Variational problems for integral invariants of the second fundamental form of a map between Riemannian manifolds

Rika Akiyama
joint work with Takashi Sakai and Yuichiro Sato arxiv:2204.10538v2
Tokyo Metropolitan University

September 07 - 09, 2022
Differential Geometry Workshop 2022
University of Vienna

Contents

0 . Previous research

1. Integral invariants of a map between Riemannian manifolds
2. The first variational formulae of \mathcal{Q}_{1}-energy and \mathcal{Q}_{2}-energy
3. Alternative expression of the Euler-Lagrange equation of the Chern-Federer energy functional
4. Some examples of Chern-Federer maps

Sec. 0 - Previous research (1/2)

harmonic/biharmonic map
$\left(M^{m}, g_{M}\right),\left(N^{n}, g_{N}\right)$: Riemannian manifolds.
$\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right) ; C^{\infty}$-map,

- φ is a harmonic map
$\stackrel{\text { def }}{\Longleftrightarrow} \varphi$ is a critical point of $E(\varphi)=\frac{1}{2} \int_{M}|d \varphi|^{2} d \mu_{g_{M}}$.
$\Longleftrightarrow \tau(\varphi)=\operatorname{tr}_{g_{M}} \widetilde{\nabla} d \varphi=0$.
- φ is a biharmonic map
$\stackrel{\text { def }}{\Longleftrightarrow} \varphi$ is a critical point of $E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} d \mu_{g_{M}}$.
$\Longleftrightarrow \tau_{2}(\varphi)=-\bar{\nabla}^{*} \bar{\nabla} \tau(\varphi)-\operatorname{tr}_{g_{M}}\left(R^{N}(d \varphi(\cdot), \tau(\varphi)) d \varphi(\cdot)\right)=0$.

Sec. 0 - Previous research (2/2)

Definition (Howard 1993)

G / K : homogeneous space,
M : compact submanifold of G / K of type V_{0}.
Then

$$
I^{\mathcal{P}}(M):=\int_{M} \mathcal{P}\left(h_{x}^{M}\right) d \mu_{g_{M}}
$$

where h^{M} is the second fundamental form of M.

In this talk

We define integral invariants of the second fundamental form of a map φ and construct a family of energy functionals including $E_{2}(\varphi)$. Here, we focus on some energy functionals among them and show their first variational formulae.

Sec. 1 - Integral invariants of a map $(1 / 3)$

$\underline{\text { Setting }}$

- $\mathrm{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right):=\left\{H: \mathbb{E}^{m} \times \mathbb{E}^{m} \rightarrow \mathbb{E}^{n} ;\right.$ symmetric bilinear form $\}$.
- $G:=O(m) \times O(n)$.
- G acts on $\operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$, that is

$$
(g H)(u, v):=b\left(H\left(a^{-1} u, a^{-1} v\right)\right),
$$

where $u, v \in \mathbb{E}^{m}, g=(a, b) \in G, H \in \operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$.
A function \mathcal{P} on $\operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$ is G-invariant, that is for all $g \in G$

$$
\mathcal{P}(g H)=\mathcal{P}(H)
$$

$\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right) ; C^{\infty}$-map between Riemannian manifolds.
The second fundamental form of the map φ is the symmetric bilinear form $\widetilde{\nabla} d \varphi: T M \times T M \rightarrow \varphi^{-1} T N$ defined by

$$
(\widetilde{\nabla} d \varphi)(X, Y):=\bar{\nabla}_{X}(d \varphi(Y))-d \varphi\left(\nabla_{X} Y\right) \quad(X, Y \in \Gamma(T M))
$$

Sec. 1 - Integral invariants of a map $(2 / 3)$

Note

For $x \in M$, we identify $T_{x} M$ with \mathbb{E}^{m} and $T_{\varphi(x)} N$ with \mathbb{E}^{n}.
Now there is a linear isomorphism between $T_{x}^{*} M \odot T_{x}^{*} M \otimes T_{\varphi(x)} N$ and $\operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$.

That is, $(\tilde{\nabla} d \varphi)_{x} \in T_{x}^{*} M \odot T_{x}^{*} M \otimes T_{\varphi(x)} N$ corresponds to $H_{x}:=\left(h_{i j}^{\alpha}\right) \in \mathrm{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$, where

$$
h_{i j}^{\alpha}=g_{N}\left((\widetilde{\nabla} d \varphi)_{x}\left(e_{i}, e_{j}\right), \xi_{\alpha}\right)
$$

and, $\left\{e_{i}\right\}_{i=1}^{m}$ and $\left\{\xi_{\alpha}\right\}_{\alpha=1}^{n}$ are orthonormal basises of $T_{x} M$ and $T_{\varphi(x)} N$.

