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Abstract. We prove that there exists a large-data and global-in-time weak

solution to a system of partial differential equations describing an unsteady

flow of an incompressible heat-conducting rate-type viscoelastic stress-diffusive
fluid filling up a mechanically and thermally isolated container of any dimen-

sion. To overcome the principle difficulties connected with ill-posedness of

the diffusive Oldroyd-B model in three dimensions, we assume that the fluid
admits a strengthened dissipation mechanism, at least for excessive elastic

deformations. All the relevant material coefficients are allowed to depend

continuously on the temperature, whose evolution is captured by a thermo-
dynamically consistent equation. In fact, the studied model is derived from

scratch using only the balance equations for linear momentum and energy,

the formulation of the second law of thermodynamics and the constitutive
equation for the internal energy. The latter is assumed to be a linear function

of temperature, which simplifies the model. The concept of our weak solution
incorporates both the temperature and entropy inequalities, and also the local

balance of total energy provided that the pressure function exists.

1. Introduction

Material properties of both synthetic and organic viscoelastic materials are very
sensitive to temperature changes. Reliable predictions of corresponding processes
by computational tools requires to incorporate complex thermal/mechanical effects
into the description of the model. The understanding how thermal and mechanical
processes are coupled and what is the structure of the complete temperature equa-
tion has been considered as an open issue till recently (see [54, 31]). A methodology
that can be used to develop such a complete model (system of partial differential
equations – PDEs) and that is followed in this study has its origin in [50, 51].
A complete (i.e. including elastic contribution to the internal energy) thermody-
namicly consistent models for viscoelastic rate type fluids is developed in [31] where
also further references to earlier studies including in particular [36, 56, 22, 32] are
given. Incorporation of additional stress diffusive phenomena into this thermody-
namic framework is then developed in [42].
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The aim of this study is to establish mathematical foundation for a robust class
of heat-conducting viscoelastic rate-type fluids with stress diffusion. In particular,
we identify reasonable conditions on material functions/coefficients that are suf-
ficient to prove long-time and large-data existence of weak solution. To develop
analysis for complete thermal/mechanical systems of PDEs is considerably harder
than to studying merely mechanical systems. To our best knowledge, there is only
one existing analytical work dealing with such a problem, see [13], where however
the elastic response is drastically reduced to a spherical stress governed by a scalar
quantity. In our work, we do not make such an assumption and we work with
the full d-dimensional elastic tensor. On the other hand, we assume that there
is a linear relation between the internal energy and temperature. The main pur-
pose for this assumption is to simplify the (already very technical) presentation of
the existence analysis. Additionally, the linear relationship between the internal
energy and temperature is used in applications involving viscoelastic fluids, such as
polymer melts, see [52]. Taking this aside, our model contains no further simplifica-
tion. A complete physical derivation of the model studied in this paper and a more
detailed description of the participating physical quantities are given in Section 2.
This opening section continues below with an informal formulation of the main
result, a brief description of the PDE system and a basic overview of the rele-
vant literature. In Section 3, we introduce necessary notation, derive informally
a priori estimates that naturally leads to the definition of function spaces in which
the existence theory is established. This section also contains precise definition of
the solution to studied problem and the formulation of the main result. Its proof
represents the content of remaining sections of the paper, see Sections 4–6. Their
more detailed description is given at the end of Section 3.

Formulation of the problem. We consider an incompressible fluid with the con-
stant density set to be one, for simplicity. The fluid is flowing inside an open
bounded connected set Ω ⊂ Rd with a Lipschitz boundary ∂Ω. For an arbitrary
(but fixed) time interval (0, T ), T > 0, we set Q := (0, T )×Ω and Σ := (0, T )×∂Ω.
Our main objective, in this study, is to develop a long-time and large-data existence
theory for the following initial- and boundary-value problem.

For given

• right-hand side g : Q→ Rd,
• initial data v0 : Ω → Rd, B0 : Ω → Rd×d

sym being positive definite and
θ0 : Ω → (0,∞),

• constants a ∈ R, α ≥ 0, µ > 0 and cv > 0,
• continuous functions ν, λ, κ : (0,∞) → (0,∞) and P : (0,∞) × Rd×d

sym →
Rd×d

sym ,

we look for functions v : Q → Rd, p, θ, e, E, η, ξ : Q → R and B,S : Q → Rd×d
sym

fulfilling the (physical) restrictions

θ > 0, (1.1)

Bx · x > 0 for all x ∈ Rd \ {0}, (1.2)

S = 2ν(θ)Dv + 2aµθB, (1.3)

e = cvθ, (1.4)

E = 1
2 |v|

2 + e, (1.5)
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η = cv ln θ − f(B), where f(B) := µ(trB− d− ln detB), (1.6)

ξ =
2ν(θ)

θ
|Dv|2 + κ(θ)|∇ ln θ|2 + P(θ,B) · f ′(B) + λ(θ)∇B · ∇f ′(B), (1.7)

and solving (in a suitable sense) the following system of PDEs in Q

div v = 0, (1.8)

∂tv + v · ∇v +∇p− div S = g, (1.9)

∂tB+ v · ∇B+ P(θ,B)− div(λ(θ)∇B) = WvB− BWv + a(DvB+ BDv), (1.10)

∂te+ v · ∇e− div(κ(θ)∇θ) = S · Dv, (1.11)

∂tE + v · ∇E − div(κ(θ)∇θ) = div(−pv + Sv) + g · v, (1.12)

∂tη + v · ∇η − div(κ(θ)∇ ln θ) + div(λ(θ)∇f(B)) = ξ (1.13)

completed by the boundary conditions on Σ

v · n = 0, (Sn+ αv)τ = 0, (1.14)

n · ∇B = 0, (1.15)

n · ∇θ = 0, (1.16)

and by the initial conditions fulfilled in Ω

v(0, ·) = v0, B(0, ·) = B0, θ(0, ·) = θ0. (1.17)

The physical meaning of the above unknowns is the following: v is the flow
velocity, p is the pressure, B is the extra stress tensor (arising due to the elastic
properties of the fluid), θ is the temperature, e is the internal energy, E is the total
energy and η is the entropy. We shall now state informally our main result.

Main result. If the material coefficients κ(θ) and P (·,B) grow sufficiently fast as
θ → ∞ and |B| → ∞, respectively (with the other coefficients being merely bounded
and positive), then there exists a generalized global-in-time solution of the system
(1.1)–(1.17) for any initial data with finite total energy and entropy.

In order to explain the equations above, let us first clarify some notation, see also
the beginning of Section 3. The symbol v·∇v denotes a vector with the i-component

(v · ∇v)i =
∑d

k=1 vk∂xk
vi. Similarly, v · ∇B is a tensor with the ij-component

(v · ∇B)ij =
∑d

k=1 vk∂xk
(B)ij . The first two terms of each equation (1.9)–(1.13)

represent the material (or convective) derivative of the respective unknown and we
shall sometimes use the abbreviation

•
u := ∂tu+ v · ∇u.

Further, the symbol n denotes the outward unit normal vector at a given point of ∂Ω
and zτ stands for the tangential part (with respect to ∂Ω) of any vector z ∈ Rd∩∂Ω,
i.e. zτ := z−(z ·n)n. Furthermore, for any vector u : Ω → Rd, the symbols Du and
Wu denote the symmetric and antisymmetric parts of a gradient ∇u = (∂jui)

d
i,j=1

so that ∇u = Du+Wu with (Du)T = Du and (Wu)T = −Wu.
The first two equations (1.8) and (1.9) resemble the incompressible Navier–Stokes

system for the unknowns velocity field v and the pressure (constitutively undeter-
mined part of the Cauchy stress) p, however, with an additional term 2aµdiv(θB)
coming from S and bringing to the problem two other quantities: the temperature
θ and the tensor B representing the elastic response of the fluid. The presence of
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this additional term prohibits one to use the usual methods known in the analy-
sis of the Navier-Stokes-Fourier-like systems, as there is no longer an useful form
of the balance of kinetic energy (the inner product B · Dv does not have a sign).
Instead, the estimates on ∇v are deduced only after taking into account the whole
thermodynamical evolution of the system.

Since the dependence of the material parameters (namely the viscosity of the fluid)
on the pressure p is neglected, we simplify the analysis by eliminating the pressure
from the system completely, taking the Leray projection of (1.9) and searching for
v in divergence-free function spaces. If needed (for example if we want to preserve
the equation (1.12)), the pressure can be reconstructed at the last step. Then,
it is known that Navier’s slip boundary condition (1.14), or even more generally
stick-slip boundary condition, allows one to prove that p is an integrable function
(if the boundary of Ω is smooth enough so that W 2,r-regularity for the classical
Neumann problem holds), see [15, 6, 11, 12, 5] for details. Recall that the inte-
grability of the pressure is not known to be true in general for no-slip boundary
condition. The integrability of p is not only important in itself, but is also useful
for the validity of the weak formulation of (1.12).

To understand equation (1.10), it is better to define first the objective derivative
of B as

◦
B :=

•
B− (WvB− BWv)− a(DvB+ BDv), a ∈ R. (1.18)

This turns (1.10) into

◦
B+ P(θ,B)− div(λ(θ)∇B) = 0, (1.19)

which is a mathematical formulation of a generalized (due to an implicit form of P )
Johnson–Segalman ([33]) viscoelastic model with stress diffusion (cf. [48] and ref-
erences therein) and temperature dependent material parameters. The reason why
◦
B appears in (1.19) is that, unlike the material derivative, the objective derivative
◦
B (for any a) transforms correctly (as a tensor) under a time dependent rotation

of the observer. When a ∈ [−1, 1], then
◦
B is precisely the Gordon-Schowalter de-

rivative ([28]). It is known (see e.g. [49]) that by modifying the value of a, it is
possible to capture a shear-thinning behaviour of the fluid. The case a = 0 leads to
the class of models with the corrotational objective derivative (cf. [59]), which has
very special properties that simplify the analysis. The case a = 1 in (1.18) coincides
with the upper-convected objective derivative, which is probably the most popular
choice in the literature. One of the main features of our analysis is that, we are
able to treat (1.10) with any a ∈ [−1, 1] (or even a ∈ R). As we shall see later, if
a ̸= 0, the summability of the nonlinear terms like BDv in (1.10) (and especially
the related term in (1.11)) becomes the main difficulty. This is essentially the rea-
son, why we formulate (1.10) with a general function P(θ,B). The strategy is that
if P(θ,B) grows sufficiently fast as |B| → ∞, then B admits enough integrability to
define a meaningful concept of solution of the system (1.1)–(1.17). Moreover, as
the form of P can be attributed to the dissipation mechanism of the fluid, restricting
its asymptotic growth should not be seen as a significant physical drawback of our
model. Recall that, for the classical Oldroyd-B and Giesekus models, the function
P takes the form

P(θ,B) = δ(θ)(B− I) and P(θ,B) = δ(θ)(B2 − B),
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respectively. While these models are not covered by the analysis presented below,
the existence result, in three dimensions, holds for

P(θ,B) = δ(θ)(Bα − Bα−1), α > 2,

or

P(θ,B) = δ(θ)max{1, |B− I|2

K2
}(B− I), K > 0. (1.20)

