Classification of surfaces with linear prescribed mean curvature (PMC)

Irene Ortiz Sánchez
(University Centre of Defence at the Spanish Air Force
Academy, San Javier)
Joint work with Antonio Bueno

Differential Geometry Workshop 2022

7th September, 2022
Supported by PGC2018-097046-B-100 Spain

Summary

1. Introduction

2. The phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
3. Construction of new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$
Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$
4. \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Definition of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
5. Classification of rotational \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, an oriented surface Σ in \mathbb{R}^{3} is a surface of prescribed mean curvature \mathcal{H} if its mean curvature H_{Σ} satisfies

$$
H_{\Sigma}(p)=\mathcal{H}\left(N_{p}\right) \quad \forall p \in \Sigma,
$$

where $N: \Sigma \rightarrow \mathbb{S}^{2} \subset \mathbb{R}^{3}$ stands for the Gauss map of Σ.

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, an oriented surface Σ in \mathbb{R}^{3} is a surface of prescribed mean curvature \mathcal{H} if its mean curvature H_{Σ} satisfies

$$
H_{\Sigma}(p)=\mathcal{H}\left(N_{p}\right) \quad \forall p \in \Sigma,
$$

where $N: \Sigma \rightarrow \mathbb{S}^{2} \subset \mathbb{R}^{3}$ stands for the Gauss map of Σ.

Surfaces of prescribed mean curvature

Definition (Prescribed mean curvature)

Given $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, an oriented surface Σ in \mathbb{R}^{3} is a surface of prescribed mean curvature \mathcal{H} if its mean curvature H_{Σ} satisfies

$$
H_{\Sigma}(p)=\mathcal{H}\left(N_{p}\right) \quad \forall p \in \Sigma,
$$

where $N: \Sigma \rightarrow \mathbb{S}^{2} \subset \mathbb{R}^{3}$ stands for the Gauss map of Σ.

When $\mathcal{H} \equiv H_{0}, \Sigma$ is a surface of constant mean curvature H_{0}.

Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

- Alexandrov and Pogorelov ('50s), and Guan and Guan (2002) \rightarrow Existence and uniqueness of PMC ovaloids.

Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

- Alexandrov and Pogorelov ('50s), and Guan and Guan (2002) \rightarrow Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

- Alexandrov and Pogorelov ('50s), and Guan and Guan (2002) \rightarrow Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

- Bueno, Gálvez and Mira (2019)
\rightarrow Global theory of PMC hypersurfaces taking as a starting point the global theory of CMC hypersurfaces.
\rightarrow Rotational PMC hypersurfaces getting a Delaunay-type classification result.

Results of prescribed mean curvature surfaces/hypersurfaces

COMPACT CASE

- Alexandrov and Pogorelov ('50s), and Guan and Guan (2002) \rightarrow Existence and uniqueness of PMC ovaloids.

NON-COMPACT CASE

- Bueno, Gálvez and Mira (2019)
\rightarrow Global theory of PMC hypersurfaces taking as a starting point the global theory of CMC hypersurfaces.
\rightarrow Rotational PMC hypersurfaces getting a Delaunay-type classification result.
- Bueno (2019)
\rightarrow Resolution of the Björling problem.
\rightarrow Obtention of half-space theorems for PMC surfaces.

Rotationally symmetric prescribed functions

 Definition (Rotationally symmetric function)Given a prescribed function $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, it is said that \mathcal{H} is rotationally symmetric if

$$
\exists \mathfrak{h} \in C^{1}([-1,1]) \text { s.t. } \mathcal{H}(x)=\mathfrak{h}\left(\left\langle x, e_{3}\right\rangle\right), \forall x \in \mathbb{S}^{2}
$$

Rotationally symmetric prescribed functions

Definition (Rotationally symmetric function)

Given a prescribed function $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, it is said that \mathcal{H} is rotationally symmetric if

$$
\exists \mathfrak{h} \in C^{1}([-1,1]) \text { s.t. } \mathcal{H}(x)=\mathfrak{h}\left(\left\langle x, e_{3}\right\rangle\right), \forall x \in \mathbb{S}^{2}
$$

- For such functions, we can consider PMC surfaces satisfying

$$
H_{\Sigma}(p)=\mathcal{H}\left(N_{p}\right)=\mathfrak{h}\left(\left\langle N_{p}, e_{3}\right\rangle\right)=\mathfrak{h}(\nu(p)), \quad \forall p \in \Sigma,
$$

where $\nu(p):=\left\langle N_{p}, e_{3}\right\rangle$ is the angle function of Σ.

Rotationally symmetric prescribed functions

Definition (Rotationally symmetric function)

Given a prescribed function $\mathcal{H} \in C^{1}\left(\mathbb{S}^{2}\right)$, it is said that \mathcal{H} is rotationally symmetric if

$$
\exists \mathfrak{h} \in C^{1}([-1,1]) \text { s.t. } \mathcal{H}(x)=\mathfrak{h}\left(\left\langle x, e_{3}\right\rangle\right), \forall x \in \mathbb{S}^{2}
$$

- For such functions, we can consider PMC surfaces satisfying

$$
H_{\Sigma}(p)=\mathcal{H}\left(N_{p}\right)=\mathfrak{h}\left(\left\langle N_{p}, e_{3}\right\rangle\right)=\mathfrak{h}(\nu(p)), \quad \forall p \in \Sigma,
$$

where $\nu(p):=\left\langle N_{p}, e_{3}\right\rangle$ is the angle function of Σ.

$$
\left\langle x, e_{3}\right\rangle=\left\langle y, e_{3}\right\rangle \Rightarrow \mathcal{H}(x)=\mathcal{H}(y)
$$

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^{2} \times \mathbb{R}$ and, in particular, in $\mathbb{H}^{2} \times \mathbb{R}$.