Define an invariant function of the second fundamental form of φ as follows, for a G-invariant function \mathcal{P} on $\operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$,

$$
\mathcal{P}\left((\widetilde{\nabla} d \varphi)_{x}\right):=\mathcal{P}\left(H_{x}\right) \quad(x \in M)
$$

Sec. 1 - Integral invariants of a map (3/3)

Definition

(M^{m}, g_{M}): m-dimensional Riemannian manifold,
$\left(N^{n}, g_{N}\right)$: n-dimensional Riemannian manifold,
\mathcal{P} : G-invariant function on $\operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$.
Then for a smooth map $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$, we define

$$
I^{\mathcal{P}}(\varphi):=\int_{M} \mathcal{P}\left((\widetilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}} .
$$

Remark

$I^{\mathcal{P}}(\varphi)$ is an invariant of a map φ.
That is, for all $f \in \operatorname{Isom}(M)$ and $g \in \operatorname{Isom}(N)$, the following formula holds

$$
I^{\mathcal{P}}\left(g \circ \varphi \circ f^{-1}\right)=I^{\mathcal{P}}(\varphi) .
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(1 / 10)$

Definition

For $H=\left(h_{i j}^{\alpha}\right) \in \mathrm{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$, define the polynomials $\underline{\mathcal{Q}_{1}}$ and $\underline{\mathcal{Q}_{2}}$ as

$$
\mathcal{Q}_{1}(H)=\sum_{\alpha} \sum_{i, j}\left(h_{i j}^{\alpha}\right)^{2}, \quad \mathcal{Q}_{2}(H)=\sum_{\alpha}\left(\sum_{i} h_{i i}^{\alpha}\right)^{2} .
$$

Proposition

The space of polynomials homogeneous of degree 2 invariant under G is spanned by \mathcal{Q}_{1} and \mathcal{Q}_{2}.

Remark

If φ is a smooth map between Riemannian manifolds, then we have

$$
\mathcal{Q}_{1}\left((\widetilde{\nabla} d \varphi)_{x}\right)=|\widetilde{\nabla} d \varphi|^{2}(x), \quad \mathcal{Q}_{2}\left((\widetilde{\nabla} d \varphi)_{x}\right)=\left|\operatorname{tr}_{g_{M}}(\widetilde{\nabla} d \varphi)\right|^{2}(x) .
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies (2/10)

Definition

For $\varphi \in C^{\infty}(M, N)$, the \mathcal{Q}_{1}-energy functional $I^{\mathcal{Q}_{1}}(\varphi)$ and the $\underline{\mathcal{Q}_{2} \text {-energy functional }} I^{\mathcal{Q}_{2}}(\varphi)$ are defined by

$$
\begin{aligned}
& I^{\mathcal{Q}_{1}}(\varphi)=\int_{M} \mathcal{Q}_{1}\left((\tilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}}=\int_{M}|\tilde{\nabla} d \varphi|^{2} d \mu_{g_{M}}, \\
& I^{\mathcal{Q}_{2}}(\varphi)=\int_{M} \mathcal{Q}_{2}\left((\widetilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}}=\int_{M}\left|\operatorname{tr}_{g_{M}}(\widetilde{\nabla} d \varphi)\right|^{2} d \mu_{g_{M}} .
\end{aligned}
$$

Then φ is called a $\underline{\mathcal{Q}}_{1}$-map if it is a critical point of $I^{\mathcal{Q}_{1}}(\varphi)$.
Also, then φ is called a \mathcal{Q}_{2}-map if it is a critical point of $I^{\mathcal{Q}_{2}}(\varphi)$.

The \mathcal{Q}_{2}-energy functional is equal to two times of the bienergy functional, actually

$$
I^{\mathcal{Q}_{2}}(\varphi)=\int_{M}\left|\operatorname{tr}_{g_{M}}(\widetilde{\nabla} d \varphi)\right|^{2} d \mu_{g_{M}}=\int_{M}|\tau(\varphi)|^{2} d \mu_{g_{M}}=2 E_{2}(\varphi)
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(3 / 10)$

