Magnetic Jacobi fields in almost contact metric manifolds

Differential Geometry workshop, Vienna 2022

Marian Ioan Munteanu

University Alexandru Ioan Cuza of Iaşi Romania

September 7, 2022

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Table of Contents

1. Critical points of the LH integral

2. Second variation for the LH functional

3. Magnetic Jacobi fields in cosymplectic and Sasakian manifolds

Geodesics and magnetic curves

Geodesics and magnetic curves

... are given by a second order nonlinear differential equation

Geodesics: γ in a Riemannian manifold (M, g): kinetic energy

$$E(\gamma) = \int_{a}^{b} \frac{1}{2} |\gamma'(s)|^2 ds$$

Geodesics and magnetic curves

... are given by a second order nonlinear differential equation

Geodesics: γ in a Riemannian manifold (M, g): kinetic energy

$$E(\gamma) = \int_{a}^{b} \frac{1}{2} |\gamma'(s)|^2 ds$$

Let ω be the **potential** 1-form. Consider the Landau Hall functional

$$LH(\gamma) = \int_{a}^{b} \left(rac{1}{2} \langle \gamma'(t), \gamma'(t)
angle + \omega(\gamma'(t))
ight) dt.$$

Magnetic curves

The critical points of the LH functional are solutions of the equation $\left.\frac{d}{d\epsilon}LH(\gamma_\epsilon)\right|_{\epsilon=0}=0$, that is

$$\left. \frac{d}{d\epsilon} LH(\gamma_{\epsilon}) \right|_{\epsilon=0} = -\int_{a}^{b} g\left(\nabla_{\gamma'} \gamma' - \phi(\gamma'), V \right) dt = 0,$$

Magnetic curves

The critical points of the LH functional are solutions of the equation $\left.\frac{d}{d\epsilon}LH(\gamma_\epsilon)\right|_{\epsilon=0}=0$, that is

$$\frac{d}{d\epsilon}LH(\gamma_{\epsilon})\Big|_{\epsilon=0} = -\int_{a}^{b} g\big(\nabla_{\gamma'}\gamma' - \phi(\gamma'), V\big)dt = 0,$$

which is equivalent to

$$\nabla_{\gamma'}\gamma' - \phi(\gamma') = 0$$

known as the Lorentz equation.

Background

(M,g) Riemannian manifold; (dim $M = n \ge 2$)

Lorentz force ϕ : $g(\phi(X), Y) = 2d\omega(X, Y)$, X, Y tangent to M

Background

(M,g) Riemannian manifold; (dim $M = n \ge 2$) magnetic field: F - closed 2-form on MLorentz force ϕ : $g(\phi(X), Y) = F(X, Y)$, X, Y tangent to M

 $F = 2d\omega$

Background

(M, g) Riemannian manifold; (dim $M = n \ge 2$) magnetic field: F - closed 2-form on MLorentz force ϕ : $g(\phi(X), Y) = F(X, Y)$, X, Y tangent to MA smooth curve γ in (M, g, F) is called

magnetic curve/trajectory/geodesic of (M, g, F)if its velocity vector field γ' satisfies the **Lorentz equation**:

$$abla_{\gamma'}\gamma' = \phi(\gamma')$$

 $F = 2d\omega$

Magnetic Jacobi fields

Magnetic Jacobi fields

A second variational formula for the integral LH:

$$\frac{D^2}{ds^2}W - R(\dot{\gamma}, W)\dot{\gamma} - \phi\left(\frac{D}{ds}W\right) - \left(\nabla_W\phi\right)\dot{\gamma} = 0.$$

R: the Riemannian curvature tensor of M.

Almost contact metric manifolds

- A (φ, ξ, η) structure:
 - a field φ of endomorphisms of tangent spaces,
 - a vector field ξ and
 - a 1-form η

satisfying

$$\eta(\xi) = 1, \ \varphi^2 = -\mathbf{I} + \eta \otimes \xi, \ \varphi\xi = 0, \ \eta \circ \varphi = 0$$

When (M,φ,ξ,η) is endowed with a **compatible** Riemannian metric g

 $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$, for all $X, Y \in \mathfrak{X}(M)$,

then *M* is said to have an *almost contact metric structure*, and $(M, \varphi, \xi, \eta, g)$ is called an *almost contact metric manifold*.