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^{2} \times \mathbb{R}$ and, in particular, in $\mathbb{H}^{2} \times \mathbb{R}$.

Definition (\mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}\left(\left\langle\eta_{p}, \partial_{z}\right\rangle\right) \quad \forall p \in \Sigma
$$

where η is a unit normal vector field on Σ and ∂_{z} is the unit vertical Killing vector field on $\mathbb{H}^{2} \times \mathbb{R}$.

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^{2} \times \mathbb{R}$ and, in particular, in $\mathbb{H}^{2} \times \mathbb{R}$.

Definition (\mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}\left(\left\langle\eta_{p}, \partial_{z}\right\rangle\right) \quad \forall p \in \Sigma
$$

where η is a unit normal vector field on Σ and ∂_{z} is the unit vertical Killing vector field on $\mathbb{H}^{2} \times \mathbb{R}$.

- If $\mathfrak{h} \equiv H_{0} \in \mathbb{R}, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$.

\mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The previous definition can be generalized to further ambient spaces.

- It only needs to measure the projection of a unit normal vector field onto a Killing vector field.
- Consequently, surfaces with PMC rotationally symmetric can be defined in $\mathbb{M}^{2} \times \mathbb{R}$ and, in particular, in $\mathbb{H}^{2} \times \mathbb{R}$.

Definition (\mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)

An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}\left(\left\langle\eta_{p}, \partial_{z}\right\rangle\right) \quad \forall p \in \Sigma
$$

where η is a unit normal vector field on Σ and ∂_{z} is the unit vertical Killing vector field on $\mathbb{H}^{2} \times \mathbb{R}$.

- If $\mathfrak{h} \equiv H_{0} \in \mathbb{R}, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$.
- If $\mathfrak{h}(y)=y, \Sigma$ is a translating soliton of the mean curvature flow.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^{3} and $\mathbb{H}^{2} \times \mathbb{R}$.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^{3} and $\mathbb{H}^{2} \times \mathbb{R}$.

Specifically:

1. To construct new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$.
2. To classify rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ for the particulare case in which \mathfrak{h} is linear.

Main aim of this work

Purposes

The main purpose is to further investigate the theory of \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ inspired by the well-known results for:

- CMC and minimal surfaces,
- Translating solitons, and
- Surfaces of PMC in \mathbb{R}^{3} and $\mathbb{H}^{2} \times \mathbb{R}$.

Specifically:

1. To construct new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$.
2. To classify rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ for the particulare case in which \mathfrak{h} is linear.

Main tool: study of the phase plane of the first order autonomous system satisfied by rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$.

Summary

1. Introduction
2. The phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
3. Construction of new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$
Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$
4. \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Definition of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
Relevance of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
5. Classification of rotational \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

Profile curve of a rotational \mathfrak{h}-surface Σ

- We regard $\mathbb{H}^{2} \times \mathbb{R}$ as a submanifold of $\mathbb{R}_{-}^{3} \times \mathbb{R}$ endowed with the metric,,,++-+ .

Profile curve of a rotational \mathfrak{h}-surface Σ

- We regard $\mathbb{H}^{2} \times \mathbb{R}$ as a submanifold of $\mathbb{R}_{-}^{3} \times \mathbb{R}$ endowed with the metric,,,++-+ .
- Let Σ be a rotational \mathfrak{h}-surface generated after rotating an a.l.p. curve

$$
\alpha(s)=(\sinh (x(s)), 0, \cosh (x(s)), z(s)) \subset \mathbb{H}^{2} \times \mathbb{R},
$$

$x(s)>0, s \in I \subset \mathbb{R}$, contained in a vertical plane passing through $(0,0,1,0)$ around the vertical axis $\{(0,0,1)\} \times \mathbb{R}$.

Profile curve of a rotational \mathfrak{h}-surface Σ

- We regard $\mathbb{H}^{2} \times \mathbb{R}$ as a submanifold of $\mathbb{R}_{-}^{3} \times \mathbb{R}$ endowed with the metric,,,++-+ .
- Let Σ be a rotational \mathfrak{h}-surface generated after rotating an a.l.p. curve

$$
\alpha(s)=(\sinh (x(s)), 0, \cosh (x(s)), z(s)) \subset \mathbb{H}^{2} \times \mathbb{R},
$$

$x(s)>0, s \in I \subset \mathbb{R}$, contained in a vertical plane passing through $(0,0,1,0)$ around the vertical axis $\{(0,0,1)\} \times \mathbb{R}$.

- We simply the notation by $\alpha(s)=(x(s), z(s))$, and so, the angle function of Σ is $\nu(s)=x^{\prime}(s)$.

