r)
< +∞.
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For the proof of Proposition 1 we need the following technical
lemma about completeness of conformal metrics, which is a slight
generalization of Lemma 5.2 in [AMc]2

Lemma 1

Let g be a complete metric on a Riemannian manifold Σ and let r denote
the Riemannian distance function from a fixed origin o ∈ Σ. If a function
w satisfies

w2/(n−2)(p) ≥ C

r(p) log(r(p))
, r(p)� 1,

with C a positive constant, then the conformal metric g̃ = w4/(n−2)g is
also complete.

In [AMc] the result is stated under the stronger hypothesis

w2/(n−2)(p) ≥ C

r(p)
, r(p)� 1,

but the proof is similar under our weaker hypothesis.
2[AMc] P. Aviles and R.C. McOwen, Conformal deformations to constant negative

scalar curvature on noncompact Riemannian manifolds. JDG 27 (1988), 225–239
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Proof of Proposition 1

Let ψ : Σn → Λ+ ⊂ Ln+2 be a spacelike hypersurface of Λ+.

Then ψ(p) = (u(p), ψ2(p), . . . , ψn+2(p)) with

n+2∑
i=2

ψ2
i (p) = u2(p) > 0.

Define the function Ψ : Σn → Sn by

Ψ(p) =
1

u(p)
(ψ2(p), . . . , ψn+2(p)).

Then we can see that

〈dΨp(vvv), dΨp(www)〉0 =
1

u2(p)
〈vvv ,www〉

for every p ∈ Σ and vvv ,www ∈ TpΣ, where 〈, 〉0 denotes the standard
metric of the round sphere.
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In particular, Ψ : (Σ, 〈, 〉)→(Sn, 〈, 〉0) is conformal map and a local
diffeomorphism.

Assume now that Σ is complete (that is, 〈, 〉 is a complete
Riemannian metric on Σ) and u ≤ Cr log(r), r � 1.

Therefore, by Lemma 1 applied to the function w = u−(n−2)/2, we

know that the conformal metric 〈̃, 〉 = 1
u2 〈, 〉 is also complete on Σ.

Then, the map

Ψ : (Σn, 〈̃, 〉)→ (Sn, 〈, 〉0)

is a local isometry between complete Riemannian manifolds.

Hence, Ψ is a covering map, but Sn being simply connected this
means that Ψ is in fact a global diffeomorphism.
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Compact spacelike hypersurfaces in Λ+

Example 1

For each positive smooth function f : Sn→(0,+∞), consider the
embedding ψf : Sn→Λ+ ⊂ Ln+2 given by

ψf (p) = (f (p), f (p)p).

It is not difficult to see that for every vvv ,www ∈ TpSn

〈d(ψf )p(vvv), d(ψf )p(www)〉 = f 2(p)〈vvv ,www〉0.

That is ψ∗f (〈, 〉) = f 2〈, 〉0, which means that ψf defines a spacelike
immersion of Sn into Λ+ with induced metric conformal to 〈, 〉0.

We already know that θkkk+
= 1.

Moreover, we can also compute θkkk− to see that

θkkk− =
2f ∆0f + (n − 4)‖∇0f ‖2

0 − nf 2

2nf 4
,

where ‖ · ‖2
0, ∇0 and ∆0 denote the norm, the gradient and the

Laplacian on Sn with respect to the standard metric 〈, 〉0.
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As a consequence of Proposition 1, we observe that every compact
spacelike hypersurface in Λ+ is, up to a conformal diffeomorphism, as in
Example 1.

Theorem 2

Let ψ : Σn → Λ+ ⊂ Ln+2 be a compact spacelike hypersurface of the
light cone Λ+. There exists a conformal diffeomorphism

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0) such that 〈, 〉 = u2Ψ∗(〈, 〉0),

with u = −〈ψ,eee0〉 = ψ1 > 0, and ψ = ψf ◦Ψ where f = u ◦Ψ−1.

Σn u //

Φ

��

(0,+∞)

Sn
f

;;

Ψ

OO Σn ψ //

Φ

��

Λ+ ⊂ Ln+2

Sn
ψf

99

Ψ

OO

In particular, the immersion ψ is an embedding.
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Proof of Theorem 2

For the proof of Theorem 2, simply consider u and Ψ as in the proof
of Proposition 1, and recall that in this situation

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

is a conformal diffeomorphism with

Ψ∗(〈, 〉0) =
1

u2
〈, 〉.

Let Φ : Sn → Σn be the inverse of Ψ.

