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Geodesics and magnetic curves
... are given by a second order nonlinear differential equation

Geodesics: γ in a Riemannian manifold (M, g): kinetic energy

E(γ) =

b∫
a

1

2
|γ′(s)|2 ds

Let ω be the potential 1-form. Consider the Landau Hall functional

LH(γ) =

b∫
a

(
1

2
〈γ′(t), γ′(t)〉+ ω(γ′(t))

)
dt.
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Magnetic curves
The critical points of the LH functional are solutions of the equation
d
dεLH(γε)

∣∣
ε=0

= 0, that is

d

dε
LH(γε)

∣∣∣∣
ε=0

= −
b∫
a

g
(
∇γ′γ′ − φ(γ′), V

)
dt = 0,

which is equivalent to

∇γ′γ′ − φ(γ′) = 0

known as the Lorentz equation.
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Background
(M, g) Riemannian manifold; (dimM = n ≥ 2)

magnetic field: F - closed 2-form onM F = 2dω

Lorentz force φ: g(φ(X), Y ) = 2dω(X,Y ),X,Y tangent toM

A smooth curve γ in (M, g, F ) is called
magnetic curve/trajectory/geodesic of (M, g, F )

if its velocity vector field γ′ satisfies the Lorentz equation:

∇γ′γ′ = φ(γ′)

5/28



Background
(M, g) Riemannian manifold; (dimM = n ≥ 2)
magnetic field: F - closed 2-form onM F = 2dω
Lorentz force φ: g(φ(X), Y ) = F (X,Y ),X,Y tangent toM

A smooth curve γ in (M, g, F ) is called
magnetic curve/trajectory/geodesic of (M, g, F )

if its velocity vector field γ′ satisfies the Lorentz equation:

∇γ′γ′ = φ(γ′)

5/28



Background
(M, g) Riemannian manifold; (dimM = n ≥ 2)
magnetic field: F - closed 2-form onM F = 2dω
Lorentz force φ: g(φ(X), Y ) = F (X,Y ),X,Y tangent toM

A smooth curve γ in (M, g, F ) is called
magnetic curve/trajectory/geodesic of (M, g, F )

if its velocity vector field γ′ satisfies the Lorentz equation:

∇γ′γ′ = φ(γ′)

5/28



Magnetic Jacobi fields
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Magnetic Jacobi fields
A second variational formula for the integral LH:

D2

ds2
W −R(γ̇,W )γ̇ − φ

(
D

ds
W

)
− (∇Wφ) γ̇ = 0.

R : the Riemannian curvature tensor ofM .
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Almost contact metric manifolds
A (ϕ, ξ, η) structure:
• a field ϕ of endomorphisms of tangent spaces,
• a vector field ξ and
• a 1-form η

satisfying
η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0.

When (M,ϕ, ξ, η) is endowed with a compatible Riemannian metric g

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), for all X,Y ∈ X(M),

thenM is said to have an almost contact metric structure, and (M,ϕ, ξ, η, g)
is called an almost contact metric manifold.
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Sasakian manifolds
the fundamental 2-form:

Ω(X,Y ) = g(X,ϕY ), for all X,Y ∈ X(M), (1)

If Ω = dη, then (M,ϕ, ξ, η, g) is called a contact metric manifold.

A Sasakian manifold is defined as a normal contact metric manifold.

Characterization:

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X, for any X,Y ∈ X(M).
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Cosymplectic manifolds
(M,ϕ, ξ, η, g) with dη = 0 and dΩ = 0 is said to be an almost cosymplectic
manifold.

If an almost cosymplectic structure is normal, we get a cosymplectic
manifold.

Characterization:
∇ϕ = 0.
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Magnetic Jacobi fields
in cosymplectic
manifolds
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Contact magnetic fields in cosymplectic
manifolds
Magnetic field: F = −qΩ, q ∈ R
Lorentz force: φ = qϕ is uniform

Magnetic Jacobi field equation:

D2

ds2
W −R(γ̇,W )γ̇ − φ

(
D

ds
W

)
−���

��:
paralellism of φ

(∇Wφ) γ̇ = 0.
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Magnetic Jacobi Fields in E3

Magnetic curves in E3:

γ̈(s) = V (s)× γ̇(s), where V (s) = V (γ(s)) is divergence free.

The Lorentz force : φ : X(E3)→ X(E3), φX = V ×X, ∀X ∈ X(E3).

Take the Killing vector field V0 =
∂

∂z
. V = x

∂

∂y
− y ∂

∂x
.

Magnetic trajectories are helices with axis V0:

γ(t) = (x0 + a cos t, y0 + a sin t, z0 + bt), (x0, y0, z0) ∈ E3, a, b ∈ R.
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Magnetic Jacobi Fields in E3

Magnetic Jacobi equation:

W ′′(s)− V (s)×W ′(s)− (∇WV )× γ̇(s) = 0,

where we take V = q
∂

∂z
, q ∈ R \ {0}.