Sasakian manifolds

the fundamental 2-form:

 $\Omega(X,Y) = g(X,\varphi Y), \text{ for all } X, Y \in \mathfrak{X}(M),$

If $\Omega = d\eta$, then $(M, \varphi, \xi, \eta, g)$ is called a contact metric manifold.

A Sasakian manifold is defined as a **normal** contact metric manifold.

Characterization:

 $(\nabla_X \varphi)Y = g(X, Y)\xi - \eta(Y)X$, for any $X, Y \in \mathfrak{X}(M)$.

(1)

Cosymplectic manifolds

 $(M, \varphi, \xi, \eta, g)$ with $d\eta = 0$ and $d\Omega = 0$ is said to be an *almost cosymplectic* manifold.

If an almost cosymplectic structure is normal, we get a *cosymplectic* manifold.

Characterization:

 $\nabla \varphi = 0.$

Magnetic Jacobi fields in cosymplectic manifolds

Contact magnetic fields in cosymplectic manifolds

Magnetic field: $F = -q\Omega$, $q \in \mathbb{R}$ Lorentz force: $\phi = q\varphi$ is **uniform**

Magnetic Jacobi field equation:

$$\frac{D^2}{ds^2}W - R(\dot{\gamma}, W)\dot{\gamma} - \phi\left(\frac{D}{ds}W\right) - (\nabla_W \phi)\dot{\gamma} = 0.$$
 paralellism of ϕ

Contact magnetic fields in cosymplectic manifolds

Magnetic field: $F = -q\Omega$, $q \in \mathbb{R}$ Lorentz force: $\phi = q\varphi$

Magnetic Jacobi field equation:

$$\frac{D^2}{ds^2}W - R(\dot{\gamma}, W)\dot{\gamma} - \phi\left(\frac{D}{ds}W\right) = 0.$$

12/28

Magnetic curves in \mathbb{E}^3 :

 $\ddot{\gamma}(s) = V(s) \times \dot{\gamma}(s)$, where $V(s) = V(\gamma(s))$ is divergence free. The Lorentz force : $\phi : \mathfrak{X}(\mathbb{E}^3) \to \mathfrak{X}(\mathbb{E}^3)$, $\phi X = V \times X$, $\forall X \in \mathfrak{X}(\mathbb{E}^3)$. Take the Killing vector field $V_0 = \frac{\partial}{\partial z}$. $V = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$.

Magnetic curves in \mathbb{E}^3 :

 $\ddot{\gamma}(s) = V(s) \times \dot{\gamma}(s)$, where $V(s) = V(\gamma(s))$ is divergence free.

The Lorentz force : $\phi : \mathfrak{X}(\mathbb{E}^3) \to \mathfrak{X}(\mathbb{E}^3), \quad \phi X = V \times X, \ \forall X \in \mathfrak{X}(\mathbb{E}^3).$

Take the Killing vector field $V_0 = \frac{\partial}{\partial z}$.

Magnetic trajectories are helices with axis V_0 :

 $\gamma(t) = (x_0 + a\cos t, y_0 + a\sin t, z_0 + bt), \ (x_0, y_0, z_0) \in \mathbb{E}^3, \ a, b \in \mathbb{R}.$

Magnetic Jacobi equation:

 $W''(s) - V(s) \times W'(s) - (\nabla_W V) \times \dot{\gamma}(s) = 0,$

where we take $V = q \frac{\partial}{\partial z}$, $q \in \mathbb{R} \setminus \{0\}$.

The magnetic Jacobi equation :

$$W''(s) - q \frac{\partial}{\partial z} \times W'(s) = 0,$$

Theorem (-, Nistor : 2021)

Let $\gamma(s)$ be a normal magnetic curve corresponding to the Killing vector field $q\frac{\partial}{\partial z}$ in \mathbb{E}^3 . Then, the magnetic Jacobi fields along γ are given by: (i) $W(s) = W_0 + as \frac{\partial}{\partial z}$, (ii) $W(s) = W_0 + \frac{\sin qs}{a} v_0 - \cos qs \phi v_0 + as \frac{\partial}{\partial z}$ where W_0 is a constant vector in \mathbb{R}^3 , v_0 is a constant vector orthogonal to $\frac{\partial}{\partial z}$ and $a \in \mathbb{R}$.