Then taking f = u ◦ Φ one has f ◦Ψ = u and ψ = ψf ◦Ψ, since

ψf ◦Ψ(p) = (f (Ψ(p)), f (Ψ(p))Ψ(p))

= (u(p), ψ2(p), . . . , ψn+2(p))

= ψ(p).

Luis J. Aĺıas Spacelike hypersurfaces in the light cone of the Lorentz-Minkowski space



Trapped submanifolds in the Lorentz-Minkowski space

A codimension-two spacelike submanifold Σ in the Lorentz-Minkowski
space is said to be

Future (past) trapped if HHH is timelike and future-pointing
(past-pointing) on Σ.

Future (past) marginally trapped if HHH is null and future-pointing
(past-pointing) on Σ.

Future (past) weakly trapped if HHH is causal and future-pointing
(past-pointing) on Σ.

The extreme case HHH = 0 corresponds to a minimal submanifold.

Recall that, in terms of a null frame {kkk+,kkk−} on Σ, we have

HHH = −θ−kkk+ − θ+kkk−.

In particular
〈HHH,HHH〉 = −2θ+θ−.
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Therefore, since 〈HHH,HHH〉 = −2θ+θ−, we have that

Σ is a trapped submanifold if and only if

i) either both θ+ < 0 and θ− < 0 (future trapped),
ii) or both θ+ > 0 and θ− > 0 (past trapped).

Σ is a marginally trapped submanifold if and only if

i) either θ+ = 0 and θ− 6= 0 (marginally future trapped if θ− < 0 and
marginally past trapped if θ− > 0),

ii) or θ+ 6= 0 and θ− = 0 (marginally future trapped if θ+ < 0 and
marginally past trapped if θ+ > 0).

Σ is a weakly trapped submanifold if and only if

i) either both θ+ ≤ 0 and θ− ≤ 0 with θ2
+ + θ2

− > 0 (weakly futur
trapped),

ii) or both θ+ ≥ 0 and θ− ≥ 0 with θ2
+ + θ2

− > 0 (weakly past trapped).

This was the original formulation of trapped surfaces given by
Penrose (1965) in terms of the signs or the vanishing of the null
expansions.
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Trapped submanifolds into Λ+

Recall that for a spacelike hypersurface Σ of the light cone Λ+ we already
know that θ+ = 1

n tr(Akkk+
) = 1 > 0 and

θ− =
1

n
tr(Akkk−) =

2u∆u − n(1 + ‖∇u‖2)

2nu2
.

Corollary 1

Let ψ : Σn → Λ+ ⊂ Ln+2 be a spacelike hypersurface of the light cone of
the Lorentz-Minkowski space.

Σ is (necessarily past) marginally trapped if and only if u = −〈ψ,eee0〉
satisfies the differential equation

2u∆u − n(1 + ‖∇u‖2) = 0 on Σ.

Σ is (necessarily past) weakly trapped if and only if u = −〈ψ,eee0〉
satisfies the differential inequality

2u∆u − n(1 + ‖∇u‖2) ≥ 0 on Σ.
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On the other hand, it follows from the Gauss equation that the Ricci
and the scalar curvatures of Σ are given by

Ric(X ,Y ) = (n−1)〈HHH,HHH〉〈X ,Y 〉+n − 2

nu
(∆u〈X ,Y 〉−nHess u(X ,Y )),

and

Scal = n(n − 1)〈HHH,HHH〉 = −(n − 1)
2u∆u − n(1 + ‖∇u‖2)

u2
.

Corollary 2

Let ψ : Σn → Λ+ ⊂ Ln+2 be a spacelike hypersurface of the light cone of
the Lorentz-Minkowski space. Let u be the positive function
u = −〈ψ,eee1〉. The following are equivalent:

i) Σ is marginally (resp. weakly) trapped.

ii) u satisfies the differential equation (resp. inequality) on Σ

2u∆u − n(1 + ‖∇u‖2) = 0 (resp. ≥ 0).

iii) Σ has zero scalar curvature, Scal = 0 (resp. Scal ≤ 0).
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Examples of trapped hypersurfaces in the light cone Λ+

Example 2 (B.Y. Chen and J. Van der Veken, HJM 36 (2010), 421–449)

Let ψ : Rn → Λ+ ⊂ Ln+2 be the map given by

ψ(p) =

(
‖p‖2 + 1

2
,
‖p‖2 − 1

2
, p

)
, u(p) =

‖p‖2 + 1

2
.

Is is not difficult to see that for every v,w ∈ TpRn,

〈dψp(v), dψp(w)〉 = 〈v,w〉Rn .

That is ψ∗(〈, 〉) = 〈, 〉Rn , which means that ψ is an isometric

immersion of (Rn, 〈, 〉Rn) into Λ+ ⊂ Ln+2.