$\tilde{\nabla}^{2} d \varphi \in \Gamma\left(\otimes^{3} T^{*} M \otimes \varphi^{-1} T N\right)$ and $\tilde{\nabla}^{3} d \varphi \in \Gamma\left(\otimes^{4} T^{*} M \otimes \varphi^{-1} T N\right)$ are defined by

$$
\begin{aligned}
\left(\widetilde{\nabla}^{2} d \varphi\right)(X, Y, Z):= & \bar{\nabla}_{X}((\widetilde{\nabla} d \varphi)(Y, Z))-(\widetilde{\nabla} d \varphi)\left(\nabla_{X} Y, Z\right) \\
& -(\widetilde{\nabla} d \varphi)\left(Y, \nabla_{X} Z\right), \\
\left(\widetilde{\nabla}^{3} d \varphi\right)(X, Y, Z, W): & =\bar{\nabla}_{X}\left(\left(\widetilde{\nabla}^{2} d \varphi\right)(Y, Z, W)\right)-\left(\widetilde{\nabla}^{2} d \varphi\right)\left(\nabla_{X} Y, Z, W\right) \\
& -\left(\widetilde{\nabla}^{2} d \varphi\right)\left(Y, \nabla_{X} Z, W\right)-\left(\widetilde{\nabla}^{2} d \varphi\right)\left(Y, Z, \nabla_{X} W\right),
\end{aligned}
$$

for any vector fields $X, Y, Z, W \in \Gamma(T M)$.

Note By definition, they have the following symmetry

$$
\begin{aligned}
\left(\widetilde{\nabla}^{2} d \varphi\right)(X, Y, Z) & =\left(\widetilde{\nabla}^{2} d \varphi\right)(X, Z, Y), \\
\left(\widetilde{\nabla}^{3} d \varphi\right)(X, Y, Z, W) & =\left(\widetilde{\nabla}^{3} d \varphi\right)(X, Y, W, Z) .
\end{aligned}
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(4 / 10)$

Theorem

Let $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ be a C^{∞}-map from compact Riemannian manifold to any Riemannian manifold. Consider a C^{∞}-variation $\left\{\varphi_{t}\right\}_{t \in I}$ of φ with variational vectorfield V. Then the following formula holds

$$
\left.\frac{d}{d t} I^{\mathcal{Q}_{i}}\left(\varphi_{t}\right)\right|_{t=0}=2 \int_{M}\left\langle W_{i}(\varphi), V\right\rangle d \mu_{g_{M}} \quad(i=1,2),
$$

where

$$
W_{1}(\varphi)=\sum_{i, j}\left\{\left(\widetilde{\nabla}^{3} d \varphi\right)\left(e_{i}, e_{j}, e_{i}, e_{j}\right)+R^{N}\left((\widetilde{\nabla} d \varphi)\left(e_{i}, e_{j}\right), d \varphi\left(e_{i}\right)\right) d \varphi\left(e_{j}\right)\right\}
$$

$$
W_{2}(\varphi)=\sum_{i, j}\left\{\left(\widetilde{\nabla}^{3} d \varphi\right)\left(e_{i}, e_{i}, e_{j}, e_{j}\right)+R^{N}\left((\widetilde{\nabla} d \varphi)\left(e_{i}, e_{i}\right), d \varphi\left(e_{j}\right)\right) d \varphi\left(e_{j}\right)\right\}
$$ and $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal frame field of $\left(M^{m}, g_{M}\right)$.

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(5 / 10)$

Theorem

Let $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ be a C^{∞}-map from compact Riemannian manifold to any Riemannian manifold. Consider a C^{∞}-variation $\left\{\varphi_{t}\right\}_{t \in I}$ of φ with variational vectorfield V. Then the following formula holds

$$
\left.\frac{d}{d t} I^{\mathcal{Q}_{i}}\left(\varphi_{t}\right)\right|_{t=0}=2 \int_{M}\left\langle W_{i}(\varphi), V\right\rangle d \mu_{g_{M}} \quad(i=1,2),
$$

where

$$
W_{1}(\varphi)=\sum_{i, j}\left\{\left(\widetilde{\nabla}^{3} d \varphi\right)\left(e_{i}, e_{j}, e_{i}, e_{j}\right)+R^{N}\left((\widetilde{\nabla} d \varphi)\left(e_{i}, e_{j}\right), d \varphi\left(e_{i}\right)\right) d \varphi\left(e_{j}\right)\right\}
$$

$$
W_{2}(\varphi)=\sum_{i, j}\left\{\left(\widetilde{\nabla}^{3} d \varphi\right)\left(e_{i}, e_{i}, e_{j}, e_{j}\right)+R^{N}\left((\widetilde{\nabla} d \varphi)\left(e_{i}, e_{i}\right), d \varphi\left(e_{j}\right)\right) d \varphi\left(e_{j}\right)\right\}
$$ and $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal frame field of $\left(M^{m}, g_{M}\right)$.

