Beltrami representatives for homotopy classes of contact structures

Radu Slobodeanu ${ }^{1}$

${ }^{1}$ University of Bucharest, Faculty of Physics

Differential Geometry Workshop University of Vienna, September 2022
(1) fluids, (non-vanishing) Beltrami fields \& contact structures.
(2) Beltrami fields representatives on the 3 -sphere.
(3) Beltrami fields representatives on the 3-torus
(4) ABC fields on the 3 torus \& chaos.

References:

[1] Peralta-Salas D. and R. Slobodeanu, Contact structures and Beltrami fields on the torus and the sphere, arXiv:2004.10185, Indiana University Mathematics Journal, in press.
[2] Marciu M. and R. Slobodeanu, ABC-like flows on the 3-torus, Chaos, in press.
[3] Dombre T., et al, Chaotic streamlines in the ABC flows, Journal of Fluid Mechanics 167 (1986), 353-391.
(1) 3-sphere: $\mathbb{S}^{3}=\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in \mathbb{R}^{4} \mid x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}=1\right\}$ endowed with constant curvature 1 induced metric.
(2) 3-torus: $\mathbb{T}^{3}=\mathbb{R}^{3} /(2 \pi \mathbb{Z})^{3}$ endowed with the flat metric.

Why?

(1) conformally equivalent to the Euclidean 3 -space (natural compactification of the physical space)
(2) corresponds to periodic boundary conditions.

More generally, we prefer $M=$ oriented closed Riemannian manifold of odd dimension n, since then, the eigenforms of curl associated to eigenvalues $\neq 0$ are smooth, the multiplicity of any nonzero eigenvalue is finite, and curl defined on $\Omega_{C^{\infty}}^{(n-1) / 2}(M)$ is essentially self-adjoint in the Hilbert space $\Omega_{L^{2}}^{(n-1) / 2}(M)$, cf. [Christian Bär, J. Math. Phys. 60, 031501 (2019)]
(1) fluids, (non-vanishing) Beltrami fields \& contact structures.

Definition

$(M, g)=$ Riemannian 3-manifold. $V \in \Gamma(T M)$ is a steady Euler field/flow if $\exists p \in C^{1}(M)$ s.t. $\operatorname{div}\left(V^{b} \otimes V^{\mathrm{b}}+p g\right)=0$, or, equivalently,

$$
\left\{\begin{array}{lcc}
\nabla_{V} V & = & -\operatorname{grad} p \\
\operatorname{div} V & = & 0
\end{array}\right.
$$

- for steady incompressible fluids, the Bernoulli function $b=p+\frac{1}{2}|V|^{2}$ is conserved along the flow, $V(b)=0$. In particular, if b non-constant, then the flow is laminar (aka integrable), and M is foliated by tori or cylinders
- solutions with b is constant are called Beltrami fields. They satisfy: curl $V=f V$ and $\operatorname{div} V=0$, for some $f \in C^{\infty}(M)$. In this case f is conserved, $V(f)=0$.

$$
\operatorname{curl} V \times V=\nabla_{V} V-\frac{1}{2} \operatorname{grad}|V|^{2}
$$

- if $f \equiv \lambda$ (constant), then Beltrami fields are simply eigenfields of curl operator.
- there is a dichotomy (under some technical assumptions):
a steady Euler flow is either laminar or Beltrami with $f \equiv$ const.
or, in other words: complex dynamics (chaos, as expected in Lagrangian turbulence) can appear in a fluid at equilibrium only through Beltrami fields.
- "Beltramization": experimentally observed phenomenon that the velocity field and its curl (i.e., the vorticity) tend to align in turbulent regions.
- Beltrami fields $=$ another emergence of complexity in physics (different from the chaotic behavior!): Turing completeness of a system, related to the undecidability of its evolution. [Cardona et al, "Constructing Turing complete Euler flows in 3D", PNAS 2021]
$(M, g)=($ compact $)$ Riemannian 3-manifold.
- $\operatorname{SDiff}(M)=$ group of all diffeomorphisms of M preserving the volume form v_{g}
- $\Gamma_{0}(T M)=$ space of smooth divergence free vector fields
- energy $\mathcal{E}: \Gamma_{0}(T M) \rightarrow \mathbb{R}_{+}, \mathcal{E}(X)=\frac{1}{2} \int_{M}|X|^{2} v_{g}$
- variation: $X_{t}=\mathrm{d} \psi_{t}(X)$, where $\psi_{t} \in \operatorname{SDiff}(M), \psi_{0}=I d_{M}$.
- variation vector field: $v=\left.\frac{\partial \psi_{t}}{\partial t}\right|_{t=0} \in \Gamma_{0}(T M)$.

