Classification of surfaces with linear prescribed mean curvature (PMC)

Irene Ortiz Sánchez (University Centre of Defence at the Spanish Air Force Academy, San Javier) Joint work with Antonio Bueno

Differential Geometry Workshop 2022

7th September, 2022

Supported by PGC2018-097046-B-100 Spain

Linear PMC surfaces

Summary

1. Introduction

- 2. The phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$
- Construction of new examples of rotational h-surfaces in ℍ² × ℝ Existence of h-bowls in ℍ² × ℝ Existence of h-catenoids in ℍ² × ℝ
- 4. \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Definition of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^1(\mathbb{S}^2)$, an oriented surface Σ in \mathbb{R}^3 is a surface of *prescribed mean curvature* \mathcal{H} if its mean curvature H_{Σ} satisfies

$$H_{\Sigma}(p) = \mathcal{H}(N_{p}) \quad \forall p \in \Sigma,$$

where $N: \Sigma \to \mathbb{S}^2 \subset \mathbb{R}^3$ stands for the Gauss map of Σ .

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^1(\mathbb{S}^2)$, an oriented surface Σ in \mathbb{R}^3 is a surface of *prescribed mean curvature* \mathcal{H} if its mean curvature H_{Σ} satisfies

$$H_{\Sigma}(p) = \mathcal{H}(N_p) \quad \forall p \in \Sigma,$$

where $N: \Sigma \to \mathbb{S}^2 \subset \mathbb{R}^3$ stands for the Gauss map of Σ .

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^1(\mathbb{S}^2)$, an oriented surface Σ in \mathbb{R}^3 is a surface of *prescribed mean curvature* \mathcal{H} if its mean curvature H_{Σ} satisfies

$$H_{\Sigma}(p) = \mathcal{H}(N_p) \quad \forall p \in \Sigma,$$

where $N: \Sigma \to \mathbb{S}^2 \subset \mathbb{R}^3$ stands for the Gauss map of Σ .

When $\mathcal{H} \equiv H_0$, Σ is a surface of constant mean curvature H_0 .

COMPACT CASE

COMPACT CASE

Alexandrov and Pogorelov ('50s), and Guan and Guan (2002)
 → Existence and uniqueness of PMC ovaloids.

COMPACT CASE

Alexandrov and Pogorelov ('50s), and Guan and Guan (2002)
 → Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

COMPACT CASE

Alexandrov and Pogorelov ('50s), and Guan and Guan (2002)
 → Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

• Bueno, Gálvez and Mira (2019)

 \rightarrow Global theory of PMC hypersurfaces taking as a starting point the global theory of CMC hypersurfaces.

 \rightarrow Rotational PMC hypersurfaces getting a Delaunay-type classification result.

COMPACT CASE

Alexandrov and Pogorelov ('50s), and Guan and Guan (2002)
 → Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

• Bueno, Gálvez and Mira (2019)

 \rightarrow Global theory of PMC hypersurfaces taking as a starting point the global theory of CMC hypersurfaces.

 \rightarrow Rotational PMC hypersurfaces getting a Delaunay-type classification result.

- Bueno (2019)
 - \rightarrow Resolution of the Björling problem.
 - \rightarrow Obtention of half-space theorems for PMC surfaces.

Rotationally symmetric prescribed functions

Definition (Rotationally symmetric function)

Given a prescribed function $\mathcal{H} \in C^1(\mathbb{S}^2)$, it is said that \mathcal{H} is *rotationally symmetric* if

 $\exists \mathfrak{h} \in C^1([-1,1]) \text{ s.t. } \mathcal{H}(x) = \mathfrak{h}(\langle x, e_3 \rangle), \ \forall x \in \mathbb{S}^2.$

Rotationally symmetric prescribed functions

Definition (Rotationally symmetric function)

Given a prescribed function $\mathcal{H} \in C^1(\mathbb{S}^2)$, it is said that \mathcal{H} is *rotationally symmetric* if

 $\exists \mathfrak{h} \in C^1([-1,1]) \text{ s.t. } \mathcal{H}(x) = \mathfrak{h}(\langle x, e_3 \rangle), \ \forall x \in \mathbb{S}^2.$

For such functions, we can consider PMC surfaces satisfying

$$H_{\Sigma}(p) = \mathcal{H}(N_p) = \mathfrak{h}(\langle N_p, e_3 \rangle) = \mathfrak{h}(\nu(p)), \quad \forall p \in \Sigma,$$

where $\nu(p) := \langle N_p, e_3 \rangle$ is the angle function of Σ .

Rotationally symmetric prescribed functions

Definition (Rotationally symmetric function)

Given a prescribed function $\mathcal{H} \in C^1(\mathbb{S}^2)$, it is said that \mathcal{H} is *rotationally symmetric* if

 $\exists \mathfrak{h} \in C^1([-1,1]) \text{ s.t. } \mathcal{H}(x) = \mathfrak{h}(\langle x, e_3 \rangle), \ \forall x \in \mathbb{S}^2.$

For such functions, we can consider PMC surfaces satisfying

$$\mathcal{H}_{\Sigma}(p) = \mathcal{H}(N_p) = \mathfrak{h}(\langle N_p, e_3 \rangle) = \mathfrak{h}(\nu(p)), \quad \forall p \in \Sigma,$$

where $\nu(p) := \langle N_p, e_3 \rangle$ is the angle function of Σ .

