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Why precisely these compact spaces??

O 3-sphere: S* = {(z1,y1,%2,y2) € RYa? +yf + 23 +y3 =1}
endowed with constant curvature 1 induced metric.

@ 3-torus: T? = R3/(27Z)? endowed with the flat metric.

Why?

@ conformally equivalent to the Euclidean 3-space (natural

compactification of the physical space)

@ corresponds to periodic boundary conditions.
More generally, we prefer M = oriented closed Riemannian manifold
of odd dimension n, since then, the eigenforms of curl associated to
eigenvalues # 0 are smooth, the multiplicity of any nonzero eigenvalue
is finite, and curl defined on Q(n b/ 2(M ) is essentially self-adjoint in
the Hilbert space Q n=1) /2( M), cf. [Christian Bér, J. Math. Phys. 60,
031501 (2019)]



O fluids, (non-vanishing) Beltrami fields & contact structures.



Steady incompressible fluid flows & Beltramicity

(M, g) = Riemannian 3-manifold. V € I'(T'M) is a steady Euler
field/flow if 3 p € C' (M) s.t. div(V’ ® V® 4 pg) = 0, or, equivalently,

{VVV = —gradp

divV = 0

o for steady incompressible fluids, the Bernoulli function
b=p+ 3|V|? is conserved along the flow, V(b) = 0. In
particular, if b non-constant, then the flow is laminar (aka
integrable), and M is foliated by tori or cylinders

@ solutions with b is constant are called Beltrami fields. They
satisfy: curlV = fV and divV = 0, for some f € C*(M). In
this case f is conserved, V(f) = 0.

curlV x V =VyV — Lgrad |V |2 J




Motivating Beltramicity

o if f = X (constant), then Beltrami fields are simply eigenfields
of curl operator.

o there is a dichotomy (under some technical assumptions):

a steady Euler flow is either laminar or Beltrami with f = const. J

or, in other words: complex dynamics (chaos, as expected in
Lagrangian turbulence) can appear in a fluid at equilibrium only
through Beltrami fields.

o ”Beltramization”: experimentally observed phenomenon that the
velocity field and its curl (i.e., the vorticity) tend to align in
turbulent regions.

o Beltrami fields = another emergence of complexity in physics
(different from the chaotic behavior!): Turing completeness of a
system, related to the undecidability of its evolution. [Cardona et
al, ”Constructing Turing complete Euler flows in 3D”, PNAS
2021]



Variational character - general case

(M, g) = (compact) Riemannian 3-manifold.

o SDiff(M) = group of all diffeomorphisms of M preserving the

volume form v,

o I'g(T'M) = space of smooth divergence free vector fields

o energy & :T'o(TM) - Ry, E(X) =1 [/X]*v,

e variation: X; = dy(X), where ¢, € SDiff (M), 1o = Idys.
D
0

e variation vector field: v =

To(TM).
t:OG of )

First variation formula - any X € I'o(T'M)

d

ag(Xt)

t:0: - /M<”U, VxX>Ug.

o A curl eigenfield X corresponding to the 1st positive eigenvalue
A1 minimizes the energy £ among all vectors fields obtained from
X by push-forward through volume-preserving diffeo’s.



Variational character- fully integrable case

Let P: N — R, be a non-negative function on N. For every map
@ : M — N the os-energy with potential over a compact domain K is

1 _
(oK) = 5 [ {12 doP +2Po gy, 1)

A map ¢ : M — N is called oy-critical with potential P if for every
compact domain K in M and for any variation {@s}se(—c,) supported

in K, of ¢ = g, we have %’ 705,,271:(@5,[() =0.

Theorem [R.S. 2015]

If the C? mapping ¢ : (M3, g) — (N?,h) is op-critical with potential
P, and w is the area 2-form on N induced by h, then the vertical field
V = (x¢*w)¥ satisfies the Euler equations for steady incompressible
flows on M with Bernoulli function P = P o . Conversely if V is a
steady incompressible Euler solution on M, then it exists locally a
oo-critical submersion with potential into some surface (N, h) with
fibres tangent to V.