The magnetic Jacobi equation :

W ′′(s)− q ∂
∂z
×W ′(s) = 0,
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Magnetic Jacobi Fields in E3

Theorem (–, Nistor : 2021)

Let γ(s) be a normal magnetic curve corresponding to the Killing vector field

q
∂

∂z
in E3. Then, the magnetic Jacobi fields along γ are given by:

(i) W (s) = W0 + as
∂

∂z
,

(ii) W (s) = W0 +
sin qs

q
v0 − cos qs φv0 + as

∂

∂z
,

whereW0 is a constant vector in R3, v0 is a constant vector orthogonal to
∂

∂z
and a ∈ R.
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Examples of magnetic Jacobi fields in E3

Initial conditions magnetic Jacobi fieldW (s)

W (0) = (0, 0, 1),W ′(0) = (0, 0, 0) (0, 0, 1)

W (0) = (0, 0, λ),W ′(0) = (0, 0, 1) (0, 0, s+ λ), λ ∈ R

W (0) = (0, 0, 0),
sin qs

q
(cosψ, sinψ, 0) +

1− cos qs

q
(− sinψ, cosψ, 0)

W ′(0) = (cosψ, sinψ, 0), ψ ∈ R
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Examples of magnetic Jacobi fields in E3

Remark. The expression of the magnetic trajectory γ is not, seemingly,
explicitly involved. However, the function 〈W ′(s), γ̇〉 is constant.

Change the Killing vector field: V = q

(
x
∂

∂y
− y ∂

∂x

)
Then the magnetic Jacobi equation becomes

W ′′(s)− V (s)×W ′(s)− q
(
∂

∂z
×W (s)

)
× γ̇(s) = 0

(the expression of γ appears explicitly)

16/28



Examples of magnetic Jacobi fields in E3

Change the Killing vector field: V = q

(
x
∂

∂y
− y ∂

∂x

)
Then the magnetic Jacobi equation becomes

W ′′(s)− V (s)×W ′(s)− q
(
∂

∂z
×W (s)

)
× γ̇(s) = 0

(the expression of γ appears explicitly)

Solve this ODE!!: γ is complicated!!)
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Examples of magnetic Jacobi fields in E3

Change the Killing vector field: V = q

(
x
∂

∂y
− y ∂

∂x

)
not cosymplectic

Then the magnetic Jacobi equation becomes

W ′′(s)− V (s)×W ′(s)− q
(
∂

∂z
×W (s)

)
× γ̇(s) = 0

(the expression of γ appears explicitly)

Remark. The function 〈W ′(s), γ̇〉 is still constant.
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Arbitrary cosymplectic manifolds
Proposition (General result)

On an arbitrary Riemannian manifold (M, g) endowed with a magnetic field,
the (unit) speed vector γ̇ is always a magnetic Jacobi field along the
magnetic curve γ.

Proposition (conservation law)

LetW be a magnetic Jacobi field along the contact magnetic curve γ in a
cosymplectic manifold of arbitrary dimension. Then, the function
g(DdsW (s), γ̇(s)) is constant.

Proposition (–, Nistor : 2021)

LetW1 andW2 be two magnetic Jacobi fields along the contact magnetic
curve γ in a cosymplectic manifold of arbitrary dimension. Then, the function
g(DdsW1(s),W2(s))− g(DdsW2(s),W1(s)) + qg(W1(s), ϕW2(s)) is constant.
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Cosymplectic manifolds of dimension 3
Proposition (–, Nistor : 2021)

The characteristic vector field ξ of a cosymplectic manifoldM3 is a magnetic
Jacobi field along any normal contact magnetic curve.

Proposition (–, Nistor : 2021)

Let γ be a contact magnetic curve on the cosymplectic three dimensional
manifoldM3, such that γ is not an integral curve of ξ. Then, ϕγ̇ is a magnetic
Jacobi field along γ if and only ifM3 is a cosymplectic space formM3(c)
with c = 0.

Proof. JF (ϕγ̇) = r
2 sin2 θϕγ̇.
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Magnetic Jacobi fields in 3-dimensional cosymplectic space forms

1 The characteristic vector field ξ as magnetic field: γ̇(s) = ξ(s).
Theorem (–, Nistor : 2021)

Let γ be an integral curve of ξ in a cosymplectic manifold (M3, ϕ, ξ, η, g) and
let F = −qφ be the magnetic field of strength q.
The magnetic Jacobi field along γ is given by:

either W (s) = W0(s) + (f0 + f1s)ξ(γ(s)) + sin qsv0(s)− cos qsϕv0(s),

or W (s) = W0(s) + (f0 + f1s)ξ(γ(s)), where

v0(s) is a vector field parallel along γ(s) lying in the contact distribution ker η
W0 is a linear combination, with constant coefficients, of v0(s) and ϕv0(s).
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Magnetic Jacobi fields in 3-dimensional cosymplectic space forms

2 The case when γ̇(s) ∦ ξ; in particular, γ can be a Legendre curve, γ̇ ⊥ ξ.
Use the basis {γ̇, ϕγ̇, ξ} to decompose

W (s) = A(s)γ̇(s) +B(s)ϕγ̇(s) + C(s)ξ(s), A,B,C ∈ C∞(I)

the magnetic Jacobi equation is equivalent to
A′′(s)− qB′(s) = 0,

B′′(s) + qA′(s) + cB(s) sin2 θ = 0,

C ′′(s) + q cos θB′(s) = 0.
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Solve the system
EQ1 yields A′(s) = qB(s) + c0, c0 ∈ R.