Note that the last model coincides with the Oldroyd-B model as long as |B−I| ≤ K.
Due to (1.4), the balance of internal energy (1.11) is also the temperature equa-

tion. As we hinted above, the term 2aµθB · Dv on the right-hand side of (1.11) is
the most difficult term to control in the whole system (1.8)–(1.13) and it is also
the term which is occasionally omitted in some “naive” approaches to thermovis-
coelasticity, as pointed out in [31, Section 3]. Note also that this term does not have
a clear sign and thus, one cannot conclude the positivity of temperature directly
from (1.11) as in the Navier-Stokes-Fourier case. The equations (1.12) and (1.13)
govern the evolution of two other unknowns E and η, respectively. Since these
quantities together with θ are mutually connected by simple algebraic relations
(1.4), (1.5) and (1.6), the equations (1.11)–(1.13) are interchangeable and each of
them alone can be used as the equation for temperature evolution. To see this,
note that (1.5) and (1.6) imply

∂tE = v · ∂tv + ∂te (1.21)

∂tη = cvθ
−1∂tθ − f ′(B) · ∂tB. (1.22)

Within the considered system of equations (assuming that all involved operations
are meaningful), one can verify that the equations (1.11), (1.12), (1.13) are mutually
equivalent. We remark that this equivalence may no longer be in place when, on
the level of generalized solutions, the integrability of the solution is not sufficient
to define the critical nonlinear terms in (1.11) and (1.12), that is θB · Dv and
θBv, respectively. For example, this would be the case where the initial datum B0

has low integrability, as then the available a priori estimates deteriorate (cf. (3.15)
below). In such cases, one may be forced to discard (1.11), or even (1.12) from
the notion of generalized solution and leave only (1.13), which is least restrictive
but still sufficient (together with the global version of (1.12)) to keep track of
the thermal evolution of the system. Generalized solutions relying on the weak
formulation of balance of entropy were applied, e.g., in [25], [8], [23], [26] or in
[24] for different fluid models. See also [9] for similar ideas in context of certain
mixtures. For brevity, in this work, we shall avoid the low integrability case and
work only in the setting, where both (1.11) and (1.13) (and (1.12) if the pressure
can be defined) hold simultaneously, but only as the inequalities. Although these
become automatically equalities if the solution is smooth enough (see (3.48) below),
in general this is unknown.

State of the art. Regarding the existence analysis of a viscoelastic fluid model
including the full temperature evolution, there is a recent study [14], where the au-
thors develop a long-time and large-data existence theory for a rate-type incom-
pressible viscoelastic fluid model with stress diffusion under the simplifying assump-
tion that B = bI. This assumption leads to annihilation of irregular terms coming
from the objective derivative and it also simplifies the momentum equation, where
the coupling to the rest of the system is realized only via temperature and elastic
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stress dependent viscosity. Other than that, to the authors’ best knowledge, there
is no existence theory in a setting that would be of similar generality as considered
here. Thus, for the first time, we provide an existence analysis for a viscoelastic
fluid model with a full thermal evolution and taking into account all components
of the extra stress tensor. Moreover, the equation for the temperature we consider
is derived from fundamental thermodynamical laws (similarly as in [14], [31], [42])
and consequently, the heating originates from both the viscous and elastic effects.
Also, we would like to point out that the all material coefficients of the model
depend on the temperature. Although we place some restrictions on the growth
of these coefficients, these are only asymptotic and therefore unimportant from
the point of view of physical applications. Furthermore, the model considered here
has the property that the evolution of the temperature cannot be decoupled from
the rest of the model even in the case of constant material coefficients.

Even if we confine to a much simpler class of isothermal processes, the exis-
tence theory there is far from being complete. Although there are several relevant
global-in-time existence results for large data, in most cases, they are restricted
in an essential way. For example, in [37] the authors provide an existence theory
for a model with the corrotational Jaumann–Zaremba derivative (the case a = 0).
This case is much easier than for the other choices of a since the corrotational part
drops out upon multiplication by any matrix that commutes with B. Moreover,
it seems that the physically preferred case is a = 1, which corresponds to the up-
per convected (Oldroyd) derivative (see [41], [44], [45], [50] or [51]). Then, in [46],
a proof of existence of a weak solution to FENE-P, Giesekus and PTT viscoelas-
tic models is outlined. In fact, it is shown there that certain defect measures of
the non-linear terms are compact. A complete proof in the case of two-dimensional
flows of a Giesekus fluid is given in [10]. In the case of spherical elastic response
when B = bI, we refer to [13] (and [6], [38] in the compressible case) for an anal-
ysis of such models. In the two-dimensional case, existence and regularity results
can be found in [20]. An existence theory for related viscoelastic models (Peterlin
class) was developed, e.g., in [39]. However, for these models, the energy storage
mechanism depends only on the spherical part of the extra stress, which is a major
simplification compared to our case. A notable exception is the thesis [34], where
the author obtains a global weak solution to an Oldroyd-like diffusive model under
certain growth assumptions on the material coefficients. However, the overall ther-
modynamical compatibility of the studied model is unclear. Furthermore, there
are existence results for viscoelastic models involving various approximations that
improve properties of the system, see e.g. [2] or [35].

The article [4] develops the existence theory for viscoelastic diffusive Oldroyd-B
or Giesekus models. This result relies on a certain physical correction of the energy
storage mechanism away from the stress-free state resulting at L2 a priori estimates
for ∇B. Interestingly, for such models, in two dimensions, uniqueness and full
regularity of weak solution is available (at least in the spatially periodic case),
see [16]. Various modifications of the classical Oldroyd-B model are also discussed
in [18]. The article contains also existence results that are of local nature or for
small (initial) data. Local-in-time existence of regular solutions to a viscoelastic
Oldroyd-B model without diffusion was shown in [29]. It is also proved there that for
small data there exists a global in time solution. For the steady case of a generalized
Oldroyd-B model with small and regular data, see e.g. [1].



ANALYSIS OF THERMOVISCOELASTIC FLUIDS 7

2. Thermodynamical compatibility of the model

In this section, we show the physical consistency of the system (1.1)–(1.17) as it
follows naturally from the elementary balance equations for mass, momentum and
energy and some reasonable constitutive assumptions. The latter can be efficiently
encoded in just two scalar quantities describing how the energy is stored and dis-
sipated in the material, see [50] and [51] for the origins of this method. Physical
justification of viscoelastic fluid models similar to ours is carried out in many works,
see [21], [31], [42], [44] or [45].

For the rest of this section, we make an implicit assumption that all functions
depend smoothly on time and space position (if not specified otherwise), with the ar-
guments (t, x) suppressed as usual.

Since the density of the fluid is assumed constant (ϱ = 1), the balance of mass
•
ϱ+ ϱdiv v = 0

is reduced to (1.8). Next, the general form of the balance equations of momentum,
total energy and specific entropy is

•
v = divT, (2.1)

•
E + div je = div(Tv), (2.2)
•
η + div jη = ξ, (2.3)

where T is the Cauchy stress tensor and je and jη are energy and entropy fluxes,
respectively. Tensor T is symmetric due to the conservation of angular momenta.
Furthermore, the balance equation for the internal energy e := E − 1

2 |v|
2 is

•
e+ div je = T · Dv, (2.4)

as follows easily from (2.1) and (2.2).
Turning to thermodynamics, we assert the following fundamental relation (cf. [17,

(1.8)]) between specific entropy, internal energy and positive definite tensor B:
η = S(e,B), where ∂eS > 0. (2.5)

In this case, the temperature θ is defined as usual by

1

θ
:= ∂eS(e,B). (2.6)

Taking the material time derivative of both sides of (2.5) then leads to

•
η =

1

θ
•
e+ ∂BS(e,B) ·

•
B.

This in turn allows us to express the rate of entropy production in the general form
via the balance equations (2.3) and (2.4) as follows:

ξ =
1

θ
(T · Dv − div je) + div jη + ∂BS(e,B) ·

•
B (2.7)

In the next step, we make special choices of T, je, jη and S that lead to (1.9),
(1.11)–(1.13) and verify, using the above formula and also (1.10), that ξ ≥ 0.

The formula for specific entropy is chosen as

S(e,B) := cv ln e− f(B), (2.8)

where cv > 0 is the specific heat constant and

f(B) := µ(trB− d− ln detB), µ > 0, (2.9)
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is a function that characterizes the elastic properties of the fluid. If µ = 0 or B = I,
then (2.8) reduces to the classical Navier-Stokes-Fourier model, where one has

e = cvθ. (2.10)

Note that as long as µ does not depend on temperature (which is the case in this
work), this property actually remains valid even with our generalized assumption
(2.8), as is immediately obvious from (2.8), (2.6) and (2.5).

Next, comparing (2.1), (2.4) and (2.3) with (1.9), (1.11) and (1.13), respectively,
the constitutive choices for the fluxes are evidently as follows:

T := −pI+ 2ν(θ)Dv + 2aµθB, (2.11)

je := −κ(θ)∇θ, (2.12)

jη := −κ(θ)∇ ln θ + λ(θ)∇f(B), (2.13)

where ν(θ) > 0, κ(θ) > 0 and λ(θ) > 0 are the kinematic viscosity, thermal
conductivity and stress diffusion coefficients, respectively, and parameter a arises
from the definition of the objective tensorial time derivative (1.18).

Finally, plugging the relations (2.11)–(2.13) and (1.19) into (2.7) and taking
advantage of the identities

− pI · Dv = −p div v = 0,

∂BS(e,B) = −f ′(B) = −µ(I− B−1) (see (A.21) below), (2.14)

(I− B−1) · (WvB− BWv) = (I− B−1)B ·Wv − B(I− B−1) ·Wv = 0,

(I− B−1) · (DvB+ BDv) = 2(B− I) · Dv = 2B · Dv,

∇(I− B−1) · ∇B = B−1∇BB−1 · ∇B = |B− 1
2∇BB− 1

2 |2 (2.15)

(here we used that B is a symmetric positive definite matrix, which follows from
the same property of B0 as we shall see later) leads to

ξ =
1

θ
(2ν(θ)|Dv|2 + 2aµθB · Dv + div(κ(θ)∇θ)) + div(−κ(θ)∇ ln θ + λ(θ)∇f(B))

− µ(I− B−1) · (WvB− BWv + a(DvB+ BDv)− P (θ,B) + div(λ(θ)∇B))

=
2ν(θ)

θ
|Dv|2 + κ(θ)|∇ ln θ|2 + µ(I− B−1) · P (θ,B) + µλ(θ)|B− 1

2∇BB− 1
2 |2,

which validates (1.7) and verifies the physical consistency of the model. Moreover,
from the last expression, it is evident that ξ ≥ 0 whenever (I− B−1) · P (θ,B) ≥ 0,
in which case the second law of thermodynamics is always fulfilled.

