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INTRODUCTION

In the study of harmonicity properties of maps between Riemannian
manifolds, a particularly interesting case is the one where Riemannian
manifolds are naturally constructed from one another.

A classical example is given by maps from a Riemannian manifold (M, g)
to its tangent bundle TM (or its unit tangent sphere bundle T; M) and
conversely.

The tangent bundle TM over a manifold M is given by
™™ = {(x,u): x € M,u € T,M}.
The unit tangent sphere bundle over (M, g) is the hypersurface of TM

defined by
oM ={(x,u) € TM : g (u,u) = 1}.
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INTRODUCTION

At any point (x,u) € TM,
(TM)(X,U) = H(x,u) S2) V(x,u)7

where V. ) is the kernel of dm(, ,) and H, ,) is the kernel of the
connection map at (x, u).
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(TM)(X,U) = H(x,u) S2) V(x,u)7
where V. ) is the kernel of dm(, ,) and H, ,) is the kernel of the
connection map at (x, u).

The horizontal lift of a vector X € M, is X" € H ), such that
dn(X") = X.

The vertical lift is X € V(. ) such that X¥(df) = X(f), for all
functions f on M.
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INTRODUCTION

At any point (x,u) € TM,
(TM)(X,U) = H(x,u) S2) V(x,u)7

where V. ) is the kernel of dm(, ,) and H, ,) is the kernel of the
connection map at (x, u).

The horizontal lift of a vector X € M, is X" € H ), such that
dn(X") = X.

The vertical lift is X € V(. ) such that X¥(df) = X(f), for all
functions f on M.

The map X — X" is an isomorphism between M, and Hix,u)
the map X — X" is an isomorphism between M, and V, ..
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INTRODUCTION

The Sasaki metric [Sasaki, 1958] g° is by far the simplest and most
investigated among all possible Riemannian metrics on tangent bundles.
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INTRODUCTION

The Sasaki metric [Sasaki, 1958] g° is by far the simplest and most
investigated among all possible Riemannian metrics on tangent bundles.
It is defined on TM by

g(sx7u)(Xh’ Yh) = g(sx,u)(va YY) =g(X,Y),

8y (X, YY) = gF (X, YH) = 0.

The Sasaki metric usually shows a very rigid behaviour!

EXAMPLE

In the compact case, a vector field V : (M, g) — (TM, g°) is a harmonic
map if and only if it is parallel (Nouhaud 1977, Ishihara 1979).
The existence of a parallel vector field forces M to be locally reducible.
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INTRODUCTION

The Sasaki metric is only one possible choice inside a very large family of
Riemannian metrics on TM, known as Riemannian g-natural metrics.
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INTRODUCTION

The Sasaki metric is only one possible choice inside a very large family of
Riemannian metrics on TM, known as Riemannian g-natural metrics.

As their name suggests, those metrics are constructed in a “natural” way
from a Riemannian metric g over M ([Kowalski and Sekizawa, 1988],
[Kold¥, Michor and Slovak, 1993]).
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Riemannian g-natural metrics

For a given Riemannian metric g on M", there are three distinguished
constructions of symmetric two-tensors on TM.
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For a given Riemannian metric g on M", there are three distinguished
constructions of symmetric two-tensors on TM.
For all x ¢ M and X, Y € M, they are defined as follows:

(a) the Sasaki lift g° (positive definite) is given by

g(sx,u)(Xh7 Yh) = g(sx,u)(va YV) =& (X,Y), g(SX,U)(Xh7 YV) = gs(x7 u)(XV7 Yh) =0
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For a given Riemannian metric g on M", there are three distinguished
constructions of symmetric two-tensors on TM.
For all x ¢ M and X, Y € M, they are defined as follows:

(a) the Sasaki lift g° (positive definite) is given by

g(sx,u)(Xh7 Yh) = g(sx,u)(va YV) =& (X,Y), g(SX,U)(Xh7 YV) = gs(x7 u)(XV7 Yh) =0

(b) the horizontal lift g" (of neutral signature (n, n)) is given by

gl (X" YN =gl (XY, YY) =0, ghony(X", YY) = gleun(X", Y") = g(X, Y);
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Riemannian g-natural metrics

For a given Riemannian metric g on M", there are three distinguished
constructions of symmetric two-tensors on TM.
For all x ¢ M and X, Y € M, they are defined as follows:

(a) the Sasaki lift g° (positive definite) is given by

g(sx,u)(Xh7 Yh) = g(sx,u)(va YV) =& (X,Y), g(SX,U)(Xh7 YV) = gs(x7 u)(XV7 Yh) =0

(b) the horizontal lift g" (of neutral signature (n, n)) is given by

gl (X" YN =gl (XY, YY) =0, ghony(X", YY) = gleun(X", Y") = g(X, Y);

(¢) the vertical lift g¥ (degenerate, of rank n) is given by

8wy (X" Y™ = g(X,Y), glowy(X", YY) = gloun(XY, Y") = gl y (X", YY) =0.
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Riemannian g-natural metrics

For a given Riemannian metric g on M", there are three distinguished
constructions of symmetric two-tensors on TM.
For all x ¢ M and X, Y € M, they are defined as follows:

(a) the Sasaki lift g° (positive definite) is given by

g(sx,u)(Xh7 Yh) = g(sx,u)(va YV) =& (X,Y), g(SX,U)(Xh7 YV) = gs(x7 u)(XV7 Yh) =0

(b) the horizontal lift g" (of neutral signature (n, n)) is given by

gl (X" YN =gl (XY, YY) =0, ghony(X", YY) = gleun(X", Y") = g(X, Y);

(¢) the vertical lift g¥ (degenerate, of rank n) is given by
8ln(X", Y") = &(X, ), 8wy (X" V) = (X", Y") = gln(X", Y") =0.

