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Why precisely these compact spaces??

1 3-sphere: S3 = {(x1, y1, x2, y2) ∈ R4|x21 + y21 + x22 + y22 = 1}
endowed with constant curvature 1 induced metric.

2 3-torus: T3 = R3/(2πZ)3 endowed with the flat metric.

Why?

1 conformally equivalent to the Euclidean 3-space (natural
compactification of the physical space)

2 corresponds to periodic boundary conditions.

More generally, we prefer M = oriented closed Riemannian manifold
of odd dimension n, since then, the eigenforms of curl associated to
eigenvalues 6= 0 are smooth, the multiplicity of any nonzero eigenvalue

is finite, and curl defined on Ω
(n−1)/2
C∞ (M) is essentially self-adjoint in

the Hilbert space Ω
(n−1)/2
L2 (M), cf. [Christian Bär, J. Math. Phys. 60,

031501 (2019)]



Part 1

1 fluids, (non-vanishing) Beltrami fields & contact structures.



Steady incompressible fluid flows & Beltramicity

Definition

(M, g) = Riemannian 3-manifold. V ∈ Γ(TM) is a steady Euler
field/flow if ∃ p ∈ C1(M) s.t. div(V [⊗V [ + pg) = 0, or, equivalently,{ ∇V V = − grad p

div V = 0

for steady incompressible fluids, the Bernoulli function
b = p+ 1

2 |V |
2 is conserved along the flow, V (b) = 0. In

particular, if b non-constant, then the flow is laminar (aka
integrable), and M is foliated by tori or cylinders

solutions with b is constant are called Beltrami fields. They
satisfy: curlV = fV and div V = 0, for some f ∈ C∞(M). In
this case f is conserved, V (f) = 0.

curlV × V = ∇V V − 1
2 grad |V |2



Motivating Beltramicity

if f ≡ λ (constant), then Beltrami fields are simply eigenfields
of curl operator.

there is a dichotomy (under some technical assumptions):

a steady Euler flow is either laminar or Beltrami with f ≡ const.

or, in other words: complex dynamics (chaos, as expected in
Lagrangian turbulence) can appear in a fluid at equilibrium only
through Beltrami fields.

”Beltramization”: experimentally observed phenomenon that the
velocity field and its curl (i.e., the vorticity) tend to align in
turbulent regions.

Beltrami fields = another emergence of complexity in physics
(different from the chaotic behavior! ): Turing completeness of a
system, related to the undecidability of its evolution. [Cardona et
al, ”Constructing Turing complete Euler flows in 3D”, PNAS
2021]



Variational character - general case

(M, g) = (compact) Riemannian 3-manifold.

SDiff(M) = group of all diffeomorphisms of M preserving the
volume form υg

Γ0(TM) = space of smooth divergence free vector fields

energy E : Γ0(TM)→ R+, E(X) = 1
2

∫
M
|X|2υg

variation: Xt = dψt(X), where ψt ∈ SDiff(M), ψ0 = IdM .

variation vector field: v =
∂ψt
∂t

∣∣∣
t=0
∈ Γ0(TM).

First variation formula - any X ∈ Γ0(TM)

d

dt
E(Xt)

∣∣∣
t=0

= −
∫
M

〈v,∇XX〉υg.

A curl eigenfield X corresponding to the 1st positive eigenvalue
λ1 minimizes the energy E among all vectors fields obtained from
X by push-forward through volume-preserving diffeo’s.



Variational character- fully integrable case

Definition

Let P : N → R+ be a non-negative function on N . For every map
ϕ : M → N the σ2-energy with potential over a compact domain K is

Eσ2,P (ϕ,K) =
1

2

∫
K

{| ∧2 dϕ|2 + 2P ◦ ϕ}νg, (1)

A map ϕ : M → N is called σ2-critical with potential P if for every
compact domain K in M and for any variation {ϕs}s∈(−ε,ε) supported

in K, of ϕ = ϕ0, we have d
ds

∣∣∣
s=0
Eσ2,P (ϕs,K) = 0.

Theorem [R.S. 2015]

If the C2 mapping ϕ : (M3, g)→ (N2, h) is σ2-critical with potential
P , and ω is the area 2-form on N induced by h, then the vertical field
V = (∗ϕ∗ω)] satisfies the Euler equations for steady incompressible
flows on M with Bernoulli function P = P ◦ ϕ. Conversely if V is a
steady incompressible Euler solution on M , then it exists locally a
σ2-critical submersion with potential into some surface (N,h) with
fibres tangent to V .