 $\langle x, e_3 \rangle = \langle y, e_3 \rangle \Rightarrow \mathcal{H}(x) = \mathcal{H}(y)$

Linear PMC surfaces

The previous definition can be generalized to further ambient spaces.

The previous definition can be generalized to further ambient spaces.

• It only needs to measure the projection of a unit normal vector field onto a Killing vector field.

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^2 \times \mathbb{R}$ and, in particular, in $\mathbb{H}^2 \times \mathbb{R}$.

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^2 \times \mathbb{R}$ and, in particular, in $\mathbb{H}^2 \times \mathbb{R}$.

Definition (\mathfrak{h} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^2\times\mathbb{R}$ is an $\mathfrak{h}\text{-surface}$ if

$$H_{\Sigma}(p) = \mathfrak{h}(\langle \eta_{p}, \partial_{z} \rangle) \quad \forall p \in \Sigma$$

where η is a unit normal vector field on Σ and ∂_z is the unit vertical Killing vector field on $\mathbb{H}^2 \times \mathbb{R}$.

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^2 \times \mathbb{R}$ and, in particular, in $\mathbb{H}^2 \times \mathbb{R}$.

Definition (\mathfrak{h} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^2\times\mathbb{R}$ is an $\mathfrak{h}\text{-surface}$ if

$$H_{\Sigma}(p) = \mathfrak{h}(\langle \eta_{p}, \partial_{z} \rangle) \quad \forall p \in \Sigma$$

where η is a unit normal vector field on Σ and ∂_z is the unit vertical Killing vector field on $\mathbb{H}^2 \times \mathbb{R}$.

• If
$$\mathfrak{h} \equiv H_0 \in \mathbb{R}$$
, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$.

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^2 \times \mathbb{R}$ and, in particular, in $\mathbb{H}^2 \times \mathbb{R}$.

Definition (\mathfrak{h} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^2\times\mathbb{R}$ is an $\mathfrak{h}\text{-surface}$ if

$$H_{\Sigma}(p) = \mathfrak{h}(\langle \eta_{p}, \partial_{z} \rangle) \quad \forall p \in \Sigma$$

where η is a unit normal vector field on Σ and ∂_z is the unit vertical Killing vector field on $\mathbb{H}^2 \times \mathbb{R}$.

- If $\mathfrak{h} \equiv H_0 \in \mathbb{R}$, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$.
- If $\mathfrak{h}(y) = y$, Σ is a translating soliton of the mean curvature flow.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^3 and $\mathbb{H}^2 \times \mathbb{R}$.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^3 and $\mathbb{H}^2 \times \mathbb{R}$.

Specifically:

- 1. To construct new examples of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$.
- 2. To classify rotational h-surfaces in $\mathbb{H}^2\times\mathbb{R}$ for the particulare case in which h is linear.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^3 and $\mathbb{H}^2 \times \mathbb{R}$.

Specifically:

- 1. To construct new examples of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$.
- 2. To classify rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ for the particulare case in which h is linear.

Main tool: study of the phase plane of the first order autonomous system satisfied by rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$.

Summary

1. Introduction

2. The phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$

- 3. Construction of new examples of rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Existence of h-bowls in $\mathbb{H}^2 \times \mathbb{R}$ Existence of h-catenoids in $\mathbb{H}^2 \times \mathbb{R}$
- 4. \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 imes \mathbb{R}$

Definition of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

- We regard $\mathbb{H}^2\times\mathbb{R}$ as a submanifold of $\mathbb{R}^3_-\times\mathbb{R}$ endowed with the metric +,+,-,+.

- We regard $\mathbb{H}^2\times\mathbb{R}$ as a submanifold of $\mathbb{R}^3_-\times\mathbb{R}$ endowed with the metric +,+,-,+.
- Let Σ be a rotational $\mathfrak{h}\text{-surface}$ generated after rotating an a.l.p. curve

$$\alpha(s) = (\sinh(x(s)), 0, \cosh(x(s)), z(s)) \subset \mathbb{H}^2 \times \mathbb{R},$$

x(s) > 0, $s \in I \subset \mathbb{R}$, contained in a vertical plane passing through (0, 0, 1, 0) around the vertical axis $\{(0, 0, 1)\} \times \mathbb{R}$.

- We regard $\mathbb{H}^2\times\mathbb{R}$ as a submanifold of $\mathbb{R}^3_-\times\mathbb{R}$ endowed with the metric +,+,-,+.
- Let Σ be a rotational $\mathfrak{h}\text{-surface}$ generated after rotating an a.l.p. curve

$$\alpha(s) = (\sinh(x(s)), 0, \cosh(x(s)), z(s)) \subset \mathbb{H}^2 \times \mathbb{R},$$

x(s) > 0, $s \in I \subset \mathbb{R}$, contained in a vertical plane passing through (0, 0, 1, 0) around the vertical axis $\{(0, 0, 1)\} \times \mathbb{R}$.

We simply the notation by α(s) = (x(s), z(s)), and so, the angle function of Σ is ν(s) = x'(s).