The three lifts above permit to describe the whole class of g-natural metrics
on TM. They are also the image of g under first order natural operators
D:S2T* ~ (S2T*)T, which transform Riemannian metrics on M into
(possibly degenerate) metrics on TM. [Kowalski and Sekizawa, 1988].
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Riemannian g-natural metrics

g-natural metrics on TM depend on six smooth functions
aj, Bi i RT = R, i =1,2,3. Explicitly,

Groun(X", Y") = (a1 + a3)(r*)g(X, Y)
+(B1 + B3)(r*)g(X, u)g( Y, u),
Gooun(X", YY) = Gpou (XY, YP) = az(r)ex(X, Y)
+82(r*)g(X, u)gx (Y, u),
Goou(X* YY) = ana(r?)ex(X, Y) + Bi(r*)g(X, u)gx( Y, u),

for every u, X, Y € M,, where r?> = g, (u, u).
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Riemannian g-natural metrics

g-natural metrics on TM depend on six smooth functions
aj, Bi i RT = R, i =1,2,3. Explicitly,

Goony (X", Y)Y = (a1 4 a3)(r*)g(X, Y)
+(B1 + B3)(r*)g(X, u)g( Y, u),
Gooun (X", YY) = G“)(X Y") = ax(r?)g«(X, Y)
+82(r*)g(X, u)gx (Y, u),
Goou(X* YY) = ana(r?)ex(X, Y) + Bi(r*)g(X, u)gx( Y, u),

for every u, X, Y € M,, where r?> = g, (u, u).
Setting

° ¢r(t) = a,(t) + tﬁ,( )
° Oé( ) = a1(t)(ar + a3)(t) — a3(t),
o(t) = p1(t)(¢1 + ¢3)(t) — ¥3(t),

G is Riemannian if and only if, for all t > 0,

ai(t) >0, ¢i1(t) >0, «t)>0, ¢(t)>0.
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EXAMPLES

Several well known Riemannian metrics on TM are g-natural:
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EXAMPLES

Several well known Riemannian metrics on TM are g-natural:

@ the Sasaki metric g° is obtained for
ai=landy =a3=p1=0=p3=0.
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Riemannian g-natural metrics

EXAMPLES

Several well known Riemannian metrics on TM are g-natural:

@ the Sasaki metric g° is obtained for
ar=land ap =a3z =01 == p3=0.

@ the Cheeger—Gromoll metric g€ [Cheeger and Gromoll, 1972] is
obtained when

az = =0, ar(t) = (t) = —Bs(t) = ti; and as(t) = 5.
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Riemannian g-natural metrics

EXAMPLES

Several well known Riemannian metrics on TM are g-natural:

@ the Sasaki metric g° is obtained for
ar=land ap =a3z =01 == p3=0.

@ the Cheeger—Gromoll metric g€ [Cheeger and Gromoll, 1972] is
obtained when

ax = B =0, al(t) = ﬁl(t) = —63(1') 1+t and a3( ) ﬁ
@ metrics of Cheeger-Gromoll type g, , [Benyounes, Loubeau and
Wood, 2007] are obtained for

al(t) (1+t)my = l_alv a2:/82:0v

Br(t) = —ps(t) = o=
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Riemannian g-natural metrics

EXAMPLES

@ Oproiu metrics [Oproiu, 1999] are obtained when there exist two
smooth functions v, w : R™ — R, such that

a =0, (oq+az)(t)=v(t/2),
(B1 + B5)(t) = w(t/2).

o1(t) = Jymy,
2
Bi(t) = ~ et P2 =0
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Riemannian g-natural metrics

EXAMPLES

@ Oproiu metrics [Oproiu, 1999] are obtained when there exist two
smooth functions v, w : R™ — R, such that

az =0, (o1 +as)(t) = v(t/2),

(81 + B3)(t) = w(t/2).

o1(t) = Jymy,

— w(t/2) _

Bi(8) = — v A2 =0

o Kaluza—Klein metrics [Wood, 1990] are obtained for
ar =P =p1+ B3 =0.
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Riemannian g-natural metrics

EXAMPLES

@ Oproiu metrics [Oproiu, 1999] are obtained when there exist two
smooth functions v, w : R™ — R, such that

oq(t) = ﬁ, ap =0, (Oél + 043)(1') =

v
But) = — it B2=0 (Bi+B)(t) = w(t/2).

o Kaluza—Klein metrics [Wood, 1990] are obtained for
ax=Pr=p1+ P =0.

@ We defined the class of metrics of Kaluza—Klein type, which includes
all previous examples, by the geometric condition of orthogonality
between horizontal and vertical distributions:

az = 32 =0.
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Riemannian g-natural metrics

TECHNICALITIES...

The Levi-Civita connection V of (TM, G) is completely determined by ¥, Y,
VY, Vv Y Ve VY.
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Riemannian g-natural metrics

TECHNICALITIES...

The Levi-Civita connection V of (TM, G) is completely determined by ¥, Y,
VY, Vv Y Ve VY.
(Vi Yy = (VX Y)e) + (A X, YOI + {B(u: X, Yi)},

for all vector fields X, Y on M and (x,u) € TM,

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Riemannian g-natural metrics

TECHNICALITIES...

The Levi-Civita connection V of (TM, G) is completely determined by ¥, Y,
VY, Vv Y Ve VY.

(Vxr Yy = (Vx YNy + LA Xe, Vi) + {B(u; X, Y5)},

for all vector fields X, Y on M and (x, u) € TM, where

AW X,Y) = AR 6)Y + ROV, 0)X] + Aslg(Y, 0)X + g(X, 0) Y]
+A3gX(R(X7 U) Y? U)U + A4gX(X7 Y)Ll + A5gX(X7 U)gX(Y, U)U,

with
+B83)—daBal+ -
A = -2, Ay = az(gla-*-ﬂa)’ A; = 22leal@1(Bi+5s) dzgzl a(Bron /3201)}7
A, = ¢2(041¢+043)/’
As = ady(B1+83) +(B1+83){ca[d282 — b1 (B1+83)+(a1 +a3) (01 Br—z81) }
b
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Geometry and harmonicity of w : (TM, G) — (M, g)

A smooth map ¢ : (M’, g") — (M, g) between two Riemannian manifolds
induces the decomposition of the tangent space at a point x € M’ as

M, = H? © V¢,

where Vi# :=ker(dy,) and H? = (Vi)*. Vi and HY are respectively called the
vertical and horizontal spaces at the point x w.r.to .
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Geometry and harmonicity of w : (TM, G) — (M, g)

A smooth map ¢ : (M’, g") — (M, g) between two Riemannian manifolds
induces the decomposition of the tangent space at a point x € M’ as

M, = H? © V¢,

where Vi# :=ker(dy,) and H? = (Vi)*. Vi and HY are respectively called the
vertical and horizontal spaces at the point x w.r.to .

p:(M,g")— (M,g) is said to be horizontally (weakly) conformal if, for every
point x € M’, either dpx = 0 or dyy is surjective and
g(dox(X), dpx(Y)) = XN2(x)g' (X, Y) for any X, Y € H?, for some A\(x) > 0.
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Geometry and harmonicity of = : (TM, G) — (M, g)

A smooth map ¢ : (M’, g") — (M, g) between two Riemannian manifolds
induces the decomposition of the tangent space at a point x € M’ as

M, = H? © V¢,

where Vi# :=ker(dy,) and H? = (Vi)*. Vi and HY are respectively called the
vertical and horizontal spaces at the point x w.r.to .

p:(M,g")— (M,g) is said to be horizontally (weakly) conformal if, for every
point x € M’ either dpx = 0 or dipy is surjective and
g(dox(X), dpx(Y)) = XN2(x)g' (X, Y) for any X, Y € H?, for some A\(x) > 0.