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies (6/10)

Lemmas used to prove the theorem (for \mathcal{Q}_{1}-energy)

We consider a smooth variation $\left\{\varphi_{t}\right\}_{t \in I}$ of φ, that is we consider a smooth map Φ given by

$$
\Phi: M \times I \rightarrow N,
$$

$$
(x, t) \mapsto \Phi(x, t)=: \varphi_{t}(x) \quad \text { s.t. } \varphi_{0}(x)=\varphi(x) \quad\left({ }^{\forall} x \in M\right),
$$

and denote by V its variational vector field, that is

$$
V=\left(\left.\frac{\partial}{\partial t}\right|_{t=0}\right) \in \Gamma\left(\varphi^{-1} T N\right) .
$$

Let $\left\{e_{i}\right\}_{i=1}^{m}$ be a local orthonormal frame field on a neighborhood U of $x \in M$, then $\left\{e_{i}, \frac{\partial}{\partial t}\right\}$ is a orthonormal frame field on the neighborhood $U \times I$ of $(x, t) \in M \times I$, and it holds that

$$
\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t}=0, \quad \nabla_{\frac{\partial}{\partial t}} e_{i}=\nabla_{e_{i}} \frac{\partial}{\partial t}=0 \quad(1 \leq i \leq m) .
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(7 / 10)$

Under the setting above, for any variation $\left\{\varphi_{t}\right\}_{t \in I}$ of φ, the following lemmas hold.

Lemma

$$
\begin{aligned}
\frac{d}{d t} I^{\mathcal{Q}_{1}}\left(\varphi_{t}\right)= & 2 \int_{M} \sum_{i, j}\left\langle\left(\tilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{j}, \frac{\partial}{\partial t}\right),(\tilde{\nabla} d \Phi)\left(e_{i}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
& -2 \int_{M} \sum_{i, j}\left\langle R^{N}\left(d \Phi\left(e_{i}\right), d \Phi\left(\frac{\partial}{\partial t}\right)\right) d \Phi\left(e_{j}\right),(\tilde{\nabla} d \Phi)\left(e_{i}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& \int_{M} \sum_{i, j}\left\langle\left(\tilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{j}, \frac{\partial}{\partial t}\right),(\tilde{\nabla} d \Phi)\left(e_{i}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
= & \int_{M} \sum_{i, j}\left\langle d \Phi\left(\frac{\partial}{\partial t}\right),\left(\tilde{\nabla}^{3} d \Phi\right)\left(e_{i}, e_{j}, e_{i}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies (8/10)

Lemmas used to prove the theorem (for \mathcal{Q}_{2}-energy)

Lemma

$$
\begin{aligned}
\frac{d}{d t} I^{\mathcal{Q}_{2}}\left(\varphi_{t}\right)= & 2 \int_{M} \sum_{i, j}\left\langle\left(\widetilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
& -2 \int_{M} \sum_{i, j}\left\langle R^{N}\left(d \Phi\left(e_{i}\right), d \Phi\left(\frac{\partial}{\partial t}\right)\right) d \Phi\left(e_{i}\right),(\tilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& \int_{M} \sum_{i, j}\left\langle\left(\tilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right),(\tilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
= & \int_{M} \sum_{i, j}\left\langle d \Phi\left(\frac{\partial}{\partial t}\right),\left(\widetilde{\nabla}^{3} d \Phi\right)\left(e_{i}, e_{i}, e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(9 / 10)$

Jiang[10] use the following lemmas.
Lemma

$$
\begin{aligned}
& \frac{d}{d t} E_{2}\left(\varphi_{t}\right) \\
= & 2 \int_{M} \sum_{i, j}\left\langle\left(\tilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right)-(\tilde{\nabla} d \Phi)\left(\nabla_{e_{i}} e_{i}, \frac{\partial}{\partial t}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
& -2 \int_{M} \sum_{i, j}\left\langle R^{N}\left(d \Phi\left(e_{i}\right), d \Phi\left(\frac{\partial}{\partial t}\right)\right) d \Phi\left(e_{i}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& \int_{M} \sum_{i, j}\left\langle\left(\widetilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right)-(\widetilde{\nabla} d \Phi)\left(\nabla_{e_{i}} e_{i}, \frac{\partial}{\partial t}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
= & \int_{M} \sum_{i, j}\left\langle d \Phi\left(\frac{\partial}{\partial t}\right),\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}}-\bar{\nabla}_{\nabla_{e_{i}} e_{i}}\right)(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(9 / 10)$