Profile curve of a rotational \mathfrak{h}-surface Σ

- We regard $\mathbb{H}^{2} \times \mathbb{R}$ as a submanifold of $\mathbb{R}_{-}^{3} \times \mathbb{R}$ endowed with the metric,,,++-+ .
- Let Σ be a rotational \mathfrak{h}-surface generated after rotating an a.l.p. curve

$$
\alpha(s)=(\sinh (x(s)), 0, \cosh (x(s)), z(s)) \subset \mathbb{H}^{2} \times \mathbb{R},
$$

$x(s)>0, s \in I \subset \mathbb{R}$, contained in a vertical plane passing through $(0,0,1,0)$ around the vertical axis $\{(0,0,1)\} \times \mathbb{R}$.

- We simply the notation by $\alpha(s)=(x(s), z(s))$, and so, the angle function of Σ is $\nu(s)=x^{\prime}(s)$.
- The principal curvatures of Σ are

$$
\kappa_{1}=\kappa_{\alpha}=x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}, \quad \kappa_{2}=\frac{z^{\prime}}{\tanh x}
$$

First order autonomous system

- The mean curvature of Σ is

$$
2 H_{\Sigma}=x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}+\frac{z^{\prime}}{\tanh x} .
$$

First order autonomous system

- The mean curvature of Σ is

$$
2 H_{\Sigma}=x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}+\frac{z^{\prime}}{\tanh x} .
$$

- Since $x^{\prime 2}+z^{\prime 2}=1, x$ is a solution of the ODE

$$
x^{\prime \prime}=\frac{1-x^{\prime 2}}{\tanh x}-2 \varepsilon H_{\Sigma} \sqrt{1-x^{\prime 2}}, \quad \varepsilon=\operatorname{sign}\left(z^{\prime}\right)
$$

where ε denotes whether the height of α is increasing.

First order autonomous system

- The mean curvature of Σ is

$$
2 H_{\Sigma}=x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}+\frac{z^{\prime}}{\tanh x} .
$$

- Since $x^{\prime 2}+z^{\prime 2}=1, x$ is a solution of the ODE

$$
x^{\prime \prime}=\frac{1-x^{\prime 2}}{\tanh x}-2 \varepsilon H_{\Sigma} \sqrt{1-x^{\prime 2}}, \quad \varepsilon=\operatorname{sign}\left(z^{\prime}\right)
$$

where ε denotes whether the height of α is increasing.

- Now, assume that Σ is an \mathfrak{h}-surface for some $\mathfrak{h} \in C^{1}([-1,1])$, that is, $H_{\Sigma}(s)=\mathfrak{h}\left(x^{\prime}(s)\right)$.

First order autonomous system

- The mean curvature of Σ is

$$
2 H_{\Sigma}=x^{\prime} z^{\prime \prime}-x^{\prime \prime} z^{\prime}+\frac{z^{\prime}}{\tanh x} .
$$

- Since $x^{\prime 2}+z^{\prime 2}=1, x$ is a solution of the ODE

$$
x^{\prime \prime}=\frac{1-x^{\prime 2}}{\tanh x}-2 \varepsilon H_{\Sigma} \sqrt{1-x^{\prime 2}}, \quad \varepsilon=\operatorname{sign}\left(z^{\prime}\right)
$$

where ε denotes whether the height of α is increasing.

- Now, assume that Σ is an \mathfrak{h}-surface for some $\mathfrak{h} \in C^{1}([-1,1])$, that is, $H_{\Sigma}(s)=\mathfrak{h}\left(x^{\prime}(s)\right)$.
- Then, after the change $x^{\prime}=y$, the previous ODE transforms into the first order autonomous system

$$
\begin{equation*}
\binom{x}{y}^{\prime}=\binom{y}{\frac{1-y^{2}}{\tanh x}-2 \varepsilon \mathfrak{h}(y) \sqrt{1-y^{2}}}=: F_{\varepsilon}(x, y) . \tag{1}
\end{equation*}
$$

Phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Definition (Phase plane)

- The phase plane is the half-strip $\Theta_{\varepsilon}:=(0, \infty) \times(-1,1), \varepsilon= \pm 1$, with coordinates (x, y) denoting:
- x the distance to the axis of rotation,
- y the angle function of Σ.

Phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Definition (Phase plane)

- The phase plane is the half-strip $\Theta_{\varepsilon}:=(0, \infty) \times(-1,1), \varepsilon= \pm 1$, with coordinates (x, y) denoting:
- x the distance to the axis of rotation,
- y the angle function of Σ.
- The orbits are the solutions $\gamma(s)=(x(s), y(s))$ of (1) and they provide a foliation by regular C^{1} curves of Θ_{ε}.

Phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Definition (Phase plane)

- The phase plane is the half-strip $\Theta_{\varepsilon}:=(0, \infty) \times(-1,1), \varepsilon= \pm 1$, with coordinates (x, y) denoting:
- x the distance to the axis of rotation,
- y the angle function of Σ.
- The orbits are the solutions $\gamma(s)=(x(s), y(s))$ of (1) and they provide a foliation by regular C^{1} curves of Θ_{ε}.
- The equilibrium points are the points $e_{0}^{\varepsilon}=\left(x_{0}^{\varepsilon}, y_{0}^{\varepsilon}\right) \in \Theta_{\varepsilon}$ s.t. $F_{\varepsilon}\left(e_{0}^{\varepsilon}\right)=0$.

Phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Definition (Phase plane)

- The phase plane is the half-strip $\Theta_{\varepsilon}:=(0, \infty) \times(-1,1), \varepsilon= \pm 1$, with coordinates (x, y) denoting:
- x the distance to the axis of rotation,
- y the angle function of Σ.
- The orbits are the solutions $\gamma(s)=(x(s), y(s))$ of (1) and they provide a foliation by regular C^{1} curves of Θ_{ε}.
- The equilibrium points are the points $e_{0}^{\varepsilon}=\left(x_{0}^{\varepsilon}, y_{0}^{\varepsilon}\right) \in \Theta_{\varepsilon}$ s.t. $F_{\varepsilon}\left(e_{0}^{\varepsilon}\right)=0$.

Properties of the phase plane

- An orbit cannot converge to a point $(0, y),|y|<1$.

Properties of the phase plane

- An orbit cannot converge to a point $(0, y),|y|<1$.
- However, there exists an orbit with and endpoint at $(0, \pm 1)$. That is, a rotational \mathfrak{h}-surface only intersects the rotation axis orthogonally.

Properties of the phase plane

- If $\varepsilon \mathfrak{h}(0)>1 / 2$, there is a unique equilibrium

$$
e_{0}^{\varepsilon}=\left(\operatorname{arctanh}\left(\frac{1}{2 \varepsilon \mathfrak{h}(0)}\right), 0\right) \quad \text { in } \Theta_{\varepsilon}
$$

generating the right circular cylinder $\mathbb{S}^{1}\left(x_{0}^{\varepsilon}\right) \times \mathbb{R}$ of $\mathrm{CMC} \mathfrak{h}(0)$.

Properties of the phase plane

- The points of α with $\kappa_{\alpha}=0$ are located in

$$
\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon \mathfrak{h}(y)}\right)
$$

Properties of the phase plane

- The axis $y=0$ and Γ_{ε} divide Θ_{ε} into connected components, where the coordinates $x(s)$ and $y(s)$ are monotonous.

Properties of the phase plane

- At each monotonicity region, the motion of an orbit is uniquely determined.

Properties of the phase plane

- If an orbit intersects Γ_{ε}, the function $y(s)$ has a local extremum.
- If an orbit intersects the axis $y=0$, it does orthogonally.

Summary

1. Introduction
2. The phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
3. Construction of new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$
Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$
4. $\mathfrak{h} \lambda$-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Definition of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
Relevance of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
5. Classification of rotational $\mathfrak{h} \lambda$-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

\mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$

Proposition 1 (Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$)

Let \mathfrak{h} be a C^{1} function on $[-1,1]$, and suppose that $\exists y_{*} \in[0,1]$ (resp. $\left.y_{*} \in[-1,0]\right)$ s.t

$$
2 \varepsilon \mathfrak{h}\left(y_{*}\right)=\sqrt{1-y_{*}^{2}} .
$$

Then, there exists an upwards-oriented (resp. downwards-oriented) entire rotational \mathfrak{h}-graph Σ in $\mathbb{H}^{2} \times \mathbb{R}$. Moreover:

1. either Σ is a horizontal plane,
2. or Σ is a strictly convex graph.

\mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$

Proposition 1 (Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$)

Let \mathfrak{h} be a C^{1} function on $[-1,1]$, and suppose that $\exists y_{*} \in[0,1]$ (resp. $\left.y_{*} \in[-1,0]\right)$ s.t

$$
2 \varepsilon \mathfrak{h}\left(y_{*}\right)=\sqrt{1-y_{*}^{2}} .
$$

Then, there exists an upwards-oriented (resp. downwards-oriented) entire rotational \mathfrak{h}-graph Σ in $\mathbb{H}^{2} \times \mathbb{R}$. Moreover:

1. either Σ is a horizontal plane,
2. or Σ is a strictly convex graph.

These \mathfrak{h}-surfaces will be called \mathfrak{h}-bowls.

The prescribed function of this figure is $\mathfrak{h}(y)=\sqrt{3}(y-0.25)$.

\mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$

Proposition 2 (Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$)

Let \mathfrak{h} be a C^{1} function on $[-1,1]$, and suppose that

$$
\mathfrak{h} \leq 0 \quad \text { and } \quad \mathfrak{h}(\pm 1)=0
$$

Then, there exists a one-parameter family of properly embedded, rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ of strictly negative extrinsic curvature at every point, and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Each example is a bi-graph over $\mathbb{H}^{2}-\mathbb{D}_{\mathbb{H}^{2}}\left(x_{0}\right)$, where $\mathbb{D}_{\mathbb{H}^{2}}\left(x_{0}\right)=\left\{x \in \mathbb{H}^{2}:|x|_{\mathbb{H}^{2}}<x_{0}\right\}$, for some $x_{0}>0$.

\mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$

Proposition 2 (Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$)

Let \mathfrak{h} be a C^{1} function on $[-1,1]$, and suppose that

$$
\mathfrak{h} \leq 0 \quad \text { and } \quad \mathfrak{h}(\pm 1)=0 .
$$

Then, there exists a one-parameter family of properly embedded, rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ of strictly negative extrinsic curvature at every point, and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Each example is a bi-graph over $\mathbb{H}^{2}-\mathbb{D}_{\mathbb{H}^{2}}\left(x_{0}\right)$, where $\mathbb{D}_{\mathbb{H}^{2}}\left(x_{0}\right)=\left\{x \in \mathbb{H}^{2}:|x|_{\mathbb{H}^{2}}<x_{0}\right\}$, for some $x_{0}>0$.

These \mathfrak{h}-surfaces will be called \mathfrak{h}-catenoids.

