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Basics

We are concerned with the hypersurfaces Mm in (m+1)-dimensional unit
Euclidean sphere Sm+1; φ : Mm → Sm+1.
We denote by B the second fundamental form of M and by A its shape
operator. The eigenvalue functions of A are called the principal
curvatures

λ1 ≤ λ2 ≤ ·· · ≤ λm.

M is called isoparametric, if all the λi’s are constant functions.
The scalar curvature s comes form the (intrinsic) curvature tensor of M,
and from the Gauss equation we have

s = traceRicci = m(m−1)+∑
i̸=j

λiλj

= m(m−1)+m2f 2 −|A|2.

The mean curvature vector field H of M is given by

H =
1
m

traceB =

(
1
m ∑

i
λi

)
η .

M is minimal if the mean curvature function f = 1
m traceA = 0.

M is CMC if f is constant.
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Chern Conjecture
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Chern Conjecture

Theorem 3.1 ([Simons – 1968])

Let φ : Mm → Sm+1 be a compact minimal hypersurface. Then∫
M
|A|2

(
|A|2 −m

)
vg ≥ 0.

If 0 ≤ |A|2 ≤ m, then

either |A|2 ≡ 0, i.e., φ(M) is totally geodesic, and thus φ(M) is the great
sphere Sm;
or |A|2 ≡ m, i.e. φ(M) is one of the Clifford tori

Sm1

(√
m1

m

)
×Sm2

(√
m2

m

)
, m1 +m2 = m, 1 ≤ m1 ≤ m−1.

(see ([Lawson, Jr. – 1969, Chern, Do Carmo, Kobayashi – 1970]))
Since M is minimal, then |A|2 is constant if and only if the scalar curvature of
M is constant. In this case, it follows that the range of |A|2 has a gap, more
precisely |A|2 /∈ (0,m).

Go Back
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Chern Conjecture

(C1) Chern Conjecture. ([Chern – 1968])

Let φ : Mm → Sm+1 be a compact minimal hypersurface. If |A|2 is constant,
then the possible values for |A|2 (or, equivalently, for the scalar curvature) form
a discreet set. In particular, if m ≤ |A|2 ≤ 2m, then |A|2 = m or |A|2 = 2m.

(C2) Strong version of Chern Conjecture. ([Verstraelen – 1986])

Let φ : Mm → Sm+1 be a compact minimal hypersurface. If |A|2 is constant,
then M is isoparametric.

7 / 53



Chern Conjecture

A natural generalization is that to non-compact hypersurfaces, i.e. a local
version of the conjecture. In particular, this has been proposed by Bryant for
the case m = 3:

Bryant Conjecture -1994

Let φ : M3 → S4 be a minimal hypersurface. If |A|2 is constant, then M is
isoparametric.

(C3) Generalized Chern Conjecture.

Let m ≥ 3 and φ : Mm → Sm+1 be a CMC hypersurface. If |A|2 is constant, then
M is isoparametric.

For m = 3, the compact case was proved in
[De Almeida, Brito – 1990, Chang – 1993].

Go Back

8 / 53



Chern Conjecture

A natural generalization is that to non-compact hypersurfaces, i.e. a local
version of the conjecture. In particular, this has been proposed by Bryant for
the case m = 3:

Bryant Conjecture -1994

Let φ : M3 → S4 be a minimal hypersurface. If |A|2 is constant, then M is
isoparametric.

(C3) Generalized Chern Conjecture.

Let m ≥ 3 and φ : Mm → Sm+1 be a CMC hypersurface. If |A|2 is constant, then
M is isoparametric.

For m = 3, the compact case was proved in
[De Almeida, Brito – 1990, Chang – 1993].

Go Back

8 / 53



Chern Conjecture

A very interesting result related to Generalized Chern Conjecture, was
obtained:

Theorem 3.2 ([De Almeida, Brito, Scherfner, Weiss – 2020])

Let m > 3 and φ : Mm → Sm+1 be a CMC hypersurface. If |A|2 is constant and M
has three distinct principal curvatures everywhere, then M is isoparametric.