First variation formula - any $X \in \Gamma_{0}(T M)$

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}\left(X_{t}\right)\right|_{t=0}=-\int_{M}\left\langle v, \nabla_{X} X\right\rangle v_{g}
$$

- A curl eigenfield X corresponding to the 1st positive eigenvalue λ_{1} minimizes the energy \mathcal{E} among all vectors fields obtained from X by push-forward through volume-preserving diffeo's.

Definition

Let $\bar{P}: N \rightarrow \mathbb{R}_{+}$be a non-negative function on N. For every map $\varphi: M \rightarrow N$ the σ_{2}-energy with potential over a compact domain K is

$$
\begin{equation*}
\mathcal{E}_{\sigma_{2}, P}(\varphi, K)=\frac{1}{2} \int_{K}\left\{\left|\wedge^{2} \mathrm{~d} \varphi\right|^{2}+2 \bar{P} \circ \varphi\right\} \nu_{g} \tag{1}
\end{equation*}
$$

A map $\varphi: M \rightarrow N$ is called σ_{2}-critical with potential \bar{P} if for every compact domain K in M and for any variation $\left\{\varphi_{s}\right\}_{s \in(-\epsilon, \epsilon)}$ supported in K, of $\varphi=\varphi_{0}$, we have $\left.\frac{d}{d s}\right|_{s=0} \mathcal{E}_{\sigma_{2}, P}\left(\varphi_{s}, K\right)=0$.

Theorem [R.S. 2015]

If the C^{2} mapping $\varphi:\left(M^{3}, g\right) \rightarrow\left(N^{2}, h\right)$ is σ_{2}-critical with potential \bar{P}, and ω is the area 2 -form on N induced by h, then the vertical field $V=\left(* \varphi^{*} \omega\right)^{\sharp}$ satisfies the Euler equations for steady incompressible flows on M with Bernoulli function $P=\bar{P} \circ \varphi$. Conversely if V is a steady incompressible Euler solution on M, then it exists locally a σ_{2}-critical submersion with potential into some surface (N, h) with fibres tangent to V.

- contact form on (closed) 3-manifold M : a 1-form α s.t. $\alpha \wedge \mathrm{d} \alpha \neq 0$ (so $\alpha \wedge \mathrm{d} \alpha$ defines a volume form on M).
- (coorientable) contact structure: 2-plane field $\zeta \subset T M$ for which $\exists \alpha$ contact form s.t. $\zeta=\operatorname{ker} \alpha$
- Reeb vector field R : (uniquely) determined by: $\alpha(R)=1$, $\mathrm{d} \alpha(R, \cdot)=0$.
- Beltrami fields in terms of differential forms: $* \mathrm{~d} \alpha=f \alpha$, $\delta \alpha=0$. In particular, $\alpha \wedge \mathrm{d} \alpha=f|\alpha|^{2} \operatorname{vol}_{g}$.
- If Beltrami is nonvanishing and $f>0$, then $\alpha=V^{b}$ is a contact form and $R:=V / \alpha(V)$ is the corresponding Reeb field. We say that $\zeta=\operatorname{ker} \alpha$ is the contact structure engendered by the nonvanishing Beltrami field V.

Contact geometry \& hydrodynamics [Sullivan, Etnyre, Ghrist]

Any nonvanishing rotational Beltrami field is a reparametrization of a Reeb vector field for some contact form. Conversely, any reparametrization of a Reeb vector field of a contact structure is a nonvanishing rotational Beltrami field for some Riemannian metric.

- a disk Δ embedded in M which, along its boundary, is tangent to ζ, and its interior is transverse to ζ everywhere except at one point, is called overtwisted.
- Contact structures are classified in overtwisted (if such a disk exists) and tight (if not).
- standard examples (in $\left.\mathbb{R}^{3}\right): \alpha=d z+\rho^{2} d \theta$ (tight), $\alpha=\cos \rho d z+\rho \sin \rho d \theta$ (OT), with OT disk $\Delta=\{z=0, \rho \leq \pi\}$
- Gauss map of a contact structure with Reeb field R :
$\varphi_{R}: M \rightarrow \mathbb{S}^{2}, \varphi_{R}(p):=\frac{1}{\left|R_{p}\right|} R_{p}$.