3. Weak formulation & main result

In this section, we focus on mathematical properties of the problem (1.1)–(1.17).
After we introduce the necessary notation, we formally derive a priori estimates
that clarify the imposed restrictions on model parameters. They also indicate
the functions spaces in which the long-time and large-data existence theory can be
established. Then we provide the definition of weak solution to (1.1)–(1.17) and
formulate the main result of the paper.
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Notation and function spaces. The sets of symmetric, positive definite and
positive semi-definite matrices are defined as follows:

Rd×d
sym := {A ∈ Rd×d : A = AT },

Rd×d
>0 := {A ∈ Rd×d

sym : Ax · x > 0 for all 0 ̸= x ∈ Rd},

Rd×d
≥0 := {A ∈ Rd×d

sym : Ax · x ≥ 0 for all x ∈ Rd}.

If d = 1, we set R>0 := R1×1
>0 = (0,∞) and R≥0 := R1×1

≥0 = [0,∞). We use the sym-
bol “·” to denote the standard inner product in any multi-dimensional space, while
the symbol “⊗” denotes the outer product. Further, the symbol “|·|” can be applied
to either scalars, vectors or matrices, meaning always the Euclidean (or Frobenius)
norm. The functions of matrices, such as matrix real powers, matrix logarithm
and matrix exponential, are understood in the standard way, using the spectral de-
composition for symmetric matrices, for instance. For various products of matrix-
valued functions, we use an intuitive index-free notation. One can follow the rule
that ∇ can only be contracted with another vector (or one-form), but never with
columns or rows of some matrix, so for example: ∇A · ∇B =

∑
i,j,k ∂iAjk∂iBjk or

(v ⊗ A) · ∇B =
∑

i,j,k viAjk∂iBjk or |A∇BC|2 =
∑

i,j,k

(∑
l,m Ail∂kBlmCmj

)2
.

If not stated otherwise, the set Ω ⊂ Rd is an open bounded set with a Lipschitz
boundary (i.e. of the class C0,1) in the sense of [47, Sect. 2.1.1]. Let O ⊂ Rm be
an open bounded set (such as (0, T ), Ω or Q) and V be a subset of an Euclidean
space. The symbol (Lp(O;V ), ∥·∥Lp(O;V )) denotes the Lebesgue space of functions

u : O → V . The standard inner products in L2(O;V ) and also in L2(∂Ω;V ) are
denoted as (·, ·)O and (·, ·)∂Ω, respectively. In the special case that O = Ω, we write
just ∥·∥p instead of ∥·∥Lp(Ω;V ) and (·, ·) instead of (·, ·)Ω.

The symbol (W k,p(Ω;V ), ∥·∥k,p), 1 ≤ p ≤ ∞, k ∈ N, is used to denote the Sobolev
spaces with their standard norm considered over the set Ω. If p > 1, we set
W−k,p(Ω;V ) := (W k,p′

(Ω;V ))∗, where p′ := p/(p− 1), k ∈ N, and the star symbol
“∗” denotes the topological (continuous) dual space. For vector-valued functions,
we introduce the following subspaces:

W k,p
n := {u ∈W k,p(Ω;Rd) : u · n = 0}, k ∈ N, p <∞,

W k,p
n,div := {u ∈W k,p

n : divu = 0}, k ∈ N, p <∞,

W−k,2
n,div := (W k,2

n,div)
∗, k ∈ N,

L2
n,div :=W 1,2

n,div

∥·∥2

.

The expression u · n is understood as a trace of a Sobolev function, for which we
do not use any special notation. The meaning of the duality pairing ⟨·, ·⟩ is always
understandable in the given context.

Let X be a Banach space. The Bochner spaces Lp(0, T ;X) with 1 ≤ p ≤ ∞
consist of strongly measurable mappings u : [0, T ] → X for which the norm

∥u∥Lp(0,T ;X) :=

{(∫ T

0

∥u∥pX

) 1
p

if 1 ≤ p <∞,

ess sup
(0,T )

∥u∥X if p = ∞,
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is finite. If X = Lq(Ω;V ) or X = W k,q(Ω;V ), with 1 ≤ q ≤ ∞, n ∈ N, we use
the abbreviations ∥·∥LpLq or ∥·∥LpWk,q , respectively, for the corresponding norms.
Next, the space of weakly continuous functions is defined as

Cw([0, T ];X) :=
{
u ∈ L∞(0, T ;X) : the function ⟨g, u⟩ is continuous in [0, T ]

for every g ∈ X∗},
whereas the standard space of continuous X-valued functions on [0, T ] is denoted
by C([0, T ];X) and equipped with the norm

∥u∥C([0,T ];X) := sup
t∈[0,T ]

∥u(t)∥X .

In addition, if X is separable and reflexive, we define two more spaces. First,
the space of X∗-valued Radon measures on [0, T ] is defined as

M([0, T ];X∗) := (C([0, T ];X))∗.

Then, we set

BV ([0, T ];X∗) :=
{
u ∈ L∞(0, T ;X∗), ∂tu ∈ M([0, T ];X∗)

}
to be the space of functions having X∗-valued bounded variation with respect to
the time variable. Note that if u ∈ BV ([0, T ];X∗) then it makes sense to define
value from left and from right at any point t, i.e., there exist

u(t+) := lim
τ→t+

u(τ) for any t ∈ [0, T ) and u(t−) := lim
τ→t−

u(τ) for any t ∈ (0, T ],

where the limits are considered in the strong topology of X∗. For properties of BV
mappings in Bochner spaces, we refer e.g. to [30].

Assumptions on material coefficients. The mathematical properties of the sys-
tem (1.1)–(1.17) depend crucially on the behaviour of the material coefficients,
which we now specify. We will require that

ν, κ, λ, P are continuous functions in R,R,R and R× Rd×d
sym , respectively, (3.1)

and there are numbers q, r > 0, C,Cα > 0 and ωP > 0, such that, for all s ∈ R,
the following conditions hold:

C−1 ≤ ν(s) ≤ C, (3.2)

C−1(1 + sr) ≤ κ(s) ≤ C(1 + sr), (3.3)

C−1 ≤ λ(s) ≤ C, (3.4)

P(s,A) = P(s,A)T for all A ∈ Rd×d
sym , (3.5)

|P(s,A)| ≤ C(1 + |A|q+1) for all A ∈ Rd×d
sym , (3.6)

P(s,A) · Aα ≥ Cα|A|q+1+α − C for all α > 0 and A ∈ Rd×d
>0 , (3.7)

P(s,A) · I ≥ −C for all A ∈ Rd×d
>0 , (3.8)

P(s,A) · (I− A−1) ≥ 0 for all A ∈ Rd×d
>0 , (3.9)

P(s,A+ ωP I)x · x ≤ 0 for all A ∈ Rd×d
sym and x ∈ Rd

such that Ax · x ≤ 0. (3.10)

Assumption (3.2) is quite standard for fluids. Restriction (3.3) means that κ is
a bounded function near zero and has an r-growth near infinity. Assumption (3.4)
is chosen just for simplicity. Condition (3.5) is necessary for validity of (1.10).
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Assumptions (3.6) and (3.7) mean that P(·,A) behaves asymptotically as Aq+1,
which is a crucial information to get sufficient a priori estimates. Condition (3.8)
simplifies the analysis at one step and means basically that the leading order term
of P(·,A) appears with the positive sign, compare e.g. with the Oldroyd-B and
Giesekus model, where P(·,A) = A − I and P(·,A) = A2 − A, respectively. Prop-
erty (3.9) is important for the validity of the second law of thermodynamics in our
model. Again, both Oldroyd-B and Giesekus models fulfill this requirement. Fi-
nally, the assumption (3.10) restricts the behaviour of P(·,A) when A is not positive
definite or if its eigenvalues are too small. We remark that this technical condition
concerns the case s ≤ 0 or A ∈ Rd×d \Rd×d

>0 that actually never arises in the studied
problem. An explicit example of function P satisfying (3.5)–(3.10) would be

P(s,A) = δ(s)(1 + |A− I|q−β)Aβ(A− I),
where δ is a continuous positive real function and β ∈ [0, q]. Indeed, note that, for

any A ∈ Rd×d
>0 , we can write

Aβ(A− I) · (I− A−1) = A
β
2 A

β
2 (A

1
2 − A− 1

2 )A
1
2 · (I− A−1)

= A
β
2 (A

1
2 − A− 1

2 ) · A
β
2 (I− A−1)A

1
2 = |A

β
2 (A

1
2 − A− 1

2 )|2 ≥ 0,

implying (3.9). The properties (3.6), (3.7) and (3.8) follow easily from (A.20) in
Appendix. Finally, we claim that (3.10) holds with ωP = 1. Indeed, let 0 ̸= x ∈ Rd

be an eigenvector of A ∈ Rd×d
sym , for which λ := Ax · x/|x|2 ≤ 0. If A + I ̸∈ Rd×d

>0

then we can redefine P(·,A+ I) as needed. Otherwise, we have A+ I ∈ Rd×d
>0 , and

thus λ > −1 and we can write

P(s,A+ I)x · x = δ(s)(1 + |A|q−β)(A+ I)βAx · x

= δ(s)(1 + |A|q−β)(λ+ 1)βλ|x|2 ≤ 0.

Conditions on q and r. To make sure that the individual terms appearing in
the weak formulation of the governing equations (defined below) are well defined,
we need to restrict the parameters q and r by the conditions

r > 1− 2

d
and q > 1 +

2

r − 1 + 2
d

; (3.11)

we recall that d ≥ 2 is the dimension of the domain Ω.
Condition (3.11) is sufficient to define every term of the system (1.1)–(1.17)

in a weak sense, with the exception of (1.12), which needs additional technical
assumptions due to the presence of pressure (see the second part of Theorem 3.1
below). As such, condition (3.11) is actually sufficient for the existence of a weak
solution, which is the content of our main result.

By imposing (3.11), we place some restrictions on the coefficients of the model
which may not agree with experimental measurements. Note, however, that (3.3),
(3.6) and (3.7) restrict only the asymptotic behaviour of the coefficients. For exam-
ple, any continuous function κ defined on some interval (θ0, θ1), 0 < θ0 < θ1 < ∞,
can be modified in a neighbourhood of 0 and ∞ so that (3.3) holds. The interval
(θ0, θ1) may represent the temperature range for which the model we are consider-
ing makes sense. When the fluid starts to freeze or boil, then we are clearly outside
this range and it makes no sense to prescribe the coefficients ν, κ, δ and λ there.
On the other hand, it is unclear whether one can deduce some absolute bounds
for the temperature, besides θ > 0, using only the information that is encoded in
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the system. Thus, purely for mathematical reasons, we have to assume that these
material coefficients are defined in some way also outside (θ0, θ1). A similar remark
applies also for the other coefficients. For example, if |A| is too large, any realistic
material eventually breaks down. Thus, we may set P(·,A) = A − I, |A| ∈ [0,M),
where M is large (to mimic the Oldroyd-B model, for example) and then extend
this function continuously so that (3.7) holds with some large q, see (1.20).