In particular, ¢ : (M',g") — (M, g) is:

@ horizontally homothetic when ¢ is horizontally conformal with dilation
function A such that grad()) is vertical, that is, its projection on H¥
vanishes;
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Geometry and harmonicity of = : (TM, G) — (M, g)

A smooth map ¢ : (M’, g") — (M, g) between two Riemannian manifolds
induces the decomposition of the tangent space at a point x € M’ as

M, = H? © V¢,

where Vi# :=ker(dy,) and H? = (Vi)*. Vi and HY are respectively called the
vertical and horizontal spaces at the point x w.r.to .

p:(M,g")— (M,g) is said to be horizontally (weakly) conformal if, for every
point x € M’ either dpx = 0 or dipy is surjective and
g(dox(X), dpx(Y)) = XN2(x)g' (X, Y) for any X, Y € H?, for some A\(x) > 0.

In particular, ¢ : (M',g") — (M, g) is:
@ horizontally homothetic when ¢ is horizontally conformal with dilation
function A such that grad()) is vertical, that is, its projection on H¥
vanishes;

@ a Riemannian submersion up to scale when ¢ is horizontally conformal
with constant dilation function A = k > 0. In this case, ¢ is a Riemannian
submersion after a suitable homothetic change of the metric on either the
domain or the codomain.
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Geometry and harmonicity of = : (TM, G) — (M, g)

Consider now the canonical projection 7 : (TM, G) — (M, g) for an
arbitrary Riemannian g-natural metric G.
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Geometry and harmonicity of = : (TM, G) — (M, g)

Consider now the canonical projection 7 : (TM, G) — (M, g) for an
arbitrary Riemannian g-natural metric G.

In order to decide whether 7 is horizontally conformal, we first clarify the
relationship between the decomposition (TM)(x..) = H, ) & V[ ) and
the canonical decomposition (TM) () = H(x,u) D Vix,u)-
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Geometry and harmonicity of = : (TM, G) — (M, g)

Consider now the canonical projection 7 : (TM, G) — (M, g) for an
arbitrary Riemannian g-natural metric G.

In order to decide whether 7 is horizontally conformal, we first clarify the
relationship between the decomposition (TM)(x..) = H, ) & V[ ) and
the canonical decomposition (TM) () = H(x,u) D Vix,u)-

Vixu) = Vi )= kerdm( ), independently of G.

(xu
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Geometry and harmonicity of = : (TM, G) — (M, g)

Consider now the canonical projection 7 : (TM, G) — (M, g) for an
arbitrary Riemannian g-natural metric G.

In order to decide whether 7 is horizontally conformal, we first clarify the
relationship between the decomposition (TM)(x..) = H, ) & V[ ) and
the canonical decomposition (TM) () = H(x,u) D Vix,u)-

Vixu) = Vi )= kerdm( ), independently of G.

(xu

Considering horizontal vectors X" H (x,u) and describing their
orthogonal projections X[’, on H(T; uyr We proved that
a1 — a1

le%)
HE =3 X"M— =X+
bl { Qi 11

gX,u)u¥ : Xe MX}.
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Geometry and harmonicity of = : (TM, G) — (M, g)

Consider now the canonical projection 7 : (TM, G) — (M, g) for an
arbitrary Riemannian g-natural metric G.

In order to decide whether 7 is horizontally conformal, we first clarify the
relationship between the decomposition (TM)(x..) = H, ) & V[ ) and
the canonical decomposition (TM) () = H(x,u) D Vix,u)-

Vixu) = Vi )= = kerdm(y ), independently of G.

(x,u

Considering horizontal vectors X" H (x,u) and describing their
orthogonal projections X” on H(T; uyr We proved that

a1 — a1
101

In particular, H, W) = = H(x,u) at each point (x, u) € TM if and only if
ay = P =0, that is, when G is of Kaluza-Klein type.

HE o = {x” - %XV + gX, )’ : X e Mx}.
1
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Geometry and harmonicity of = : (TM, G) — (M, g)

m: (TM, G) — (M, g) is horizontally conformal if and only if
%) ai(f1+ B3)p1 + az(azf1 — aufz) — e = 0.
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Geometry and harmonicity of = : (TM, G) — (M, g)

m: (TM, G) — (M, g) is horizontally conformal if and only if
(%)  ai(Br+ B3)P1 + az(azf1 — aaf2) — 2o = 0.

al(a1+a3)7o¢§

a1

In this case, the dilation function is given by A =
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Geometry and harmonicity of w : (TM, G) — (M, g)

m: (TM, G) — (M, g) is horizontally conformal if and only if
(¥) a1(B1+ B3)d1 + (2Bt — c1f2) — a1fag2 = 0.

al(a1+a3)7o¢%
aq .

w:(TM,G) — (M, g)
@ is a Riemannian submersion up to scale if and only if (*) holds and
a = k?aq. Hence, Riemannian g-natural metrics G on TM for which

m:(TM, G) — (M, g) is a Riemannian submersion up to scale depend on
four arbitrary functions and a positive constant k = \.

In this case, the dilation function is given by A =
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Geometry and harmonicity of w : (TM, G) — (M, g)

m: (TM, G) — (M, g) is horizontally conformal if and only if
(¥) a1(B1+ B3)d1 + (2Bt — c1f2) — a1fag2 = 0.

al(a1+a3)7o¢%
aq .

Consequences:

w:(TM,G) — (M, g)

@ is a Riemannian submersion up to scale if and only if (*) holds and
a = k?aq. Hence, Riemannian g-natural metrics G on TM for which
m:(TM, G) — (M, g) is a Riemannian submersion up to scale depend on
four arbitrary functions and a positive constant k = \.

In this case, the dilation function is given by A =

@ is horizontally conformal for any Riemannian g-natural metric G satisfying

0P — o =0 and Bi(B1 + B3) — 55 = 0.
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Geometry and harmonicity of w : (TM, G) — (M, g)

Theorem

m: (TM, G) — (M, g) is horizontally conformal if and only if
(%)  ai(Br+ B3)P1 + az(azf1 — aaf2) — 2o = 0.

al(a1+a3)7o¢%
aq .