Reeb-Beltrami correspondence

contact form on (closed) 3-manifold M : a 1-form α s.t.
α ∧ dα 6= 0 (so α ∧ dα defines a volume form on M).

(coorientable) contact structure: 2-plane field ζ ⊂ TM for which
∃α contact form s.t. ζ = kerα

Reeb vector field R: (uniquely) determined by: α(R) = 1,
dα(R, ·) = 0.

Beltrami fields in terms of differential forms: ∗dα = fα ,
δα = 0. In particular, α ∧ dα = f |α|2volg.

If Beltrami is nonvanishing and f > 0, then α = V [ is a contact
form and R := V/α(V ) is the corresponding Reeb field. We say
that ζ = kerα is the contact structure engendered by the
nonvanishing Beltrami field V .

Contact geometry & hydrodynamics [Sullivan, Etnyre, Ghrist]

Any nonvanishing rotational Beltrami field is a reparametrization of a
Reeb vector field for some contact form. Conversely, any
reparametrization of a Reeb vector field of a contact structure is a
nonvanishing rotational Beltrami field for some Riemannian metric.



Tight versus overtwisted contact structures - i

a disk ∆ embedded in M which, along its boundary, is tangent to
ζ, and its interior is transverse to ζ everywhere except at one
point, is called overtwisted.

Contact structures are classified in overtwisted (if such a disk
exists) and tight (if not).

standard examples (in R3): α = dz + ρ2dθ (tight),
α = cos ρ dz + ρ sin ρ dθ (OT), with OT disk ∆ = {z = 0, ρ ≤ π}
Gauss map of a contact structure with Reeb field R:
ϕR : M → S2, ϕR(p) := 1

|Rp|Rp.



Tight versus overtwisted contact structures - ii

Equivalence classes of contact structures:



Tight versus overtwisted contact structures - iii

”Any contact structure can be ”spoiled” and made overtwisted
using a Lutz twisting (a surgery of the structure, but not of the
manifold) along a closed transversal. It is possible to make Lutz
twisting without changing the homotopy class of the contact
structure as a plane field.” Yakov Eliashberg

Eliashberg OT classification: contact isotopy classes of
overtwisted contact structures on a closed 3-manifold are indexed
by the Hopf invariant of their Gauss map. [Eliashberg, Invent.
math. (1989)]

OT Classification on S3. The homotopy classes of Gauss maps /
plane-fields on S3 are identified with elements of π3

(
S2
)

= Z.
The standard structure ζ0 belongs to class 0. The class 0
contains exactly two nonequivalent (positive) contact structures:
the standard and the overtwisted. All other classes k,
|k| = 1, 2, 3, . . . , contain only one contact structure, the
overtwisted. [Eliashberg, Ann. Inst. Fourier (1992)]

Open realization problem: do these classes admit a
(non-vanishing) Beltrami field representative?



Tight versus overtwisted contact structures - iii

Rigidity for tightness: All tight contact structures on R3 or S3 are
isomorphic to the standard ones.
Criteria for tightness / OTness:

(Eliashberg-Gromov) A symplectically fillable contact structure is
tight

(Giroux) Let ζ be an S1-invariant contact structure on a
principal circle bundle π : P → Σ over a closed oriented surface
Σ, with bundle Euler number e(P ). Let Γ = π (ΓS1) be a
projection of the characteristic surface ΓS1 onto Σ.

1 ζ is universally tight if and only if one of the following holds:
(i) For Σ 6= S2 none of the connected components of Σ\Γ is a disc.
(ii) For Σ = S2, e(P ) < 0 and Γ = ∅.
(iii) For Σ = S2, e(P ) > 0 and Γ is connected (non-empty).

2 if Σ\Γ has a component diffeomorphic to a disk, the contact
structure is tight only if Γ is connected.

Definition

For a vector field X preserving the contact distribution ζ (i.e.
LXα = 0), the characteristic surface is ΓX = {p ∈M : Xp ∈ ζp}.



Contact Riemannian geometry

rigidity/flexibility in contact topology when a Riemannian metric is
considered.