The prescribed function of this figure is $\mathfrak{h}(y)=y^{2}-1$.

Summary

1. Introduction
2. The phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
3. Construction of new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$
Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$
4. \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Definition of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ Relevance of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
5. Classification of rotational $\mathfrak{h} \lambda$-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R} .
$$

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R} .
$$

- If $a=0, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $H=\lambda$.

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}
$$

- If $a=0, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $H=\lambda$.
- If $\lambda=0, \Sigma$ is a translating soliton of the mean curvature flow.

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R}
$$

- If $a=0, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $H=\lambda$.
- If $\lambda=0, \Sigma$ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in \mathbb{H}^{2} and a dilation in the factor \mathbb{R} we can assume $a=1$.

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R} .
$$

- If $a=0, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $H=\lambda$.
- If $\lambda=0, \Sigma$ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in \mathbb{H}^{2} and a dilation in the factor \mathbb{R} we can assume $a=1$.
- Moreover, if Σ is an \mathfrak{h}_{λ}-surface, then Σ with its opposite orientation is an $\mathfrak{h}_{-\lambda}$-surface. Therefore, we will assume $\lambda>0$.

\mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

A special case of \mathfrak{h}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ is the following one:
Definition (\mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$)
An oriented surface Σ in $\mathbb{H}^{2} \times \mathbb{R}$ is an \mathfrak{h}_{λ}-surface if

$$
H_{\Sigma}(p)=\mathfrak{h}_{\lambda}(\nu(p))=a \nu(p)+\lambda \quad \forall p \in \Sigma, \quad a, \lambda \in \mathbb{R} .
$$

- If $a=0, \Sigma$ is a CMC surface in $\mathbb{H}^{2} \times \mathbb{R}$ with $H=\lambda$.
- If $\lambda=0, \Sigma$ is a translating soliton of the mean curvature flow.
- After a conformal change of the metric in \mathbb{H}^{2} and a dilation in the factor \mathbb{R} we can assume $a=1$.
- Moreover, if Σ is an \mathfrak{h}_{λ}-surface, then Σ with its opposite orientation is an $\mathfrak{h}_{-\lambda}$-surface. Therefore, we will assume $\lambda>0$.
- Hence, from now on, $\mathfrak{h}_{\lambda}(y)=y+\lambda$ with $\lambda>0$.

Characterizations of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The study of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Characterizations of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The study of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density. Proposition (characterizations of \mathfrak{h}_{λ}-surfaces)

The following conditions are equivalent.

1. Σ is an \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$.

Characterizations of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The study of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ}-surfaces)
The following conditions are equivalent.

1. Σ is an \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$.
2. Σ has constant weighted mean curvature equal to λ, that is,

$$
H_{\phi}:=H_{\Sigma}-\left\langle\eta, \nabla \phi_{v}\right\rangle=\lambda
$$

for the density $e^{\phi} \in C^{1}\left(\mathbb{H}^{2} \times \mathbb{R}\right)$, where $\phi(x)=a\left\langle x, \partial_{z}\right\rangle$.

Characterizations of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The study of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ}-surfaces)

The following conditions are equivalent.

1. Σ is an \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$.
2. Σ has constant weighted mean curvature equal to λ, that is,

$$
H_{\phi}:=H_{\Sigma}-\left\langle\eta, \nabla \phi_{v}\right\rangle=\lambda
$$

for the density $e^{\phi} \in C^{1}\left(\mathbb{H}^{2} \times \mathbb{R}\right)$, where $\phi(x)=a\left\langle x, \partial_{z}\right\rangle$.
3. Σ is a critical point for the weighted area functional, under compactly supported variations preserving the weighted volume.

Characterizations of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

The study of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ is very natural since they are closely related to the theory of manifolds with density.

Proposition (characterizations of \mathfrak{h}_{λ}-surfaces)

The following conditions are equivalent.

1. Σ is an \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$.
2. Σ has constant weighted mean curvature equal to λ, that is,

$$
H_{\phi}:=H_{\Sigma}-\left\langle\eta, \nabla \phi_{v}\right\rangle=\lambda
$$

for the density $e^{\phi} \in C^{1}\left(\mathbb{H}^{2} \times \mathbb{R}\right)$, where $\phi(x)=a\left\langle x, \partial_{z}\right\rangle$.
3. Σ is a critical point for the weighted area functional, under compactly supported variations preserving the weighted volume.
4. Σ is a self-translating soliton of the mean curvature flow with a constant forcing term.

Summary

1. Introduction
2. The phase plane of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
3. Construction of new examples of rotational \mathfrak{h}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Existence of \mathfrak{h}-bowls in $\mathbb{H}^{2} \times \mathbb{R}$
Existence of \mathfrak{h}-catenoids in $\mathbb{H}^{2} \times \mathbb{R}$
4. \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Definition of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
Relevance of \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$
5. Classification of rotational \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Criteria to distinguish cases in the classification results Classification for surfaces intersecting the rotation axis Classification for surfaces non-intersecting the rotation axis

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.
3. Properties of the equilibrium point

- Since Σ is an \mathfrak{h}_{λ}-surface, $\mathfrak{h}(0)=\lambda>0$, then $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$ exists $\Leftrightarrow \lambda>1 / 2$.