Tight versus overtwisted contact structures - ii
Equivalence classes of contact structures:
$M=$ closed 3-manifold.
α_{0}, α_{1} contact forms.

GRAY
stability

Contact homotopic
$\left\{\alpha_{t}\right\}$ contact forms

$$
\forall t \in[0,1]
$$

Eliashberg only for OVERTWISTED)

Contact isotopic
$\left\{\varphi_{t}\right\}_{t}$ differ, $\varphi_{0}=i d$

$$
\varphi_{1}^{*} \alpha_{0}=f \cdot \alpha_{1}
$$

Contactomorphic

$$
\begin{aligned}
& \varphi^{*} \alpha_{0}=f \cdot \alpha_{1} \\
& \varphi=\text { differ. ; flo. }
\end{aligned}
$$

Homotonic through plane fields

$$
\left\{\alpha_{t}\right\}, \alpha_{t} \neq 0, \forall t \in[0,1]
$$

$o r$, equivaluetly, Gauss maps of α_{0} and α, are homotomic.

- "Any contact structure can be "spoiled" and made overtwisted using a Lutz twisting (a surgery of the structure, but not of the manifold) along a closed transversal. It is possible to make Lutz twisting without changing the homotopy class of the contact structure as a plane field." Yakov Eliashberg
- Eliashberg OT classification: contact isotopy classes of overtwisted contact structures on a closed 3-manifold are indexed by the Hopf invariant of their Gauss map. [Eliashberg, Invent. math. (1989)]
- OT Classification on \mathbb{S}^{3}. The homotopy classes of Gauss maps / plane-fields on \mathbb{S}^{3} are identified with elements of $\pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}$. The standard structure ζ_{0} belongs to class 0 . The class 0 contains exactly two nonequivalent (positive) contact structures: the standard and the overtwisted. All other classes k, $|k|=1,2,3, \ldots$, contain only one contact structure, the overtwisted. [Eliashberg, Ann. Inst. Fourier (1992)]

Open realization problem: do these classes admit a (non-vanishing) Beltrami field representative?

Tight versus overtwisted contact structures - iii

Rigidity for tightness: All tight contact structures on \mathbb{R}^{3} or \mathbb{S}^{3} are isomorphic to the standard ones.
Criteria for tightness / OTness:

- (Eliashberg-Gromov) A symplectically fillable contact structure is tight
- (Giroux) Let ζ be an S^{1}-invariant contact structure on a principal circle bundle $\pi: P \rightarrow \Sigma$ over a closed oriented surface Σ, with bundle Euler number $e(P)$. Let $\Gamma=\pi\left(\Gamma_{S^{1}}\right)$ be a projection of the characteristic surface $\Gamma_{S^{1}}$ onto Σ.
(1) ζ is universally tight if and only if one of the following holds:
(i) For $\Sigma \neq \mathbb{S}^{2}$ none of the connected components of $\Sigma \backslash \Gamma$ is a disc.
(ii) For $\Sigma=\mathbb{S}^{2}, e(P)<0$ and $\Gamma=\emptyset$.
(iii) For $\Sigma=\mathbb{S}^{2}, e(P) \geqslant 0$ and Γ is connected (non-empty).
(2) if $\Sigma \backslash \Gamma$ has a component diffeomorphic to a disk, the contact structure is tight only if Γ is connected.

Definition

For a vector field X preserving the contact distribution ζ (i.e. $\mathcal{L}_{X} \alpha=0$), the characteristic surface is $\Gamma_{X}=\left\{p \in M: X_{p} \in \zeta_{p}\right\}$.
rigidity/flexibility in contact topology when a Riemannian metric is considered.

Definition: weakly compatible metrics

A Riemannian metric g on M is weakly compatible with a contact form α if there exists a function $f>0$ such that

$$
\star d \alpha=f \alpha,
$$

where \star is computed with the metric $g(\Longrightarrow$ the Reeb field R is g-orthogonal to the contact structure ξ). Moreover, if $|\alpha|_{g}=1$ and $f=$ const, g is called compatible with α.

Remark: if V is a nonvanishing curl eigenfield on (M, g), then g is weakly compatible with the contact form α engendered by V.

