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Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)
Given H ∈ C 1(S2), an oriented surface Σ in R3 is a surface of prescribed
mean curvature H if its mean curvature HΣ satisfies

HΣ(p) = H(Np) ∀p ∈ Σ,

where N : Σ→ S2 ⊂ R3 stands for the Gauss map of Σ.

When H ≡ H0, Σ is a surface of constant mean curvature H0.
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Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

• Alexandrov and Pogorelov (’50s), and Guan and Guan (2002)
→ Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE
• Bueno, Gálvez and Mira (2019)
→ Global theory of PMC hypersurfaces taking as a starting
point the global theory of CMC hypersurfaces.
→ Rotational PMC hypersurfaces getting a Delaunay-type
classification result.

• Bueno (2019)
→ Resolution of the Björling problem.
→ Obtention of half-space theorems for PMC surfaces.
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Rotationally symmetric prescribed functions
Definition (Rotationally symmetric function)
Given a prescribed function H ∈ C 1(S2), it is said that H is rotationally
symmetric if

∃ h ∈ C 1([−1, 1]) s.t. H(x) = h(〈x , e3〉), ∀x ∈ S2.

• For such functions, we can consider PMC surfaces satisfying

HΣ(p) = H(Np) = h(〈Np, e3〉) = h(ν(p)), ∀p ∈ Σ,

where ν(p) := 〈Np, e3〉 is the angle function of Σ.
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h-surfaces in H2 × R
The previous definition can be generalized to further ambient spaces.

• It only needs to measure the projection of a unit normal vector field
onto a Killing vector field.

• Consequently, surfaces with PMC rotationally symmetric can be
defined in M2 × R and, in particular, in H2 × R.

Definition (h-surface in H2 × R)
An oriented surface Σ in H2 × R is an h-surface if

HΣ(p) = h(〈ηp, ∂z〉) ∀p ∈ Σ

where η is a unit normal vector field on Σ and ∂z is the unit vertical
Killing vector field on H2 × R.

• If h ≡ H0 ∈ R, Σ is a CMC surface in H2 × R.

• If h(y) = y , Σ is a translating soliton of the mean curvature flow.
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Main aim of this work

Purposes
The main purpose is to further investigate the theory of h-surfaces in
H2 × R inspired by the well-known results for:

• CMC and minimal surfaces,

• Translating solitons, and

• Surfaces of PMC in R3 and H2 × R.

Specifically:

1. To construct new examples of rotational h-surfaces in H2 × R.

2. To classify rotational h-surfaces in H2 ×R for the particulare case in
which h is linear.

Main tool: study of the phase plane of the first order autonomous system
satisfied by rotational h-surfaces in H2 × R.
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Profile curve of a rotational h-surface Σ

• We regard H2 × R as a submanifold of R3
− × R endowed with the

metric +,+,−,+.

• Let Σ be a rotational h-surface generated after rotating an a.l.p.
curve

α(s) = (sinh(x(s)), 0, cosh(x(s)), z(s)) ⊂ H2 × R,

x(s) > 0, s ∈ I ⊂ R, contained in a vertical plane passing through
(0, 0, 1, 0) around the vertical axis {(0, 0, 1)} × R.

• We simply the notation by α(s) = (x(s), z(s)), and so, the angle
function of Σ is ν(s) = x ′(s).

• The principal curvatures of Σ are

κ1 = κα = x ′z ′′ − x ′′z ′, κ2 =
z ′

tanh x
.
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First order autonomous system
• The mean curvature of Σ is

2HΣ = x ′z ′′ − x ′′z ′ +
z ′

tanh x
.

• Since x ′2 + z ′2 = 1, x is a solution of the ODE

x ′′ =
1− x ′2

tanh x
− 2εHΣ

√
1− x ′2, ε = sign(z ′),

where ε denotes whether the height of α is increasing.

• Now, assume that Σ is an h-surface for some h ∈ C 1([−1, 1]), that
is, HΣ(s) = h(x ′(s)).

• Then, after the change x′ = y, the previous ODE transforms into
the first order autonomous system

(
x
y

)′
=




y
1− y2

tanh x
− 2εh(y)

√
1− y2


 =: Fε(x , y). (1)
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Phase plane of rotational h-surfaces in H2 × R
Definition (Phase plane)

• The phase plane is the half-strip Θε := (0,∞)× (−1, 1), ε = ±1,
with coordinates (x , y) denoting:

I x the distance to the axis of rotation,
I y the angle function of Σ.