The compact case was proved in [Chang – 1994].
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Pinching results that support the Chern Conjecture

Theorem 4.1 ([Peng, Terng – 1983])

Let φ : Mm → Sm+1 be a compact minimal hypersurface. If |A|2 is constant and
if m ≤ |A|2 ≤ m+ 1

12m , then |A|2 = m, so φ(M) is a Clifford torus.

During the past three decades, there has been some important progress on
the Chern conjecture.

In 1991-1998, Yang and Cheng improved the pinching constant 1
12m to m

3 .

In 2007, Suh and Yang improved this pinching constant to 3m
7 .

Theorem 4.2 ([Lei, Xu, Xu – 2017])

Let φ : Mm → Sm+1 be a compact minimal hypersurface. If m ≤ |A|2 ≤ m+ m
18 ,

then |A|2 = m and thus φ(M) is a Clifford torus.
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Pinching results that support the Chern Conjecture

The pinching phenomenon for hypersurfaces of constant mean curvature in
spheres is much more complicated than in the minimal hypersurface case.

Theorem 4.3 ([Xu – 1993])

Let φ : Mm → Sm+1 be a compact non-minimal CMC hypersurface. If |A|2 ≤ α,
then |A|2 is constant and φ(M) is either a small hypersphere of radius 1√

1+f 2
,

or a Clifford torus S1
(

β√
1+β 2

)
×Sm−1

(
1√

1+β 2

)
.

Here,

α = α(m, f ) = m+
m3

2(m−1)
f 2 − m(m−2)

2(m−1)

√
m2f 4 +4(m−1)f 2, (1)

β = β (m, f ) = f +

√
α −mf 2

m(m−1)
. (2)

Go Back
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Pinching results that support the Chern Conjecture

Theorem 4.4 ([Gu, Lei, Xu – 2018])

Let φ : Mm → Sm+1 be a complete non-minimal CMC hypersurface with |A|2
constant. If |A|2 > α, where m ≥ 4, then

|A|2 > α +Bm
mf 2

m−1
,

where

Bm =

 0.2, 4 ≤ m ≤ 20

0.196, m > 20
. (3)

We note that
m > α ⇔ f < m−2

m

m > α +Bm
mf 2

m−1 ⇔ f < γ < m−2
m .

Go Back
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Introducing the biharmonic submanifolds

Biharmonic maps

Let (Mm,g) and (Nn,h) be two Riemannian manifolds. Assume that M is
compact and consider

Bienergy functional

E2 : C∞(M,N)→ R, E2 (φ) =
1
2

∫
M
|τ(φ)|2vg

Euler-Lagrange equation

τ2(φ) = −∆
φ

τ(φ)− traceg RN(dφ ,τ(φ))dφ

= 0.

Critical points of E2 are called biharmonic maps.
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Introducing the biharmonic submanifolds

The biharmonic equation (G.Y. Jiang, 1986)

τ2(φ) =−∆
φ

τ(φ)− traceg RN(dφ ,τ(φ))dφ = 0,

where
∆

φ =− traceg
(
∇

φ
∇

φ −∇
φ

∇

)
is the rough Laplacian on sections of φ−1TN and

RN(X,Y)Z = ∇
N
X ∇

N
Y Z −∇

N
Y ∇

N
X Z −∇

N
[X,Y]Z.

is a fourth-order non-linear elliptic equation;
any harmonic map is biharmonic;
a non-harmonic biharmonic map is called proper-biharmonic;
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Introducing the biharmonic submanifolds

Biharmonic submanifolds

Definition 5.1
A submanifold φ : Mm → Nn is called biharmonic if φ is a biharmonic map, i.e.,
τ2(φ) = 0.

Theorem 5.2 ([B-Y. Chen – 1984, Loubeau, Montaldo, Oniciuc – 2008])

A submanifold φ : Mm → Nn is biharmonic if and only if

traceA
∇⊥· H(·)+ trace∇AH + trace

(
RN(·,H)·

)⊤
= 0

and
∆
⊥H+ traceB(·,AH(·))+ trace

(
RN(·,H)·

)⊥
= 0.

For hypersurfaces, we can see also [Ou – 2010].
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Introducing the biharmonic submanifolds

Examples of proper-biharmonic submanifolds

In spaces of non-positive curvature, with just one exception (see
[Ou, Tang – 2012]), we have only non-existence results, i.e.,
biharmonicity implies harmonicity (minimality); in particular in Rn we have
only non-existence results.