- We regard $\mathbb{H}^2\times\mathbb{R}$ as a submanifold of $\mathbb{R}^3_-\times\mathbb{R}$ endowed with the metric +,+,-,+.
- Let Σ be a rotational $\mathfrak{h}\text{-surface}$ generated after rotating an a.l.p. curve

$$\alpha(s) = (\sinh(x(s)), 0, \cosh(x(s)), z(s)) \subset \mathbb{H}^2 \times \mathbb{R},$$

x(s) > 0, $s \in I \subset \mathbb{R}$, contained in a vertical plane passing through (0, 0, 1, 0) around the vertical axis $\{(0, 0, 1)\} \times \mathbb{R}$.

- We simply the notation by α(s) = (x(s), z(s)), and so, the angle function of Σ is ν(s) = x'(s).
- The principal curvatures of $\boldsymbol{\Sigma}$ are

$$\kappa_1 = \kappa_\alpha = x'z'' - x''z', \qquad \kappa_2 = \frac{z'}{\tanh x}.$$

• The mean curvature of $\boldsymbol{\Sigma}$ is

$$2H_{\Sigma} = x'z'' - x''z' + \frac{z'}{\tanh x}.$$

• The mean curvature of $\boldsymbol{\Sigma}$ is

$$2H_{\Sigma} = x'z'' - x''z' + \frac{z'}{\tanh x}$$

• Since $x'^2 + z'^2 = 1$, x is a solution of the ODE

$$x'' = rac{1-x'^2}{\tanh x} - 2arepsilon \mathcal{H}_{\Sigma}\sqrt{1-x'^2}, \qquad arepsilon = \mathrm{sign}(z'),$$

where ε denotes whether the height of α is increasing.

• The mean curvature of $\boldsymbol{\Sigma}$ is

$$2H_{\Sigma} = x'z'' - x''z' + \frac{z'}{\tanh x}$$

• Since $x'^2 + z'^2 = 1$, x is a solution of the ODE

$$x'' = \frac{1 - x'^2}{\tanh x} - 2\varepsilon H_{\Sigma} \sqrt{1 - x'^2}, \qquad \varepsilon = \operatorname{sign}(z'),$$

where ε denotes whether the height of α is increasing.

• Now, assume that Σ is an h-surface for some $\mathfrak{h} \in C^1([-1,1])$, that is, $H_{\Sigma}(s) = \mathfrak{h}(x'(s))$.

• The mean curvature of $\boldsymbol{\Sigma}$ is

$$2H_{\Sigma} = x'z'' - x''z' + \frac{z'}{\tanh x}.$$

• Since $x'^2 + z'^2 = 1$, x is a solution of the ODE

$$x'' = \frac{1 - x'^2}{\tanh x} - 2\varepsilon H_{\Sigma} \sqrt{1 - x'^2}, \qquad \varepsilon = \operatorname{sign}(z'),$$

where ε denotes whether the height of α is increasing.

- Now, assume that Σ is an h-surface for some $\mathfrak{h} \in C^1([-1,1])$, that is, $H_{\Sigma}(s) = \mathfrak{h}(x'(s))$.
- Then, after the change x' = y, the previous ODE transforms into the first order autonomous system

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} y \\ \frac{1-y^2}{\tanh x} - 2\varepsilon \mathfrak{h}(y)\sqrt{1-y^2} \end{pmatrix} =: \mathcal{F}_{\varepsilon}(x, y).$$
(1)

Phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$

Definition (Phase plane)

- The *phase plane* is the half-strip Θ_ε := (0,∞) × (-1,1), ε = ±1, with coordinates (x, y) denoting:
 - x the distance to the axis of rotation,
 - y the angle function of Σ .

Phase plane of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Definition (Phase plane)

- The *phase plane* is the half-strip Θ_ε := (0,∞) × (-1,1), ε = ±1, with coordinates (x, y) denoting:
 - x the distance to the axis of rotation,
 - y the angle function of Σ .
- The orbits are the solutions γ(s) = (x(s), y(s)) of (1) and they provide a foliation by regular C¹ curves of Θ_ε.

Phase plane of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Definition (Phase plane)

- The *phase plane* is the half-strip Θ_ε := (0,∞) × (-1,1), ε = ±1, with coordinates (x, y) denoting:
 - x the distance to the axis of rotation,
 - y the angle function of Σ .
- The orbits are the solutions γ(s) = (x(s), y(s)) of (1) and they provide a foliation by regular C¹ curves of Θ_ε.
- The *equilibrium points* are the points $e_0^{\varepsilon} = (x_0^{\varepsilon}, y_0^{\varepsilon}) \in \Theta_{\varepsilon}$ s.t. $F_{\varepsilon}(e_0^{\varepsilon}) = 0$.

Phase plane of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Definition (Phase plane)

- The *phase plane* is the half-strip Θ_ε := (0,∞) × (-1,1), ε = ±1, with coordinates (x, y) denoting:
 - x the distance to the axis of rotation,
 - y the angle function of Σ .
- The orbits are the solutions γ(s) = (x(s), y(s)) of (1) and they provide a foliation by regular C¹ curves of Θ_ε.
- The *equilibrium points* are the points $e_0^{\varepsilon} = (x_0^{\varepsilon}, y_0^{\varepsilon}) \in \Theta_{\varepsilon}$ s.t. $F_{\varepsilon}(e_0^{\varepsilon}) = 0$.