Jiang[10] use the following lemmas.
Lemma

$$
\begin{aligned}
& \frac{d}{d t} E_{2}\left(\varphi_{t}\right) \\
= & 2 \int_{M} \sum_{i, j}\left\langle\left(\widetilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right) \quad,(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
& -2 \int_{M} \sum_{i, j}\left\langle R^{N}\left(d \Phi\left(e_{i}\right), d \Phi\left(\frac{\partial}{\partial t}\right)\right) d \Phi\left(e_{i}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& \int_{M} \sum_{i, j}\left\langle\left(\widetilde{\nabla}^{2} d \Phi\right)\left(e_{i}, e_{i}, \frac{\partial}{\partial t}\right)-(\widetilde{\nabla} d \Phi)\left(\nabla_{e_{i}} e_{i}, \frac{\partial}{\partial t}\right),(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}} \\
= & \int_{M} \sum_{i, j}\left\langle d \Phi\left(\frac{\partial}{\partial t}\right),\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}}-\bar{\nabla}_{\nabla_{e_{i}} e_{i}}\right)(\widetilde{\nabla} d \Phi)\left(e_{j}, e_{j}\right)\right\rangle d \mu_{g_{M}}
\end{aligned}
$$

Sec. 2 - The first variational formulae of \mathcal{Q}_{1} and \mathcal{Q}_{2}-energies $(10 / 10)$

By comparing the first variational formulae of the bienergy and \mathcal{Q}_{2}-energy, we get the following proposition.

Proposition

Let $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ be a C^{∞}-map between Riemannian manifolds. Then the following formula holds

$$
-\bar{\nabla}^{*} \bar{\nabla} \tau(\varphi)=\sum_{i, j}\left(\widetilde{\nabla}^{3} d \varphi\right)\left(e_{i}, e_{i}, e_{j}, e_{j}\right)
$$

where $-\bar{\nabla}^{*} \bar{\nabla}:=\sum_{k}\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}}-\bar{\nabla}_{\nabla_{e_{k} e_{k}}}\right)$ is the rough Laplacian and $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal frame field of $\left(M^{m}, g_{M}\right)$.

Sec. 3 - The Chern-Federer energy $(1 / 6)$

Definition

For $H=\left(h_{i j}^{\alpha}\right) \in \operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$,
the Chern-Federer polynomial $\mathrm{CF}(H)$ of degree two is defned by

$$
\mathrm{CF}(H):=\mathcal{Q}_{2}(H)-\mathcal{Q}_{1}(H)
$$

Definition

For $\varphi \in C^{\infty}(M, N)$,
the Chern-Federer energy functional $I^{\mathrm{CF}}(\varphi)$ is defined by

$$
I^{\mathrm{CF}}(\varphi)=\int_{M} \mathrm{CF}\left((\widetilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}}
$$

Then φ is called a Chern-Federer map if it is a critical point of $I^{\mathrm{CF}}(\varphi)$.

Sec. 3 - The Chern-Federer energy $(2 / 6)$

Definition

For $H=\left(h_{i j}^{\alpha}\right) \in \operatorname{II}\left(\mathbb{E}^{m}, \mathbb{E}^{n}\right)$,
the Willmore-Chen polynomial $\mathrm{WC}(H)$ is defned by

$$
\mathrm{WC}(H):=m \mathcal{Q}_{1}(H)-\mathcal{Q}_{2}(H)
$$

Definition

For $\varphi \in C^{\infty}(M, N)$,
the Willmore-Chen energy functional $I^{\mathrm{WC}}(\varphi)$ is defined by

$$
I^{\mathrm{WC}}(\varphi)=\int_{M} \mathrm{WC}\left((\widetilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}}
$$

Then φ is called a Willmore-Chen map if it is a critical point of $I^{\mathrm{WC}}(\varphi)$.

Sec. 3 - The Chern-Federer energy (3/6)

Let $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ be a C^{∞}-map,
α, β constant numbers such that $\alpha^{2}+\beta^{2} \neq 0$.
When the map φ satisfies that the following equation

$$
\alpha W_{1}(\varphi)+\beta W_{2}(\varphi)=0
$$

we call it an $\left(\alpha \mathcal{Q}_{1}+\beta \mathcal{Q}_{2}\right)$-map. For an $\left(\alpha \mathcal{Q}_{1}+\beta \mathcal{Q}_{2}\right)$-map φ,

1. φ is a \mathcal{Q}_{1}-map $\Leftrightarrow(\alpha, \beta)=(1,0)$;
2. φ is a \mathcal{Q}_{2}-map $\Leftrightarrow(\alpha, \beta)=(0,1)$;
3. φ is a Chern-Federer map $\Leftrightarrow(\alpha, \beta)=(-1,1)$;
4. φ is a Willmore-Chen map $\Leftrightarrow(\alpha, \beta)=(m,-1)$.