Initial conditions	magnetic Jacobi field $W(s)$
W(0) = (0, 0, 1), $W'(0) = (0, 0, 0)$	(0, 0, 1)
$W(0) = (0, 0, \lambda)$, $W'(0) = (0, 0, 1)$	$(0,0,s+\lambda)$, $\lambda\in\mathbb{R}$
W(0) = (0, 0, 0), $W'(0) = (\cos \psi, \sin \psi, 0), \psi \in \mathbb{R}$	$\frac{\sin qs}{q}(\cos\psi,\sin\psi,0) + \frac{1-\cos qs}{q}(-\sin\psi,\cos\psi,0)$

Remark. The expression of the magnetic trajectory γ is not, seemingly, explicitly involved. However, the function $\langle W'(s), \dot{\gamma} \rangle$ is constant.

Change the Killing vector field: $V = q \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$

Then the magnetic Jacobi equation becomes

$$W''(s) - V(s) \times W'(s) - q\left(\frac{\partial}{\partial z} \times W(s)\right) \times \dot{\gamma}(s) = 0$$

(the expression of γ appears explicitly) Solve this ODE!!: γ is complicated!!)

Change the Killing vector field: $V = q \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$

Then the magnetic Jacobi equation becomes

not cosymplectic

$$W''(s) - V(s) \times W'(s) - q\left(\frac{\partial}{\partial z} \times W(s)\right) \times \dot{\gamma}(s) = 0$$

(the expression of γ appears explicitly)

Remark. The function $\langle W'(s), \dot{\gamma} \rangle$ is still constant.

Arbitrary cosymplectic manifolds

Proposition (General result)

On an arbitrary Riemannian manifold (M, g) endowed with a magnetic field, the (unit) speed vector $\dot{\gamma}$ is **always** a magnetic Jacobi field along the magnetic curve γ .

Arbitrary cosymplectic manifolds

Proposition (conservation law)

Let W be a magnetic Jacobi field along the contact magnetic curve γ in a cosymplectic manifold of arbitrary dimension. Then, the function $g(\frac{D}{ds}W(s),\dot{\gamma}(s))$ is constant.

17/28

Arbitrary cosymplectic manifolds

Proposition (conservation law)

Let W be a magnetic Jacobi field along the contact magnetic curve γ in a cosymplectic manifold of arbitrary dimension. Then, the function $g(\frac{D}{ds}W(s),\dot{\gamma}(s))$ is constant.

Proposition (-, Nistor : 2021)

Let W_1 and W_2 be two magnetic Jacobi fields along the contact magnetic curve γ in a cosymplectic manifold of arbitrary dimension. Then, the function $g(\frac{D}{ds}W_1(s), W_2(s)) - g(\frac{D}{ds}W_2(s), W_1(s)) + qg(W_1(s), \varphi W_2(s))$ is constant.

Cosymplectic manifolds of dimension 3

Proposition (-, Nistor : 2021)

The characteristic vector field ξ of a cosymplectic manifold M^3 is a magnetic Jacobi field along any normal contact magnetic curve.

Proposition (-, Nistor : 2021)

Let γ be a contact magnetic curve on the cosymplectic three dimensional manifold M^3 , such that γ is not an integral curve of ξ . Then, $\varphi \dot{\gamma}$ is a magnetic Jacobi field along γ if and only if M^3 is a cosymplectic space form $M^3(c)$ with c = 0.

Proof. $\mathcal{J}_F(\varphi \dot{\gamma}) = \frac{r}{2} \sin^2 \theta \varphi \dot{\gamma}.$

Magnetic Jacobi fields in 3-dimensional cosymplectic space forms

1) The characteristic vector field ξ as magnetic field: $\dot{\gamma}(s) = \xi(s)$.