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.
3. Properties of the equilibrium point

- Since Σ is an \mathfrak{h}_{λ}-surface, $\mathfrak{h}(0)=\lambda>0$, then $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$ exists $\Leftrightarrow \lambda>1 / 2$.
- By studying the eigenvalues of the linearized system of (1) at e_{0}, we get:

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.

1. Properties of the equilibrium point

- Since Σ is an \mathfrak{h}_{λ}-surface, $\mathfrak{h}(0)=\lambda>0$, then $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$ exists $\Leftrightarrow \lambda>1 / 2$.
- By studying the eigenvalues of the linearized system of (1) at e_{0}, we get:
(a) If $\lambda>\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it spiraling around infinitely many times.

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.

1. Properties of the equilibrium point

- Since Σ is an \mathfrak{h}_{λ}-surface, $\mathfrak{h}(0)=\lambda>0$, then $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$ exists $\Leftrightarrow \lambda>1 / 2$.
- By studying the eigenvalues of the linearized system of (1) at e_{0}, we get:
(a) If $\lambda>\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it spiraling around infinitely many times.
(b) If $\lambda=\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it, maybe spiraling around a finite number of times.

Criteria to distinguish cases in the classification results

- \mathfrak{h}_{λ}-surfaces are related to the behaviour of the orbits in each phase plane that correspond to them. It depends on:

1. The properties of the equilibrium point.
2. The curve Γ_{ε} and the monotonicity regions generated by it.

1. Properties of the equilibrium point

- Since Σ is an \mathfrak{h}_{λ}-surface, $\mathfrak{h}(0)=\lambda>0$, then $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$ exists $\Leftrightarrow \lambda>1 / 2$.
- By studying the eigenvalues of the linearized system of (1) at e_{0}, we get:
(a) If $\lambda>\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it spiraling around infinitely many times.
(b) If $\lambda=\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it, maybe spiraling around a finite number of times.
(c) If $\lambda<\sqrt{2} / 2$, then every orbit close enough to e_{0} converges asymptotically to it directly, i.e. without spiraling around.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ}-surfaces, $\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)$.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ}-surfaces, $\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)$.

- If $\lambda>\sqrt{5} / 2, \Gamma_{1}(y)$ exists $\forall y \in(-1,1)$ and Γ_{-1} does not exist.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ}-surfaces, $\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)$.

- If $\lambda>\sqrt{5} / 2, \Gamma_{1}(y)$ exists $\forall y \in(-1,1)$ and Γ_{-1} does not exist.
- If $\lambda=\sqrt{5} / 2, \Gamma_{1}(y)$ is formed by two connected arcs having $y=-2 / \sqrt{5}$ as an assymptote and Γ_{-1} does not exist.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ}-surfaces, $\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)$.

- If $\lambda>\sqrt{5} / 2, \Gamma_{1}(y)$ exists $\forall y \in(-1,1)$ and Γ_{-1} does not exist.
- If $\lambda=\sqrt{5} / 2, \Gamma_{1}(y)$ is formed by two connected arcs having $y=-2 / \sqrt{5}$ as an assymptote and Γ_{-1} does not exist.
- If $\lambda<\sqrt{5} / 2$, the candidates of assymptotes for Γ_{ε} must be studied depending on three cases: $\lambda>1, \lambda=1$ and $\lambda<1$.

Criteria to distinguish cases in the classification results

2. Analysis of the curve Γ_{ε}

For \mathfrak{h}_{λ}-surfaces, $\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)$.

- If $\lambda>\sqrt{5} / 2, \Gamma_{1}(y)$ exists $\forall y \in(-1,1)$ and Γ_{-1} does not exist.
- If $\lambda=\sqrt{5} / 2, \Gamma_{1}(y)$ is formed by two connected arcs having $y=-2 / \sqrt{5}$ as an assymptote and Γ_{-1} does not exist.
- If $\lambda<\sqrt{5} / 2$, the candidates of assymptotes for Γ_{ε} must be studied depending on three cases: $\lambda>1, \lambda=1$ and $\lambda<1$.

Rotational \mathfrak{h}_{λ}-surfaces intersecting the rotation axis

Theorem 1

Let be Σ_{+}the complete, rotational \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ intersecting the rotation axis with upwards orientation. Then:

1. For $\lambda>1 / 2, \Sigma_{+}$is properly embedded, simply connected and converges to the flat CMC cylinder C_{λ} of radius $\arg \tanh \left(\frac{1}{2 \lambda}\right)$. Moreover:
(a) If $\lambda>\sqrt{2} / 2, \Sigma_{+}$intersects C_{λ} infinitely many times.
(b) If $\lambda=\sqrt{2} / 2, \Sigma_{+}$intersects C_{λ} a finite number of times and is a graph outside a compact set.
(c) If $\lambda<\sqrt{2} / 2, \Sigma_{+}$is a strictly convex graph over the disk in \mathbb{H}^{2} of radius $\arg \tanh \left(\frac{1}{2 \lambda}\right)$.
2. For $\lambda \leq 1 / 2, \Sigma_{+}$is an entire, strictly convex graph.