2. The phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$

Linear PMC surfaces

Properties of the phase plane

• An orbit cannot converge to a point (0, y), |y| < 1.

- An orbit cannot converge to a point (0, y), |y| < 1.
- However, there exists an orbit with and endpoint at $(0, \pm 1)$. That is, a rotational \mathfrak{h} -surface only intersects the rotation axis orthogonally.

generating the right circular cylinder $\mathbb{S}^1(x_0^{\varepsilon}) \times \mathbb{R}$ of CMC $\mathfrak{h}(0)$.

• The points of α with $\kappa_{\alpha} = 0$ are located in

$$\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(rac{\sqrt{1-y^2}}{2\varepsilon\mathfrak{h}(y)}
ight)$$

The axis y = 0 and Γ_ε divide Θ_ε into connected components, where the coordinates x(s) and y(s) are monotonous.

• At each monotonicity region, the motion of an orbit is uniquely determined.

- If an orbit intersects Γ_ε, the function y(s) has a local extremum.
- If an orbit intersects the axis y = 0, it does orthogonally.

Summary

1. Introduction

2. The phase plane of rotational \mathfrak{h} -surfaces in $\mathbb{H}^2 imes \mathbb{R}$

- 3. Construction of new examples of rotational h-surfaces in $\mathbb{H}^2\times\mathbb{R}$ Existence of h-bowls in $\mathbb{H}^2\times\mathbb{R}$ Existence of h-catenoids in $\mathbb{H}^2\times\mathbb{R}$
- 4. \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 imes \mathbb{R}$

Definition of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

$\mathfrak{h}\text{-bowls}$ in $\mathbb{H}^2\times\mathbb{R}$

Proposition 1 (Existence of \mathfrak{h} -bowls in $\mathbb{H}^2 \times \mathbb{R}$)

Let \mathfrak{h} be a C^1 function on [-1,1], and suppose that $\exists y_* \in [0,1]$ (resp. $y_* \in [-1,0]$) s.t

$$2\varepsilon\mathfrak{h}(y_*)=\sqrt{1-y_*^2}.$$

Then, there exists an upwards-oriented (resp. downwards-oriented) entire rotational \mathfrak{h} -graph Σ in $\mathbb{H}^2 \times \mathbb{R}$. Moreover:

- 1. either Σ is a *horizontal plane*,
- 2. or Σ is a strictly convex graph.

$\mathfrak{h}\text{-bowls}$ in $\mathbb{H}^2\times\mathbb{R}$

Proposition 1 (Existence of \mathfrak{h} -bowls in $\mathbb{H}^2 \times \mathbb{R}$)

Let \mathfrak{h} be a C^1 function on [-1,1], and suppose that $\exists y_* \in [0,1]$ (resp. $y_* \in [-1,0]$) s.t

$$2\varepsilon\mathfrak{h}(y_*)=\sqrt{1-y_*^2}.$$

Then, there exists an upwards-oriented (resp. downwards-oriented) entire rotational \mathfrak{h} -graph Σ in $\mathbb{H}^2 \times \mathbb{R}$. Moreover:

- 1. either Σ is a *horizontal plane*,
- 2. or Σ is a strictly convex graph.

These \mathfrak{h} -surfaces will be called \mathfrak{h} -**bowls**.

The prescribed function of this figure is $h(y) = \sqrt{3}(y - 0.25)$.

$\mathfrak{h}\text{-catenoids}$ in $\mathbb{H}^2\times\mathbb{R}$

Proposition 2 (Existence of \mathfrak{h} -catenoids in $\mathbb{H}^2 \times \mathbb{R}$)

Let \mathfrak{h} be a C^1 function on [-1,1], and suppose that

 $\mathfrak{h} \leq 0$ and $\mathfrak{h}(\pm 1) = 0$.

Then, there exists a one-parameter family of properly embedded, rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ of strictly negative extrinsic curvature at every point, and diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$. Each example is a bi-graph over $\mathbb{H}^2 - \mathbb{D}_{\mathbb{H}^2}(x_0)$, where $\mathbb{D}_{\mathbb{H}^2}(x_0) = \{x \in \mathbb{H}^2 : |x|_{\mathbb{H}^2} < x_0\}$, for some $x_0 > 0$.

$\mathfrak{h}\text{-catenoids}$ in $\mathbb{H}^2\times\mathbb{R}$

Proposition 2 (Existence of \mathfrak{h} -catenoids in $\mathbb{H}^2 \times \mathbb{R}$)

Let \mathfrak{h} be a C^1 function on [-1,1], and suppose that

 $\mathfrak{h} \leq 0 \quad \mathrm{and} \quad \mathfrak{h}(\pm 1) = 0.$

Then, there exists a one-parameter family of properly embedded, rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ of strictly negative extrinsic curvature at every point, and diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$. Each example is a bi-graph over $\mathbb{H}^2 - \mathbb{D}_{\mathbb{H}^2}(x_0)$, where $\mathbb{D}_{\mathbb{H}^2}(x_0) = \{x \in \mathbb{H}^2 : |x|_{\mathbb{H}^2} < x_0\}$, for some $x_0 > 0$.