Theorem (–, Nistor : 2021)

Let γ be an integral curve of ξ in a cosymplectic manifold $(M^3, \varphi, \xi, \eta, g)$ and let $F = -q\phi$ be the magnetic field of strength q. The magnetic Jacobi field along γ is given by:

either $W(s) = W_0(s) + (f_0 + f_1 s)\xi(\gamma(s)) + \sin q s v_0(s) - \cos q s \varphi v_0(s),$

or $W(s) = W_0(s) + (f_0 + f_1 s)\xi(\gamma(s)),$ where

 $v_0(s)$ is a vector field parallel along $\gamma(s)$ lying in the contact distribution ker η W_0 is a linear combination, with constant coefficients, of $v_0(s)$ and $\varphi v_0(s)$.

Magnetic Jacobi fields in 3-dimensional cosymplectic space forms

(2) The case when $\dot{\gamma}(s) \notin \xi$; in particular, γ can be a Legendre curve, $\dot{\gamma} \perp \xi$. Use the basis { $\dot{\gamma}, \varphi \dot{\gamma}, \xi$ } to decompose

 $W(s) = A(s)\dot{\gamma}(s) + B(s)\varphi\dot{\gamma}(s) + C(s)\xi(s), \quad A, B, C \in C^{\infty}(I)$

Magnetic Jacobi fields in 3-dimensional cosymplectic space forms

(2) The case when $\dot{\gamma}(s) \notin \xi$; in particular, γ can be a Legendre curve, $\dot{\gamma} \perp \xi$. Use the basis { $\dot{\gamma}, \varphi \dot{\gamma}, \xi$ } to decompose

 $W(s) = A(s)\dot{\gamma}(s) + B(s)\varphi\dot{\gamma}(s) + C(s)\xi(s), \quad A, B, C \in C^{\infty}(I)$

the magnetic Jacobi equation is equivalent to

 $\begin{cases} A''(s) - qB'(s) = 0, \\ B''(s) + qA'(s) + cB(s)\sin^2\theta = 0, \\ C''(s) + q\cos\theta B'(s) = 0. \end{cases}$

Solve the system

EQ1 yields $A'(s) = qB(s) + c_0, c_0 \in \mathbb{R}$.

Use EQ2 we get: $B''(s) + \mu B(s) + qc_0 = 0$, where $\mu := q^2 + c \sin^2 \theta$

Solve the system

EQ1 yields $A'(s) = qB(s) + c_0$, $c_0 \in \mathbb{R}$.

Use EQ2 we get: $B''(s) + \mu B(s) + qc_0 = 0$, where $\mu := q^2 + c \sin^2 \theta$

The sign of μ decides!

Solve the system

EQ1 yields $A'(s) = qB(s) + c_0, c_0 \in \mathbb{R}$. Use EQ2 we get: $B''(s) + \mu B(s) + qc_0 = 0$, where $\mu := q^2 + c \sin^2 \theta$ $\mu = 0$:

$$B(s) = -qc_0 \frac{s}{2} + c_1 s + c_2, \ c_0, c_1, c_2 \in \mathbb{R}$$

$$A(s) = -q^2 c_0 \frac{s^3}{6} + c_1 q \frac{s^2}{2} + (c_0 + c_2 q)s + c_3,$$

$$C(s) = q^2 \cos \theta c_0 \frac{s^3}{3} - q \cos \theta c_1 \frac{s^2}{2} + (c_4 - c_2 q \cos \theta)s + c_5, \ c_3, c_4, c_5 \in \mathbb{R}.$$

21/28

Solve the system

EQ1 yields $A'(s) = qB(s) + c_0, c_0 \in \mathbb{R}$. Use EQ2 we get: $B''(s) + \mu B(s) + qc_0 = 0$, where $\mu := q^2 + c \sin^2 \theta$ $\mu > 0$: $\mu = k^2 (k > 0)$. $A(s) = \frac{qc_1}{k}\sin ks - \frac{qc_2}{k}\cos ks + \frac{c_0c\sin^2\theta}{k^2}s + c_3,$ $B(s) = c_1 \cos ks + c_2 \sin ks - \frac{qc_0}{k^2}, \ c_0, c_1, c_2, c_3 \in \mathbb{R},$ $C(s) = -\frac{q\cos\theta}{l_{c}}(c_{1}\sin ks - c_{2}\cos ks) + c_{4}s + c_{5}, \ c_{4}, c_{5} \in \mathbb{R}.$