Reeb-Beltrami correspondence

e contact form on (closed) 3-manifold M: a 1-form « s.t.
aAda #0 (so a A da defines a volume form on M).

o (coorientable) contact structure: 2-plane field ¢ C TM for which
Ja contact form s.t. ¢ = kera

o Reeb vector field R: (uniquely) determined by: «a(R) =1,
da(R,-) =0.

o Beltrami fields in terms of differential forms: xda = fa,
da = 0. In particular, a A da = fla/?vol,.

o If Beltrami is nonvanishing and f > 0, then a = V? is a contact
form and R := V/a(V) is the corresponding Reeb field. We say
that ¢ = ker «v is the contact structure engendered by the
nonvanishing Beltrami field V.

Contact geometry & hydrodynamics [Sullivan, Etnyre, Ghrist)

Any nonvanishing rotational Beltrami field is a reparametrization of a
Reeb vector field for some contact form. Conversely, any
reparametrization of a Reeb vector field of a contact structure is a
nonvanishing rotational Beltrami field for some Riemannian metric.




Tight versus overtwisted contact structures - i

o a disk A embedded in M which, along its boundary, is tangent to
¢, and its interior is transverse to ( everywhere except at one
point, is called overtwisted.

o Contact structures are classified in overtwisted (if such a disk
exists) and tight (if not).

e standard examples (in R?): a = dz + p?df (tight),
a=cospdz + psinpdf (OT), with OT disk A ={z=0,p <7}

o Gauss map of a contact structure with Reeb field R:
or: M =S, or(D) = g Ry



Tight versus overtwisted contact structures - ii

Equivalence classes of contact structures:

M = closed 3-mauifold.
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Tight versus overtwisted contact structures - iii

o 7 Any contact structure can be “spoiled” and made overtwisted
using a Lutz twisting (a surgery of the structure, but not of the
manifold) along a closed transversal. It is possible to make Lutz
twisting without changing the homotopy class of the contact
structure as a plane field.” Yakov Eliashberg

o Eliashberg OT classification: contact isotopy classes of
overtwisted contact structures on a closed 3-manifold are indexed
by the Hopf invariant of their Gauss map. [Eliashberg, Invent.
math. (1989)]

e OT Classification on S*. The homotopy classes of Gauss maps /
plane-fields on S? are identified with elements of 73 (S?) = Z.
The standard structure (y belongs to class 0. The class 0
contains exactly two nonequivalent (positive) contact structures:
the standard and the overtwisted. All other classes k,
|k] =1,2,3,..., contain only one contact structure, the
overtwisted. [Eliashberg, Ann. Inst. Fourier (1992)]

Open realization problem: do these classes admit a
(non-vanishing) Beltrami field representative?



Tight versus overtwisted contact structures - iii

Rigidity for tightness: All tight contact structures on R3 or S? are
isomorphic to the standard ones.
Criteria for tightness / OTness:

o (Eliashberg-Gromov) A symplectically fillable contact structure is
tight
e (Giroux) Let ¢ be an S'-invariant contact structure on a
principal circle bundle 7 : P — ¥ over a closed oriented surface
3, with bundle Euler number e(P). Let I' = 7 (I's1) be a
projection of the characteristic surface I's1 onto X.
@ ( is universally tight if and only if one of the following holds:
(i) For ¥ # S? none of the connected components of L\T' is a disc.
(ii) For ¥ =S* e(P) <0 and T' = .
(iii) For © = §? e(P) > 0 and T is connected (non-empty).
@ if X\I" has a component diffeomorphic to a disk, the contact
structure is tight only if I' is connected.

For a vector field X preserving the contact distribution ¢ (i.e.
Lxa = 0), the characteristic surface is 'y = {p e M : X, € (,}.