A priori estimates. Let us now the motivate the definition of the weak solution
to (1.1)–(1.13) by an informal derivation of the available a priori estimates. This
clarifies the need for (3.11) and highlights the main idea of the existence proof.
The starting point are the assumptions on the data:

E0 ∈ L1(Ω;R≥0), η0 ∈ L1(Ω;R), B0 ∈ Lq(Ω;Rd×d
>0 ), g ∈ L2(Q;Rd). (3.12)

In addition, we may suppose that

θ ≥ 0 and Bx · x ≥ 0 for all x ∈ Rd, (3.13)

which is due to a suitable construction of the solution (cf. (5.62) below).
In what follows, the basic relations (1.4)–(1.7) and also (2.9) will be used without

further reference. Moreover, the symbol C will be used to denote a positive constant
that can change from line to line and can depend only on the data, domain Ω, time
T > 0 and other constants appearing in (3.2)–(3.10).

Integrating (1.12) over Ω and applying the boundary conditions (1.14) and (1.16)
drops the divergence terms, which, together with Young’s inequality and (3.13)1,
leads to

d

dt

∫
Ω

E =

∫
Ω

g · v ≤ 1

2

∫
Ω

|g|2 +
∫
Ω

E.

Hence, using (3.12)1, we see that E ∈ L∞(0, T ;L1(Ω;R)), therefore also

θ ∈ L∞(0, T ;L1(Ω;R≥0)) and v ∈ L∞(0, T ;L2(Ω;Rd)). (3.14)

Next, integrating the entropy inequality (1.13), and again applying the boundary
conditions in the divergence terms, gives

d

dt

∫
Ω

η(t) ≥ 0.

Applying (3.12)2 and (3.13)2 (trB ≥ 0, to be precise), the last inequality yields∫
Ω

(ln θ(t) + ln detB(t)) > −C,

which is a very important inequality as it ensures that θ > 0 and B is positive
definite almost everywhere. Although one also gets ξ ∈ L1(0, T ;L1(Ω)) after inte-
grating (1.13) and using (3.14)1, this information turns out to be too weak. Instead,
we can get better estimates directly from (1.10) and (1.11).

Due to the positive definiteness of B, the equation (1.10) can be tested by the ma-
trix power Bq−1. (Though here one can also use |B|q−2B since q ≥ 1 and the stress
diffusion term is actually not important for the estimate itself.) Then, using (3.4),
(3.7), Young’s inequality and Lemma A.3 below, we eventually get

d

dt

∫
Ω

trBq +

∫
Ω

|B|2q +
∫
Ω

|∇B
q
2 |2 ≤ C

∫
Ω

|B|q|Dv|+C ≤ C

∫
Ω

|Dv|2 +C. (3.15)
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Hence, integrating over (0, T ) and thanks to (3.12)3, we have

∥B∥L2qL2q ≤ C∥Dv∥
1
q

L2L2 + C. (3.16)

Clearly, we need control over Dv, but it has to be obtained differently than for
the Navier–Stokes–Fourier systems, as we pointed out in the introduction.

Thanks to θ > 0, we may test (1.11) by the function −θ−β with β ≥ 0. Eventu-
ally, applying (3.14)1, (3.2) and (3.3), this leads to the estimate

β

∫
Q

θr−β−1|∇θ|2 +
∫
Q

|Dv|2 ≤ C

∫
Q

θ|B||Dv|+ C. (3.17)

Using (3.14), (3.16) and the Hölder inequality, the above inequality gives

β∥θ
r−β+1

2 ∥2L2W 1,2 + ∥Dv∥2L2L2 ≤ C∥θ∥L2q′L2q′∥B∥L2qL2q∥Dv∥L2L2 + C

≤ C∥θ∥2q
′

L2q′L2q′ +
1

2
∥Dv∥2L2L2 + C.

(3.18)

The last term is absorbed by the left-hand side and for the first term we use
the interpolation inequality

∥θ∥2q
′

2q′ ≤ ∥θ∥
2q′− d(r−β+1)(2q′−1)

d(r−β)+2

1 ∥θ∥
d(r−β+1)(2q′−1)

d(r−β)+2

d(r−β+1)
d−2

and (3.14) to deduce

β∥θ
r−β+1

2 ∥2L2W 1,2 + ∥Dv∥2L2L2 ≤ C

∫ T

0

∥θ∥
d(r−β+1)(2q′−1)

d(r−β)+2

d(r−β+1)
d−2

+ C

= C

∫ T

0

∥θ
r−β+1

2 ∥
2d(2q′−1)
d(r−β)+2

2d
d−2

+ C ≤ C

∫ T

0

∥θ
r−β+1

2 ∥
2d(2q′−1)
d(r−β)+2

1,2 + C.

(3.19)

Hence, if
2d(2q′ − 1)

d(r − β) + 2
< 2, (3.20)

the first term on the right-hand side can be absorbed by the left-hand side and
thus, we get

β∥θ
r−β+1

2 ∥2L2W 1,2 + ∥Dv∥2L2L2 + ∥B∥2qL2qL2q ≤ C. (3.21)

Finally, the inequality (3.20) can be made true by choosing β > 0 sufficiently small
if and only if q and r satisfy (3.11). Note that, in this case, we were able to estimate
the right-hand side of (3.17), i.e., the “critical” term θB · Dv appearing in (1.11).
It is easy to verify, using estimates (3.14) and (3.21) that all the other nonlinear
terms appearing in the system (1.1)–(1.13) are integrable as well.

Definition of weak solution. Motivated by the above estimates, we now deliver
the exact definition of a weak solution to (1.1)–(1.17).

Definition 3.1. Let T > 0 and let Ω ⊂ Rd, d ≥ 2, be a Lipschitz domain. As-
sume that the constants a ∈ R, α ≥ 0, cv, µ > 0 and the functions ν, κ, λ,P fulfil
the assumptions (3.1)–(3.9) with the parameters q and r satisfying (3.11) and let
m := min{2, 4q

q+2}. Suppose that the initial data satisfy

v0 ∈ L2
n,div(Ω;Rd), B0 ∈ Lq(Ω;Rd×d

>0 ), θ0 ∈ L1(Ω;R>0), (3.22)

η0 := cv ln θ0 − f(B0) ∈ L1(Ω;R), (3.23)
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where f is given by (2.9), and that

g ∈ L2(Q;Rd). (3.24)

Then, we say that the sextuplet (v,B, θ, e, E, η) : Q→ Rd×Rd×d
>0 ×R>0×R>0×

R>0 ×R is a weak solution of the initial-boundary value problem (1.1)–(1.17) if all
of the following conditions (i)–(iv) are satisfied:

(i) The functions v, B, θ and η fulfil the properties

v ∈ L2(0, T ;W 1,2
n,div) ∩ Cw([0, T ];L2(Ω;Rd)), (3.25)

∂tv ∈ L
d+2
d (0, T ;W

−1, d+2
d

n,div ), (3.26)

B ∈ Lm(0, T ;W 1,m(Ω;Rd×d
>0 )) ∩ Cw([0, T ];Lq(Ω;Rd×d

>0 )), (3.27)

B ∈ L2q(Q;Rd×d
>0 ), (3.28)

B
q
2 ∈ L2(0, T ;W 1,2(Ω;Rd×d

>0 )), (3.29)

∂tB ∈
(
L2q′(0, T ;W 1,2q′(Ω;Rd×d))

)∗
, (3.30)

B− 1
2∇BB− 1

2 ∈ L2(Q;Rd × Rd×d
sym), (3.31)

ln detB ∈ L2(0, T ;W 1,2(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)), (3.32)

θ ∈ L∞(0, T ;L1(Ω;R>0)) ∩ Lr+ 2
d+1−ε(Q;R>0), (3.33)

θ
r+1−ε

2 ∈ L2(0, T ;W 1,2(Ω;R>0)), (3.34)

ln θ ∈ L2(0, T ;W 1,2(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)), (3.35)

η ∈ Lm(0, T ;W 1,m(Ω;R)) ∩ L∞(0, T ;L1(Ω;R)) (3.36)

for every ε ∈ (0, 1).
(ii) The relations (1.1)–(1.7) hold almost everywhere in Q.
(iii) Equations (1.9)–(1.13) are satisfied in the following sense:

⟨∂tv,φ⟩ − (v ⊗ v,∇φ)Q + (S,∇φ)Q + (αvτ ,φτ )Σ = (g,φ)Q

for all φ ∈ L
d
2+1(0, T ;W

1, d2+1

n,div ),
(3.37)

⟨∂tB,A⟩ − (B⊗ v,∇A)Q + (P(θ,B),A)Q + (λ(θ)∇B,∇A)Q
= ((aDv +Wv)B,A+ AT )Q

for all A ∈ L2q′(0, T ;W 1,2q′(Ω;Rd×d)),

(3.38)

− (cvθ0, ϕφ(0))− (cvθ, ϕ∂tφ)Q − (cvθv,∇ϕφ)Q + (κ(θ)∇θ,∇ϕφ)Q
≥ (S · Dv, ϕφ)Q

for all φ ∈W 1,∞((0, T );R≥0), φ(T ) = 0, and all ϕ ∈W 1,∞(Ω;R≥0),

(3.39)

− (η0, ϕφ(0))− (η, ϕ∂tφ)Q − (ηv,∇ϕφ)Q
+
(
κ(θ)∇ ln θ − λ(θ)∇f(B),∇ϕφ

)
Q
≥ (ξ, ϕφ)Q

for all φ ∈W 1,∞((0, T );R≥0), φ(T ) = 0, and all ϕ ∈W 1,∞(Ω;R≥0),

(3.40)

d

dt

∫
Ω

E + α

∫
∂Ω

|v|2 =

∫
Ω

g · v a.e. in [0, T ]. (3.41)



ANALYSIS OF THERMOVISCOELASTIC FLUIDS 15

(iv) The initial data are attained in the following way:

lim
t→0+

∥v(t)− v0∥2 = 0, (3.42)

lim
t→0+

∥B(t)− B0∥q−ε = 0 for every ε ∈ (0, q − 1], (3.43)

lim
t→0+

∥θ(t)− θ0∥1 = 0, (3.44)

lim inf
t→0+

(η(t), ϕ) ≥ (η0, ϕ) for all 0 ≤ ϕ ∈W 1,∞(Ω). (3.45)

With this definition in hand, we now formulate our main result.

Theorem 3.1. Suppose that all the assumptions of Definition 3.1 are fulfilled.
Then, there exists a weak solution of the system (1.1)–(1.17) in the sense of Defi-
nition 3.1.

In addition, if d ≤ 3 and Ω ∈ C1,1, then there is a pressure p ∈ L
d+2
d (Q;R) such

that the local balance of total energy (1.12) holds in the sense:

− ( 12 |v0|2 + cvθ0, ϕφ(0))− (E, ϕ∂tφ)Q + (α|vτ |2, ϕφ)Σ + (κ(θ)∇θ,∇ϕφ)Q
= (Ev + pv − Sv,∇ϕφ)Q

for all φ ∈W 1,∞((0, T );R), φ(T ) = 0, and every ϕ ∈W 1,∞(Ω;R)
(3.46)

and also (3.37) can be generalized to

⟨∂tv,φ⟩ − (v ⊗ v,∇φ)Q + (−pI+ S,∇φ)Q + (αvτ ,φτ )Σ = (g,φ)Q

for all φ ∈ L
d
2+1(0, T ;W

1, d2+1
n ).