Solve the system

EQ1 yields $A'(s) = qB(s) + c_0, c_0 \in \mathbb{R}$. Use EQ2 we get: $B''(s) + \mu B(s) + qc_0 = 0$, where $\mu := q^2 + c \sin^2 \theta$ $\mu < 0$ $\mu = -k^2 (k > 0).$ $A(s) = \frac{qc_1}{k}\sinh ks + \frac{qc_2}{k}\cosh ks - \frac{c_0c\sin^2\theta}{k^2}s + c_3,$ $B(s) = c_1 \cosh ks + c_2 \sinh ks + \frac{qc_0}{L^2}, \ c_0, c_1, c_2, c_3 \in \mathbb{R},$ $C(s) = -\frac{q\cos\theta}{l}(c_1\sinh ks + c_2\cosh ks) + c_4s + c_5, \ c_4, c_5 \in \mathbb{R}.$

Jacobi magnetic fields on $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$

Theorem (-, Nistor : 2021)

Let $W(s) = (\overline{W}(s), a(s))$ be a magnetic Jacobi field along the normal contact magnetic curve $\gamma(s) = (\overline{\gamma}(s), t(s))$ in the product manifold $M^3 = N \times \mathbb{R}$, where N denotes the 2-sphere \mathbb{S}^2 or the hyperbolic plane \mathbb{H}^2 .

Then \overline{W} is a magnetic Jacobi field along $\overline{\gamma}$ on N and a is an affine function. The converse also holds.

Magnetic Jacobi fields in Sasakian manifolds

Sasakian space forms of dimension 3

Proposition (Inoguchi, -: 2022)

The Reeb vector field ξ is a magnetic Jacobi field along any normal contact magnetic curve in a Sasakian 3-manifold M.

Proposition (Inoguchi, -: 2022)

Let γ be a normal contact magnetic curve on a 3-dimensional Sasakian space form. Then $\varphi \gamma'$ is a magnetic Jacobi field along γ if and only if either it is an integral curve of the Reeb vector field ξ , or the holomorphic sectional curvature of M is 1.

Sasakian space forms of dimension 3

 γ is an integral curve of ξ $\{\xi(\gamma(s)), E(s), \varphi \: E(s)\}$: o.n. and parallel basis along γ

magnetic Jacobi fields:

 $W(s) = f(s)\xi(\gamma(s)) + a(s)E(s) + b(s)\varphi E(s)$

$$f'' = 0,$$

$$a'' + (q+1)a + qb' = 0,$$

$$b'' + (q+1)b - qa' = 0.$$

Sasakian space forms of dimension 3

 γ' is not colinear to ξ

 $W(s) = f(s)\xi(\gamma(s)) + a(s)\gamma'(s) + b(s)\varphi\gamma'(s)$

$$f'' + (2 + q\cos\theta)b' = 0,$$

$$a'' - (q + 2\cos\theta)b' = 0,$$

$$b'' + qa' + b(c - 1)\sin^2\theta - 2f' = 0$$

Problem solved!

Bibliography

M.I. Munteanu, Magnetic geodesics in (almost) cosymplectic Lie groups of dimension 3, Mathematics, (S.I. Topics in Differential Geometry - Dedicated to the Centenary of the Birth of Shiing-shen Chern), 10 (2022) 4, art. 544.

J. Inoguchi, M.I. Munteanu, Magnetic Jacobi fields in 3-dimensional Sasakian space forms, J. Geom. Analysis, 32 (2022) 3, art. 96.

M.I. Munteanu, A.I. Nistor, Magnetic Jacobi fields in cosymplectic 3-dimensional manifolds, Mathematics, (Special Issue Differential Geometry: structures on manifolds and their applications), 9 (2021) 24 art. 3220.

J. Inoguchi, M.I. Munteanu, Magnetic Jacobi fields in Sasakian space forms, Mediterranean J. Mathematics, accepted.

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Т

Τh

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IASI

Tha

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IASI

Than

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank y

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank yo

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you fo

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for a

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you for at

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for att

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you for atte

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you for atten

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for attent

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for attenti

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for attentio

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you attention

for

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAȘI

Thank you for attention!

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IAŞI

Thank you attention!

for

UNIVERSITATEA ALEXANDRU IOAN CUZA" din IASI