Contact Riemannian geometry

rigidity /flexibility in contact topology when a Riemannian metric is
considered.

Definition: weakly compatible metrics

A Riemannian metric g on M is weakly compatible with a contact
form « if there exists a function f > 0 such that

*da = fa,

where x is computed with the metric g(=> the Reeb field R is
g-orthogonal to the contact structure £ ). Moreover, if |a|, = 1 and
f = const, g is called compatible with «.

Remark: if V is a nonvanishing curl eigenfield on (M, g), then g is
weakly compatible with the contact form a engendered by V.



Contact Riemannian geometry

Compatible metrics are severely restricted, as shown by the following
pinching theorem:

Theorem (Etnyre, Komendarczyk & Massot, 2012)

Let (M, «) be a contact 3-manifold. If there exists a compatible
metric g with pinched sectional curvature

4
0< §K0 < sec(g) < Ko,

then « is tight and M is covered by S®.

Open problem: does the contact sphere theorem hold for weakly
compatible metrics? In particular, can an overtwisted contact
structure be engendered by a nonvanishing curl eigenfield on the
round S3 ?



o

@ Beltrami fields representatives on the 3-sphere.



the spectrum of the curl operator on S? is given by

{A=+(k+2),k €N}

Theorem 1 (R.S. and D. Peralta-Salas)

Any nonvanishing curl eigenfield on S has even eigenvalue A = 2m,
m € {£1,42,---}. Moreover, for each |m| > 2 there exists a
nonvanishing curl eigenfield V;,, whose associated contact structure is
overtwisted. The homotopy classes of the corresponding contact plane
fields have Hopf index

Hopf index = 1 (sign(m)(—1)""" — 1)

4

Corollary. The round metric on S? is weakly compatible with an OT
contact structure.



sphere case proof - i

o we work in Hopf coordinates (s, ¢1, ¢2),s € [0,7/2],
¢1,2 € [0,2m):

Z1 = COS S ei‘m, Zo = sin s P2
o the Hopf and anti-Hopf fields are given by:
R= a¢1 + a¢27 R = a¢1 - 84)2

and we have: curl R = 2R and curl R’ = —2R'.
e {s=0}U{s=m/2} corresponds to the Hopf link in S3.
e the standard round metric is: ds? + cos? s d¢? + sin® s d¢3

e in terms of the (positively oriented) standard orthonormal
global frame {R, X, X5}, a Beltrami field V reads:

V=fR+ fiX1+ foXs



sphere case proof - ii

Key Proposition

f, f1, f are eigenfunctions of the Laplacian on S® with eigenvalue
—A(A—2).

= If X\ is odd, then V has zeros. Indeed, f, f1, fo are restrictions on
S? of homogeneous harmonic polynomials in R* of odd degree.
Borsuk-Ulam theorem then implies that the map (f, f1, f2) : R* — R?
has a non-empty zero set.



sphere case proof - iii

KKPS construction (Khesin, Kuksin & P-S, 2014)

Let F,G : R — R be smooth functions. Then the vector field
V = F (cos® s) R+ G (cos® s) R/

is a steady Euler flow on the round sphere.

Step 1: For a suitable choice of F, G,V is a Beltrami field. Indeed,
taking A = 2m, m > 2,

1
PY1—22), G=G,=——-P")1-22)

3=

where z = cos? s and {P,Sl’l)} is the family of orthogonal Jacobi

polynomials of degree *. = Since the zeros of the Jacobi
polynomials interlace, the Beltrami fields V = V,,, are nonvanishing.



sphere case proof - iv

Properties of V,,

@ The Hopf link is a set of periodic orbits of V,,.
@ V,, is integrable in the sense that {s = const } are invariant tori.
@ V), is S'-invariant in the sense that [V,,,, R] = 0.