Compatible metrics are severely restricted, as shown by the following pinching theorem:

Theorem (Etnyre, Komendarczyk \& Massot, 2012)

Let (M, α) be a contact 3 -manifold. If there exists a compatible metric g with pinched sectional curvature

$$
0<\frac{4}{9} K_{0}<\sec (g)<K_{0}
$$

then α is tight and M is covered by \mathbb{S}^{3}.
Open problem: does the contact sphere theorem hold for weakly compatible metrics? In particular, can an overtwisted contact structure be engendered by a nonvanishing curl eigenfield on the round \mathbb{S}^{3} ?
(2) Beltrami fields representatives on the 3 -sphere.
the spectrum of the curl operator on \mathbb{S}^{3} is given by

$$
\{\lambda= \pm(k+2), k \in \mathbb{N}\} .
$$

Theorem 1 (R.S. and D. Peralta-Salas)

Any nonvanishing curl eigenfield on \mathbb{S}^{3} has even eigenvalue $\lambda=2 m$, $m \in\{ \pm 1, \pm 2, \cdots\}$. Moreover, for each $|m| \geq 2$ there exists a nonvanishing curl eigenfield V_{m} whose associated contact structure is overtwisted. The homotopy classes of the corresponding contact plane fields have Hopf index

$$
\text { Hopf index }=\frac{1}{2}\left(\operatorname{sign}(m)(-1)^{m+1}-1\right)
$$

Corollary. The round metric on \mathbb{S}^{3} is weakly compatible with an OT contact structure.

- we work in Hopf coordinates $\left(s, \phi_{1}, \phi_{2}\right), s \in[0, \pi / 2]$, $\phi_{1,2} \in[0,2 \pi)$:

$$
z_{1}=\cos s e^{i \phi_{1}}, \quad z_{2}=\sin s e^{i \phi_{2}}
$$

- the Hopf and anti-Hopf fields are given by:

$$
R=\partial_{\phi_{1}}+\partial_{\phi_{2}}, \quad R^{\prime}=\partial_{\phi_{1}}-\partial_{\phi_{2}}
$$

and we have: curl $R=2 R$ and curl $R^{\prime}=-2 R^{\prime}$.

- $\{s=0\} \cup\{s=\pi / 2\}$ corresponds to the Hopf link in \mathbb{S}^{3}.
- the standard round metric is: $d s^{2}+\cos ^{2} s d \phi_{1}^{2}+\sin ^{2} s d \phi_{2}^{2}$
- in terms of the (positively oriented) standard orthonormal global frame $\left\{R, X_{1}, X_{2}\right\}$, a Beltrami field V reads:

$$
V=f R+f_{1} X_{1}+f_{2} X_{2}
$$

Key Proposition

f, f_{1}, f_{2} are eigenfunctions of the Laplacian on \mathbb{S}^{3} with eigenvalue $-\lambda(\lambda-2)$.
\Longrightarrow If λ is odd, then V has zeros. Indeed, f, f_{1}, f_{2} are restrictions on \mathbb{S}^{3} of homogeneous harmonic polynomials in \mathbb{R}^{4} of odd degree. Borsuk-Ulam theorem then implies that the map $\left(f, f_{1}, f_{2}\right): \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ has a non-empty zero set.

KKPS construction (Khesin, Kuksin \& P-S, 2014)

Let $F, G: \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions. Then the vector field

$$
V=F\left(\cos ^{2} s\right) R+G\left(\cos ^{2} s\right) R^{\prime}
$$

is a steady Euler flow on the round sphere.
Step 1: For a suitable choice of F, G, V is a Beltrami field. Indeed, taking $\lambda=2 m, m \geqslant 2$,

$$
F \equiv F_{m}=\frac{1}{m} P_{m-1}^{(1,1)}(1-2 z), \quad G \equiv G_{m}=\frac{1}{m+1} P_{m-2}^{(1,1)}(1-2 z)
$$

where $z=\cos ^{2} s$ and $\left\{P_{*}^{(1,1)}\right\}$ is the family of orthogonal Jacobi polynomials of degree $* . \Longrightarrow$ Since the zeros of the Jacobi polynomials interlace, the Beltrami fields $V \equiv V_{m}$ are nonvanishing.

Properties of V_{m}

(1) The Hopf link is a set of periodic orbits of V_{m}.
(2) V_{m} is integrable in the sense that $\{s=$ const $\}$ are invariant tori.
(3) V_{m} is \mathbb{S}^{1}-invariant in the sense that $\left[V_{m}, R\right]=0$.