• The orbits are the solutions γ(s) = (x(s), y(s)) of (1) and they
provide a foliation by regular C 1 curves of Θε.

• The equilibrium points are the points eε0 = (xε0 , y
ε
0 ) ∈ Θε s.t.

Fε(e
ε
0) = 0.

Θε
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Properties of the phase plane

• An orbit cannot converge to a point (0, y), |y | < 1.

• However, there exists an orbit with and endpoint at (0,±1).
That is, a rotational h-surface only intersects the rotation axis
orthogonally.
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Properties of the phase plane

• If εh(0) > 1/2, there is a unique equilibrium

eε0 = (arctanh
(

1
2εh(0)

)
, 0) in Θε

generating the right circular cylinder S1(xε0)×R of CMC h(0).

Consequently, a rotational Hλ-hypersurface only2. The phase plane of rotational h-surfaces in H2 × R Linear PMC surfaces 14 / 40



Properties of the phase plane

e0 =
(
n−1
λn , 0

)
b

• The points of α with κα = 0 are located in

Γε(y) = arctanh

(√
1− y2

2εh(y)

)
.

Moreover, the curve Γε is empty when εh(y) ≤ 0.
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Properties of the phase plane

e0 =
(
n−1
λn , 0

)
b

• The axis y = 0 and Γε divide Θε into connected components,
where the coordinates x(s) and y(s) are monotonous.
Consequently, a rotational Hλ-hypersurface only

Consequently, a rotational Hλ-hypersurface only
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Properties of the phase plane

b

Γε

e0

Θε

• At each monotonicity region, the motion of an orbit is uniquely
determined.

Consequently, a rotational Hλ-hypersurface only„ „ „ „ „ „ „ „ „ „ „ „ ,
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Properties of the phase plane

b

Γε

e0

Θε

• If an orbit intersects Γε, the function y(s) has a local
extremum.

• If an orbit intersects the axis y = 0, it does orthogonally.
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h-bowls in H2 × R
Proposition 1 (Existence of h-bowls in H2 × R)
Let h be a C 1 function on [−1, 1], and suppose that ∃y∗ ∈ [0, 1] (resp.
y∗ ∈ [−1, 0]) s.t

2εh(y∗) =
√

1− y∗2.

Then, there exists an upwards-oriented (resp. downwards-oriented) entire
rotational h-graph Σ in H2 × R. Moreover:
1. either Σ is a horizontal plane,
2. or Σ is a strictly convex graph.

These h-surfaces will be called h-bowls.

Θ1Λ− γ Λ+Λ− Γ1y = y0

The prescribed function of this figure is h(y) =
√
3(y − 0.25).
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h-catenoids in H2 × R
Proposition 2 (Existence of h-catenoids in H2 × R)
Let h be a C 1 function on [−1, 1], and suppose that

h ≤ 0 and h(±1) = 0.

Then, there exists a one-parameter family of properly embedded,
rotational h-surfaces in H2 × R of strictly negative extrinsic curvature at
every point, and diffeomorphic to S1×R. Each example is a bi-graph over
H2 − DH2(x0), where DH2(x0) = {x ∈ H2 : |x |H2 < x0}, for some x0 > 0.

These h-surfaces will be called h-catenoids.

Θ1Λ+

Λ−

γ

The prescribed function of this figure is h(y) = y2 − 1.

3. Construction of new examples of rotational h-surfaces in H2 × R Linear PMC surfaces 21 / 40



h-catenoids in H2 × R
Proposition 2 (Existence of h-catenoids in H2 × R)
Let h be a C 1 function on [−1, 1], and suppose that

h ≤ 0 and h(±1) = 0.

Then, there exists a one-parameter family of properly embedded,
rotational h-surfaces in H2 × R of strictly negative extrinsic curvature at
every point, and diffeomorphic to S1×R. Each example is a bi-graph over
H2 − DH2(x0), where DH2(x0) = {x ∈ H2 : |x |H2 < x0}, for some x0 > 0.

These h-surfaces will be called h-catenoids.

Θ1Λ+

Λ−

γ

The prescribed function of this figure is h(y) = y2 − 1.