In particular, ∇u(p) = ∇Rn

u(p) = p and ∆u(p) = ∆Rnu(p) = n,
and u satisfies

2u∆u − n(1 + ‖∇u‖2) = n(‖p‖2 + 1)− n(1 + ‖p‖2) = 0

which means ψ is a marginally trapped immersion of Rn into Λ+.
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Example 3 (B.Y. Chen and J. Van der Veken, HJM 36 (2010), 421–449)

Let φ : (0,+∞)×Hn−1 → Λ+ ⊂ Ln+2 be the map given by

ψ(t, p) = (p, cos(t), sin(t)), u(p) = p1.

Is is not difficult to see that φ∗(〈, 〉) = dt2 + 〈, 〉Hn−1 , which means
that φ gives an isometric immersion of the Riemannian product
manifold (0,+∞)×Hn−1 into Λ+ ⊂ Ln+2.

In particular, and after some computations, we have

‖∇u‖2 = −1 + u2 and ∆u = (n − 1)u,

which implies that

2u∆u − n(1 + ‖∇u‖2) = (n − 2)u2 ≥ 0.

Therefore, Σ is a weakly trapped submanifold, and it is marginally
trapped if, and only if n = 2.
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Non-existence of weakly trapped hypersurfaces in Λ+

Proposition 2

There exists no compact hypersurface in Λ+ which is weakly trapped in
Ln+2.

The proof of Proposition 2 follows from that fact that

〈HHH,HHH〉 = −2u∆u − n(1 + ‖∇u‖2)

nu2
.

Assume that Σ is compact and let p0 ∈ Σ a point where u attains
its maximum.

At the point p0 we have ‖∇u(p0)‖ = 0 and ∆u(p0) ≤ 0, so that

〈HHH,HHH〉(p0) =
n − 2u(p0)∆u(p0)

nu2(p0)
≥ 1

u2(p0)
> 0

what implies that HHH(p0) is spacelike and Σ cannot be weakly
trapped.
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Non-existence of weakly trapped hypersurfaces in Λ+

As a consequence, using our compactness result for spacelike
hypersurfaces of the light cone given in Proposition 1, we have

Corollary 3

There exists no complete hypersurface in Λ+ which is weakly trapped in
Ln+2 for which the positive function u = −〈ψ,eee1〉 satisfies

u ≤ Cr log r , r >> 1.

In particular, there is no complete hypersurface in Λ+ which is weakly
trapped in Ln+2 for which the positive function u is bounded from above.

More generally, with the aid of the weak maximum principle we can
extend this non-existence result to the case of stochastically complete
hypersurfaces as follows

Theorem 3

There exists no stochastically complete hypersurface in Λ+ which is
weakly trapped in Ln+2 for which the positive function u is bounded from
above.
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Stochastic completeness and the weak maximum principle

The weak maximum principle is said to hold on Σ if, for any
u ∈ C2(Σ) with supΣ u = u∗ < +∞ there is a sequence {pk}k∈N in
Σ with

(i) u(pk) > u∗ − 1

k
, and (ii) ∆u(pk) <

1

k
.

Pigola, Rigoli and Setti (2003) proved that the weak maximum
principle holds on a (non-necessarily complete) Riemannian manifold
Σ if and only if Σ is stochastically complete.

We recall that Σ is said to be stochastically complete if its Brownian
motion is stochastically complete, i.e, the probability of a particle to
be found in the state space is constantly equal to 1.

This is equivalent (among other conditions) to the fact that for
every λ > 0, the only non-negative bounded smooth solution u of
∆u ≥ λu on Σ is the constant u = 0.

In particular, every parabolic manifold is stochastically complete.
Hence, the weak max principle holds on every parabolic manifold.
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Proof of Theorem 3

Let ψ : Σn → Λ+ ⊂ Ln+2 be a stochastically complete hypersurface
in Λ+ which is weakly trapped in Ln+2.

Consider u = −〈ψ,eee1〉 as usual, which satisfies

2u∆u − n(1 + ‖∇u‖2) ≥ 0. (1)

Supose that u∗ = supΣ u < +∞. Since Σ is stochastically complete,
by the weak maximum principle there exists a sequence
{pk}k∈N ⊂ Σ with

∆u(pk) <
1

k
for every k ∈ N

Putting this into (1) we obtain

n ≤ n(1 + ‖∇u(pk)‖2) ≤ 2u(pk)∆u(pk) < 2
u(pk)

k
,

and making k → +∞ we get

n ≤ 0

which is not possible.
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That’s all !!

Thank you very much for your attention
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