In spaces of positive curvature, especially in Euclidean spheres, we have
many examples and classification results for proper-biharmonic
submanifolds (see, for example [Balmuş, Montaldo, Oniciuc – 2012]).
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Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture
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Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture

Biharmonic hypersurfaces in Sm+1

Theorem 6.1

Let φ : Mm → Sm+1 be a hypersurface. Then M is biharmonic if and only if

A(grad f ) =−m
2

f grad f

and
∆f =

(
m−|A|2

)
f .

20 / 53



Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture

Biharmonic hypersurfaces in Sm+1

If f ≡ const ̸= 0, then Mm is proper-biharmonic if and only if |A|2 ≡ m.
If f ≡ 0, hypersurfaces with |A|2 ≡ m were already classified in the famous
paper [Chern, Do Carmo, Kobayashi – 1970].

Go Back

The study of proper-biharmonic hypersurfaces in Sm+1 with f constant,
i.e., CMC, can be seen as a natural generalization of the above
mentioned classical problem.
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Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture

Biharmonic hypersurfaces in Sm+1

The only known examples of proper-biharmonic hypersurfaces in Sm+1 (see
[Caddeo, Montaldo, Oniciuc – 2001, Jiang – 1986]) are:

open parts of the small hypersphere of radius 1√
2
, i.e., Sm

(
1√
2

)
,

open parts of the Clifford tori Sm1
(

1√
2

)
×Sm2

(
1√
2

)
, with m1 ̸= m2 and

m1 +m2 = m

Moreover, it was proved that, under various additional geometric assumptions,
the proper-biharmonic hypersurfaces have to be the above ones or (at least)
they must be CMC. Consequently, the following two conjectures have been
proposed in 2008 (see [Balmuş, Montaldo, Oniciuc – 2008]).
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Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture

(B1) Conjecture 1.

Any proper-biharmonic hypersurface in Sm+1 is either an open part of Sm
(

1√
2

)
,

or an open part of Sm1
(

1√
2

)
×Sm2

(
1√
2

)
, with m1 ̸= m2 and m1 +m2 = m.

(B2) Conjecture 2.

Any proper-biharmonic submanifold in Sn is CMC.

Until now, B1 was proved in several particular cases:

m = 2 (see [Caddeo, Montaldo, Oniciuc – 2001]),
m = 3 and the hypersurface M is complete (see
[Balmuş, Montaldo, Oniciuc – 2010]),
Mm has at most two distinct principal curvatures at any point (see
[Balmuş, Montaldo, Oniciuc – 2008]),
Mm is isoparametric (see [Ichiyama, Inoguchi, Urakawa – 2010]),
Mm is CMC and has non-positive sectional curvature (see
[Oniciuc – 2012]),
Mm is compact and belongs to a hemisphere (see [Vieira – 2022]).
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Biharmonic hypersurfaces in Euclidean spheres and Chern Conjecture

There is a deep link between the proof of B1 knowing that B2 is true and the
Generalized Chern Conjecture, as we will explain below.

Go Back

Further, as a non-minimal CMC hypersurfaces in Sm+1 is
proper-biharmonic if and only if |A|2 = m, if the Generalized Chern
Conjecture will be proved to be true, then our B1 will follow immediately
using B2 and the results in [Ichiyama, Inoguchi, Urakawa – 2010].
Therefore, the proof of B1 under the CMC hypothesis can be seen as a
special case of Generalized Chern Conjecture.
However, the Generalized Chern Conjecture seems very difficult to be
proved in its full generality. We think that there are more chances to prove
the Generalized Chern Conjecture in the special case when |A|2 = m,
equivalently, to prove B1 using B2.
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Biharmonic hypersufaces and B.-Y. Chen Conjecture

We recall the famous conjecture

Chen Conjecture [B.-Y. Chen – 1991]

Any biharmonic submanifold in Rn is minimal.

Since any CMC biharmonic submanifold in Rn is minimal (see
[Dimitrić – 1992]), the Chen Conjecture can be reformulated in a weaker form:

Chen Conjecture.

Any biharmonic submanifold in Rn is CMC.

(B2) Conjecture 2.