(3.47)

We remark that if a weak solution admits enough regularity so that (3.37) can
be tested by v and (3.39) can be localized in space, then (3.39) holds as an equality.
Indeed, the localized version of (3.39) reads

cv∂tθ + cvv · ∇θ − div(κ(θ)∇θ)− S · Dv ≥ 0. (3.48)

On the other hand, subtracting (3.37) tested by v from (3.41) yields∫
Ω

(cv∂tθ − S · Dv) = 0.

Since also ∫
Ω

(cvv · ∇θ − div(κ(θ)∇θ)) = 0

due to the boundary conditions v · n = 0 and ∇θ · n = 0 on ∂Ω, we conclude
from the above that (3.48) must be an equality. Consequently, the entropy inequal-
ity (3.40) also becomes an equality, provided that one is able to justify B−1 and θ−1

as tests in (3.38) and (3.39). These considerations imply that a weak solution that
admits sufficient regularity is also a solution of (1.1)–(1.17) in the classical sense.

The existence proof below is done only for d ≥ 3 (the case d = 2 is simpler).
Also, it is clearly enough to focus on the case α > 0. In the simpler case α = 0
(corresponding to the free-slip boundary condition), one just has to use a different
Korn–Poincaré inequality in case Ω is axially symmetric.

The general strategy of the proof is to approximate the system (1.9), (1.10),
(1.11) using several parameters to obtain a proper Galerkin approximation gen-
erated by a smooth basis of eigenvectors and to show that the resulting (ODE)
system has a solution. After that, our aim is to derive the entropy equation. At
this point, possibly irregular terms containing θ and B are cut-off and v is smooth,
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hence we easily obtain uniform estimates for the Galerkin approximations of B and
θ, which might not be positive definite or positive, respectively. However, after
taking the limit with these approximations and then proving certain maximum
principles, we prove invertibility of θ and B, which, in turn, enables us to derive
the entropy equation. From this we read that the positivity of detB and θ is pre-
served uniformly, which then enables us to remove the cut-off from the system.
The proof of this is presented in Section 4. Note that at this point, the velocity is
still kept in a finite ℓ-dimensional space. To the equation for the internal energy we
add the regularization −ω∆r+2θ (the so-called (r+2)-Laplacian) in order to avoid
weighted Sobolev spaces, where the density of smooth functions is not available in
general.

Next, in Section 5, we first improve the uniform estimates by considering appro-
priate test functions in the equations for θ and B. At this point such a procedure
is rigorous. Finally, we let ω → 0 and ℓ → ∞ and we pass to the final limit,
identify the non-linear terms and initial conditions, hereby obtaining a solution of
the original problem. Finally, in Section 6, we prove the validity of the local energy
equality provided d ≤ 3.

4. Existence of a weak solution: the approximative problem

First we introduce a truncation, which is essential for the proof. We also pre-
pare some simple estimates corresponding to this truncation that are used later in
the proof. Recalling that ωP is introduced in (3.10), we define, for any ω ∈ (0, ωP ),
the “cut-off” function gω in the following way:

gω(A, τ) :=
max{0,Λ(A)− ω}max{0, τ − ω}

(|Λ(A)|+ ω)(1 + ω|A|2)(|τ |+ ω)(1 + ωτ2)
, A ∈ Rd×d

sym , τ ∈ R,

where Λ(A) denotes the smallest eigenvalue of A, i.e.,

Λ(A) := min{λ : det(A− λI) = 0}.

Note that gω is a continuous function in Rd×d
sym × R and satisfies 0 ≤ gω(A, τ) < 1

for every (A, τ) ∈ Rd×d
sym × R. Moreover, if Λ(A) ≤ ω or τ ≤ ω, then gω(A, τ) = 0,

whereas if Λ(A) > 0 and τ > 0, then gω(A, τ) → 1 as ω → 0+. Furthermore, we
remark that

gω(A, τ)(1 + |A|+ |A|2)(1 + τ + τ2) ≤ C(ω). (4.1)

The function gω is used below in the system (4.11)–(4.13) to control irregular terms
of the original problem. We also truncate the initial functions B0 and θ0 and set

Bω
0 (x) :=

{ B0(x) if Λ(B0(x)) > ω and |B0(x)| <
√
dω−1,

I elsewhere;
(4.2)

θω0 (x) :=
{
θ0(x) if ω < θ0(x) < ω−1,
1 elsewhere.

(4.3)

With such definitions, these functions satisfy (a.e. in Ω)

Λ(Bω
0 ) > ω, θω0 > ω (4.4)

|Bω
0 | <

√
dω−1, |θω0 | < ω−1 (4.5)

|Bω
0 | ≤

√
d+ |B0|, θω0 ≤ 1 + θ0, (4.6)



ANALYSIS OF THERMOVISCOELASTIC FLUIDS 17

and, since ln 1 = 0,

| ln detBω
0 | ≤ | ln detB0|, | ln θω0 | ≤ | ln θ0|. (4.7)

Since B0 ∈ Lq(Ω;Rd×d
>0 ), we also observe that the Lebesgue measure of the sets

{Λ(B0) ≤ ω} and {|B0| ≥ ω−1} tends to zero as ω → 0+, and thus

∥Bω
0 − B0∥qq =

∫
Λ(B0)≤ω

|I− B0|q +
∫
|B0|≥ω−1

|I− B0|q → 0. (4.8)

Analogously, relying on θ0 ∈ L1(Ω;R>0), we also obtain

∥θω0 − θ0∥1 → 0, ω → 0 + . (4.9)

Next, we discretize the ω-truncated system in space by the Galerkin method.1

Let {wi}∞i=1, {Wj}∞j=1 and {wk}∞k=1 be bases of the spaces WN,2(Ω;Rd) ∩W 1,2
n,div,

WN,2(Ω;Rd×d
sym) and WN,2(Ω;R), respectively, with the following properties:

• The bases are L2-orthonormal and WN,2-orthogonal.
• The number N ∈ N is chosen so large that the elements of the bases are
Lipschitz (due to embeddings of Sobolev spaces).

• w1 = |Ω|− 1
2 .

• For any ℓ, n ∈ N, there exist L2-orthogonal projections

Pℓ : L
2(Ω;Rd) → span{wi}ℓi=1,

Qn : L2(Ω;Rd×d) → span{Wj}nj=1,

Rn : L2(Ω;R) → span{wk}nk=1

• Pℓ, Qn, Rn are L2- and WN,2-bounded, uniformly w.r.t. ℓ, n.

Existence of these bases and corresponding projections follows from standard results
(see Appendix 4 in [40]) using the eigenvectors of the generalized Laplace or Stokes
operators.

We fix ℓ, n ∈ N and consider the problem of finding the functions αi
ℓn, β

j
ℓn, γ

k
ℓn

of time, where i = 1, . . . , ℓ and j, k = 1, . . . , n, such that the functions vℓn, Bℓn, θℓn
and Sωℓn defined as

vℓn(t, x) =

ℓ∑
i=1

αi
ℓn(t)wi(x), Bℓn(t, x) =

n∑
j=1

βj
ℓn(t)Wj(x), θℓn =

n∑
k=1

γkℓn(t)wk(x)

and
Sωℓn := 2ν(θℓn)Dvℓn + 2aµgω(Bℓn, θℓn)θℓnBℓn (4.10)

satisfy the following equations a.e. in (0, T0), T0 > 0:

(∂tvℓn,wi)− (vℓn ⊗ vℓn,∇wi) + (Sωℓn,∇wi) + α(vℓn,φ)∂Ω = (g,wi), (4.11)

(∂tBℓn,Wj)− (Bℓn ⊗ vℓ,∇Wj) + (P(θℓn,Bℓn),Wj) + (λ(θℓn)∇Bℓn,∇Wj)

= (2gω(Bℓn, θℓn)(aDvℓn +Wvℓn)Bℓn,Wj),
(4.12)

(cv∂tθℓn, wk)− (cvθℓvℓn,∇wk) + ((κ(θℓn) + ω|∇θℓn|r)∇θℓn,∇wk)

= (Sωℓn · Dvℓn, wk),
(4.13)

for all 1 ≤ i ≤ ℓ, 1 ≤ j, k ≤ n and with the initial conditions

vℓn(0) = Pℓv0, Bℓn(0) = QnBω
0 , θℓn(0) = Rnθ

ω
0 in Ω. (4.14)

1With this approach, we do not need the positive definiteness of the basis functions for B.
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By the L2-orthonormality of the bases, we have

(∂tvℓn,wi) =

ℓ∑
m=1

∂tα
m
ℓn(wm,wi) = (αi

ℓn)
′

and similarly

(∂tBℓn,Wj) = (βj
ℓn)

′ and (∂tθℓn, wk) = (γkℓn)
′.

Thus, (4.11)–(4.13) is a system of ℓ+2n ordinary differential equations of the form

(αi
ℓn)

′ = F1(t, α
1
ℓn, . . . , α

ℓ
ℓn), i = 1, . . . , ℓ,

(βj
ℓn)

′ = F2(β
1
ℓn, . . . , β

n
ℓn), j = 1, . . . , n,

(γkℓn)
′ = F3(γ

1
ℓn, . . . , γ

n
ℓn), k = 1, . . . , n.

 (4.15)

It is easy to see, using (3.1), that F1, F2 and F3 are continuous with respect to

the variables αi
ℓn, β

j
ℓn and γkℓn and measurable with respect to t, respectively. More-

over, the explicit dependence of F1 on time is controlled by

|(g,wi)| ≤ ∥g∥2∥wi∥2 ∈ L2(0, T ;R).

Thus, we can apply the Carathéodory existence theorem (see [19, Chapter 2, Theo-
rem 1] or [60, Chapter 30]) and hereby obtain absolutely continuous functions αi

ℓn,

βj
ℓn, γ

k
ℓn, 1 ≤ i ≤ ℓ, 1 ≤ j, k ≤ n, solving (4.15) on (0, T0), where T0 < T is the time

of the first blow-up. In view of the a priori estimates derived below (see e.g. (4.18)),
we are able to prove that

sup
t∈(0,T0)

( ℓ∑
i=1

(αi
ℓn(t))

2 +

n∑
j=1

(βj
ℓn(t))

2 +

n∑
k=1

(γkℓn(t))
2
)
<∞,

hence, there can be no blow-up and the functions vkl,Bkl, θkl are defined on an
arbitrary time interval, in particular on [0, T ].

Estimates uniform with respect to n. By multiplying the i-th equation in (4.11)
by αi

ℓn, summing the result over all i = 1, . . . , ℓ, integrating by parts and using
the facts that the basis functions satisfy vℓn · n = 0 on ∂Ω and div vℓn = 0 in Ω
(hence the convective term vanishes), we obtain (a.e. in (0, T ))

1

2

d

dt
∥vℓn∥22 + ∥

√
2ν(θℓn)Dvℓn∥22 + α∥vℓn∥2L2(∂Ω;Rd)

= −(2aµgω(Bℓn, θℓn)θℓnBℓn,Dvℓn) + (g,vℓn).
(4.16)

Then we use (3.2), (4.1), Korn’s and Young’s inequality, and deduce

d

dt
∥vℓn∥22 + ∥∇vℓn∥22 + α∥vℓn∥2L2(∂Ω;Rd) ≤ C(ω)

∫
Ω

|Dvℓn|+ C∥g∥2∥∇vℓn∥2

≤ C(ω) + C∥g∥22 +
1

2
∥∇vℓn∥22.