These \mathfrak{h} -surfaces will be called \mathfrak{h} -catenoids.

3. Construction of new examples of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$

Linear PMC surfaces

Summary

1. Introduction

- 2. The phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$
- Construction of new examples of rotational h-surfaces in ℍ² × ℝ Existence of h-bowls in ℍ² × ℝ Existence of h-catenoids in ℍ² × ℝ
- 4. \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Definition of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$
- 5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^2\times\mathbb{R}$ is an $\mathfrak{h}_\lambda\text{-surface}$ if

 $H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^2\times\mathbb{R}$ is an $\mathfrak{h}_\lambda\text{-surface}$ if

$$H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$$

• If a = 0, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H = \lambda$.

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

$$H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$$

- If a = 0, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H = \lambda$.
- If $\lambda = 0$, Σ is a translating soliton of the mean curvature flow.

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

$$H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$$

- If a = 0, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H = \lambda$.
- If $\lambda = 0$, Σ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in ℍ² and a dilation in the factor ℝ we can assume a = 1.

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

$$H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$$

- If a = 0, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H = \lambda$.
- If $\lambda = 0$, Σ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in ℍ² and a dilation in the factor ℝ we can assume a = 1.
- Moreover, if Σ is an h_λ-surface, then Σ with its opposite orientation is an h_{-λ}-surface. Therefore, we will assume λ > 0.

A special case of $\mathfrak{h}\text{-surface}$ in $\mathbb{H}^2\times\mathbb{R}$ is the following one:

Definition (\mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$)

$$H_{\Sigma}(p) = \mathfrak{h}_{\lambda}(\nu(p)) = a\nu(p) + \lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}.$$

- If a = 0, Σ is a CMC surface in $\mathbb{H}^2 \times \mathbb{R}$ with $H = \lambda$.
- If $\lambda = 0$, Σ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in ℍ² and a dilation in the factor ℝ we can assume a = 1.
- Moreover, if Σ is an h_λ-surface, then Σ with its opposite orientation is an h_{-λ}-surface. Therefore, we will assume λ > 0.
- Hence, from now on, $\mathfrak{h}_{\lambda}(y) = y + \lambda$ with $\lambda > 0$.

The study of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

The study of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ} -surfaces)

The following conditions are equivalent.

1. Σ is an \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$.

The study of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ} -surfaces)

The following conditions are equivalent.

- 1. Σ is an \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$.
- 2. Σ has constant weighted mean curvature equal to λ , that is,

$$H_{\phi} := H_{\Sigma} - \langle \eta, \nabla \phi_{\mathbf{v}} \rangle = \lambda$$

for the density $e^{\phi} \in C^1(\mathbb{H}^2 \times \mathbb{R})$, where $\phi(x) = a\langle x, \partial_z \rangle$.

The study of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ} -surfaces)

The following conditions are equivalent.

- 1. Σ is an \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$.
- 2. Σ has constant weighted mean curvature equal to λ , that is,

$$H_{\phi} := H_{\Sigma} - \langle \eta, \nabla \phi_{\nu} \rangle = \lambda$$

for the density $e^{\phi} \in C^1(\mathbb{H}^2 \times \mathbb{R})$, where $\phi(x) = a\langle x, \partial_z \rangle$.

 Σ is a critical point for the weighted area functional, under compactly supported variations preserving the weighted volume.

The study of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ} -surfaces)

The following conditions are equivalent.

- 1. Σ is an \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$.
- 2. Σ has constant weighted mean curvature equal to λ , that is,

$$H_{\phi} := H_{\Sigma} - \langle \eta, \nabla \phi_{\mathbf{v}} \rangle = \lambda$$

for the density $e^{\phi} \in C^1(\mathbb{H}^2 \times \mathbb{R})$, where $\phi(x) = a \langle x, \partial_z \rangle$.

- Σ is a critical point for the weighted area functional, under compactly supported variations preserving the weighted volume.
- 4. Σ is a self-translating soliton of the mean curvature flow with a constant forcing term.

Summary

1. Introduction

- 2. The phase plane of rotational $\mathfrak{h}\text{-surfaces}$ in $\mathbb{H}^2\times\mathbb{R}$
- 3. Construction of new examples of rotational h-surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Existence of h-bowls in $\mathbb{H}^2 \times \mathbb{R}$ Existence of h-catenoids in $\mathbb{H}^2 \times \mathbb{R}$
- 4. \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 imes \mathbb{R}$

Definition of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ Criteria to distinguish cases in the classification results

Classification for surfaces non-intersecting the rotation axis

 h_λ-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.

- h_λ-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

1. Properties of the equilibrium point

• Since Σ is an \mathfrak{h}_{λ} -surface, $\mathfrak{h}(0) = \lambda > 0$, then $e_0 = (\operatorname{arctanh}(1/(2\lambda)), 0) \text{ exists} \Leftrightarrow \lambda > 1/2.$

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

- Since Σ is an \mathfrak{h}_{λ} -surface, $\mathfrak{h}(0) = \lambda > 0$, then $e_0 = (\operatorname{arctanh}(1/(2\lambda)), 0) \text{ exists} \Leftrightarrow \lambda > 1/2$.
- By studying the eigenvalues of the linearized system of (1) at e_0 , we get:

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

- Since Σ is an \mathfrak{h}_{λ} -surface, $\mathfrak{h}(0) = \lambda > 0$, then $e_0 = (\operatorname{arctanh}(1/(2\lambda)), 0) \text{ exists} \Leftrightarrow \lambda > 1/2$.
- By studying the eigenvalues of the linearized system of (1) at e_0 , we get:
 - (a) If $\lambda > \sqrt{2}/2$, then every orbit close enough to e_0 converges asymptotically to it **spiraling around infinitely many times**.