Any proper-biharmonic submanifold in Sn is CMC.
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

As it is not clear how B2 could imply B1, we propose an intermediary
objective.

Open Problem.

Let Mm be a CMC proper-biharmonic hypersurface in Sm+1. Then, the set of all
possible values of the mean curvature is discreet and, more precisely,

f ∈
{

m−2r
m

| r ∈ N, 0 ≤ r ≤ s∗
}
,

where s∗ = s−1, if m = 2s, and s∗ = s, if m = 2s+1.

Remark.

Finally, one should further prove that, if f = m−2r
m , then Mm must be an open

part of Sr
(

1√
2

)
×Sm−r

(
1√
2

)
.
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

In [Balmuş, Oniciuc – 2012] and in [S.N. – 2022], the authors give some
partial answers to the above Open Problem.

First, we recall that a CMC proper-biharmonic hypersurface in the Euclidean
unit sphere has f ∈ (0,1]. More precisely, we have

Theorem 8.1 ([Balmuş, Oniciuc – 2012])

Let φ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface with m > 2.
Then f ∈

(
0, m−2

m

]
∪{1}. Moreover, f = 1 if and only if φ(M) is an open subset

of the small hypersphere Sm
(

1√
2

)
, and f = m−2

m if and only if φ(M) is an open

subset of the standard product S1
(

1√
2

)
×Sm−1

(
1√
2

)
.

We mention that Theorem 8.1 can be reobtained, under the additional
assumption Mm compact, from Theorem 4.3.
All the pinching results related to Chern Conjecture, with only one
exception, lead us, for our biharmonic problem, either to the same
conclusion as in Theorem 8.1, or they give us no information.
The only pinching result which can be useful for us and improve Theorem
8.1 is Theorem 4.4.
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Theorem 8.1 ([Balmuş, Oniciuc – 2012])

Let φ : Mm → Sm+1 be a CMC proper-biharmonic hypersurface with m > 2.
Then f ∈

(
0, m−2

m

]
∪{1}. Moreover, f = 1 if and only if φ(M) is an open subset

of the small hypersphere Sm
(

1√
2

)
, and f = m−2

m if and only if φ(M) is an open

subset of the standard product S1
(

1√
2

)
×Sm−1

(
1√
2

)
.

We mention that Theorem 8.1 can be reobtained, under the additional
assumption Mm compact, from Theorem 4.3.
All the pinching results related to Chern Conjecture, with only one
exception, lead us, for our biharmonic problem, either to the same
conclusion as in Theorem 8.1, or they give us no information.
The only pinching result which can be useful for us and improve Theorem
8.1 is Theorem 4.4.

29 / 53



A new gap for CMC biharmonic hypersurfaces in Euclidean spheres
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

Our result is an improvement of Theorem 8.1. We show that there is a larger
gap for f than

(m−2
m ,1

)
. More precisely, considering m ≥ 4 and denoting

γ = (m−2)

√
m−1

m2(m−1)+Bm (Bm +m2)
∈
(

m−3
m

,
m−2

m

)
, (4)

where

Bm =



0.2, 4 ≤ m ≤ 42

0.199, 43 ≤ m ≤ 65

0.198, 66 ≤ m ≤ 149

0.197, m ≥ 150

, (5)

we have the following result.
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Theorem 8.2 ([S.N. – 2022])

Let Mm be a complete CMC proper-biharmonic hypersurface in Sm+1. If m ≥ 4
and the mean curvature f ∈

[
γ, m−2

m

]
, then f = m−2

m and

M = S1
(

1√
2

)
×Sm−1

(
1√
2

)
.

A direct consequence of Theorem 8.2 is the next result, which gives the new
gap for f .

Corollary 8.3 ([S.N. – 2022])

Let Mm be a complete CMC proper-biharmonic hypersurface in Sm+1, with
m ≥ 4. Then

f ∈ (0,γ)∪
{

m−2
m

}
∪{1}.

Moreover, f = m−2
m if and only if M = S1

(
1√
2

)
×Sm−1

(
1√
2

)
, and f = 1 if and

only if M = Sm
(

1√
2

)
.
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

Notations:

For our objective, it will be more convenient to replace the principal
curvatures λi of M by

λi =
√

m(1− f 2)µi + f .