3. Construction of new examples of rotational h-surfaces in H2 × R Linear PMC surfaces 21 / 40



Summary

1. Introduction

2. The phase plane of rotational h-surfaces in H2 × R

3. Construction of new examples of rotational h-surfaces in H2 ×R
Existence of h-bowls in H2 × R
Existence of h-catenoids in H2 × R

4. hλ-surfaces in H2 × R
Definition of hλ-surfaces in H2 × R
Relevance of hλ-surfaces in H2 × R

5. Classification of rotational hλ-surfaces in H2 × R
Criteria to distinguish cases in the classification results
Classification for surfaces intersecting the rotation axis
Classification for surfaces non-intersecting the rotation axis

4. hλ-surfaces in H2 × R Linear PMC surfaces 22 / 40



hλ-surfaces in H2 × R
A special case of h-surface in H2 × R is the following one:

Definition (hλ-surface in H2 × R)
An oriented surface Σ in H2 × R is an hλ-surface if

HΣ(p) = hλ(ν(p)) = aν(p) + λ ∀p ∈ Σ, a, λ ∈ R.

• If a = 0, Σ is a CMC surface in H2 × R with H = λ.

• If λ = 0, Σ is a translating soliton of the mean curvature flow.

• After a conformal change of the metric in H2 and a dilation in the
factor R we can assume a = 1.

• Moreover, if Σ is an hλ-surface, then Σ with its opposite orientation
is an h−λ-surface. Therefore, we will assume λ > 0.

• Hence, from now on, hλ(y) = y + λ with λ > 0.
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Characterizations of hλ-surfaces in H2 × R
The study of hλ-surfaces in H2 × R is very natural since they are
closely related to the theory of manifolds with density.

Proposition (characterizations of hλ-surfaces)

The following conditions are equivalent.
1. Σ is an hλ-surface in H2 × R.

2. Σ has constant weighted mean curvature equal to λ, that is,

Hφ := HΣ − 〈η,∇φv 〉 = λ

for the density eφ ∈ C 1(H2 × R), where φ(x) = a〈x , ∂z〉.
3. Σ is a critical point for the weighted area functional, under

compactly supported variations preserving the weighted
volume.

4. Σ is a self-translating soliton of the mean curvature flow with
a constant forcing term.
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Criteria to distinguish cases in the classification results
• hλ-surfaces are related to the behaviour of the orbits in each

phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γε and the monotonicity regions generated by it.

1. Properties of the equilibrium point

• Since Σ is an hλ-surface, h(0) = λ > 0, then
e0 = (arctanh(1/(2λ)), 0) exists⇔ λ > 1/2.

• By studying the eigenvalues of the linearized system of (1) at
e0, we get:
(a) If λ >

√
2/2, then every orbit close enough to e0 converges

asymptotically to it spiraling around infinitely many times.
(b) If λ =

√
2/2, then every orbit close enough to e0 converges

asymptotically to it, maybe spiraling around a finite number
of times.

(c) If λ <
√
2/2, then every orbit close enough to e0 converges

asymptotically to it directly, i.e. without spiraling around.
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Criteria to distinguish cases in the classification results
2. Analysis of the curve Γε

For hλ-surfaces, Γε(y) = arctanh
(√

1−y2

2ε(y+λ)

)
.

• If λ >
√
5/2, Γ1(y) exists ∀y ∈ (−1, 1) and Γ−1 does not exist.

• If λ =
√
5/2, Γ1(y) is formed by two connected arcs having

y = −2/
√
5 as an assymptote and Γ−1 does not exist.

• If λ <
√
5/2, the candidates of assymptotes for Γε must be studied

depending on three cases: λ > 1, λ = 1 and λ < 1.
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Rotational hλ-surfaces intersecting the rotation axis
Theorem 1
Let be Σ+ the complete, rotational hλ-surfaces in H2 × R intersecting
the rotation axis with upwards orientation. Then:
1. For λ > 1/2, Σ+ is properly embedded, simply connected and

converges to the flat CMC cylinder Cλ of radius arg tanh
( 1

2λ

)
.

Moreover:
(a) If λ >

√
2/2, Σ+ intersects Cλ infinitely many times.

(b) If λ =
√
2/2, Σ+ intersects Cλ a finite number of times and is

a graph outside a compact set.
(c) If λ <

√
2/2, Σ+ is a strictly convex graph over the disk in H2

of radius arg tanh
( 1

2λ

)
.

2. For λ ≤ 1/2, Σ+ is an entire, strictly convex graph.

Analogously, let be Σ− with downwards orientation. Then:
3. For λ >

√
5/2, Σ− is properly immersed, simply connected and has

unbounded distance to the rotation axis.
4. For λ ≤

√
5/2, Σ− is an entire graph. Moreover, if λ = 1, Σ− is a

horizontal plane. Otherwise, Σ− has positive Gauss-Kronecker
curvature.
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Rotational hλ-surfaces intersecting the rotation axis

Case λ >
√
5/2

• For λ > 1/2, Σ+ is properly
embedded, simply connected and
converges to Cλ intersecting it
infinitely many times (as λ >

√
2/2).