Definition: weakly compatible metrics

A Riemannian metric g on M is weakly compatible with a contact
form α if there exists a function f > 0 such that

?dα = fα,

where ? is computed with the metric g(=⇒ the Reeb field R is
g-orthogonal to the contact structure ξ ). Moreover, if |α|g = 1 and
f = const, g is called compatible with α.

Remark: if V is a nonvanishing curl eigenfield on (M, g), then g is
weakly compatible with the contact form α engendered by V .



Contact Riemannian geometry

Compatible metrics are severely restricted, as shown by the following
pinching theorem:

Theorem (Etnyre, Komendarczyk & Massot, 2012)

Let (M,α) be a contact 3-manifold. If there exists a compatible
metric g with pinched sectional curvature

0 <
4

9
K0 < sec(g) < K0,

then α is tight and M is covered by S3.

Open problem: does the contact sphere theorem hold for weakly
compatible metrics? In particular, can an overtwisted contact
structure be engendered by a nonvanishing curl eigenfield on the
round S3 ?



Part 2

1

2 Beltrami fields representatives on the 3-sphere.



the spectrum of the curl operator on S3 is given by

{λ = ±(k + 2), k ∈ N}.

Theorem 1 (R.S. and D. Peralta-Salas)

Any nonvanishing curl eigenfield on S3 has even eigenvalue λ = 2m,
m ∈ {±1,±2, · · · }. Moreover, for each |m| ≥ 2 there exists a
nonvanishing curl eigenfield Vm whose associated contact structure is
overtwisted. The homotopy classes of the corresponding contact plane
fields have Hopf index

Hopf index = 1
2 (sign(m)(−1)m+1 − 1)

Corollary. The round metric on S3 is weakly compatible with an OT
contact structure.



sphere case proof - i

we work in Hopf coordinates (s, φ1, φ2) , s ∈ [0, π/2],
φ1,2 ∈ [0, 2π):

z1 = cos s eiφ1 , z2 = sin s eiφ2

the Hopf and anti-Hopf fields are given by:

R = ∂φ1
+ ∂φ2

, R′ = ∂φ1
− ∂φ2

and we have: curlR = 2R and curl R′ = −2R′.

{s = 0} ∪ {s = π/2} corresponds to the Hopf link in S3.

the standard round metric is: ds2 + cos2 s dφ21 + sin2 s dφ22

in terms of the (positively oriented) standard orthonormal
global frame {R,X1, X2}, a Beltrami field V reads:

V = fR+ f1X1 + f2X2



sphere case proof - ii

Key Proposition

f, f1, f2 are eigenfunctions of the Laplacian on S3 with eigenvalue
−λ(λ− 2).

=⇒ If λ is odd, then V has zeros. Indeed, f, f1, f2 are restrictions on
S3 of homogeneous harmonic polynomials in R4 of odd degree.
Borsuk-Ulam theorem then implies that the map (f, f1, f2) : R4 → R3

has a non-empty zero set.



sphere case proof - iii

KKPS construction (Khesin, Kuksin & P-S, 2014)

Let F,G : R→ R be smooth functions. Then the vector field

V = F
(
cos2 s

)
R+G

(
cos2 s

)
R′

is a steady Euler flow on the round sphere.

Step 1: For a suitable choice of F,G, V is a Beltrami field. Indeed,
taking λ = 2m,m > 2,

F ≡ Fm =
1

m
P

(1,1)
m−1(1− 2z), G ≡ Gm =

1

m+ 1
P

(1,1)
m−2(1− 2z)

where z = cos2 s and
{
P

(1,1)
∗

}
is the family of orthogonal Jacobi

polynomials of degree ∗. =⇒ Since the zeros of the Jacobi
polynomials interlace, the Beltrami fields V ≡ Vm are nonvanishing.



sphere case proof - iv

Properties of Vm

1 The Hopf link is a set of periodic orbits of Vm.

2 Vm is integrable in the sense that {s = const } are invariant tori.

3 Vm is S1-invariant in the sense that [Vm, R] = 0.

Step 2: The contact forms engendered by Vm are overtwisted.
Indeed, notice that

αm := V bm = cos2 s (Fm +Gm) dφ1 + sin2 s (Fm −Gm) dφ2

is a contact form. Moreover, it is S1-invariant: LRαm = 0.
Giroux’s first criterion Consider the characteristic surface