Now, the advantage of using µi’s is that

m

∑
i=1

µi = 0 and
m

∑
i=1

µ
2
i = 1. (6)

We also need to consider on the hypersurface Mm three functions φ , η

and σ given by

φ =
m

∑
i=1

µ
3
i +

m−2√
m(m−1)

, η =

√
m

m−1
µ1 +1, σ =

√√√√ m

∑
i=2

(
µi +

µ1

m−1

)2

.

(7)
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

Intermediate results for Theorem 8.2

Lemma 8.4 ([Gu, Lei, Xu – 2018])

If m ≥ 3, the real numbers φ , η and σ satisfy√
m(m−1)
m−2

φ ≥ η ≥ σ2

2
(8)

and
φ
√

m(m−1)≥ η

[
3m−3(m+1)η −2σ

√
m(m−1)

]
. (9)
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Intermediate results for Theorem 8.2

In order to state the next lemma, we consider a positive number defined by

α0 = α −mf 2 =

= m+
m3

2(m−1)
f 2 − m(m−2)

2(m−1)

√
m2f 4 +4(m−1)f 2 −mf 2. (10)

Lemma 8.5 ([Gu, Lei, Xu – 2018])

If m ≥ 3, then the following equality holds

(m−2)f
√

m
m−1

α0 = m
(

f 2 +1
)
−α0. (11)
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Intermediate results for Theorem 8.2
From the definitions of σ and η we get a link between the difference µ2 −µ1
and a quantity which contains σ , η and m. This we will be useful to prove the
third lemma.

µ2 −µ1 ≥

(
1−η −σ

√
m−1

m

)√
m

m−1
. (12)

Lemma 8.6 ([S.N. – 2022])

Let m ≥ 4. If

φ ≤ Bm

2

√
m

m−1
, (13)

then 2σ +3η < 3
4 and

µ2 −µ1 >
2

3−3−10

√
m

m−1
. (14)

Go Back
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A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

Sketch of the proof of Theorem 8.2

Steps of the proof:
1. we prove that the smallest distinct principal curvature has constant

multiplicity 1, so λ1 is smooth on M.
2. we compute and estimate ∆λ1

3. using Omori-Yau maximum principle, we conclude that A is parallel, and
then we get f = m−2

m .

4. using Okumura Lemma, we obtain that M = S1
(

1√
2

)
×Sm−1

(
1√
2

)
.
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Sketch of the proof of Theorem 8.2
Step 1: Proof of smoothness of λ1 on M

for any CMC hypersurface in Sm+1 (see [Nomizu, Smyth – 1969]), we
have on M:

1
2

∆ |A|2 =−|∇A|2 +m2f 2 + |A|2
(
|A|2 −m

)
−mf traceA3. (15)

using the biharmonicity hypothesis, i.e., |A|2 = m, and the definition of φ ,
from (15), we obtain, on M,

|∇A|2 +mf φ

√
m3

0 = m0

[
m0 −m

(
f 2 +1

)
+(m−2)f

√
m

m−1
m0

]
, (16)

where m0 = m−mf 2.
finding convenient upper bound for the term in the right hand side of (16),
we prove

φ <
Bm

2

√
m

m−1
.

Go Back
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Sketch of the proof of Theorem 8.2
Step 1 (continue):

Now, we can apply Lemma 8.6 and achieve µ2 > µ1, which is equivalent to
λ2 > λ1 on Mm.

Therefore, since the smallest principal curvature λ1 of M has (constant)
multiplicity 1 on M, it follows that it is smooth on M and there exists a local
smooth unit vector field E1 such that A(E1) = λ1E1 (see [Nomizu – 1973]).

We note that, as λ1 has multiplicity 1, we expect to obtain
M = S1

(
1√
2

)
×Sm−1

(
1√
2

)
.

Then, we can find a local expression of ∆λ1 but, in order to work with, it is
more convenient to fix arbitrarily a point p and consider {e1, . . . ,em} an
orthonormal basis which diagonalize the shape operator A such that
e1 = E1(p).