Step 2: The contact forms engendered by V,,, are overtwisted.
Indeed, notice that

U = V2 = cos? 5 (F, + Gp) doy + sin’ s (Fy, — Giy,) da

is a contact form. Moreover, it is S'-invariant: Lgzay, = 0.
Giroux’s first criterion Consider the characteristic surface

I'g:= {p € S* : R is tangent to &, at p}

Then a, is tight if and only if IT (I'g) = 0,11 : S* — S? is the Hopf
fibration.



sphere case proof - v

For ay,, ' consists of toroidal surfaces in S :
{s€0,m/2]: F, (cos®s) + (2cos* s — 1) G, (cos® s) =0}

This set is nonempty and II (T'g) # 0 (a set of circles) = ayy, is
overtwisted.
Step 3: Compute the Hopf invariant of the map ¢,, : S* — S2:

om(p) = : s (F(), Fi(0), )

(f(P)? + f1(p)? + f2(p)?)

which is an integer € w3 (S?) = Z

If m > 1,V,, is homotopic through nonvanishing fields to:
(a) R if m is odd.
(b) R’ if m is even.

Hopf invariant of R is 0, and of R’ is —1 (Whitehead’s formula).




sphere case - remarks

The construction for m < —2 is similar (in fact, V,,, and V_,,,,m > 1,
are related by an orientation-reversing diffeo of S%).
Examples

Vo = —1(3cos2s — 1)0y, — 5(3cos2s + 1)dy,,
1/},:(%—6005234—500545) b1 (2—4COS S+5COS4S)8¢2.
The case of lowest eigenvalue A = 2 (or A = —2 ) is special: all

corresponding Beltrami fields are isometric to R (resp. R’ ).
Moreover, they exhibit a remarkable geometric rigidity:

Theorem (Gluck & Gu, 2001)

Let V be a Beltrami field on S? with |V| = 1. Then A = +2 and V is
isometric the Hopf (or anti-Hopf) field.

We provide a different (and simpler) proof using the Key Proposition
above and standard classification results for harmonic morphisms.



Beltrami rigidity via harmonicity

e Prove: a curl eigenfield V' with A > 2 cannot have constant norm

@ Suppose that V = fR+ f1 X7 + foX> has const (unit) norm.
Then the Gauss map is oy = (f, f1, f2) : S* — $? and it is an
eigenmap (harmonic map with constant energy density), has
minimal fibres and V is tangent to them (Vv V = 3 grad|V|?).

e Weitzenbock formula for a harmonic map ¢ : S — S2:
3Aldel* = [Vde|” + 2|de]* — 2|A%dep|*.

in our case = 2|A%dpy |2 > 2A(\ — 2) > 0, so rank(dpy) = 2
o Apply the following to deduce that ¢y is a harmonic morphism

Paul Baird 1992

A harmonic map of rank 2 almost everywhere from a closed 3-manifold to a
surface such that: (i)Ric(E1, E1) = Ric(E2, E2) > 0, (ii) the regular fibres
are minimal, and (iii) grad e(¢) is horizontal, is horizontally conformal (a
harmonic morphism).

o Apply the classification of the harmonic morphisms to deduce
that y is essentially Hopf fibration so A = 2, contradiction

e Prove: any eigenfield with eigenvalue 2 is isometric.to the Hopf field



(1]
Q

© Beltrami fields representatives on the 3-torus



the spectrum of the curl operator curl = *d on the flat 3-torus T? is

given by
{\==|k|: k€ 7%} (|k| := \/k? + k3 + k3),

where an eigenvalue A has the multiplicity #{u € Z3, |u| = |\|}.