In this case, the dilation function is given by A =

Consequences:
w:(TM,G) — (M, g)

@ is a Riemannian submersion up to scale if and only if (*) holds and
a = k?aq. Hence, Riemannian g-natural metrics G on TM for which
m:(TM, G) — (M, g) is a Riemannian submersion up to scale depend on
four arbitrary functions and a positive constant k = \.

@ is horizontally conformal for any Riemannian g-natural metric G satisfying
azf1 — a1f2 = 0 and S1(fB1 + Bs) — 55 = 0.
If G is of Kaluza-Klein type (a2 = 8> = 0), then 7w : (TM, G) — (M, g)

(i) is horizontally conformal if and only if 81 + 83 = 0 (Kaluza-Klein metrics);
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Geometry and harmonicity of w : (TM, G) — (M, g)

Theorem

m: (TM, G) — (M, g) is horizontally conformal if and only if
(%)  ai(Br+ B3)P1 + az(azf1 — aaf2) — 2o = 0.

al(a1+a3)7o¢%
aq .

In this case, the dilation function is given by A =

Consequences:
w:(TM,G) — (M, g)
@ is a Riemannian submersion up to scale if and only if (*) holds and
a = k?aq. Hence, Riemannian g-natural metrics G on TM for which

m:(TM, G) — (M, g) is a Riemannian submersion up to scale depend on
four arbitrary functions and a positive constant k = \.

@ is horizontally conformal for any Riemannian g-natural metric G satisfying
azf1 — 012 = 0 and B1(B1 + Bs) — 65 = 0.
If G is of Kaluza-Klein type (a2 = 8> = 0), then 7w : (TM, G) — (M, g)
(i) is horizontally conformal if and only if 81 + 83 = 0 (Kaluza-Klein metrics);

(i) is a Riemannian submersion up to scale if and only if a1 4+ oz = k* and
B1 + B3 = 0 (in particular, for all metrics of Cheeger-Gromoll type hp, ).

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of = : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then
(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of = : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then
(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);
(b) the fibres of 7 : (TM, g°) — (M, g) are totally geodesic.
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Geometry and harmonicity of = : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then
(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);
(b) the fibres of 7 : (TM, g°) — (M, g) are totally geodesic.

We now determine under which conditions these properties extend to a
Riemannian g-natural metric.
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Geometry and harmonicity of = : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then

(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);
(b) the fibres of 7 : (TM, g°) — (M, g) are totally geodesic.

We now determine under which conditions these properties extend to a
Riemannian g-natural metric.

Theorem

The horizontal lift of any geodesic of (M, g) is a geodesic of (TM, G) if
and only if a; + a3 is constant, 81 + 83 = 0 and either (M, g) is flat or
Qo = 0.
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Geometry and harmonicity of w : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then
(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);
(b) the fibres of 7 : (TM, g°) — (M, g) are totally geodesic.

We now determine under which conditions these properties extend to a
Riemannian g-natural metric.

Theorem

The horizontal lift of any geodesic of (M, g) is a geodesic of (TM, G) if
and only if a; + a3 is constant, 81 + 83 = 0 and either (M, g) is flat or
Qo = 0.

Theorem

The fibres of 7 : (TM, G) — (M, g) are totally geodesic if and only if
there exists some real constant &, such that, for all £ > 0,

as(t) = %(t (D) +a(t),  Ba(t) = —=(Bi(t) — a4 (1).
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Geometry and harmonicity of w : (TM, G) — (M, g)

If TM is equipped with the Sasaki metric g°, then
(a) the horizontal lift of any geodesic of (M, g) is a geodesic of (TM, g°);
(b) the fibres of 7 : (TM, g°) — (M, g) are totally geodesic.

We now determine under which conditions these properties extend to a
Riemannian g-natural metric.

Theorem

The horizontal lift of any geodesic of (M, g) is a geodesic of (TM, G) if
and only if a; + a3 is constant, 81 + 83 = 0 and either (M, g) is flat or
Qo = 0.

Theorem

The fibres of 7 : (TM, G) — (M, g) are totally geodesic if and only if
there exists some real constant &, such that, for all £ > 0,

as(t) = %(t () +a(t),  Bat) = %wt) — o (1)).

1

All metrics of Kaluza-Klein type satisfy the above conditions (for k = 0).

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of w : (TM, G) — (M, g)

A harmonic map f : (M, g') — (M, g) between Riemannian manifolds is
a critical point of the energy functional

1
E(F,Q) ::§/Q||df|\2dvg/,

for any compact domain Q C M’.
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Geometry and harmonicity of w : (TM, G) — (M, g)

A harmonic map f : (M, g') — (M, g) between Riemannian manifolds is
a critical point of the energy functional

1
E(F,Q) ::§/Q||df|\2dvg/,

for any compact domain Q C M’.
Harmonic maps are characterized by the vanishing of their tension field
7(f) = trVdf [Eells and Sampson, 1964].
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Geometry and harmonicity of = : (TM, G) — (M, g)

A harmonic map f : (M, g') — (M, g) between Riemannian manifolds is
a critical point of the energy functional

1
E(F,Q) ::§/Q||df|\2dvg/,

for any compact domain Q C M’.
Harmonic maps are characterized by the vanishing of their tension field
7(f) = trVdf [Eells and Sampson, 1964].

Harmonic morphisms between Riemannian manifolds are maps which pull
back (local) harmonic functions to harmonic functions.
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Geometry and harmonicity of = : (TM, G) — (M, g)

A harmonic map f : (M, g') — (M, g) between Riemannian manifolds is
a critical point of the energy functional

1
E(F,Q) ::§/Q||df|\2dvg/,

for any compact domain Q C M’.
Harmonic maps are characterized by the vanishing of their tension field
7(f) = trVdf [Eells and Sampson, 1964].

Harmonic morphisms between Riemannian manifolds are maps which pull
back (local) harmonic functions to harmonic functions.

Thus, a map ¢ : (M, g’') — (M, g) is a harmonic morphism if, for any
open set U of M with ¢~1(U) # () and any harmonic function f on

(U, glu), the map f o ¢ is a harmonic function on (¢~ 1(U), g'|,-1(v))-
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Geometry and harmonicity of = : (TM, G) — (M, g)

A harmonic map f : (M, g') — (M, g) between Riemannian manifolds is
a critical point of the energy functional

1
E(F,Q) ::§/Q||df|\2dvg/,

for any compact domain Q C M’.
Harmonic maps are characterized by the vanishing of their tension field
7(f) = trVdf [Eells and Sampson, 1964].

Harmonic morphisms between Riemannian manifolds are maps which pull
back (local) harmonic functions to harmonic functions.