• For λ >
√
5/2, Σ− is properly

immersed, simply connected and has
unbounded distance to the rotation
axis.

Case λ =
√
5/2

• For λ ≤
√
5/2, Σ− is an

entire graph. Moreover, if
λ 6= 1 Σ− has positive
Gauss-Kronecker curvature.
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Proof of Theorem 1. Case λ >
√
5/2

First step. Let us study Θ1 and Θ−1

x = Γε(y) = arctanh

( √
1− y2

2ε(y + λ)

)
> 0,

• Γ1 is a connected arc in Θ1 joining (0, 1) and (0,−1), and it
contains the equilibrium point e0 = (arctanh(1/(2λ)), 0).

• Γ−1 does not exist in Θ−1.
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Proof of Theorem 1. Case λ >
√
5/2

Second step. Let us study orbits intersecting (0,±1)

By a technical result we can ensure that:

• There exists a unique orbit γ+ in Θ1 having (0, 1) as an
endpoint, and there is no such an orbit in Θ−1.

• There exists a unique orbit γ− in Θ1 having (0,−1) as an
endpoint, and there is no such an orbit in Θ−1.

Θ1Λ1

Λ2Λ3

Λ4

e0

Γ1
γ+

γ−

b
(x−, 0)(x+, 0)b b
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Proof of Theorem 1. Case λ >
√
5/2

Lemma (Behavior of γ+ and γ−)

1. γ+ and γ− intersect the axis y = 0 orthogonally at (x+, 0) and
(x−, 0), resp., with x+ and x− greater than arctanh(1/(2λ)).

2. The points (x+, 0) and (x−, 0) are different. In fact, x+ < x−.

Proof.
1. Arguing by contradiction, suppose that γ+ can stay in Λ1. As
λ >
√
5/2, we get a contradiction with the following result:

If γ(s)→ (∞, y0), y0 ∈ (−1, 1)⇒ 2εh(y0) =
√

1− y2
0 .

Moreover, γ+ can not go directly to e0. Analogous for γ−.

2. x+ 6= x− since there do not exist closed hλ-surfaces in H2 ×R.
Moreover, if x− < x+, γ− must converge to e0 as s → −∞
and it contradicts the inward spiral structure of e0.
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Proof of Theorem 1. Case λ >
√
5/2

Once we have checked that the
initial behavior of γ+ and γ− is
the represented in the next
Figure,

Θ1Λ1

Λ2Λ3

Λ4

e0

Γ1
γ+

γ−

b
(x−, 0)(x+, 0)b b

we continue analyzing γ+ and γ−
graphically as follows.
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Proof of Theorem 1. Case λ >
√
5/2

Third step. Let us draw the profile curves associated to γ+

and γ− and the corresponding hλ-surfaces in H2 × R
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Rotational hλ-surfaces non-intersecting the rotation axis

Theorem 2
Let Σ be a complete, rotational hλ-surface in H2 × R
non-intersecting the rotation axis. Then, Σ is properly immersed
and diffeomorphic to S1 × R. Moreover,

1. If λ > 1/2, then:
1.1. either Σ is the CMC cylinder Cλ of radius arg tanh

( 1
2λ

)
, or

1.2. one end converges to Cλ with the same asymptotic behavior as
in item 1 in Theorem 1, and:
a) If λ >

√
5/2, the other end of Σ has unbounded distance to

the rotation axis and self-intersects infinitely many times.
b) If λ ≤

√
5/2, the other end is a graph outside a compact set.

2. If λ ≤ 1/2, then both ends are graphs outside compact sets.
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Rotational hλ-surfaces non-intersecting the rotation axis

Case λ >
√
5/2

• If λ > 1/2, then one end converges to Cλ with the same asymptotic
behavior as in item 1 in Theorem 1, and:
I If λ >

√
5/2, the other end of Σ has unbounded distance to

the rotation axis and self-intersects infinitely many times.
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Rotational hλ-surfaces non-intersecting the rotation axis
Case λ =

√
5/2

• If λ > 1/2, then one end converges to Cλ with the same asymptotic
behavior as in item 1 in Theorem 1, and:
I If λ ≤

√
5/2, the other end is a graph outside a compact set.
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Rotational hλ-surfaces non-intersecting the rotation axis
Case λ ≤ 1/2

• If λ ≤ 1/2, then both ends are graphs outside compact sets.
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Thank you for your attention!
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