ΓR :=
{
p ∈ S3 : R is tangent to ξm at p

}
Then αm is tight if and only if Π (ΓR) = ∅,Π : S3 → S2 is the Hopf
fibration.



sphere case proof - v

For αm,ΓR consists of toroidal surfaces in S3 :{
s ∈ [0, π/2] : Fm

(
cos2 s

)
+
(
2 cos2 s− 1

)
Gm

(
cos2 s

)
= 0
}

This set is nonempty and Π (ΓR) 6= ∅ (a set of circles) =⇒ αm is
overtwisted.
Step 3: Compute the Hopf invariant of the map ϕm : S3 → S2:

ϕm(p) :=
1

(f(p)2 + f1(p)2 + f2(p)2)
1/2

(f(p), f1(p), f2(p))

which is an integer ∈ π3
(
S2
)

= Z

Lemma

If m > 1, Vm is homotopic through nonvanishing fields to:
(a) R if m is odd.
(b) R′ if m is even.
Hopf invariant of R is 0, and of R′ is −1 (Whitehead’s formula).



sphere case - remarks

The construction for m 6 −2 is similar (in fact, Vm and V−m,m > 1,
are related by an orientation-reversing diffeo of S3).
Examples

V2 = − 1
3 (3 cos 2s− 1)∂φ1 − 1

3 (3 cos 2s+ 1)∂φ2 ,

V3 =
(
3
2 − 6 cos2 s+ 5 cos4 s

)
∂φ1

+
(
1
2 − 4 cos2 s+ 5 cos4 s

)
∂φ2

.

The case of lowest eigenvalue λ = 2 (or λ = −2 ) is special: all
corresponding Beltrami fields are isometric to R (resp. R′ ).
Moreover, they exhibit a remarkable geometric rigidity:

Theorem (Gluck & Gu, 2001)

Let V be a Beltrami field on S3 with |V | = 1. Then λ = ±2 and V is
isometric the Hopf (or anti-Hopf) field.

We provide a different (and simpler) proof using the Key Proposition
above and standard classification results for harmonic morphisms.



Beltrami rigidity via harmonicity

• Prove: a curl eigenfield V with λ > 2 cannot have constant norm

Suppose that V = fR+ f1X1 + f2X2 has const (unit) norm.
Then the Gauss map is ϕV = (f, f1, f2) : S3 → S2 and it is an
eigenmap (harmonic map with constant energy density), has
minimal fibres and V is tangent to them (∇V V = 1

2 grad |V |2).

Weitzenbock formula for a harmonic map ϕ : S3 → S2:

1
2∆|dϕ|2 = |∇dϕ|2 + 2|dϕ|2 − 2|Λ2dϕ|2 .

in our case ⇒ 2|Λ2dϕV |2 ≥ 2λ(λ− 2) > 0, so rank(dϕV ) = 2

Apply the following to deduce that ϕV is a harmonic morphism

Paul Baird 1992

A harmonic map of rank 2 almost everywhere from a closed 3-manifold to a
surface such that: (i)Ric(E1, E1) = Ric(E2, E2) > 0, (ii) the regular fibres
are minimal, and (iii) grad e(ϕ) is horizontal, is horizontally conformal (a
harmonic morphism).

Apply the classification of the harmonic morphisms to deduce
that ϕV is essentially Hopf fibration so λ = 2, contradiction

• Prove: any eigenfield with eigenvalue 2 is isometric to the Hopf field



Part 3
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3 Beltrami fields representatives on the 3-torus



the spectrum of the curl operator curl = ∗d on the flat 3-torus T3 is
given by

{λ = ±|k| : k ∈ Z3}
(
|k| :=

√
k21 + k22 + k23

)
,

where an eigenvalue λ has the multiplicity ]{µ ∈ Z3, |µ| = |λ|}.

Theorem 2 (R.S. and D. Peralta-Salas)

For each eigenvalue λ of curl on T3, there exists a nonvanishing curl
eigenfield Vλ which is homotopically trivial and whose associated
contact structure is tight. Moreover, all tight contactomorphic classes
are realized this way. Furthermore, there exist infinitely many
eigenvalues {λ`}`∈N∗ and corresponding eigenfields V` such that, for
each `, the contact structure engendered by V` is overtwisted.



torus case - proof i

For any non-zero vector b ∈ R3, b ⊥ k, the vector field

Vk = cos(k · x) b+
1

|k|
sin(k · x) b× k (2)

is an eigenfield of the curl operator with eigenvalue |k|
|Vk| = |b| (constant norm), so Vk is nonvanishing and then it
induces a contact structure on T3.
All these contact structures are tight (our proof, simple).
with k = (0, 0,m), m ∈ Z, and b = (0, 1, 0), we find the standard
family of contact structures on T3:

ηm = sin(mx3)dx1 + cos(mx3)dx2 , m ∈ Z , (3)

corresponding to the integer part of the spectrum: ∗dηm = mηm.