Thus, a map ¢ : (M, g’') — (M, g) is a harmonic morphism if, for any
open set U of M with ¢~1(U) # () and any harmonic function f on

(U, glu), the map f o ¢ is a harmonic function on (¢~ 1(U), g'|,-1(v))-
A fundamental characterization states that a smooth map is a harmonic
morphism if and only if it is harmonic and horizontally weakly conformal
[Fuglede 1978, Ishihara 1979].
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Geometry and harmonicity of w : (TM, G) — (M, g)

The following fundamental characterization holds:

Theorem [Baird and Eells, 1981]

Let ¢ : (M, g) — (N, h) be a smooth nonconstant horizontally weakly
conformal map between Riemannian manifolds of dimensions m,n > 1
respectively.

Then ¢ is harmonic (and so, a harmonic morphism) if and only if, at
every regular point, the mean curvature vector field ;¥ of the fibres and
the gradient of the dilation A of ¢ are related by

)

(n—2)(gradInX)" + (m— n)pve = 0.
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Geometry and harmonicity of w : (TM, G) — (M, g)

Let (M, g) be a Riemannian manifold of dimension n and (TM, G) its
tangent bundle with an arbitrary Riemannian g-natural metric G.
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Geometry and harmonicity of w : (TM, G) — (M, g)

Theorem

Let (M, g) be a Riemannian manifold of dimension n and (TM, G) its
tangent bundle with an arbitrary Riemannian g-natural metric G. The
canonical projection 7 : (TM, G) — (M, g)

(a) is a harmonic morphism if and only if the functions «;, ; defining
the metric G satisfy

a1(B1 + B3)p1 + ao(fr — a1 52) — a1 8202 = 0,

(n=2)¢o(afa—a’oa) | (n=1)(¢182—¢2(B1—0))) | 2¢1¢5—ady
alctqb + ap B - ¢2>1¢ L =0.
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Geometry and harmonicity of w : (TM, G) — (M, g)

Theorem

Let (M, g) be a Riemannian manifold of dimension n and (TM, G) its
tangent bundle with an arbitrary Riemannian g-natural metric G. The
canonical projection 7 : (TM, G) — (M, g)

(a) is a harmonic morphism if and only if the functions «;, ; defining
the metric G satisfy

a1(B1 + B3)p1 + ao(fr — a1 52) — a1 8202 = 0,

(n=2)¢o(afa—a’oa) | (n=1)(¢182—¢2(B1—0))) | 2¢1¢5—ady
alctqb + ap B - ¢2>1¢ L =0.

(b) is horizontally homothetic if and only if either o = k?a; (and 7 is a
Riemannian submersion up to scale), or G is of Kaluza-Klein type.
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Geometry and harmonicity of w : (TM, G) — (M, g)

Theorem

Let (M, g) be a Riemannian manifold of dimension n and (TM, G) its
tangent bundle with an arbitrary Riemannian g-natural metric G. The
canonical projection 7 : (TM, G) — (M, g)

(a) is a harmonic morphism if and only if the functions «;, ; defining
the metric G satisfy

a1(B1 + B3)p1 + ao(fr — a1 52) — a1 8202 = 0,

(n=2)¢o(afa—a’oa) | (n=1)(¢182—¢2(B1—0))) | 2¢1¢5—ady
alctqb + ap B - ¢2>1¢ L =0.

(b) is horizontally homothetic if and only if either o = k?a; (and 7 is a
Riemannian submersion up to scale), or G is of Kaluza-Klein type.

As a consequence, Riemannian g-natural metrics G on the tangent bundle TM,
for which 7 : (TM, G) — (M, g) is a harmonic morphism, form a large class,
which depends on four arbitrary smooth functions.

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of = : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.
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Geometry and harmonicity of = : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.

If G is any Riemannian g-natural metric of Kaluza-Klein type, then

@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.
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Geometry and harmonicity of = : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.
If G is any Riemannian g-natural metric of Kaluza-Klein type, then
@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.

@ 7:(TM, G) — (M, g) is a harmonic morphism if and only if G is a
Kaluza-Klein metric (81 + 83 = 0).
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Geometry and harmonicity of = : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.

Theorem
If G is any Riemannian g-natural metric of Kaluza-Klein type, then
@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.

@ 7:(TM, G) — (M, g) is a harmonic morphism if and only if G is a
Kaluza-Klein metric (81 + 83 = 0).

In particular:

(a) the canonical projection 7 : (TM, G) — (M, g) is a harmonic morphism
for any Riemannian g-natural metric G of Cheeger-Gromoll type;
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Geometry and harmonicity of = : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.

Theorem

If G is any Riemannian g-natural metric of Kaluza-Klein type, then
@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.

@ 7:(TM, G) — (M, g) is a harmonic morphism if and only if G is a
Kaluza-Klein metric (81 + 83 = 0).

In particular:

(a) the canonical projection 7 : (TM, G) — (M, g) is a harmonic morphism
for any Riemannian g-natural metric G of Cheeger-Gromoll type;

(b) if G is an Oproiu metric, then 7 : (TM, G) — (M, g) is a harmonic
morphism if and only if w = 0.
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Geometry and harmonicity of w : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.

Theorem

If G is any Riemannian g-natural metric of Kaluza-Klein type, then
@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.

@ 7:(TM, G) — (M, g) is a harmonic morphism if and only if G is a
Kaluza-Klein metric (81 + 83 = 0).

In particular:

(a) the canonical projection 7 : (TM, G) — (M, g) is a harmonic morphism
for any Riemannian g-natural metric G of Cheeger-Gromoll type;

(b) if G is an Oproiu metric, then 7 : (TM, G) — (M, g) is a harmonic
morphism if and only if w = 0.

Remarks

(a) The property that the canonical projection « : (TM, g¢) — (M, g) is a

harmonic morphism was previously proved in [Gudmundsson and Kappos,
2002].
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Geometry and harmonicity of w : (TM, G) — (M, g)

In the special case when az = 32 = 0, we have the following results.

Theorem

If G is any Riemannian g-natural metric of Kaluza-Klein type, then
@ the canonical projection 7 : (TM, G) — (M, g) is a harmonic map.

@ 7:(TM, G) — (M, g) is a harmonic morphism if and only if G is a
Kaluza-Klein metric (81 + 83 = 0).

In particular:

(a) the canonical projection 7 : (TM, G) — (M, g) is a harmonic morphism
for any Riemannian g-natural metric G of Cheeger-Gromoll type;

(b) if G is an Oproiu metric, then 7 : (TM, G) — (M, g) is a harmonic
morphism if and only if w = 0.

Remarks

(a) The property that the canonical projection « : (TM, g¢) — (M, g) is a

harmonic morphism was previously proved in [Gudmundsson and Kappos,
2002].