Sec. 3 - The Chern-Federer energy (4/6)

Proposition

A smooth map $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ is a Chern-Federer map if and only if

$$
\begin{aligned}
0= & \sum_{i, j}\left\{\left(\nabla R^{N}\right)\left(d \varphi\left(e_{i}\right), d \varphi\left(e_{i}\right), d \varphi\left(e_{j}\right)\right) d \varphi\left(e_{j}\right)-(\widetilde{\nabla} d \varphi)\left(e_{i}, R^{M}\left(e_{i}, e_{j}\right) e_{j}\right)\right. \\
& -d \varphi\left(\left(\nabla R^{M}\right)\left(e_{i}, e_{i}, e_{j}\right) e_{j}\right)+2 R^{N}\left((\widetilde{\nabla} d \varphi)\left(e_{i}, e_{i}\right), d \varphi\left(e_{j}\right)\right) d \varphi\left(e_{j}\right) \\
& \left.+2 R^{N}\left(d \varphi\left(e_{i}\right),(\widetilde{\nabla} d \varphi)\left(e_{i}, e_{j}\right)\right) d \varphi\left(e_{j}\right)\right\}
\end{aligned}
$$

where $\left\{e_{i}\right\}_{i=1}^{m}$ is a local orthonormal frame field of $\left(M^{m}, g_{M}\right)$.
\rightsquigarrow The Euler-Lagrange equation of the $I^{\mathrm{CF}}(\varphi)$ is a second-order partial differential equation for φ.

Sec. 3 - The Chern-Federer energy (5/6)

We use the following two lemmas to prove the previous proposition.
For a smooth map $\varphi: M \rightarrow N$ and $X, Y, Z, W \in \Gamma(T M)$, the following equation holds:

Lemma

$$
\begin{aligned}
& \left(\widetilde{\nabla}^{2} d \varphi\right)(X, Y, Z)-\left(\widetilde{\nabla}^{2} d \varphi\right)(Y, X, Z) \\
= & R^{N}(d \varphi(X), d \varphi(Y)) d \varphi(Z)-d \varphi\left(R^{M}(X, Y) Z\right)
\end{aligned}
$$

Lemma

$$
\begin{aligned}
& \left(\widetilde{\nabla}^{3} d \varphi\right)(X, Y, Z, W)-\left(\widetilde{\nabla}^{3} d \varphi\right)(X, Z, Y, W) \\
= & \left(\nabla R^{N}\right)(d \varphi(X), d \varphi(Y), d \varphi(Z)) d \varphi(W)+R^{N}((\widetilde{\nabla} d \varphi)(X, Y), d \varphi(Z)) d \varphi(W) \\
& +R^{N}(d \varphi(Y),(\widetilde{\nabla} d \varphi)(X, Z)) d \varphi(W)+R^{N}(d \varphi(Y), d \varphi(Z))(\widetilde{\nabla} d \varphi)(X, W) \\
& -(\widetilde{\nabla} d \varphi)\left(X, R^{M}(Y, Z) W\right)-d \varphi\left(\left(\nabla R^{M}\right)(X, Y, Z) W\right)
\end{aligned}
$$

Sec. 3 - The Chern-Federer energy (5/6)

Note

We express the Chern-Federer energy functional as follows:

$$
\begin{aligned}
I^{\mathrm{CF}}(\varphi) & =I^{\mathcal{Q}_{2}-\mathcal{Q}_{1}}(\varphi) \\
& =\int_{M} \mathcal{Q}_{2}\left((\widetilde{\nabla} d \varphi)_{x}\right)-\mathcal{Q}_{1}\left((\widetilde{\nabla} d \varphi)_{x}\right) d \mu_{g_{M}} \\
& =\int_{M} \sum_{\alpha}\left(\sum_{i} h_{i i}^{\alpha}\right)^{2}-\sum_{\alpha} \sum_{i, j}\left(h_{i j}^{\alpha}\right)^{2} d \mu_{g_{M}} \\
& =\int_{M} \sum_{\alpha} \sum_{i, j} \operatorname{det}\left(\begin{array}{cc}
h_{i i}^{\alpha} & h_{i j}^{\alpha} \\
h_{i j}^{\alpha} & h_{j j}^{\alpha}
\end{array}\right) d \mu_{g_{M}}
\end{aligned}
$$