Step 2: The contact forms engendered by V_{m} are overtwisted. Indeed, notice that

$$
\alpha_{m}:=V_{m}^{b}=\cos ^{2} s\left(F_{m}+G_{m}\right) d \phi_{1}+\sin ^{2} s\left(F_{m}-G_{m}\right) d \phi_{2}
$$

is a contact form. Moreover, it is \mathbb{S}^{1}-invariant: $L_{R} \alpha_{m}=0$.
Giroux's first criterion Consider the characteristic surface

$$
\Gamma_{R}:=\left\{p \in \mathbb{S}^{3}: R \text { is tangent to } \xi_{m} \text { at } p\right\}
$$

Then α_{m} is tight if and only if $\Pi\left(\Gamma_{R}\right)=\emptyset, \Pi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ is the Hopf fibration.

For α_{m}, Γ_{R} consists of toroidal surfaces in \mathbb{S}^{3} :

$$
\left\{s \in[0, \pi / 2]: F_{m}\left(\cos ^{2} s\right)+\left(2 \cos ^{2} s-1\right) G_{m}\left(\cos ^{2} s\right)=0\right\}
$$

This set is nonempty and $\Pi\left(\Gamma_{R}\right) \neq \emptyset$ (a set of circles) $\Longrightarrow \alpha_{m}$ is overtwisted.
Step 3: Compute the Hopf invariant of the map $\varphi_{m}: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$:

$$
\varphi_{m}(p):=\frac{1}{\left(f(p)^{2}+f_{1}(p)^{2}+f_{2}(p)^{2}\right)^{1 / 2}}\left(f(p), f_{1}(p), f_{2}(p)\right)
$$

which is an integer $\in \pi_{3}\left(\mathbb{S}^{2}\right)=\mathbb{Z}$

Lemma

If $m \geqslant 1, V_{m}$ is homotopic through nonvanishing fields to:
(a) R if m is odd.
(b) R^{\prime} if m is even.

Hopf invariant of R is 0 , and of R^{\prime} is -1 (Whitehead's formula).

The construction for $m \leqslant-2$ is similar (in fact, V_{m} and $V_{-m}, m \geqslant 1$, are related by an orientation-reversing diffeo of \mathbb{S}^{3}).
Examples

$$
\begin{aligned}
& V_{2}=-\frac{1}{3}(3 \cos 2 s-1) \partial_{\phi_{1}}-\frac{1}{3}(3 \cos 2 s+1) \partial_{\phi_{2}}, \\
& V_{3}=\left(\frac{3}{2}-6 \cos ^{2} s+5 \cos ^{4} s\right) \partial_{\phi_{1}}+\left(\frac{1}{2}-4 \cos ^{2} s+5 \cos ^{4} s\right) \partial_{\phi_{2}} .
\end{aligned}
$$

The case of lowest eigenvalue $\lambda=2$ (or $\lambda=-2$) is special: all corresponding Beltrami fields are isometric to R (resp. R^{\prime}).
Moreover, they exhibit a remarkable geometric rigidity:

Theorem (Gluck \& Gu, 2001)

Let V be a Beltrami field on \mathbb{S}^{3} with $|V|=1$. Then $\lambda= \pm 2$ and V is isometric the Hopf (or anti-Hopf) field.

We provide a different (and simpler) proof using the Key Proposition above and standard classification results for harmonic morphisms.

- Prove: a curl eigenfield V with $\lambda>2$ cannot have constant norm
- Suppose that $V=f R+f_{1} X_{1}+f_{2} X_{2}$ has const (unit) norm. Then the Gauss map is $\varphi_{V}=\left(f, f_{1}, f_{2}\right): \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ and it is an eigenmap (harmonic map with constant energy density), has minimal fibres and V is tangent to them $\left(\nabla_{V} V=\frac{1}{2} \operatorname{grad}|V|^{2}\right)$.
- Weitzenbock formula for a harmonic $\operatorname{map} \varphi: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$:

$$
\frac{1}{2} \Delta|\mathrm{~d} \varphi|^{2}=|\nabla \mathrm{d} \varphi|^{2}+2|\mathrm{~d} \varphi|^{2}-2\left|\Lambda^{2} \mathrm{~d} \varphi\right|^{2}
$$

in our case $\Rightarrow 2\left|\Lambda^{2} \mathrm{~d} \varphi_{V}\right|^{2} \geq 2 \lambda(\lambda-2)>0$, so $\operatorname{rank}\left(d \varphi_{V}\right)=2$

- Apply the following to deduce that φ_{V} is a harmonic morphism

Paul Baird 1992

A harmonic map of rank 2 almost everywhere from a closed 3-manifold to a surface such that: (i) $\operatorname{Ric}\left(E_{1}, E_{1}\right)=\operatorname{Ric}\left(E_{2}, E_{2}\right)>0$, (ii) the regular fibres are minimal, and (iii) $\operatorname{grad} e(\varphi)$ is horizontal, is horizontally conformal (a harmonic morphism).