Let
bijk = ⟨(∇A)(ei,ej) ,ek⟩

be the components of the totally symmetric tensor ⟨(∇A)(·, ·) , ·⟩.
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Sketch of the proof of Theorem 8.2
Step 2: Compute and estimate ∆λ1

Since Mm is a CMC hypersurface in Sm+1, it was shown in
[Gu, Lei, Xu – 2018] that, at p,

∆λ1 = mf +
(
|A|2 −m

)
λ1 −mf λ

2
1 −2

m

∑
i=1
k≥2

b2
i1k

λ1 −λk
.

Since Mm is proper-biharmonic and therefore |A|2 = m, we have, at p,

∆λ1 = mf −mf λ
2
1 −2

m

∑
i=1
k≥2

b2
i1k

λ1 −λk
. (17)

By some computations, using also equation (16), one gets, at p

∆λ1 = η
√

m0

{
−(η −2)(m−1)f

√
m0 +

[
m0 −m

(
f 2 +1

)]√m−1
m

}
−

−

√
m−1
mm0

|∇A|2 −m0φ f
√

m(m−1)− 2
√

m0

m

∑
i=1
k≥2

b2
i1k

µ1 −µk
. (18)
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Sketch of the proof of Theorem 8.2

Step 2 (continue):

Using Lemma 8.6, 1+Bm ≤ 6/5 and some convenient estimations, one
gets at p,

∆λ1 ≤−3−11

√
m−1
mm0

|∇A|2 − 2
5

m0φ f
√

m(m−1)≤ 0. (19)

As the point p was arbitrarily fixed, we conclude that ∆λ1 ≤ 0 on M.
Go Back
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Sketch of the proof of Theorem 8.2

Step 3: Omori-Yau maximum principle

Definition 8.7
Let Mm be a Riemannian manifold. We say that M admits Omori-Yau
maximum principle for the Laplacian if for any u ∈ C2(M) with u∗ = supM u < ∞,
there exists a sequence of points {pk}k∈N ⊂ M that satisfies

i) u(pk)> u∗− 1
k

; ii) |∇u(pk)|<
1
k

; iii) ∆u(pk)>−1
k
, k ∈ N.

Theorem 8.8 ([Omori – 1967])

Any complete Riemannian manifold whose Ricci curvature has a lower bound
admits Omori-Yau maximum principle for the Laplacian.

41 / 53



A new gap for CMC biharmonic hypersurfaces in Euclidean spheres

Sketch of the proof of Theorem 8.2
Step 3 (continue):
Since |A|2 = m, we obtain Ricci(X,X)≥−2m(m−1), for any X ∈ C(TM), |X|= 1.
Knowing also that M is complete and λ1 is smooth and bounded by

√
m, it

follows that there exists a sequence of points {pk}k∈N ⊂ M such that

(∆λ1)(pk)>−1
k
.

But we have seen that ∆λ1 ≤ 0 at any point of M, so,

lim
k→∞

(∆λ1)(pk) = 0,

and, moreover, from (19), we deduce

lim
k→∞

|∇A|2 (pk) = 0 and lim
k→∞

φ (pk) = 0.

Now, using (16), it follows that

|∇A| ≡ 0 and φ ≡ 0.

Then, it easy to see that

f =
m−2

m
.
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Sketch of the proof of Theorem 8.2
Step 4: Okumura Lemma

Lemma 8.9 ([Okumura – 1974])

Let µ1, µ2, · · · , µm be real numbers such that ∑
m
i=1 µi = 0. Then

− m−2√
m(m−1)

(
m

∑
i=1

µ
2
i

)3/2

≤
m

∑
i=1

µ
3
i ≤ m−2√

m(m−1)

(
m

∑
i=1

µ
2
i

)3/2

.

Moreover, equality holds on the right-hand (respectively, left-hand) side if and
only if (m−1) of the µi’s are non-positive (repectively, non-negative) and
equal.

Finally, from φ ≡ 0, we see that we have equality in the Okumura Lemma (in
the left-hand side), and, it is not difficult to prove that

λ1 =−1 and λ2 = λ3 = · · ·= λm = 1.

Thus, M is the Clifford torus S1
(

1√
2

)
×Sm−1

(
1√
2

)
.
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Further work

We recall that

γ ∈
(

m−3
m

,
m−2

m

)
.

Our objective is to find a better value of γ, closer to m−4
m !
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