Sec. 3 - The Chern-Federer energy $(6 / 6)$

Theorem

A smooth map $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ is a Chern-Federer map if and only if

$$
C(\mu+\nu)=0
$$

where C is defined by

$$
C:=\operatorname{det}\left(\begin{array}{ll}
C_{12} & C_{13} \\
C_{24} & C_{34}
\end{array}\right)
$$

where $C_{i j}$ is a contraction, and μ, ν are (0,4)-type tensor fields valued on $\varphi^{-1} T N$ which are defined by

$$
\mu\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=\left(\widetilde{\nabla}^{3} d \varphi\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

and

$$
\nu\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=R^{N}\left((\widetilde{\nabla} d \varphi)\left(X_{3}, X_{4}\right), d \varphi\left(X_{1}\right)\right) d \varphi\left(X_{2}\right),
$$

where $X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$.

Sec. 4 - Some examples $(1 / 6)$

Setting

- $\left(M^{m}, g_{M}\right)$: Riemannian manifold.
- $N^{n}(c)$: Riemannian space form of constant curvature $c \in \mathbb{R}$.
- $\varphi:\left(M^{m}, g_{M}\right) \rightarrow N^{n}(c)$; isometric immersion.
- \mathcal{H} : the mean curvature vector field, h : the second fundamental form.
- Q : the Ricci operator of $\left(M^{m}, g_{M}\right)$.

Theorem

Then φ is a Chern-Federer map if and only if

$$
-d \varphi\left(\operatorname{tr}_{g_{M}}(\nabla Q)\right)+2 c m(m-1) \mathcal{H}-\operatorname{tr}_{g_{M}} h(Q(-),-)=0
$$

equivalently,

$$
(\top): \operatorname{tr}_{g_{M}}(\nabla Q)=0, \quad(\perp): 2 c m(m-1) \mathcal{H}-\operatorname{tr}_{g_{M}} h(Q(-),-)=0,
$$

where (T) and (\perp) denote the tangent component and the normal component, respectively.

Sec. 4 - Some examples $(2 / 6)$

Example

We consider a Euclidean n-space \mathbb{E}^{n} as a target space $\left(N^{n}, g_{N}\right)$.
If $\left(M^{m}, g_{M}\right)$ is a Ricci-flat Riemannian manifold, then an arbitary isometric immersion $\varphi:\left(M^{m}, g_{M}\right) \rightarrow \mathbb{E}^{n}$ is a Chern-Federer map.

Example (for curves)

$I \subset \mathbb{R}$: open interval.
Then an arbitrary curve $\gamma: I \rightarrow\left(N^{n}, g_{N}\right)$ is a Chern-Federer map.

Proposition (for surfaces)

Let $\varphi:\left(M^{2}, g_{M}\right) \rightarrow N^{n}(c)$ be an isometric immersion and K the sectional curvature of $\left(M^{2}, g_{M}\right)$. Then φ is a Chern-Federer map if and only if
(i) K is constant and φ is minimal, or
(ii) $K=2 c$.

Sec. 4 - Some examples $(3 / 6)$

For hypersurfaces (especially isoparametric hypersurfaces)

Definition

When an isometric immersion $\varphi:\left(M^{m}, g_{M}\right) \rightarrow\left(N^{n}, g_{N}\right)$ is a Chern-Federer map, we call the image a Chern-Federer submanifold in $\left(N^{n}, g_{N}\right)$, and the map φ to be Chern-Federer.

Theorem

Let $M^{m} \subset N^{m+1}(c)$ be an isoparametric hypersurface in a Riemannian space form. Then M^{m} is Chern-Federer if and only if it satisfies that

$$
c(m-1)(\operatorname{tr} A)-(\operatorname{tr} A)\left(\operatorname{tr} A^{2}\right)+\left(\operatorname{tr} A^{3}\right)=0
$$

Sec. 4 - Some examples $(4 / 6)$

In the case of a unit sphere $\mathbb{S}^{m+1}(1)$, we show some examples of Chern-Federer homogeneous hypersurfaces, which are also isoparametric.
g : the number of distinct principal curvatures of isoparametric hypersurfaces

- $[g=1]$. The classification is the following totally umbilical hypersurfaces

$$
\mathbb{S}^{m}(r)=\left\{\left(x, \sqrt{1-r^{2}}\right) \in \mathbb{E}^{m+2} \mid\|x\|^{2}=r^{2}\right\} \subset \mathbb{S}^{m+1}(1) \quad(0<r \leq 1) .
$$

From this, we obtain:

Proposition

The isoparametric hypersurface of the above equation is Chern-Federer if and only if
$r=1$ (totally geodesic one), or $r=1 / \sqrt{2}$ (proper biharmonic one).