Use EQ2 we get: B′′(s) + µB(s) + qc0 = 0, where µ := q2 + c sin2 θ
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Solve the system
EQ1 yields A′(s) = qB(s) + c0, c0 ∈ R.

Use EQ2 we get: B′′(s) + µB(s) + qc0 = 0, where µ := q2 + c sin2 θ

The sign of µ decides!
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Solve the system
EQ1 yields A′(s) = qB(s) + c0, c0 ∈ R.

Use EQ2 we get: B′′(s) + µB(s) + qc0 = 0, where µ := q2 + c sin2 θ

µ = 0:

B(s) = −qc0
s2

2
+ c1s+ c2, c0, c1, c2 ∈ R

A(s) = −q2c0
s3

6
+ c1q

s2

2
+ (c0 + c2q)s+ c3,

C(s) = q2 cos θc0
s3

3
− q cos θc1

s2

2
+ (c4 − c2q cos θ)s+ c5, c3, c4, c5 ∈ R.
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Solve the system
EQ1 yields A′(s) = qB(s) + c0, c0 ∈ R.

Use EQ2 we get: B′′(s) + µB(s) + qc0 = 0, where µ := q2 + c sin2 θ

µ > 0: µ = k2 (k > 0).

A(s) =
qc1
k

sin ks− qc2
k

cos ks+
c0c sin2 θ

k2
s+ c3,

B(s) = c1 cos ks+ c2 sin ks− qc0
k2
, c0, c1, c2, c3 ∈ R,

C(s) = −q cos θ

k
(c1 sin ks− c2 cos ks) + c4s+ c5, c4, c5 ∈ R.
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Solve the system
EQ1 yields A′(s) = qB(s) + c0, c0 ∈ R.

Use EQ2 we get: B′′(s) + µB(s) + qc0 = 0, where µ := q2 + c sin2 θ

µ < 0 µ = −k2 (k > 0).

A(s) =
qc1
k

sinh ks+
qc2
k

cosh ks− c0c sin2 θ

k2
s+ c3,

B(s) = c1 cosh ks+ c2 sinh ks+
qc0
k2
, c0, c1, c2, c3 ∈ R,

C(s) = −q cos θ

k
(c1 sinh ks+ c2 cosh ks) + c4s+ c5, c4, c5 ∈ R.
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Jacobi magnetic fields on S2 × R and H2 × R
Theorem (–, Nistor : 2021)

LetW (s) = (W̄ (s), a(s)) be a magnetic Jacobi field along the normal contact
magnetic curve γ(s) = (γ̄(s), t(s)) in the product manifoldM3 = N × R,
where N denotes the 2-sphere S2 or the hyperbolic plane H2.

Then W̄ is a magnetic Jacobi field along γ̄ on N and a is an affine function.
The converse also holds.
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Magnetic Jacobi fields
in Sasakian manifolds
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Sasakian space forms of dimension 3
Proposition (Inoguchi, – : 2022)

The Reeb vector field ξ is a magnetic Jacobi field along any normal contact
magnetic curve in a Sasakian 3-manifoldM .

Proposition (Inoguchi, – : 2022)

Let γ be a normal contact magnetic curve on a 3-dimensional Sasakian space
form. Then ϕγ′ is a magnetic Jacobi field along γ if and only if either it is an
integral curve of the Reeb vector field ξ, or the holomorphic sectional
curvature ofM is 1.
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Sasakian space forms of dimension 3
γ is an integral curve of ξ
{ξ(γ(s)), E(s), ϕ E(s)} : o.n. and parallel basis along γ

magnetic Jacobi fields:

W (s) = f(s)ξ(γ(s)) + a(s)E(s) + b(s)ϕ E(s)

f ′′ = 0,

a′′ + (q + 1)a+ qb′ = 0,

b′′ + (q + 1)b− qa′ = 0.
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Sasakian space forms of dimension 3
γ′ is not colinear to ξ

W (s) = f(s)ξ(γ(s)) + a(s)γ′(s) + b(s)ϕγ′(s)

f ′′ + (2 + q cos θ)b′ = 0,

a′′ − (q + 2 cos θ)b′ = 0,

b′′ + qa′ + b(c− 1) sin2 θ − 2f ′ = 0.

Problem solved!
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