Rotational \mathfrak{h}_{λ}-surfaces intersecting the rotation axis

Theorem 1

Let be Σ_{+}the complete, rotational \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$ intersecting the rotation axis with upwards orientation. Then:

1. For $\lambda>1 / 2, \Sigma_{+}$is properly embedded, simply connected and converges to the flat CMC cylinder C_{λ} of radius $\arg \tanh \left(\frac{1}{2 \lambda}\right)$. Moreover:
(a) If $\lambda>\sqrt{2} / 2, \Sigma_{+}$intersects C_{λ} infinitely many times.
(b) If $\lambda=\sqrt{2} / 2, \Sigma_{+}$intersects C_{λ} a finite number of times and is a graph outside a compact set.
(c) If $\lambda<\sqrt{2} / 2, \Sigma_{+}$is a strictly convex graph over the disk in \mathbb{H}^{2} of radius $\arg \tanh \left(\frac{1}{2 \lambda}\right)$.
2. For $\lambda \leq 1 / 2, \Sigma_{+}$is an entire, strictly convex graph.

Analogously, let be Σ_{-}with downwards orientation. Then:
3. For $\lambda>\sqrt{5} / 2, \Sigma_{-}$is properly immersed, simply connected and has unbounded distance to the rotation axis.
4. For $\lambda \leq \sqrt{5} / 2, \Sigma_{-}$is an entire graph. Moreover, if $\lambda=1, \Sigma_{-}$is a horizontal plane. Otherwise, Σ_{-}has positive Gauss-Kronecker curvature.

Rotational \mathfrak{h}_{λ}-surfaces intersecting the rotation axis

$$
\text { Case } \lambda>\sqrt{5} / 2
$$

- For $\lambda>1 / 2, \Sigma_{+}$is properly embedded, simply connected and converges to C_{λ} intersecting it infinitely many times (as $\lambda>\sqrt{2} / 2$).
- For $\lambda>\sqrt{5} / 2, \Sigma_{-}$is properly immersed, simply connected and has unbounded distance to the rotation axis.

Rotational \mathfrak{h}_{λ}-surfaces intersecting the rotation axis

$$
\text { Case } \lambda>\sqrt{5} / 2
$$

- For $\lambda>1 / 2, \Sigma_{+}$is properly embedded, simply connected and converges to C_{λ} intersecting it infinitely many times (as $\lambda>\sqrt{2} / 2$).
- For $\lambda>\sqrt{5} / 2, \Sigma_{-}$is properly immersed, simply connected and has
unbounded distance to the rotation immersed, simply connected and has axis.

$$
\text { Case } \lambda=\sqrt{5} / 2
$$

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

First step. Let us study Θ_{1} and Θ_{-1}

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

First step. Let us study Θ_{1} and Θ_{-1}

$$
x=\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)>0
$$

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

First step. Let us study Θ_{1} and Θ_{-1}

$$
x=\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)>0
$$

- Γ_{1} is a connected arc in Θ_{1} joining $(0,1)$ and $(0,-1)$, and it contains the equilibrium point $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

First step. Let us study Θ_{1} and Θ_{-1}

$$
x=\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)>0
$$

- Γ_{1} is a connected arc in Θ_{1} joining $(0,1)$ and $(0,-1)$, and it contains the equilibrium point $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$.
- Γ_{-1} does not exist in Θ_{-1}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

First step. Let us study Θ_{1} and Θ_{-1}

$$
x=\Gamma_{\varepsilon}(y)=\operatorname{arctanh}\left(\frac{\sqrt{1-y^{2}}}{2 \varepsilon(y+\lambda)}\right)>0
$$

- Γ_{1} is a connected arc in Θ_{1} joining $(0,1)$ and $(0,-1)$, and it contains the equilibrium point $e_{0}=(\operatorname{arctanh}(1 /(2 \lambda)), 0)$.
- Γ_{-1} does not exist in Θ_{-1}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Second step. Let us study orbits intersecting ($0, \pm 1$)

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Second step. Let us study orbits intersecting ($0, \pm 1$)
By a technical result we can ensure that:

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Second step. Let us study orbits intersecting ($0, \pm 1$)
By a technical result we can ensure that:

- There exists a unique orbit γ_{+}in Θ_{1} having $(0,1)$ as an endpoint, and there is no such an orbit in Θ_{-1}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Second step. Let us study orbits intersecting ($0, \pm 1$)
By a technical result we can ensure that:

- There exists a unique orbit γ_{+}in Θ_{1} having $(0,1)$ as an endpoint, and there is no such an orbit in Θ_{-1}.
- There exists a unique orbit γ_{-}in Θ_{1} having $(0,-1)$ as an endpoint, and there is no such an orbit in Θ_{-1}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Second step. Let us study orbits intersecting ($0, \pm 1$)
By a technical result we can ensure that:

- There exists a unique orbit γ_{+}in Θ_{1} having $(0,1)$ as an endpoint, and there is no such an orbit in Θ_{-1}.
- There exists a unique orbit γ_{-}in Θ_{1} having $(0,-1)$ as an endpoint, and there is no such an orbit in Θ_{-1}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Lemma (Behavior of γ_{+}and γ_{-})

1. γ_{+}and γ_{-}intersect the axis $y=0$ orthogonally at $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$, resp., with x_{+}and x_{-}greater than $\operatorname{arctanh}(1 /(2 \lambda))$.
2. The points $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$ are different. In fact, $x_{+}<x_{-}$.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Lemma (Behavior of γ_{+}and γ_{-})

1. γ_{+}and γ_{-}intersect the axis $y=0$ orthogonally at $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$, resp., with x_{+}and x_{-}greater than $\operatorname{arctanh}(1 /(2 \lambda))$.
2. The points $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$ are different. In fact, $x_{+}<x_{-}$.