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

- Since Σ is an \mathfrak{h}_{λ} -surface, $\mathfrak{h}(0) = \lambda > 0$, then $e_0 = (\operatorname{arctanh}(1/(2\lambda)), 0) \text{ exists} \Leftrightarrow \lambda > 1/2$.
- By studying the eigenvalues of the linearized system of (1) at e_0 , we get:
 - (a) If λ > √2/2, then every orbit close enough to e₀ converges asymptotically to it spiraling around infinitely many times.
 (b) If λ = √2/2, then every orbit close enough to e₀ converges asymptotically to it, maybe spiraling around a finite number of times.

- \mathfrak{h}_{λ} -surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:
 - 1. The properties of the equilibrium point.
 - 2. The curve Γ_{ε} and the monotonicity regions generated by it.

- Since Σ is an \mathfrak{h}_{λ} -surface, $\mathfrak{h}(0) = \lambda > 0$, then $e_0 = (\operatorname{arctanh}(1/(2\lambda)), 0) \text{ exists} \Leftrightarrow \lambda > 1/2$.
- By studying the eigenvalues of the linearized system of (1) at e_0 , we get:
 - (a) If $\lambda > \sqrt{2}/2$, then every orbit close enough to e_0 converges asymptotically to it **spiraling around infinitely many times**.
 - (b) If $\lambda = \sqrt{2}/2$, then every orbit close enough to e_0 converges asymptotically to it, maybe spiraling around a finite number of times.
 - (c) If $\lambda < \sqrt{2}/2$, then every orbit close enough to e_0 converges asymptotically to it *directly*, i.e. without spiraling around.

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ} -surfaces, $\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(\frac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}\right)$.

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ} -surfaces, $\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(\frac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}\right)$.

• If $\lambda > \sqrt{5}/2$, $\Gamma_1(y)$ exists $\forall y \in (-1, 1)$ and Γ_{-1} does not exist.

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ} -surfaces, $\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(\frac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}\right)$.

- If $\lambda > \sqrt{5}/2$, $\Gamma_1(y)$ exists $\forall y \in (-1, 1)$ and Γ_{-1} does not exist.
- If $\lambda = \sqrt{5}/2$, $\Gamma_1(y)$ is formed by two connected arcs having $y = -2/\sqrt{5}$ as an assymptote and Γ_{-1} does not exist.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ} -surfaces, $\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(\frac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}\right)$.

- If $\lambda > \sqrt{5}/2$, $\Gamma_1(y)$ exists $\forall y \in (-1, 1)$ and Γ_{-1} does not exist.
- If $\lambda = \sqrt{5}/2$, $\Gamma_1(y)$ is formed by two connected arcs having $y = -2/\sqrt{5}$ as an assymptote and Γ_{-1} does not exist.
- If λ < √5/2, the candidates of assymptotes for Γ_ε must be studied depending on three cases: λ > 1, λ = 1 and λ < 1.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ} -surfaces, $\Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(\frac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}\right)$.

- If $\lambda > \sqrt{5}/2$, $\Gamma_1(y)$ exists $\forall y \in (-1, 1)$ and Γ_{-1} does not exist.
- If $\lambda = \sqrt{5}/2$, $\Gamma_1(y)$ is formed by two connected arcs having $y = -2/\sqrt{5}$ as an assymptote and Γ_{-1} does not exist.
- If λ < √5/2, the candidates of assymptotes for Γ_ε must be studied depending on three cases: λ > 1, λ = 1 and λ < 1.

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Linear PMC surfaces

Theorem 1

Let be Σ_+ the complete, rotational \mathfrak{h}_λ -surfaces in $\mathbb{H}^2 \times \mathbb{R}$ intersecting the rotation axis with upwards orientation. Then:

- 1. For $\lambda > 1/2$, Σ_+ is properly embedded, simply connected and converges to the flat CMC cylinder C_{λ} of radius arg tanh $(\frac{1}{2\lambda})$. Moreover:
 - (a) If $\lambda > \sqrt{2}/2$, Σ_+ intersects C_{λ} infinitely many times.
 - (b) If $\lambda = \sqrt{2}/2$, Σ_+ intersects C_{λ} a finite number of times and is a graph outside a compact set.
 - (c) If $\lambda < \sqrt{2}/2$, Σ_+ is a strictly convex graph over the disk in \mathbb{H}^2 of radius arg tanh $\left(\frac{1}{2\lambda}\right)$.
- 2. For $\lambda \leq 1/2$, Σ_+ is an entire, strictly convex graph.