Theorem 2 (R.S. and D. Peralta-Salas)

For each eigenvalue A of curl on T3, there exists a nonvanishing curl
eigenfield V), which is homotopically trivial and whose associated
contact structure is tight. Moreover, all tight contactomorphic classes
are realized this way. Furthermore, there exist infinitely many
eigenvalues {As}sen+ and corresponding eigenfields V7 such that, for
each /£, the contact structure engendered by V; is overtwisted.




torus case - proof i

e For any non-zero vector b € R?, b L k, the vector field

1
Vk:cos(k-z)b+msin(kox)bxk (2)
is an eigenfield of the curl operator with eigenvalue |k
o |Vi| = |b| (constant norm), so Vj is nonvanishing and then it

induces a contact structure on T3.
o All these contact structures are tight (our proof, simple).
e with £ = (0,0,m), m € Z, and b = (0,1,0), we find the standard
family of contact structures on T3:
Nm = sin(maes)dx; + cos(mas)das meZ, (3)

corresponding to the integer part of the spectrum: *dn,, = mn,,.

Tight classification on T? [Y. Kanda, Comm. Anal. Geom. 1997]

o the contact forms 7, are tight and homotopically trivial, but
they belong to distinct contactomorphic classes: there is no
contactomorphism (T2,¢,,) — (T3, ¢y) if n # m.

e any tight contact structure on T? is contactomorphic to one of
these 7,




torus case - proof ii

For the second claim we consider the equivariant curl eigenfield

of of
8.%2 aw1 - 81'1 8;112 + )\fal37

where f = f (21, 22) is a A2-eigenfunction of the Laplacian on T2.

V =

Lemma (Peralta-Salas & R.S.)

There exists an infinite sequence of eigenvalues {Ag}, . and
corresponding eigenfunctions f, of the Laplacian on T? such that, for
each /¢, the nodal set of fy is regular, disconnected, and contains a
contractible connected component.

O The Beltrami field V; defined using f; has eigenvalue v/A, and is
nonvanishing.

@ The contact form 7, := VZb is Sl-invariant with respect to the
action generated by Z := 8,,. The projection onto T? defined by
Z is I (21,29, 23) = (21, x2).

@ For Giroux’ characteristic surface
I, := {p € T3 : Z tangent to the contact distribution kern, at p}
we have II (I'}) = the nodal set of fo.



torus case - proof iii

e Giroux’s second criterion: If T*\II (I'}) has a component
diffeomorphic to a disk, the contact structure defined by 7, is
tight only if IT (Fez) is connected.

Since the nodal set of f; is disconnected, and its complement in
T? contains a disk, Giroux’s criterion implies that 7, is
overtwisted.

@ Remark 1: The proof of the existence of the eigenfunctions f; is
not constructive (it is based on the inverse localization technique
developed by Enciso, Peralta-Salas & Torres de Lizaur (2017),
which allows us to transplant the nodal set of a monochromatic
wave in R? into the nodal set of an eigenfunction in T? with high
eigenvalue.).

o Remark 2: We cannot compute the Hopf invariant of the

overtwisted contact structures obtained this way (they are not
explicit).



Open problems

e Problem 1: Do there exist tight Beltrami fields on S* with
eigenvalue A\ # +27

o Problem 2: Can any overtwisted contact structure be engendered
by a Beltrami field on S3?

e Problem 3: Which overtwisted contact structures can be
engendered by Beltrami field on T3?



e oe

ABC fields on the 3-torus & chaos.

Motivations:

o all contact forms associated to "small” eigenvalue
Beltrami’s on T? are tight?
(for the first eigenvalue A =1 this is true)

@ go beyond the well-understood example of ABC
(Arnold-Beltrami- Childress) flow when finding chaos



heuristics for chaos

3-dim. steady flows with chaotic Lagrangian structure:
infinitesimally close fluid particles following the streamlines may
separate exponentially in time, while remaining in a bounded domain,
and individual streamlines may appear to fill entire regions of space.

Thus the positions of fluid particles may become effectively
unpredictable for long times.