Sec. 4 - Some examples $(5 / 6)$

- $[g=2]$. The classification is the following Clifford hypersurfaces

$$
\mathbb{S}^{p}\left(r_{1}\right) \times \mathbb{S}^{m-p}\left(r_{2}\right) \subset \mathbb{S}^{m+1}(1) \quad\left(r_{1}^{2}+r_{2}^{2}=1\right)
$$

We denote the distinct principal curvatures of the above by λ_{1}, λ_{2}.
Then by setting

$$
\lambda:=\lambda_{1}=\cot t \quad\left(0<t<\frac{\pi}{2}\right),
$$

we have

$$
\lambda_{2}=\cot \left(t+\frac{\pi}{2}\right)=-\frac{1}{\cot t}=-\frac{1}{\lambda} .
$$

From this, we obtain:

Proposition

The isoparametric hypersurface of the above equation is Chern-Federer if and only if λ satisfies that

$$
\begin{aligned}
p(p-1) \lambda^{6} & -p(2 m-p-1) \lambda^{4} \\
& +(m-p)(m+p-1) \lambda^{2}-(m-p)(m-p-1)=0
\end{aligned}
$$

Sec. 4 - Some examples (6/6)

$$
\begin{aligned}
p(p-1) \lambda^{6} & -p(2 m-p-1) \lambda^{4} \\
& +(m-p)(m+p-1) \lambda^{2}-(m-p)(m-p-1)=0
\end{aligned}
$$

The solutions for this equation are:
(i) when $m=2$ and $p=1$, then $\lambda=1$ (minimal one)
(ii) when $m \geq 3$ and $p=1$,
then $\lambda=1$ (biharmonic one) or $\lambda=\sqrt{\frac{m-2}{2}}$ (non biharmonic)
(iii) when $m \geq 3$ and $p \geq 2$,
then $\lambda=1$ (biharmonic one) or $\sqrt{\frac{p(m-p) \pm \sqrt{p(m-p)(m-1)}}{p(p-1)}}$ (non biharmonic)

Future outlook on research

We are currently working on the following issues:

- Advance research from the perspective of variational problems.
- Clarify geometric properties of the integral invariants of a map.
- Interpret the Euler-Lagrange equation of Chern-Federer maps from the viewpoint of integrable systems.

Future outlook on research

We are currently working on the following issues:

- Advance research from the perspective of variational problems.
- Clarify geometric properties of the integral invariants of a map.
- Interpret the Euler-Lagrange equation of Chern-Federer maps from the viewpoint of integrable systems.

Thank you very much for your attention!

Reference I

[1] C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129.
[2] R. L. Bryant, Minimal surfaces of constant curvatures in S^{n}, Trans. Amer. M. S. 290 (1985), 259-271.
[3] T. E. Cecil and P. J. Ryan, Geometry of hypersurfaces, Springer Monographs in Mathematics. Springer, New York, 2015.
[4] B.-Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973), 563-564.
[5] B.-Y. Chen, Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. (4) 10 (1974), 380-385.
[6] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, (2011).

Reference II

[7] B.-Y. Chen, Recent developments in δ-Casorati curvature invariants, Turkish J. Math. 45 (2021), no. 1, 1-46.
[8] R. Howard, The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., No.509, 1993.
[9] T. Ichiyama, J. Inoguchi and H. Urakawa, Bi-harmonic maps and bi-Yang-Mills fields, Note Mat. 28 (2009), [2008 on verso], suppl. 1, 233-275.
[10] G. Jiang, 2-harmonic maps and their first and second variational formulas. Translated from the Chinese by Hajime Urakawa. Note Mat. 28 (2009), [2008 on verso], suppl. 1, 209-232.

Reference III

[11] H. J. Kang, T. Sakai and Y. J. Suh, Kinematic formulas for integral invariants of degree two in real space forms, Indiana Univ. Math. J. 54 (2005), no. 5, 1499-1519.
[12] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S^{3}, J. Math. Soc. Japan 40 (1988), no. 3, 457-476.
[13] Y. Kitagawa, Isometric deformations of flat tori in the 3-sphere with nonconstant mean curvature, Tohoku Math. J. (2) 52 (2000), no. 2, 283-298.
[14] K. Kenmotsu, On minimal immersion of R^{2} into S^{n}, J. Math. Soc. Japan 28 (1976), 182-191.
[15] H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), 461-472.