Theorem 1

Let be Σ_+ the complete, rotational \mathfrak{h}_λ -surfaces in $\mathbb{H}^2\times\mathbb{R}$ intersecting the rotation axis with upwards orientation. Then:

- 1. For $\lambda > 1/2$, Σ_+ is properly embedded, simply connected and converges to the flat CMC cylinder C_{λ} of radius arg tanh $(\frac{1}{2\lambda})$. Moreover:
 - (a) If $\lambda > \sqrt{2}/2$, Σ_+ intersects C_{λ} infinitely many times.
 - (b) If $\lambda = \sqrt{2}/2$, Σ_+ intersects C_{λ} a finite number of times and is a graph outside a compact set.
 - (c) If $\lambda < \sqrt{2}/2$, Σ_+ is a strictly convex graph over the disk in \mathbb{H}^2 of radius arg tanh $\left(\frac{1}{2\lambda}\right)$.
- 2. For $\lambda \leq 1/2$, Σ_+ is an entire, strictly convex graph.
- Analogously, let be Σ_{-} with downwards orientation. Then:
 - 3. For $\lambda > \sqrt{5}/2$, Σ_{-} is properly immersed, simply connected and has unbounded distance to the rotation axis.
 - 4. For $\lambda \leq \sqrt{5}/2$, Σ_{-} is an entire graph. Moreover, if $\lambda = 1$, Σ_{-} is a horizontal plane. Otherwise, Σ_{-} has positive Gauss-Kronecker curvature.

Case $\lambda > \sqrt{5}/2$

- For λ > 1/2, Σ₊ is properly embedded, simply connected and converges to C_λ intersecting it infinitely many times (as λ > √2/2).
- For $\lambda > \sqrt{5}/2$, Σ_{-} is properly immersed, simply connected and has unbounded distance to the rotation axis.

Case $\lambda > \sqrt{5}/2$

- For λ > 1/2, Σ₊ is properly embedded, simply connected and converges to C_λ intersecting it infinitely many times (as λ > √2/2).
- For $\lambda > \sqrt{5}/2$, Σ_{-} is properly immersed, simply connected and has unbounded distance to the rotation axis.

For λ ≤ √5/2, Σ_− is an entire graph. Moreover, if λ ≠ 1 Σ_− has positive Gauss-Kronecker curvature.

First step. Let us study Θ_1 and Θ_{-1}

First step. Let us study Θ_1 and Θ_{-1}

$$x = \Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(rac{\sqrt{1-y^2}}{2arepsilon(y+\lambda)}
ight) > 0,$$

First step. Let us study Θ_1 and Θ_{-1}

$$x = \Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(rac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}
ight) > 0,$$

Γ₁ is a connected arc in Θ₁ joining (0, 1) and (0, -1), and it contains the equilibrium point e₀ = (arctanh(1/(2λ)), 0).

First step. Let us study Θ_1 and Θ_{-1}

$$x = \Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(rac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}
ight) > 0,$$

- Γ₁ is a connected arc in Θ₁ joining (0, 1) and (0, -1), and it contains the equilibrium point e₀ = (arctanh(1/(2λ)), 0).
- Γ_{-1} does not exist in Θ_{-1} .

First step. Let us study Θ_1 and Θ_{-1}

$$x = \Gamma_{\varepsilon}(y) = \operatorname{arctanh}\left(rac{\sqrt{1-y^2}}{2\varepsilon(y+\lambda)}
ight) > 0,$$

Γ₁ is a connected arc in Θ₁ joining (0, 1) and (0, -1), and it contains the equilibrium point e₀ = (arctanh(1/(2λ)), 0).

5. Classification of rotational \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Second step. Let us study orbits intersecting $(0, \pm 1)$

Second step. Let us study orbits intersecting $(0, \pm 1)$ By a technical result we can ensure that:

Second step. Let us study orbits intersecting $(0, \pm 1)$ By a technical result we can ensure that:

There exists a unique orbit γ₊ in Θ₁ having (0,1) as an endpoint, and there is no such an orbit in Θ₋₁.

Second step. Let us study orbits intersecting $(0, \pm 1)$ By a technical result we can ensure that:

- There exists a unique orbit γ₊ in Θ₁ having (0,1) as an endpoint, and there is no such an orbit in Θ₋₁.
- There exists a unique orbit γ_− in Θ₁ having (0, −1) as an endpoint, and there is no such an orbit in Θ_{−1}.

Second step. Let us study orbits intersecting $(0, \pm 1)$ By a technical result we can ensure that:

- There exists a unique orbit γ₊ in Θ₁ having (0,1) as an endpoint, and there is no such an orbit in Θ₋₁.
- There exists a unique orbit γ_{-} in Θ_{1} having (0, -1) as an endpoint, and there is no such an orbit in Θ_{-1} .

Lemma (Behavior of γ_+ and γ_-)

- 1. γ_+ and γ_- intersect the axis y = 0 orthogonally at $(x_+, 0)$ and $(x_-, 0)$, resp., with x_+ and x_- greater than $\operatorname{arctanh}(1/(2\lambda))$.
- 2. The points $(x_+, 0)$ and $(x_-, 0)$ are different. In fact, $x_+ < x_-$.

Lemma (Behavior of γ_+ and γ_-)

1. γ_+ and γ_- intersect the axis y = 0 orthogonally at $(x_+, 0)$ and $(x_-, 0)$, resp., with x_+ and x_- greater than $\operatorname{arctanh}(1/(2\lambda))$.