Flows on the 3-torus

Standard ABC flow on T? analysed (for the first time) in [3]

& = Asin(z) 4+ C cos(y)
y = Acos(z) + Bsin(z) )
2 = Bcos(z) + C'sin(y)

curl-eigenfield for A\; =1
Our ABC-like flow on T3

A B
&t =——sin(z+y)+ —=sin(z + 2) + Ccos(y + 2)

v N
v = % sin(z +y) + Bcos(z + 2) — % sin(y + z) (5)

B
Z2=Acos(z+y)— 7 sin(x + z) + % sin(y + z)

curl-eigenfield for Ay = v/2



tightness

Theorem (R.S. & M. Marciu)

On the flat 3-torus, every nonvanishing ABC-like Beltrami field (5) is
transverse to a tight contact structure in the same contactomorphism
class as the standard contact form 7; = sin zdz + cos zdy.

1.0

10 L L L L
00 02 0.4 0e 0s 10

Parameter space for ABC-like fields that do not vanish anywhere.
This is path connected so all fields are deformable into the

(A4, B,C) = (1,0,0)-like field, which engenders a contact structure
contactomorphic to 77 (proof: explicit contact diffeo @ 1-parameter
homotopy through contact forms).



Flow visualisation by Poincaré sections

The classical ABC-flow (4), with the choice A =1,B = \/g, c=->L1

can be visualised via Poincaré sections displaying ’chaotic’ and
‘ordered’ regions (cf.[3]):

Figure: Poincaré section of the standard ABC flow through the plane z =0



Flow visualisation by Poincaré sections

Figure: Poincaré section of the standard ABC flow through the plane y =0



Flow visualisation by Poincaré sections

Figure: Poincaré sections of the standard ABC flow through the plane z =0

see also http://ameli.github.io/1lcs/ for LCS visualisation


http://ameli.github.io/lcs/




The Poincaré sections for the ABC-like flow (5) for the same values of
the parameters A, B and C' (for which there exists stagnation points!).

Figure: Poincaré section of ABC-like flow through the plane x =0






flow visualisation

For the parameters (4, B,C) = (1,0.4,0.01) our ABC-like flow have
no stagnation points and looks like:




proving chaos 1/2

introducing new coordinates & =z, = x + y, Z =  + z (which
amounts to a push-forward of v through a volume preserving
diffeomorphism of T3) and rescaling the coefficients A, B, C' with
\/3/2, the dynamical system (5) takes the form

ISI8

— _L(A sin(g) — Bsin(2)) + C’\/gcos(Q:z: —g—2)
§J = Bcos(z — o) + C cos(2E — § — % — ) (6)
Z = Acos(§ + po) + Ccos(2& — § — % + o),

so that the first integral in the case C' = 0 is independent of z:
H(j,2) = Asin(j + po) — Bsin(Z — o). (7)

The function H has 4 critical points (fo, Zo) € [0, 272, two of which
being of saddle type: (% — 0,5 + 4,00) and ( T — 0, 2 T+ 4,00) The
values taken by H at these two points are £(A — B), respectively.
The level curves of H are pictured below for a spe(nﬁc choice of
parameters.
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Figure: Level curves of H for A= 1, B =1/2 in the plane (g, 2)




proving chaos 2/2

for the unperturbed system (i.e. for C = 0), we can explicitly
compute the homoclinic orbit (g"(t), 2"(t)) connecting to itself the
hyperbolic point (3T — o, 3T + ), and the corresponding evolution
in the z-direction.

According to [Mezic & Wiggins, On the integrability and perturbation
of 8-dim fluid flows with symmetry, J. Nonlinear Sci. (1994)], the
Melnikov distance function is given by

M(tg) = /00{ - Bcos(ih(r) — ) cos (25:”(7' +1o) — g]h(T) - Eh(r) + goo)-l-
Acos(§"(7) + o) cos (22" (1 + to) — §"(7) — 2"(r) — o) }drT

that we can evaluate (only) numerically and see that has simple zeros.
According to the discussion in Mezic & Wiggins, the presence of
simple zeros implies that our ABC-like flow exhibits ”Smale
horseshoe” chaos when C' is close to zero.