- Apply the classification of the harmonic morphisms to deduce that φ_{V} is essentially Hopf fibration so $\lambda=2$, contradiction
- Prove: any eigenfield with eigenvalue 2 is isometric to the Hopf field
(3) Beltrami fields representatives on the 3 -torus
the spectrum of the curl operator curl $=* \mathrm{~d}$ on the flat 3 -torus \mathbb{T}^{3} is given by

$$
\left\{\lambda= \pm|k|: k \in \mathbb{Z}^{3}\right\} \quad\left(|k|:=\sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}\right)
$$

where an eigenvalue λ has the multiplicity $\sharp\left\{\mu \in \mathbb{Z}^{3},|\mu|=|\lambda|\right\}$.

Theorem 2 (R.S. and D. Peralta-Salas)

For each eigenvalue λ of curl on \mathbb{T}^{3}, there exists a nonvanishing curl eigenfield V_{λ} which is homotopically trivial and whose associated contact structure is tight. Moreover, all tight contactomorphic classes are realized this way. Furthermore, there exist infinitely many eigenvalues $\left\{\lambda_{\ell}\right\}_{\ell \in \mathbb{N}^{*}}$ and corresponding eigenfields V_{ℓ} such that, for each ℓ, the contact structure engendered by V_{ℓ} is overtwisted.

- For any non-zero vector $b \in \mathbb{R}^{3}, b \perp k$, the vector field

$$
\begin{equation*}
V_{k}=\cos (k \cdot x) b+\frac{1}{|k|} \sin (k \cdot x) b \times k \tag{2}
\end{equation*}
$$

is an eigenfield of the curl operator with eigenvalue $|k|$

- $\left|V_{k}\right|=|b|$ (constant norm), so V_{k} is nonvanishing and then it induces a contact structure on \mathbb{T}^{3}.
- All these contact structures are tight (our proof, simple).
- with $k=(0,0, m), m \in \mathbb{Z}$, and $b=(0,1,0)$, we find the standard family of contact structures on \mathbb{T}^{3} :

$$
\begin{equation*}
\eta_{m}=\sin \left(m x_{3}\right) \mathrm{d} x_{1}+\cos \left(m x_{3}\right) \mathrm{d} x_{2}, \quad m \in \mathbb{Z} \tag{3}
\end{equation*}
$$

corresponding to the integer part of the spectrum: $* \mathrm{~d} \eta_{m}=m \eta_{m}$.

Tight classification on \mathbb{T}^{3} [Y. Kanda, Comm. Anal. Geom. 1997]

- the contact forms η_{m} are tight and homotopically trivial, but they belong to distinct contactomorphic classes: there is no contactomorphism $\left(\mathbb{T}^{3}, \zeta_{n}\right) \rightarrow\left(\mathbb{T}^{3}, \zeta_{m}\right)$ if $n \neq m$.
- any tight contact structure on \mathbb{T}^{3} is contactomorphic to one of these η_{m}

torus case - proof ii

For the second claim we consider the equivariant curl eigenfield

$$
V=\frac{\partial f}{\partial x_{2}} \partial_{x_{1}}-\frac{\partial f}{\partial x_{1}} \partial_{x_{2}}+\lambda f \partial_{x_{3}},
$$

where $f \equiv f\left(x_{1}, x_{2}\right)$ is a λ^{2}-eigenfunction of the Laplacian on \mathbb{T}^{2}.

Lemma (Peralta-Salas \& R.S.)

There exists an infinite sequence of eigenvalues $\left\{\Lambda_{\ell}\right\}_{\ell \in \mathbb{N}^{*}}$ and corresponding eigenfunctions f_{ℓ} of the Laplacian on \mathbb{T}^{2} such that, for each ℓ, the nodal set of f_{ℓ} is regular, disconnected, and contains a contractible connected component.
(1) The Beltrami field V_{ℓ} defined using f_{ℓ} has eigenvalue $\sqrt{\Lambda_{\ell}}$ and is nonvanishing.
(2) The contact form $\eta_{\ell}:=V_{\ell}^{b}$ is \mathbb{S}^{1}-invariant with respect to the action generated by $Z:=\partial_{x_{3}}$. The projection onto \mathbb{T}^{2} defined by Z is $\Pi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)$.
(3) For Giroux' characteristic surface $\Gamma_{Z}^{\ell}:=\left\{p \in \mathbb{T}^{3}: Z\right.$ tangent to the contact distribution ker η_{ℓ} at $\left.p\right\}$ we have $\Pi\left(\Gamma_{Z}^{\ell}\right)=$ the nodal set of f_{ℓ}.