Proof.

1. Arguing by contradiction, suppose that γ_{+}can stay in Λ_{1}. As $\lambda>\sqrt{5} / 2$, we get a contradiction with the following result:

$$
\text { If } \gamma(s) \rightarrow\left(\infty, y_{0}\right), y_{0} \in(-1,1) \Rightarrow 2 \varepsilon \mathfrak{h}\left(y_{0}\right)=\sqrt{1-y_{0}^{2}}
$$

Moreover, γ_{+}can not go directly to e_{0}. Analogous for γ_{-}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Lemma (Behavior of γ_{+}and γ_{-})

1. γ_{+}and γ_{-}intersect the axis $y=0$ orthogonally at $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$, resp., with x_{+}and x_{-}greater than $\operatorname{arctanh}(1 /(2 \lambda))$.
2. The points $\left(x_{+}, 0\right)$ and $\left(x_{-}, 0\right)$ are different. In fact, $x_{+}<x_{-}$.

Proof.

1. Arguing by contradiction, suppose that γ_{+}can stay in Λ_{1}. As $\lambda>\sqrt{5} / 2$, we get a contradiction with the following result:

$$
\text { If } \gamma(s) \rightarrow\left(\infty, y_{0}\right), y_{0} \in(-1,1) \Rightarrow 2 \varepsilon \mathfrak{h}\left(y_{0}\right)=\sqrt{1-y_{0}^{2}}
$$

Moreover, γ_{+}can not go directly to e_{0}. Analogous for γ_{-}.
2. $x_{+} \neq x_{-}$since there do not exist closed \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. Moreover, if $x_{-}<x_{+}, \gamma_{-}$must converge to e_{0} as $s \rightarrow-\infty$ and it contradicts the inward spiral structure of e_{0}.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Once we have checked that the initial behavior of γ_{+}and γ_{-}is the represented in the next
Figure,

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Once we have checked that the initial behavior of γ_{+}and γ_{-}is the represented in the next
Figure,

we continue analyzing γ_{+}and γ_{-} graphically as follows.

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Third step. Let us draw the profile curves associated to γ_{+} and γ_{-}and the corresponding \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Proof of Theorem 1. Case $\lambda>\sqrt{5} / 2$

Third step. Let us draw the profile curves associated to γ_{+} and γ_{-}and the corresponding \mathfrak{h}_{λ}-surfaces in $\mathbb{H}^{2} \times \mathbb{R}$

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2
Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:
1.1. either Σ is the CMC cylinder C_{λ} of radius $\arg \tanh \left(\frac{1}{2 \lambda}\right)$, or

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:
1.1. either Σ is the CMC cylinder C_{λ} of radius arg $\tanh \left(\frac{1}{2 \lambda}\right)$, or
1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:
1.1. either Σ is the CMC cylinder C_{λ} of radius arg $\tanh \left(\frac{1}{2 \lambda}\right)$, or
1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
a) If $\lambda>\sqrt{5} / 2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:
1.1. either Σ is the CMC cylinder C_{λ} of radius arg $\tanh \left(\frac{1}{2 \lambda}\right)$, or
1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
a) If $\lambda>\sqrt{5} / 2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.
b) If $\lambda \leq \sqrt{5} / 2$, the other end is a graph outside a compact set.

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Theorem 2

Let Σ be a complete, rotational \mathfrak{h}_{λ}-surface in $\mathbb{H}^{2} \times \mathbb{R}$ non-intersecting the rotation axis. Then, Σ is properly immersed and diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}$. Moreover,

1. If $\lambda>1 / 2$, then:
1.1. either Σ is the CMC cylinder C_{λ} of radius arg $\tanh \left(\frac{1}{2 \lambda}\right)$, or
1.2. one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
a) If $\lambda>\sqrt{5} / 2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.
b) If $\lambda \leq \sqrt{5} / 2$, the other end is a graph outside a compact set.
2. If $\lambda \leq 1 / 2$, then both ends are graphs outside compact sets.

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

Case $\lambda>\sqrt{5} / 2$

- If $\lambda>1 / 2$, then one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
- If $\lambda>\sqrt{5} / 2$, the other end of Σ has unbounded distance to the rotation axis and self-intersects infinitely many times.

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

$$
\text { Case } \lambda=\sqrt{5} / 2
$$

- If $\lambda>1 / 2$, then one end converges to C_{λ} with the same asymptotic behavior as in item 1 in Theorem 1, and:
- If $\lambda \leq \sqrt{5} / 2$, the other end is a graph outside a compact set.

Rotational \mathfrak{h}_{λ}-surfaces non-intersecting the rotation axis

$$
\text { Case } \lambda \leq 1 / 2
$$

- If $\lambda \leq 1 / 2$, then both ends are graphs outside compact sets.

References

1. A. Bueno, J.A. Gálvez, P. Mira, Rotational hypersurfaces of prescribed mean curvature, J. Diff. Eqs. 268 (2020), 2394-2413.
2. A. Bueno, I. Ortiz, Invariant hypersurfaces with linear prescribed mean curvature, J. Math. Anal. Appl. 487 (2020), 124033.
3. A. Bueno, I. Ortiz, Rotational surfaces with prescribed mean curvature in $\mathbb{H}^{2} \times \mathbb{R}$, Annali di Matematica 201 (2022), 1257-1277.

Thank you for your attention!