Integration with respect to time and the use of (4.14) and (3.22) directly leads to

sup
t∈(0,T )

∥vℓn(t)∥22 +
∫ T

0

∥∇vℓn∥22 + α

∫ T

0

∥vℓn∥2L2(∂Ω;Rd) ≤ C(ω). (4.17)
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(the dependence of the constant C on the data is omitted as g, v0, θ0, or B0 are
fixed functions in our setting). Utilizing the L2-orthonormality of the basis vectors
{wi}ℓi=1, estimate (4.17) yields

sup
t∈(0,T )

ℓ∑
i=1

(αi
ℓn(t))

2 = sup
t∈(0,T )

∥vℓn(t)∥22 ≤ C(ω). (4.18)

Hence, recalling wi ∈W 1,∞(Ω;Rd), i = 1, . . . , ℓ and then also the definition (4.10)
and the estimate (4.1), we obtain

∥vℓn∥L∞W 1,∞ + ∥Sωℓn∥L∞L∞ ≤ C(ω, ℓ). (4.19)

Using (4.19) in (4.11), we see that

∥(αi
ℓn)

′∥L2(0,T ;R) = ∥(∂tvℓn,wi)∥L2(0,T ;R)

= ∥(vℓn ⊗ vℓn − Sωℓn,∇wi)− α(vℓn,wi)∂Ω + (g,wi)∥L2(0,T ;R) (4.20)

≤ C(ω, ℓ) + C(ℓ)∥g∥L2L2 .

Thus, we get

∥∂tvℓn∥L2W 1,∞ = ∥
∑ℓ

i=1(α
i
ℓn)

′wi∥L2W 1,∞ ≤ C(ω, ℓ) (4.21)

and, using the fundamental theorem of calculus and Hölder’s inequality, also that

|αi
ℓn(t)− αi

ℓn(s)| ≤
∫ t

s

|(αi
ℓn)

′| ≤ C(ω, ℓ)|t− s| 12 for every t, s ∈ [0, T ] (4.22)

and any i = 1, . . . , ℓ.
Next, we multiply the j-th equation in (4.12) by βj

ℓn and sum the result over
j = 1, . . . , n. Note that the convective term vanishes after integration by parts and
use of (1.14)1 and (1.8). Also the term including Wvℓn vanishes due to symmetry
of B2

ℓn. Thus, we obtain

1

2

d

dt
∥Bℓn∥22 + (P(θℓn,Bℓn),Bℓn) + ∥

√
λ(θℓn)∇Bℓn∥22

= (2agω(Bℓn, θℓn)DvℓnBℓn,Bℓn) a.e. in (0, T ).
(4.23)

Then using (4.14), (3.7), (3.4) and (4.1) we obtain, after integration over (0, t),
t ∈ (0, T ), that

∥Bℓn(t)∥22 +
∫ t

0

∥Bℓn∥2+q
2+q +

∫ t

0

∥∇Bℓn∥22 ≤ ∥QnBω
0 ∥22 + C(ω, ℓ).

From this, using properties of Qn and (4.5), we easily read that

∥Bℓn∥L∞L2 + ∥Bℓn∥L2+qL2+q + ∥∇Bℓn∥L2L2 ≤ C(ω, ℓ). (4.24)

To estimate the time derivative of Bℓn, we take A ∈ Lq+2(0, T ;WN,2(Ω)) with
∥A∥Lq+2WN,2 ≤ 1 and use (4.12), Hölder’s inequality, (4.24), (4.19), (3.4), (3.6),
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(4.1), properties of Qn and (min{2, q+2
q+1})

′ = q + 2 to get

⟨∂tBℓn,A⟩ = (∂tBℓn, QnA)Q
= (Bℓn ⊗ vℓn − λ(θℓn)∇Bℓn,∇QnA)Q − (P(θℓn,Bℓn), QnA)Q
+ (2gω(Bℓn, θℓn)(aDvℓn +Wvℓn)Bℓn, QnA)Q

≤ C(ω, ℓ)

∫
Q

(
(|Bℓn|+ |∇Bℓn|)|∇QnA|+ (|Bℓn|q+1 + 1)|QnA|

)
≤ C(ω, ℓ)

∫ T

0

(∥∇Bℓn∥1 + ∥Bℓn∥q+1
q+1 + 1)∥QnA∥1,∞

≤ C(ω, ℓ)

∫ T

0

(∥∇Bℓn∥2 + ∥Bℓn∥q+1
q+2 + 1)∥QnA∥N,2

≤ C(ω, ℓ)∥A∥Lq+2WN,2 ≤ C(ω, ℓ).

Hence, we can conclude

∥∂tBℓn∥
L

q+2
q+1 W−N,2

≤ C(ω, ℓ). (4.25)

Next, we multiply the k-th equation in (4.13) by γkℓn, sum the result over k =
1, . . . , n, use (1.14)1, (1.8) and integration by parts in the convective term to get

cv
2

d

dt
∥θℓn∥22 + ∥

√
κ(θℓn)∇θℓn∥22 + ω∥∇θℓn∥r+2

r+2 = (Sωℓn · Dvℓn, θℓn) (4.26)

a.e. in (0, T ). Thus, integrating this inequality over time, using (4.19) and Young’s,
Gronwall’s and Poincaré’s inequalities, properties of Rn and (4.5), we deduce

∥θℓn(t)∥L∞L2 + ∥
√
κ(θℓn)∇θℓn∥L2L2 + ∥θℓn∥Lr+2W 1,r+2 ≤ C(ω, ℓ). (4.27)

Furthermore, taking τ ∈ Lr+2(0, T ;WN,2(Ω)) with ∥τ∥Lr+2WN,2 ≤ 1 and using
(4.13), Young’s inequality, Hölder’s inequality, (3.3), (4.19), (4.27) and properties
of Rn, we obtain

⟨∂tθℓn, τ⟩ = (∂tθℓn, Rnτ)Q

= (cvθℓnvℓn − κ(θℓn)∇θℓn − ω|∇θℓn|r∇θℓn,∇Rnτ)Q + (Sωℓn · Dvℓn, Rnτ)Q

≤ C(ω, ℓ)

∫
Q

((
|θℓn|+ |θℓn|

r
2

∣∣√κ(θℓn)∇θℓn∣∣+ |∇θℓn|r+1
)
|∇Rnτ |+ |Rnτ |

)
≤ C(ω, ℓ)

∫ T

0

∫
Ω

(
|θℓn|r+1 +

∣∣∣√κ(θℓn)∇θℓn∣∣∣ 2r+2
r+2

+ |∇θℓn|r+1 + 1
)
∥Rnτ∥1,∞

≤ C(ω, ℓ)

∫ T

0

(
∥θℓn∥r+1

r+2 + ∥
√
κ(θℓn)∇θℓn∥

2r+2
r+2

2 + ∥∇θℓn∥r+1
r+2 + 1

)
∥Rnτ∥N,2

≤ C(ω, ℓ)∥τ∥Lr+2WN,2 ≤ C(ω, ℓ),

hence

∥∂tθℓn∥
L

r+2
r+1 W−N,2

≤ C(ω, ℓ). (4.28)

The limit n → ∞. For every i = 1, . . . , ℓ, the sequence {αi
ℓn}∞n=1 ⊂ C([0, T ];R)

is bounded due to (4.18) and uniformly equicontinuous by (4.22). Hence, using
the Arzelà–Ascoli theorem, for every i = 1, . . . , ℓ, we obtain αi

ℓ ∈ C([0, T ];R) and
a subsequence (not relabelled) such that

αi
ℓn → αi

ℓ strongly in C([0, T ];R) (4.29)
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as n→ ∞. Then, we define

vℓ :=

ℓ∑
i=1

αi
ℓwi ∈ C([0, T ];W 1,∞(Ω;Rd) ∩W 1,2

n,div)

and note that

vℓn → vℓ strongly in C([0, T ];W 1,∞(Ω;Rd)). (4.30)

According to estimates (4.21), (4.24), (4.25), (4.27), (4.28) and using reflexivity
of the underlying spaces and the Aubin–Lions lemma, there exist subsequences
{vℓn}∞n=1, {Bℓn}∞n=1, {θℓn}∞n=1 and their limits vℓ, Bℓ, θℓ, such that

∂tvℓn
∗
⇀ ∂tvℓ weakly* in L2(0, T ;W 1,∞(Ω;Rd)), (4.31)

vℓn ⇀ vℓ weakly in L2(0, T ;L2(∂Ω;Rd)), (4.32)

Bℓn ⇀ Bℓ weakly in L2(0, T,W 1,2(Ω;Rd×d
sym)), (4.33)

Bℓn → Bℓ strongly in L2+q)(Q;Rd×d
sym) and a.e. in Q, (4.34)

∂tBℓn ⇀ ∂tBℓ weakly in L
q+2
q+1 (0, T ;W−N,2(Ω;Rd×d

sym)), (4.35)

θℓn ⇀ θℓ weakly in Lr+2(0, T,W 1,r+2(Ω;R)), (4.36)

θℓn → θℓ strongly in Lr+2+ 4
d )(Q;Rd×d

sym) and a.e. in Q, (4.37)

∂tθℓn ⇀ ∂tθℓ weakly in L
r+2
r+1 (0, T ;W−N,2(Ω;R)). (4.38)

Now, we explain how to take the limit in the non-linear terms appearing in (4.11),
(4.12) and (4.13). To handle most of the terms, namely

vℓn ⊗ vℓn, ν(θℓn)Dvℓn, Sωℓn, P(θℓn,Bℓn), λ(θℓn)∇Bℓn,

gω(Bℓn, θℓn)(aDvℓn +Wvℓn)Bℓn, vℓn · ∇θℓn, Sωℓn · Dvℓn,

we use the following standard argument: all these terms can be seen as a product
of a weakly converging sequence with a strongly converging sequence, obtained via
Vitali’s theorem, (3.1), continuity of gω and pointwise convergence of vℓn, Bℓn and
θℓn. This argument is sufficient to take the limit n → ∞ in the equations (4.11)
and (4.12). In (4.12), we first multiply the equation by a function φ ∈ C1([0, T ];R),
integrate over (0, T ), then take the limit and finally use the density of functions of

the form φA, A ∈ span{Wj}∞j=1, in the space L(q+2)′(0, T ;WN,2(Ω;Rd×d
sym)). This

way, defining also

Sωℓ := 2ν(θℓ)|Dvℓ|2 + 2aµgω(Bℓ, θℓ)θℓBℓ,

we obtain

(∂tvℓ,wi)− (vℓ ⊗ vℓ,∇wi) + (Sωℓ ,∇wi) + α(vℓ,wi)∂Ω = (g,wi)

for every i = 1, . . . , ℓ, and a.e. in (0, T ),
(4.39)

and

⟨∂tBℓ,A⟩ − (Bℓ ⊗ vℓ,∇A)Q + (P(θℓ,Bℓ),A)Q + (λ(θℓ)∇Bℓ,∇A)Q
= (2gω(Bℓ, θℓ)(aDvℓ +Wvℓ)Bℓ,A)Q

for all A ∈ Lq+2(0, T ;WN,2(Ω;Rd×d
sym)).