- Giroux's second criterion: If $\mathbb{T}^{2} \backslash \Pi\left(\Gamma_{Z}^{\ell}\right)$ has a component diffeomorphic to a disk, the contact structure defined by η_{ℓ} is tight only if $\Pi\left(\Gamma_{Z}^{\ell}\right)$ is connected.
Since the nodal set of f_{ℓ} is disconnected, and its complement in \mathbb{T}^{2} contains a disk, Giroux's criterion implies that η_{ℓ} is overtwisted.
- Remark 1: The proof of the existence of the eigenfunctions f_{ℓ} is not constructive (it is based on the inverse localization technique developed by Enciso, Peralta-Salas \& Torres de Lizaur (2017), which allows us to transplant the nodal set of a monochromatic wave in \mathbb{R}^{2} into the nodal set of an eigenfunction in \mathbb{T}^{2} with high eigenvalue.).
- Remark 2: We cannot compute the Hopf invariant of the overtwisted contact structures obtained this way (they are not explicit).
- Problem 1: Do there exist tight Beltrami fields on \mathbb{S}^{3} with eigenvalue $\lambda \neq \pm 2$?
- Problem 2: Can any overtwisted contact structure be engendered by a Beltrami field on \mathbb{S}^{3} ?
- Problem 3: Which overtwisted contact structures can be engendered by Beltrami field on \mathbb{T}^{3} ?
(1)
(2)

B
(4) ABC fields on the 3 -torus \& chaos.

Motivations:

- all contact forms associated to "small" eigenvalue Beltrami's on \mathbb{T}^{3} are tight? (for the first eigenvalue $\lambda=1$ this is true)
- go beyond the well-understood example of $A B C$ (Arnold-Beltrami-Childress) flow when finding chaos

3-dim. steady flows with chaotic Lagrangian structure: infinitesimally close fluid particles following the streamlines may separate exponentially in time, while remaining in a bounded domain, and individual streamlines may appear to fill entire regions of space.

Thus the positions of fluid particles may become effectively unpredictable for long times.

Standard ABC flow on \mathbb{T}^{3} analysed (for the first time) in [3]

$$
\begin{array}{r}
\dot{x}=A \sin (z)+C \cos (y) \\
\dot{y}=A \cos (z)+B \sin (x) \tag{4}\\
\dot{z}=B \cos (x)+C \sin (y)
\end{array}
$$

curl-eigenfield for $\lambda_{1}=1$
Our ABC-like flow on \mathbb{T}^{3}

$$
\begin{align*}
& \dot{x}=-\frac{A}{\sqrt{2}} \sin (x+y)+\frac{B}{\sqrt{2}} \sin (x+z)+C \cos (y+z) \\
& \dot{y}=\frac{A}{\sqrt{2}} \sin (x+y)+B \cos (x+z)-\frac{C}{\sqrt{2}} \sin (y+z) \tag{5}\\
& \dot{z}=A \cos (x+y)-\frac{B}{\sqrt{2}} \sin (x+z)+\frac{C}{\sqrt{2}} \sin (y+z)
\end{align*}
$$

curl-eigenfield for $\lambda_{2}=\sqrt{2}$

Theorem (R.S. \& M. Marciu)

On the flat 3 -torus, every nonvanishing ABC-like Beltrami field (5) is transverse to a tight contact structure in the same contactomorphism class as the standard contact form $\eta_{1}=\sin z \mathrm{~d} x+\cos z \mathrm{~d} y$.

Parameter space for ABC-like fields that do not vanish anywhere. This is path connected so all fields are deformable into the $(A, B, C)=(1,0,0)$-like field, which engenders a contact structure contactomorphic to η_{1} (proof: explicit contact diffeo $\oplus 1$-parameter homotopy through contact forms).