(b) Kaluza-Klein metrics do not exhaust the class of Riemannian g-natural
metrics for which 7 : (TM, G) — (M, g) is a harmonic morphism.

G. Calvaruso

Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of 71 : (T4 M, (=S (M, g)

By definition, g-natural metrics G on T; M are the restrictions of
g-natural metrics of TM to T; M.
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Geometry and harmonicity of 71 : (T4 M, (=S (M, g)

By definition, g-natural metrics G on T; M are the restrictions of

g-natural metrics of TM to T; M.
At any point (x, u) € Ty M the tangent space splits as

(TlM)(x,u) = H(x,u) 7] 7zx,u)a

where 7T, ) is spanned by tangential lifts.
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Geometry and harmonicity of 71 : (T4 M, (=S (M, g)

By definition, g-natural metrics G on T; M are the restrictions of
g-natural metrics of TM to T; M.
At any point (x, u) € Ty M the tangent space splits as

(TlM)(x,u) = H(x,u) 7] 7zx,u)a

where 7T, ) is spanned by tangential lifts.

Given X € M,, its tangential lift, w.r.to with respect to a g-natural
metric G inducing G on Ty M, is the tangential projection of X" to (x, u)
with respect to the unit normal vector

1

NG )= —————
bou) = (a+c+d)p

where a, b, c, d are real constants and ¢ := a(a + c + d) — b%. Explicitly,

oy v _ yv [ G
Xt = XV — G(x,u)(X 7N(C>;<.,u)) N(C;;,U) =X’ - \/;gx(x7 u) N(X*”)'

If X € M, is orthogonal to u, then X = XV,

[—bu" + (a+ c + d)u"],

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

g-natural metrics on T1 M are then completely determined by

Greuy(XP Y)Y = (a+ €) g(X, V) + d ge(X, u)gu(Y, u),
G, (X, YE6) = Gy (X, YP) = bgy (X, Y),
G~(><,u)()<t67 YtG) = agx(Xv Y) - ﬁ gx(Xv U)gx(ya u)

and so, they depend on four real parameters a, b, ¢, d, making
calculations remarkably simpler than in the case of (TM, G).

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

g-natural metrics on T1 M are then completely determined by

Gleny(XP YM) = (a+ ) g(X, Y) + d g(X, u)g(Y, u),
G, (X, YE6) = Gy (X, YP) = bgy (X, Y),

G~(><,u)()<t67 YtG) =ag«(X,Y) - ﬁgx(xv u)gx (Y, u)

and so, they depend on four real parameters a, b, ¢, d, making
calculations remarkably simpler than in the case of (TM, G).

G is Riemannian if and only if

a>0, a=alat+c)—b*>0and ¢=a(a+c+d)—b*>>0.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

g-natural metrics on T1 M are then completely determined by

Greuy(XP Y)Y = (a+ €) g(X, V) + d ge(X, u)gu(Y, u),
G, (X, YE6) = Gy (X, YP) = bgy (X, Y),
G~(><,u)()<t67 YtG) = agx(Xv Y) - ﬁ gx(Xv U)gx(ya u)

and so, they depend on four real parameters a, b, ¢, d, making
calculations remarkably simpler than in the case of (TM, G).

G is Riemannian if and only if

a>0, a=alat+c)—b*>0and ¢=a(a+c+d)—b*>>0.

G is of Kaluza-Klein type if b =0, a Kaluza-Klein metric if b= d = 0.

G. Calvaruso Harmonic maps and morphisms from g-natural metrics on tangent bundles



Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to lifts of geodesics, we have the following.

Proposition

The horizontal lift of any geodesic of (M, g) is a geodesic of (T M, G)if
and only if either G is a Kaluza-Klein metric or (M, g) is flat and d = 0.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to lifts of geodesics, we have the following.

Proposition

The horizontal lift of any geodesic of (M, g) is a geodesic of (T M, G)if
and only if either G is a Kaluza-Klein metric or (M, g) is flat and d = 0.

The canonical projection 7y : (T1 M, é) — (M, g) is given by m; = m o,
where i : (T1M, G) — (TM, G) is the inclusion map.

Fix any point (x,u) € TM. Then, it is easy to check that 7, ,) = V{;{u).
However, . ,) needs not be orthogonal to 7(y ).
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to lifts of geodesics, we have the following.

Proposition

The horizontal lift of any geodesic of (M, g) is a geodesic of (T M, G)if
and only if either G is a Kaluza-Klein metric or (M, g) is flat and d = 0.

The canonical projection 7y : (T1 M, é) — (M, g) is given by m; = m o,
where i : (T1M, G) — (TM, G) is the inclusion map.

Fix any point (x,u) € TM. Then, it is easy to check that 7, ,) = V{;{u).
However, . ,) needs not be orthogonal to 7(y ).

Theorem

The mean curvature vector of the fibres of 1 : (TyM, G) — (M, g) is

_ b h
Hvm = a(atc+d) u

and so, it is collinear to the geodesic flow vector field £ = uf.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to lifts of geodesics, we have the following.

Proposition

The horizontal lift of any geodesic of (M, g) is a geodesic of (T M, G)if
and only if either G is a Kaluza-Klein metric or (M, g) is flat and d = 0.

The canonical projection 7y : (T1 M, é) — (M, g) is given by m; = m o,
where i : (T1M, G) — (TM, G) is the inclusion map.

Fix any point (x,u) € TM. Then, it is easy to check that 7, ,) = V{;{u).
However, . ,) needs not be orthogonal to 7(y ).

Theorem

The mean curvature vector of the fibres of 1 : (TyM, G) — (M, g) is

_ b h
Hvm = a(atc+d) u

and so, it is collinear to the geodesic flow vector field E=uh B
In particular, the fibres of (T1M, G) are minimal if and only if G is of
Kaluza-Klein type (that is, b = 0).
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The canonical projection 7y : (TyM, G) — (M, g) is horizontally
conformal if and only if d = 0.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

Theorem

The canonical projection 7y : (TyM, G) — (M, g) is horizontally
conformal if and only if d = 0. In this case, 71 is a Riemannian

a(atc)—b?

submersion up to scale, with dilation coefficient A = =
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

Theorem

The canonical projection 7y : (TyM, G) — (M, g) is horizontally
conformal if and only if d = 0. In this case, 71 is a Riemannian

a(atc)—b?

submersion up to scale, with dilation coefficient A = =

Thus, Riemannian g-natural metrics G for which
m : (TiM, G) — (M, g) is horizontally conformal (equivalently, a
Riemannian submersion up to scale) form a three-parameters family.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

Theorem

The canonical projection 7y : (TyM, G) — (M, g) is horizontally
conformal if and only if d = 0. In this case, 71 is a Riemannian

a(atc)—b?

submersion up to scale, with dilation coefficient A = =

Thus, Riemannian g-natural metrics G for which
m : (TiM, G) — (M, g) is horizontally conformal (equivalently, a
Riemannian submersion up to scale) form a three-parameters family.