(4.40)
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However, the space of test functions in (4.40) can be enlarged using a standard
density argument. Indeed, using Hölder’s inequality, it is easy to see that every
term of (4.40) (taking aside the time derivative) is well defined provided that

A ∈ L2(0, T ;W 1,2(Ω;Rd×d
sym)) ∩ Lq+2(Q;Rd×d

sym)

and thus, we can read from (4.40) that

∂tBℓ ∈
(
L2(0, T ;W 1,2(Ω;Rd×d

sym)) ∩ Lq+2(Q;Rd×d
sym)

)∗
.

Since we also have that

Bℓ ∈ L2(0, T ;W 1,2(Ω;Rd×d
sym)) ∩ Lq+2(Q;Rd×d

sym), (4.41)

it follows from Lemma A.1 below that

Bℓ ∈ C([0, T ];L2(Ω;Rd×d
sym)). (4.42)

The value of Bℓ(0) can be identified by a standard argument, which we briefly
outline here. Using A(t, x) = ψ(t)P(x) in (4.40), where ψ ∈ C1([0, T ];R), ψ(0) = 1,
ψ(T ) = 0, and P ∈WN,2(Ω;Rd×d

sym), one gets, after integration by parts, that

(Bℓ(0),P) = −(Bℓ,P∂tψ)Q + (vℓ · ∇Bℓ,Pψ)Q + (P(θℓ,Bℓ),Pψ)Q
− (λ(θℓ)∇Bℓ,∇Pψ)Q − (2gω(Bℓ, θℓ)(aDvℓ +Wvℓ)Bℓ,Pψ)Q.

(4.43)

On the other hand, exactly the same expression can be obtained also for (Bω
0 ,P) if

one multiplies (4.12) by ψ, integrate over (0, T ) and by parts in the time derivative
using (4.14) and uses completeness of {Wj}∞j=1 in WN,2(Ω;Rd×d

sym) and the same
arguments as before to take the limit n → ∞. But since P was arbitrary and
WN,2(Ω;Rd×d

sym) is dense in L2(Ω;Rd×d
sym), we conclude

Bℓ(0) = Bω
0 . (4.44)

We can use an analogous procedure to identify vℓ(0), but here the situation is
simpler since (4.30) directly implies vℓ ∈ C([0, T ];W 1,∞(Ω;Rd)) and we obtain

vℓ(0) = Pℓv0. (4.45)

Our aim is now to take the limit in equation (4.13), where we need to justify
the limit in the terms κ(θℓn)∇θℓn and |∇θℓn|r∇θℓn (the term 2ν(θℓn)|Dvℓn|2 is easy
due to (4.30)). For the first one, we use (3.3), (4.37) and Vitali’s theorem to get√

κ(θℓn) →
√
κ(θℓ) strongly in L2+ 4

r (Q;R) (4.46)

and then we combine this with (4.36), to obtain√
κ(θℓn)∇θℓn ⇀

√
κ(θℓ)∇θℓ weakly in L1(Q;Rd). (4.47)

However, by (4.27) we know that (4.47) is valid also in L2(Q;Rd) up to a subse-
quence, and hence, using again (4.46), we obtain

κ(θℓn)∇θℓn =
√
κ(θℓn)

√
κ(θℓn)∇θℓn ⇀

√
κ(θℓ)

√
κ(θℓ)∇θℓ = κ(θℓ)∇θℓ (4.48)

weakly in L
r+2
r+1 (Q;Rd).

Finally, due to (4.27), there exists K ∈ L(r+2)′(Q;Rd) such that

|∇θℓn|r∇θℓn ⇀ K weakly in L(r+2)′(Q;Rd). (4.49)

Then, using also (4.48) and previous convergence results, we can take the limit
in (4.13) and obtain, for all τ ∈ Lr+2(0, T ;WN,2(Ω;R)), that
⟨cv∂tθℓ, τ⟩−(cvθℓvℓ,∇τ)Q+(κ(θℓ)∇θℓ,∇τ)Q+ω(K,∇τ)Q = (Sωℓ ·Dvℓ, τ)Q. (4.50)
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Recalling (4.38), (4.48) and (4.49), we easily conclude, using a density argument,
that (4.50) is valid for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)) and that the time deriva-

tive extends to the functional ∂tθℓ ∈ L(r+2)′(0, T ;W−1,(r+2)′(Ω;R)). Thus, using
Lemma A.1 below, we also see that

θℓ ∈ C([0, T ];L2(Ω;R)). (4.51)

Furthermore, choosing τ = θℓ in (4.50), rewriting the time derivative term and
integrating by parts in the convective term leads to

ω(K,∇θℓ)Q =
cv
2
(∥θℓ(0)∥22 − ∥θℓ(T )∥22)−

∫
Q

κ(θℓ)|∇θℓ|2 + (Sωℓ · Dvℓ, θℓ)Q. (4.52)

We use this information to identify K as follows. We note that weak lower semi-
continuity and (4.47) (which is valid in L2(Q;Rd)) imply∫

Q

κ(θℓ)|∇θℓ|2 ≤ lim inf
n→∞

∫
Q

κ(θℓn)|∇θℓn|2. (4.53)

Thus, if we integrate (4.26) over (0, T ) and use (4.53), (4.30), weak lower semi-
continuity of ∥·∥2 and the convergence results above to take the limes superior
n→ ∞ and then apply (4.52), we get

ω lim sup
n→∞

∫
Q

|∇θℓn|r+2

= − lim inf
n→∞

cv
2
∥θℓn(T )∥22 +

cv
2
∥θω0 ∥22 − lim inf

n→∞

∫
Q

κ(θℓn)|∇θℓn|2

+ lim
n→∞

(Sωℓn · Dvℓn, θℓn)Q

≤ −cv
2
∥θℓ(T )∥22 +

cv
2
∥θω0 ∥22 −

∫
Q

κ(θℓ)|∇θℓ|2 + (Sωℓ · Dvℓ, θℓ)Q

=
cv
2
∥θω0 ∥22 −

cv
2
∥θℓ(0)∥22 + ω(K,∇θℓ)Q.

(4.54)

To identify the initial condition for θℓ(0), it is enough to show that

θℓ(t)⇀ θω0 weakly in L2(Ω;R) (4.55)

as t→ 0+ since then we can use (4.51) to conclude

θℓ(0) = θω0 a.e. in Ω (4.56)

by the uniqueness of a (weak) limit. To prove (4.55), we return to (4.13), which we
multiply by φ ∈W 1,∞(0, T ;R) fulfilling φ(0) = 1, φ(T ) = 0 and integrate the result
over (0, T ) to get

− (cvθ
ω
0 , wk)−

∫ T

0

(cvθℓn, wk)∂tφ =

∫ T

0

hnφ. (4.57)

for all k = 1, . . . , n, where we integrated by parts and abbreviated

hn = (cvθℓnvℓn,∇wk)− (κ(θℓn)∇θℓn + ω|∇θℓn|r∇θℓn,∇wk) + (Sωℓn · Dvℓn, wk).

It follows from the results above (cf. the derivation of (4.50)) that

hn ⇀ h weakly in L(r+2)′(0, T ;R),

where

h = (cvθℓvℓ,∇wk)− (κ(θℓ)∇θℓ,∇wk)− ω(K,∇wk) + (Sωℓ · Dvℓ, wk).
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Thus, by taking the limit n→ ∞ in (4.57), we arrive at

− (cvθ
ω
0 , wk)−

∫ T

0

(cvθℓ, wk)∂tφ =

∫ T

0

hφ.

Making now a special choice

φε(s) =

 1 s ≤ t,
1− s−t

ε s ∈ (t, t+ ε),
0 s ≥ t+ ε,

where t ∈ (0, T ) and 0 < ε < T − t, leads to

− (cvθ
ω
0 , wk) +

1

ε

∫ t+ε

t

(cvθℓ, wk) =

∫ t+ε

0

hφε.

Furthermore, we can take the limit ε→ 0+ in this equation using (4.51) on the left
hand side and absolute continuity of integral on the right hand side to get

−(cvθ
ω
0 , wk) + (cvθℓ(t), wk) =

∫ t

0

f.

Finally, taking the limit t→ 0+ yields

lim
t→0+

(θℓ(t), wk) = (θω0 , wk),

for all k = 1, . . . , n, from which (4.55) follows by exploiting the density of the set
span{wk}∞k=1 in L2(Ω;R). Hence, the identity (4.56) is proved and (4.54) hereby
simplifies to

lim sup
n→∞

∫
Q

|∇θℓn|r+2 ≤
∫
Q

K · ∇θℓ. (4.58)

Since the operator u 7→ |u|ru is monotone and continuous, it is standard to show,
using (4.58) and the Minty method, that

K = |∇θℓ|r∇θℓ a.e. in Q.

Hence, we proved that

⟨cv∂tθℓ, τ⟩−(cvθℓvℓ ∇τ)Q+(κ(θℓ)∇θℓ+ω|∇θℓ|r∇θℓ,∇τ)Q = (Sωℓ ·Dvℓ, τ)Q (4.59)

for all τ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)).

Positive definiteness of Bℓ and positivity of θℓ. Here we follow the method
developed in [4]. We shall use the notation

h+ = max{0, h}, h− = min{0, h}.

We choose a fixed vector x ∈ Rd with |x| = 1, and t ∈ (0, T ). The idea is to use

Ax = χ(0,t)(b− ω)− x⊗ x, where b := Bℓx · x.

in (4.40). The function Ax belongs to L2(0, T ;W 1,2(Ω;Rd×d
sym))∩Lq+2(Q;Rd×d

sym) and
is thus a valid test function in (4.40). The key property of Ax is that it vanishes
whenever the smallest eigenvalue of Bℓ is greater than ω. Thus, we have

(Λ(Bℓ)− ω)+(b− ω)− = 0,

which implies

gω(Bℓ, θℓ)Ax = 0 a.e. in Q. (4.60)



ANALYSIS OF THERMOVISCOELASTIC FLUIDS 25

Let us now evaluate separately the terms arising from the choice A = Ax in (4.40).
For the time derivative, we write

⟨∂tBℓ,Ax⟩ =
∫ t

0

⟨∂t(b− ω), (b− ω)−⟩ = 1
2∥(b− ω)−(t)∥22, (4.61)

where we applied Lemma A.2 below for the Lipschitz function s 7→ s− and also
(4.44) and (4.4) to eliminate the value at t = 0. Furthermore, using integration by
parts, vℓ · n = 0 and div vℓ = 0, we get

(Bℓ ⊗ vℓ,∇Ax)Q =

∫ t

0

((b− ω)vℓ,∇(b− ω)−) =
1

2

∫ t

0

∫
∂Ω

((b− ω)−)
2vℓ · n = 0

and also

(λ(θℓ)∇Bℓ,∇Ax)Q =

∫ t

0

∥
√
λ(θℓ)∇(b− ω)−∥22 ≥ 0.