2. The points $(x_+, 0)$ and $(x_-, 0)$ are different. In fact, $x_+ < x_-$.

Proof.

1. Arguing by contradiction, suppose that γ_+ can stay in Λ_1 . As $\lambda > \sqrt{5}/2$, we get a contradiction with the following result:

If $\gamma(s) \to (\infty, y_0)$, $y_0 \in (-1, 1) \Rightarrow 2\varepsilon \mathfrak{h}(y_0) = \sqrt{1 - y_0^2}$.

Moreover, γ_+ can not go directly to e_0 . Analogous for γ_- .

Lemma (Behavior of γ_+ and γ_-)

1. γ_+ and γ_- intersect the axis y = 0 orthogonally at $(x_+, 0)$ and $(x_-, 0)$, resp., with x_+ and x_- greater than $\operatorname{arctanh}(1/(2\lambda))$.

2. The points $(x_+, 0)$ and $(x_-, 0)$ are different. In fact, $x_+ < x_-$.

Proof.

1. Arguing by contradiction, suppose that γ_+ can stay in Λ_1 . As $\lambda > \sqrt{5}/2$, we get a contradiction with the following result:

If $\gamma(s) \to (\infty, y_0)$, $y_0 \in (-1, 1) \Rightarrow 2\varepsilon \mathfrak{h}(y_0) = \sqrt{1 - y_0^2}$.

Moreover, γ_+ can not go directly to e_0 . Analogous for γ_- .

 x₊ ≠ x₋ since there do not exist closed h_λ-surfaces in ℍ² × ℝ. Moreover, if x₋ < x₊, γ₋ must converge to e₀ as s → -∞ and it contradicts the inward spiral structure of e₀.

Once we have checked that the initial behavior of γ_+ and γ_- is the represented in the next Figure,

Once we have checked that the initial behavior of γ_+ and γ_- is the represented in the next Figure,

we continue analyzing γ_+ and γ_- graphically as follows.

Third step. Let us draw the profile curves associated to γ_+ and γ_- and the corresponding \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Third step. Let us draw the profile curves associated to γ_+ and γ_- and the corresponding \mathfrak{h}_{λ} -surfaces in $\mathbb{H}^2 \times \mathbb{R}$

Theorem 2

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$. Moreover,

1. If $\lambda > 1/2$, then:

Theorem 2

- 1. If $\lambda > 1/2$, then:
 - 1.1. either Σ is the CMC cylinder C_{λ} of radius arg tanh $\left(\frac{1}{2\lambda}\right)$, or

Theorem 2

- 1. If $\lambda > 1/2$, then:
 - 1.1. either Σ is the CMC cylinder C_{λ} of radius arg tanh $\left(\frac{1}{2\lambda}\right)$, or
 - 1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:

Theorem 2

- 1. If $\lambda > 1/2$, then:
 - 1.1. either Σ is the CMC cylinder C_{λ} of radius arg tanh $\left(\frac{1}{2\lambda}\right)$, or
 - 1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
 - a) If $\lambda > \sqrt{5}/2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.

Theorem 2

- 1. If $\lambda > 1/2$, then:
 - 1.1. either Σ is the CMC cylinder C_{λ} of radius arg tanh $\left(\frac{1}{2\lambda}\right)$, or
 - 1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
 - a) If $\lambda > \sqrt{5}/2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.
 - b) If $\lambda \leq \sqrt{5}/2$, the other end is a graph outside a compact set.

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ} -surface in $\mathbb{H}^2 \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$. Moreover,

1. If
$$\lambda > 1/2$$
, then:

- 1.1. either Σ is the CMC cylinder C_{λ} of radius arg tanh $\left(\frac{1}{2\lambda}\right)$, or
- 1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
 - a) If $\lambda > \sqrt{5}/2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.
 - b) If $\lambda \leq \sqrt{5}/2$, the other end is a graph outside a compact set.

2. If $\lambda \leq 1/2$, then both ends are graphs outside compact sets.

Case $\lambda > \sqrt{5}/2$

- If λ > 1/2, then one end converges to C_λ with the same asymptotic behavior as in item 1 in Theorem 1, and:
 - If λ > √5/2, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.

- If λ > 1/2, then one end converges to C_λ with the same asymptotic behavior as in item 1 in Theorem 1, and:
 - If $\lambda \leq \sqrt{5}/2$, the other end is a graph outside a compact set.

Rotational \mathfrak{h}_{λ} -surfaces non-intersecting the rotation axis Case $\lambda \leq 1/2$

• If $\lambda \leq 1/2$, then both ends are graphs outside compact sets.

References

- 1. A. Bueno, J.A. Gálvez, P. Mira, Rotational hypersurfaces of prescribed mean curvature, *J. Diff. Eqs.* **268** (2020), 2394-2413.
- 2. A. Bueno, I. Ortiz, Invariant hypersurfaces with linear prescribed mean curvature, *J. Math. Anal. Appl.* **487** (2020), 124033.

 A. Bueno, I. Ortiz, Rotational surfaces with prescribed mean curvature in H² × R, Annali di Matematica 201 (2022), 1257-1277.

Thank you for your attention!