In particular, metrics of Cheeger-Gromoll type on T M are Riemannian
submersions up to scale.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T;M of a Riemannian manifold (M, g).
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T3 M of a Riemannian manifold (M, g). Then, the
following properties are equivalent.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T3 M of a Riemannian manifold (M, g). Then, the
following properties are equivalent.

(i) The fibres of 71 are totally geodesic.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T3 M of a Riemannian manifold (M, g). Then, the
following properties are equivalent.

(i) The fibres of 71 are totally geodesic.

(ii) The fibres of 71 are minimal.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T3 M of a Riemannian manifold (M, g). Then, the
following properties are equivalent.

(i) The fibres of m; are totally geodesic.
(ii) The fibres of 71 are minimal.
(iii) 7 : (1M, G) — (M, g) is a harmonic map.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

The following characterization holds for the harmonicity of
VN (T1M7 G) — (M7g)

Theorem

Let G be an arbitrary Riemannian g-natural metric on the unit tangent
sphere bundle T3 M of a Riemannian manifold (M, g). Then, the
following properties are equivalent.

(i) The fibres of m; are totally geodesic.

(ii) The fibres of 71 are minimal.
(iii) 7 : (1M, G) — (M, g) is a harmonic map.
(iv) G is a metric of Kaluza-Klein type.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G.
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With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. The following properties are equivalent:
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With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. The following properties are equivalent:

(i) m1 : (TiM, G) — (M, g) is a harmonic morphism.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. The following properties are equivalent:

(i) m1 : (TiM, G) — (M, g) is a harmonic morphism.

(i) w1 : (TaM, G) — (M, g) is a Riemannian submersion up to scale
and G is of Kaluza-Klein type.
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With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. The following properties are equivalent:

(i) m1 : (TiM, G) — (M, g) is a harmonic morphism.

(i) w1 : (TaM, G) — (M, g) is a Riemannian submersion up to scale
and G is of Kaluza-Klein type.

(iii) G is a Kaluza-Klein metric.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

With regard to harmonic morphisms, we have the following
characterization.

Theorem

Let (M, g) be a Riemannian manifold of dimension n > 1 and (T;M, G)
its unit tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. The following properties are equivalent:

(i) m1 : (TiM, G) — (M, g) is a harmonic morphism.

(i) w1 : (TaM, G) — (M, g) is a Riemannian submersion up to scale
and G is of Kaluza-Klein type.

(iii) G is a Kaluza-Klein metric.

In particular, 7 : (TyM, G) — (M, g) is a harmonic morphism when G is
of Cheeger-Gromoll type.
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Geometry and harmonicity of 71 : (T4 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

The radial projection

@ :R"—{0} =S x X

[Ix11

leads in a natural way to investigate the properties of the canonical projection

®:TM — {0} — TiM, (X,u)»—>(x, u )

[lull
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

The radial projection

@R —{0} =S x> X

[Ix11

leads in a natural way to investigate the properties of the canonical projection

& TM — {0} = TiM, (x,u) — (x, u )

"l

Theorem

Let G, G denote Riemannian g-natural metrics of Kaluza-Klein type on
TM — {0} and T1 M, respectively.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

The radial projection

@R —{0} =S x> X

[Ix11

leads in a natural way to investigate the properties of the canonical projection

& TM — {0} = TiM, (x,u) — (x, u )

[lull

Theorem

Let G, G denote Riemannian g-natural metrics of Kaluza-Klein type on

TM — {0} and T1 M, respectively.

Then, the canonical projection ® : (TM — {0}, G) — (TiM, G) is a harmonic
map with totally geodesic fibres.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

The radial projection

@R —{0} =S x> X

[Ix11

leads in a natural way to investigate the properties of the canonical projection

& TM — {0} = TiM, (x,u) — (x, u )

[lull

Theorem

Let G, G denote Riemannian g-natural metrics of Kaluza-Klein type on

TM — {0} and T1 M, respectively.
Then, the canonical projection ® : (TM — {0}, G) — (TiM, G) is a harmonic
map with totally geodesic fibres.
Moreover, ® : (TM — {0}, G) — (TiM, G) is horizontally conformal (and so, a
harmonic morphism) if and only if

as(t) = (£t — 1) au(2), Bs(t) = Sau(t) — Bi(t).

In this case, the dilation function is given by A\(x, u) = tarq Where

tag

t = ||u|[>, and @ is horizontally homothetic.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:

@ there is a very large family of harmonic maps from TM — {0} to T M, as
G and G respectively depend on four arbitrary smooth functions and three
arbitrary real parameters.
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ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:

@ there is a very large family of harmonic maps from TM — {0} to T M, as
G and G respectively depend on four arbitrary smooth functions and three
arbitrary real parameters.

@ Riemannian g-natural metrics of Kaluza-Klein type, for which
& : (TM — {0}, G) — (T1M, G) is a harmonic morphism, still depend on
two smooth functions and three real parameters.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:

@ there is a very large family of harmonic maps from TM — {0} to T M, as
G and G respectively depend on four arbitrary smooth functions and three
arbitrary real parameters.

@ Riemannian g-natural metrics of Kaluza-Klein type, for which
& : (TM — {0}, G) — (T1M, G) is a harmonic morphism, still depend on
two smooth functions and three real parameters.

Special cases:

(@) ®:(TM — {0}, G) — (T1 M, g°) is a harmonic morphism for a family of
g-natural metrics G on TM which depend on two smooth functions.
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ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:

@ there is a very large family of harmonic maps from TM — {0} to T M, as
G and G respectively depend on four arbitrary smooth functions and three
arbitrary real parameters.

@ Riemannian g-natural metrics of Kaluza-Klein type, for which
& : (TM — {0}, G) — (T1M, G) is a harmonic morphism, still depend on
two smooth functions and three real parameters.

Special cases:

(@) ®:(TM — {0}, G) — (T1 M, g°) is a harmonic morphism for a family of
g-natural metrics G on TM which depend on two smooth functions.