Tight classification on T3 [Y. Kanda, Comm. Anal. Geom. 1997]

the contact forms ηm are tight and homotopically trivial, but
they belong to distinct contactomorphic classes: there is no
contactomorphism (T3, ζn)→ (T3, ζm) if n 6= m.

any tight contact structure on T3 is contactomorphic to one of
these ηm



torus case - proof ii

For the second claim we consider the equivariant curl eigenfield

V =
∂f

∂x2
∂x1
− ∂f

∂x1
∂x2

+ λf∂x3
,

where f ≡ f (x1, x2) is a λ2-eigenfunction of the Laplacian on T2.

Lemma (Peralta-Salas & R.S.)

There exists an infinite sequence of eigenvalues {Λ`}`∈N∗ and
corresponding eigenfunctions f` of the Laplacian on T2 such that, for
each `, the nodal set of f` is regular, disconnected, and contains a
contractible connected component.

1 The Beltrami field V` defined using f` has eigenvalue
√

Λ` and is
nonvanishing.

2 The contact form η` := V [` is S1-invariant with respect to the
action generated by Z := ∂x3

. The projection onto T2 defined by
Z is Π (x1, x2, x3) = (x1, x2).

3 For Giroux’ characteristic surface
Γ`Z := {p ∈ T3 : Z tangent to the contact distribution ker η` at p}
we have Π

(
Γ`Z
)

= the nodal set of f`.



torus case - proof iii

Giroux’s second criterion: If T2\Π
(
Γ`Z
)

has a component
diffeomorphic to a disk, the contact structure defined by η` is
tight only if Π

(
Γ`Z
)

is connected.
Since the nodal set of f` is disconnected, and its complement in
T2 contains a disk, Giroux’s criterion implies that η` is
overtwisted.

Remark 1: The proof of the existence of the eigenfunctions f` is
not constructive (it is based on the inverse localization technique
developed by Enciso, Peralta-Salas & Torres de Lizaur (2017),
which allows us to transplant the nodal set of a monochromatic
wave in R2 into the nodal set of an eigenfunction in T2 with high
eigenvalue.).

Remark 2: We cannot compute the Hopf invariant of the
overtwisted contact structures obtained this way (they are not
explicit).



Open problems

Problem 1: Do there exist tight Beltrami fields on S3 with
eigenvalue λ 6= ±2?

Problem 2: Can any overtwisted contact structure be engendered
by a Beltrami field on S3?

Problem 3: Which overtwisted contact structures can be
engendered by Beltrami field on T3?
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4 ABC fields on the 3-torus & chaos.

Motivations:

all contact forms associated to ”small” eigenvalue
Beltrami’s on T3 are tight?
(for the first eigenvalue λ = 1 this is true)
go beyond the well-understood example of ABC
(Arnold-Beltrami-Childress) flow when finding chaos



heuristics for chaos

3-dim. steady flows with chaotic Lagrangian structure:
infinitesimally close fluid particles following the streamlines may
separate exponentially in time, while remaining in a bounded domain,
and individual streamlines may appear to fill entire regions of space.

Thus the positions of fluid particles may become effectively
unpredictable for long times.



Flows on the 3-torus

Standard ABC flow on T3 analysed (for the first time) in [3]

ẋ = A sin(z) + C cos(y)

ẏ = A cos(z) +B sin(x)

ż = B cos(x) + C sin(y)

(4)

curl-eigenfield for λ1 = 1
Our ABC-like flow on T3

ẋ = − A√
2

sin(x+ y) +
B√

2
sin(x+ z) + C cos(y + z)

ẏ =
A√
2

sin(x+ y) +B cos(x+ z)− C√
2

sin(y + z)

ż = A cos(x+ y)− B√
2

sin(x+ z) +
C√

2
sin(y + z)

(5)

curl-eigenfield for λ2 =
√

2



tightness

Theorem (R.S. & M. Marciu)

On the flat 3-torus, every nonvanishing ABC-like Beltrami field (5) is
transverse to a tight contact structure in the same contactomorphism
class as the standard contact form η1 = sin zdx+ cos zdy.