The classical $A B C$-flow (4), with the choice $A=1, B=\sqrt{\frac{2}{3}}, C=\frac{1}{\sqrt{3}}$, can be visualised via Poincaré sections displaying 'chaotic' and 'ordered' regions (cf.[3]):

Figure: Poincaré section of the standard ABC flow through the plane $z=0$

Figure: Poincaré section of the standard ABC flow through the plane $y=0$

Figure: Poincaré sections of the standard ABC flow through the plane $x=0$
see also http://ameli.github.io/lcs/ for LCS visualisation

The Poincaré sections for the ABC-like flow (5) for the same values of the parameters A, B and C (for which there exists stagnation points!).

Figure: Poincaré section of ABC-like flow through the plane $x=0$

Poincaré section of ABC-like flow through the plane $x+y=0$:

Z

6

flow visualisation

For the parameters $(A, B, C)=(1,0.4,0.01)$ our ABC-like flow have no stagnation points and looks like:

introducing new coordinates $\tilde{x}=x, \tilde{y}=x+y, \tilde{z}=x+z$ (which amounts to a push-forward of v through a volume preserving diffeomorphism of \mathbb{T}^{3}) and rescaling the coefficients A, B, C with $\sqrt{3 / 2}$, the dynamical system (5) takes the form

$$
\begin{align*}
& \dot{\tilde{x}}=-\frac{1}{\sqrt{3}}(A \sin (\tilde{y})-B \sin (\tilde{z}))+C \sqrt{\frac{2}{3}} \cos (2 \tilde{x}-\tilde{y}-\tilde{z}) \\
& \dot{\tilde{y}}=B \cos \left(\tilde{z}-\varphi_{0}\right)+C \cos \left(2 \tilde{x}-\tilde{y}-\tilde{z}-\varphi_{0}\right) \tag{6}\\
& \dot{\tilde{z}}=A \cos \left(\tilde{y}+\varphi_{0}\right)+C \cos \left(2 \tilde{x}-\tilde{y}-\tilde{z}+\varphi_{0}\right)
\end{align*}
$$

so that the first integral in the case $C=0$ is independent of \tilde{x} :

$$
\begin{equation*}
\widetilde{H}(\tilde{y}, \tilde{z})=A \sin \left(\tilde{y}+\varphi_{0}\right)-B \sin \left(\tilde{z}-\varphi_{0}\right) \tag{7}
\end{equation*}
$$

The function \tilde{H} has 4 critical points $\left(\tilde{y}_{0}, \tilde{z}_{0}\right) \in[0,2 \pi]^{2}$, two of which being of saddle type: $\left(\frac{\pi}{2}-\varphi_{0}, \frac{\pi}{2}+\varphi_{0}\right)$ and $\left(\frac{3 \pi}{2}-\varphi_{0}, \frac{3 \pi}{2}+\varphi_{0}\right)$. The values taken by \widetilde{H} at these two points are $\pm(A-B)$, respectively. The level curves of \tilde{H} are pictured below for a specific choice of parameters.

Figure: Level curves of \widetilde{H} for $A=1, B=1 / 2$ in the plane (\tilde{y}, \tilde{z})
for the unperturbed system (i.e. for $C=0$), we can explicitly compute the homoclinic orbit ($\left.\tilde{y}^{h}(t), \tilde{z}^{h}(t)\right)$ connecting to itself the hyperbolic point $\left(\frac{3 \pi}{2}-\varphi_{0}, \frac{3 \pi}{2}+\varphi_{0}\right)$, and the corresponding evolution in the \tilde{x}-direction.
According to [Mezic \& Wiggins, On the integrability and perturbation of 3-dim fluid flows with symmetry, J. Nonlinear Sci. (1994)], the Melnikov distance function is given by

$$
\begin{gathered}
\mathcal{M}\left(t_{0}\right)=\int_{-\infty}^{\infty}\left\{-B \cos \left(\tilde{z}^{h}(\tau)-\varphi_{0}\right) \cos \left(2 \tilde{x}^{h}\left(\tau+t_{0}\right)-\tilde{y}^{h}(\tau)-\tilde{z}^{h}(\tau)+\varphi_{0}\right)+\right. \\
\left.A \cos \left(\tilde{y}^{h}(\tau)+\varphi_{0}\right) \cos \left(2 \tilde{x}^{h}\left(\tau+t_{0}\right)-\tilde{y}^{h}(\tau)-\tilde{z}^{h}(\tau)-\varphi_{0}\right)\right\} \mathrm{d} \tau
\end{gathered}
$$

that we can evaluate (only) numerically and see that has simple zeros. According to the discussion in Mezic \& Wiggins, the presence of simple zeros implies that our ABC-like flow exhibits "Smale horseshoe" chaos when C is close to zero.