(b) ®:(TM —{0},g°) = (TaM, G)is a harmonic map for any Riemannian
g-natural metric G on T1M of Kaluza-Klein type.
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Geometry and harmonicity of w1 : (T3 M, (=S (M, g)

ADDENDUM: canonical projection from TM — {0} to T;M

By the previous result:

@ there is a very large family of harmonic maps from TM — {0} to T M, as
G and G respectively depend on four arbitrary smooth functions and three
arbitrary real parameters.

@ Riemannian g-natural metrics of Kaluza-Klein type, for which
& : (TM — {0}, G) — (T1M, G) is a harmonic morphism, still depend on
two smooth functions and three real parameters.

Special cases:

(@) ®:(TM — {0}, G) — (T1 M, g°) is a harmonic morphism for a family of
g-natural metrics G on TM which depend on two smooth functions.

(b) ®:(TM —{0},g°) = (TaM, G)is a harmonic map for any Riemannian
g-natural metric G on T1M of Kaluza-Klein type.

(c) For G, G of Kaluza-Klein type, ® : (TM — {0}, G) — (T1M, G) is a
Riemannian submersion up to scale, with dilation A\ = k > 0, if and only if
al(t) = ﬁ.
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].

Calculating the tension field of the identity map on TM equipped with
different g-natural metrics, we proved the following results.
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].

Calculating the tension field of the identity map on TM equipped with
different g-natural metrics, we proved the following results.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric G on TM.
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].

Calculating the tension field of the identity map on TM equipped with
different g-natural metrics, we proved the following results.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric G on TM. G is harmonic w.r.to the Sasaki metric g°
if and only if

(s +tB3) =(n—1)[B1 — o) — (a1 + a3)’]

and
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].

Calculating the tension field of the identity map on TM equipped with
different g-natural metrics, we proved the following results.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric G on TM. G is harmonic w.r.to the Sasaki metric g°
if and only if

(s +tB3) =(n—1)[B1 — o) — (a1 + a3)’]

and

@ either G is of Kaluza-Klein type,
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Harmonicity of g-natural metrics

A Riemannian metric h is harmonic w.r.to another Riemannian metric g
when Id : (M, g) — (M, h) is a harmonic map [Chen and Nagano, 1984].

Calculating the tension field of the identity map on TM equipped with
different g-natural metrics, we proved the following results.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric G on TM. G is harmonic w.r.to the Sasaki metric g°
if and only if

(s +tB3) =(n—1)[B1 — o) — (a1 + a3)’]

and
@ either G is of Kaluza-Klein type,

@ or (M, g) is an Einstein manifold, with Ricci operator Qu = ku for
all u, and
2(02 ¢ tﬁg)/ = KO — (n = 1)/32
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Harmonicity of g-natural metrics

The converse does not permit an easy geometric intepretation, but still holds
for a very large class of g-natural metrics.
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Harmonicity of g-natural metrics

The converse does not permit an easy geometric intepretation, but still holds
for a very large class of g-natural metrics.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on TM.
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Harmonicity of g-natural metrics

The converse does not permit an easy geometric intepretation, but still holds
for a very large class of g-natural metrics.

Theorem

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on TM. g° is harmonic w.r.to G if and only if the following
equations are satisfied:

3 [¢2¢1(¢1 + ¢3)' + d2(¢ + ¢3)d1 — 261(d1 + 83) 3]
= [d)za — d1fa2(Br + B3) — (ca+3)B2] — P2[(ca + a3)fr — 0252]] =0,
[(¢3 — &) (d1 + #3) + (¢ + h3)>Pr — 2¢2(1 + ¢3) 5]

2= [ — (¢1 + ¢3)a’ + dafaa(Br + B3) — (a1 + a3)B2]
+ (¢1 + ¢3)[(a1 + a3)B1 — a232]] = 0.

+ Dl
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Harmonicity of g-natural metrics

The converse does not permit an easy geometric intepretation, but still holds
for a very large class of g-natural metrics.

Let (M", g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on TM. g° is harmonic w.r.to G if and only if the following
equations are satisfied:

3 [¢2¢1(¢1 + ¢3)' + d2(¢ + ¢3)d1 — 261(d1 + 83) 3]
= [ 920/ — d1aa(Br + B3) — (a1+3)B2] — d2[(cn + a3)f1 — a2f2]] = O,
[(¢3 — &) (d1 + #3) + (¢ + h3)>Pr — 2¢2(1 + ¢3) 5]

2= [ — (¢1 + ¢3)a’ + dafaa(Br + B3) — (a1 + a3)B2]
+ (¢1 + ¢3)[(a1 + a3)B1 — a232]] = 0.

Corollary

g° is harmonic w.r.to Riemannian g-natural metrics G of Kaluza-Klein type
satisfying

+ =

I\ ! 1_‘/ 1
ontas)y g 1ok, 1, k>0

B = ,
! a1 fas ‘ Kkt 5t
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

2
relidpe) = o {aQu— 2 g(Qu )y’ — - (Qu -~ g(Qu w)u)”

. b
T(X:U)(Idég”s) = 7a{Qu}h.
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.

i) If (M, g) is Ricci-flat, then G is harmonic w.r.to §° and conversely.
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.

i) If (M, g) is Ricci-flat, then G is harmonic w.r.to §° and conversely.

ii) If (M, g) is not Ricci-flat, then the following properties are equivalent:
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.

i) If (M, g) is Ricci-flat, then G is harmonic w.r.to §° and conversely.

ii) If (M, g) is not Ricci-flat, then the following properties are equivalent:
(a) G is harmonic w.r.to &°;
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.

i) If (M, g) is Ricci-flat, then G is harmonic w.r.to §° and conversely.

ii) If (M, g) is not Ricci-flat, then the following properties are equivalent:
(a) G is harmonic w.r.to &°;

(b) &° is harmonic w.r.to G;
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Harmonicity of g-natural metrics

The tension fields of id ¢ (TiM,g%) — (TiM, G) and
ideg - (M, G) — (T1M, g5) are respectively given by

ad + b?

_ b b?
T(x,u)(ldg”SG) - E{E)QU7 g(qu U)U}hf E{Qufg(qu U)U}va

: b
T(x,u)(|d(;g~5) = 7a{Qu}h.
Therefore, we have the following.

Theorem

Let (M, g) be a Riemannian manifold and G an arbitrary Riemannian
g-natural metric on T1 M.

i) If (M, g) is Ricci-flat, then G is harmonic w.r.to §° and conversely.
ii) If (M, g) is not Ricci-flat, then the following properties are equivalent:
(a) G is harmonic w.r.to &°;

(b) &° is harmonic w.r.to G;

(c) G is a metric of Kaluza-Klein type.



Harmonicity of g-natural metrics

Vielen Dank fiir lhre freundliche Aufmerksamkeit!
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