Parameter space for ABC-like fields that do not vanish anywhere.
This is path connected so all fields are deformable into the
(A,B,C) = (1, 0, 0)-like field, which engenders a contact structure
contactomorphic to η1 (proof: explicit contact diffeo ⊕ 1-parameter
homotopy through contact forms).



Flow visualisation by Poincaré sections

The classical ABC-flow (4), with the choice A = 1, B =
√

2
3 , C = 1√

3
,

can be visualised via Poincaré sections displaying ’chaotic’ and
’ordered’ regions (cf.[3]):

Figure: Poincaré section of the standard ABC flow through the plane z = 0



Flow visualisation by Poincaré sections

Figure: Poincaré section of the standard ABC flow through the plane y = 0



Flow visualisation by Poincaré sections

Figure: Poincaré sections of the standard ABC flow through the plane x = 0

see also http://ameli.github.io/lcs/ for LCS visualisation

http://ameli.github.io/lcs/




Flow visualisation by Poincaré sections

The Poincaré sections for the ABC-like flow (5) for the same values of
the parameters A,B and C (for which there exists stagnation points!).
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Figure: Poincaré section of ABC-like flow through the plane x = 0



Flow visualisation by Poincaré sections

Poincaré section of ABC-like flow through the plane x+ y = 0:
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flow visualisation

For the parameters (A,B,C) = (1, 0.4, 0.01) our ABC-like flow have
no stagnation points and looks like:
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proving chaos 1/2

introducing new coordinates x̃ = x, ỹ = x+ y, z̃ = x+ z (which
amounts to a push-forward of v through a volume preserving
diffeomorphism of T3) and rescaling the coefficients A,B,C with√

3/2, the dynamical system (5) takes the form

˙̃x = − 1√
3
(A sin(ỹ)−B sin(z̃)) + C

√
2
3 cos(2x̃− ỹ − z̃)

˙̃y = B cos(z̃ − ϕ0) + C cos(2x̃− ỹ − z̃ − ϕ0)

˙̃z = A cos(ỹ + ϕ0) + C cos(2x̃− ỹ − z̃ + ϕ0),

(6)

so that the first integral in the case C = 0 is independent of x̃:

H̃(ỹ, z̃) = A sin(ỹ + ϕ0)−B sin(z̃ − ϕ0). (7)

The function H̃ has 4 critical points (ỹ0, z̃0) ∈ [0, 2π]2, two of which
being of saddle type:

(
π
2 − ϕ0,

π
2 + ϕ0

)
and

(
3π
2 − ϕ0,

3π
2 + ϕ0

)
. The

values taken by H̃ at these two points are ±(A−B), respectively.

The level curves of H̃ are pictured below for a specific choice of
parameters.



-1

-0.5

-0.5

0

0

0.5

0.5

0.5

0.5

1

1

1

1

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure: Level curves of H̃ for A = 1, B = 1/2 in the plane (ỹ, z̃)



proving chaos 2/2

for the unperturbed system (i.e. for C = 0), we can explicitly
compute the homoclinic orbit (ỹh(t), z̃h(t)) connecting to itself the
hyperbolic point

(
3π
2 − ϕ0,

3π
2 + ϕ0

)
, and the corresponding evolution

in the x̃-direction.
According to [Mezic & Wiggins, On the integrability and perturbation
of 3-dim fluid flows with symmetry, J. Nonlinear Sci. (1994)], the
Melnikov distance function is given by

M(t0) =

∫ ∞
−∞

{
−B cos(z̃h(τ)− ϕ0) cos

(
2x̃h(τ + t0)− ỹh(τ)− z̃h(τ) + ϕ0

)
+

A cos(ỹh(τ) + ϕ0) cos
(
2x̃h(τ + t0)− ỹh(τ)− z̃h(τ)− ϕ0

)}
dτ

that we can evaluate (only) numerically and see that has simple zeros.
According to the discussion in Mezic & Wiggins, the presence of
simple zeros implies that our ABC-like flow exhibits ”Smale
horseshoe” chaos when C is close to zero.