Moreover, we have b− ωP < b− ω and thus, the assumption (3.10) yields

(P(θℓ,Bℓ),Ax)Q =

∫ t

0

∫
Ω

(b− ω)− P(θℓ,Bℓ)x · x

=

∫ t

0

∫
{b<ω}

(b− ω)P(θℓ, (Bℓ − ωP I) + ωP I)x · x ≥ 0.

In addition, the right hand side of (4.40) vanishes due to (4.60). Thus, using
the above computation in (4.40), we obtain

∥(b− ω)−(t)∥22 ≤ 0

for all t ∈ (0, T ) (recall (4.42)), whence

Bℓ(t)x · x ≥ ω|x|2 a.e. in Ω, for all t ∈ (0, T ) and for every x ∈ Rd. (4.62)

Note that this immediately yields Bℓ ∈ Rd×d
>0 , B−1

ℓ ∈ Rd×d
>0 a.e. in Q, and thus

|B−1
ℓ | = |B− 1

2

ℓ B− 1
2

ℓ | ≤ |B− 1
2

ℓ |2 = trB−1
ℓ ≤ d

ω
. (4.63)

Also, using the identity

∇B−1
ℓ = −B−1

ℓ ∇BℓB−1
ℓ ,

(which is standard for continuously differentiable functions and in general we can
approximate Bℓ by smooth mappings and pass to the limit) and (4.24) we conclude
that B−1

ℓ exists a.e. in Q and satisfies

B−1
ℓ ∈ L∞(0, T ;L∞(Ω;Rd×d

>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d
>0 )). (4.64)

Moreover, recalling f from (2.9) and using the simple inequalities

detBℓ ≥ ωd and | lnx| ≤ x+
1

x
, x > 0,

it is easy to see that also

f(Bℓ) ∈ L2(0, T ;W 1,2(Ω;R≥0)) ∩ Lq+2(Q;R≥0).

Next, we prove positivity of θℓ. Since θℓ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)), we can use
the analogous method as before. Indeed, we start by choosing

τ = χ(0,t)(θℓ − ω)− ∈ Lr+2(0, T ;W 1,r+2(Ω;R))
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as a test function in (4.59) to get (using div vℓ = 0)

cv
2
∥(θℓ − ω)−(t)∥22 −

cv
2
∥(θℓ − ω)−(0)∥22

+

∫ t

0

∥
√
κ(θℓ)∇(θℓ − ω)−∥22 +

∫ t

0

∥∇(θℓ − ω)−∥r+2
r+2

=

∫ t

0

(
Sωℓ · Dvℓ, (θℓ − ω)−

)
≤ 0.

(4.65)

Hence, using θℓ(0) = θω0 ≥ ω in Ω and (4.51), we obtain that ∥(θℓ(t) − ω)−∥2 = 0
for all t ∈ (0, T ), which means

θℓ(t) ≥ ω a.e. in Ω and for all t ∈ (0, T ). (4.66)

Consequently, since ∇θ−1
ℓ = θ−2

ℓ ∇θℓ, we also obtain

θ−1
ℓ ∈ L∞(0, T ;L∞(Ω;R>0)) ∩ Lr+2(0, T ;W 1,r+2(Ω;R>0)). (4.67)

From these findings we also easily read that

| ln θℓ| ≤ θℓ +
1

θℓ
≤ θℓ +

1

ω
and |∇ ln θℓ| =

|∇θℓ|
θℓ

≤ 1

ω
|∇θℓ|,

hence also

ln θℓ ∈ Lr+2(0, T ;W 1,r+2(Ω;R)).

Entropy equation. In order to take the remaining limits ℓ → ∞ and ω → 0+,
we need to derive the entropy (in)equality from which we then deduce that detBℓ

and θℓ remain strictly positive a.e. in Q. First, we rewrite (4.59) in the form

⟨cv∂tθℓ, τ⟩+ (cvvℓ · ∇θℓ, τ) + (κ(θℓ)∇θℓ + ω|∇θℓ|r∇θℓ,∇τ) = (Sωℓ · Dvℓ, τ) (4.68)

for all τ ∈ W 1,r+2(Ω;R) and a.e. in (0, T ). Then, we take ϕ ∈ W 1,∞(Ω;R) and
note that τ = θ−1

ℓ ϕ can be used as a test function in (4.68) thanks to (4.67). This
way, we get

⟨cv∂tθℓ, θ−1
ℓ ϕ⟩+ (cvvℓ · ∇ ln θℓ, ϕ) + (κ(θℓ)∇ ln θℓ,∇ϕ)− (κ(θℓ)|∇ ln θℓ|2, ϕ)

+ ω(|∇θℓ|r∇ ln θℓ,∇ϕ)− ω(|∇θℓ|r|∇ ln θℓ|2, ϕ)
= (2ν(θℓ)θ

−1
ℓ |Dvℓ|2 + 2aµgω(Bℓ, θℓ)Bℓ · Dvℓ, ϕ)

(4.69)

a.e. in (0, T ). Similarly, we observe that f ′(Bℓ)ϕ = µ(I − B−1
ℓ )ϕ (recall (2.14),

(2.15)) is a valid test function in (4.40) due to (4.64). Thus, we obtain

⟨∂tBℓ, f
′(Bℓ)ϕ⟩+ (vℓ · ∇f(Bℓ), ϕ)

+ (µP(θℓ,Bℓ) · (I− B−1
ℓ ), ϕ) + (µλ(θℓ)|B

− 1
2

ℓ ∇BℓB
− 1

2

ℓ |2, ϕ)
= −(λ(θℓ)∇f(Bℓ),∇ϕ) + (2aµgω(Bℓ, θℓ)Bℓ · Dvℓ, ϕ)

(4.70)

a.e. in (0, T ). If we define

ηℓ := cv ln θℓ − f(Bℓ) (4.71)

and

ξℓ := 2ν(θℓ)θ
−1
ℓ |Dvℓ|2 + κ(θℓ)|∇ ln θℓ|2 + ω|∇θℓ|r|∇ ln θℓ|2

+ µP(θℓ,Bℓ) · (I− B−1
ℓ ) + µλ(θℓ)|B

− 1
2

ℓ ∇BℓB
− 1

2

ℓ |2
(4.72)
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and subtract (4.70) from (4.69), we get

⟨cv∂tθℓ, θ−1
ℓ ϕ⟩ − ⟨∂tBℓ, f

′(Bℓ)ϕ⟩+ (vℓ · ∇ηℓ, ϕ)
+
(
(κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − λ(θℓ)∇f(Bℓ),∇ϕ

)
= (ξℓ, ϕ)

(4.73)

a.e. in (0, T ) and for all ϕ ∈W 1,∞(Ω;R). It remains to rewrite the time derivative
accordingly. Concerning the term containing ∂tθℓ, note that ψ(s) = max{|s|, ω}−1,
s ∈ R, is a bounded Lipschitz function. Since θℓ ≥ ω a.e. in Q by (4.66), we get∫ θℓ

1

ψ(s) ds =

∫ θℓ

1

1

s
ds = ln θℓ.

Thus, Lemma A.2 below yields

⟨cv∂tθℓ, θ−1
ℓ ϕ⟩ = d

dt
(cv ln θℓ, ϕ).

If we multiply this by φ ∈W 1,∞((0, T );R) with φ(T ) = 0, integrate over (0, T ) and
by parts, we are led to

⟨cv∂tθℓ, θ−1
ℓ ϕφ⟩ = −(cv ln θℓ, ϕ∂tφ)Q − (cv ln θ

ω
0 , ϕφ(0)), (4.74)

where we also used (4.56). Analogous ideas can be used to rewrite the second term
of (4.73). However, since the duality ⟨∂tBℓ, f

′(Bℓ)ϕ⟩ cannot be interpreted entry-
wise, let us proceed more carefully. We apply Lemma A.1 below to obtain functions
Bε
ℓ ∈ C1([0, T ];W 1,2(Ω;Rd×d

>0 ) ∩ Lq+2(Ω;Rd×d
>0 )), ε > 0, such that

∥Bε
ℓ − Bℓ∥L2W 1,2∩Lq+2Lq+2 + ∥∂tBε

ℓ − ∂tBℓ∥(L2W 1,2∩Lq+2Lq+2)∗ → 0 (4.75)

as ε→ 0+ and also Λ(Bε
ℓ) ≥ ω a.e. in Q. For such regularization, we have

⟨∂tBε
ℓ , f

′(Bε
ℓ)ϕφ⟩ = −(f(Bε

ℓ(0)), ϕφ(0))− (f(Bε
ℓ), ϕ∂tφ)Q (4.76)

by the standard calculus and it remains to justify the limit ε → 0+ on both sides
of (4.75). Since Bℓ ∈ C([0, T ];L2(Ω)) (cf. (4.42)), we know that

∥Bε
ℓ − Bℓ∥2 ⇒ 0 uniformly in [0, T ]. (4.77)

Now it is important to observe that since we have Λ(Bs) ≥ ω for all s ∈ [0, 1], where

Bs := (1− s)Bℓ + sBε
ℓ ,

the convergence (4.77) actually also implies

∥f(Bε
ℓ)− f(Bℓ)∥2 + ∥(Bε

ℓ)
−1 − B−1

ℓ ∥2 ⇒ 0 uniformly in [0, T ]. (4.78)

Indeed, this is a simple consequence of the identities

f(Bε
ℓ)− f(Bℓ) =

∫ 1

0

d

ds
f(Bs) ds =

∫ 1

0

µ(I− B−1
s ) · (Bε

ℓ − Bℓ) ds, (4.79)

(Bε
ℓ)

−1 − B−1
ℓ =

∫ 1

0

d

ds
B−1
s ds = −

∫ 1

0

B−1
s (Bε

ℓ − Bℓ)B−1
s ds,

(4.77) and the estimate

|B−1
s | ≤ trB−1

s ≤ d

Λ(Bs)
≤ d

ω
.

Using the same scheme as in (4.79), we also deduce from (4.42) and (4.44) that

f(Bℓ) ∈ C(0, T ;L2(Ω;R)), f(Bℓ(0)) = f(Bω
0 ). (4.80)
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This and (4.78)1 allow us to pass to the desired limit on the right-hand side of
(4.76). Next, using (4.63), we can estimate, for any ϕ ∈W 1,∞(Ω;R), that

|∇(f ′(Bε
ℓ)ϕ)| = |(Bε

ℓ)
−1∇Bε

ℓ(Bε
ℓ)

−1ϕ+ (I− (Bε
ℓ)

−1)∇ϕ|
≤ Cω−2|∇Bε

ℓ ||ϕ|+ (1 + Cω−1)|∇ϕ|.

Using the second line of this estimate to show boundedness and the first line to
identify the weak ε-limit using (4.78)2 and (4.75), we eventually obtain

f ′(Bε
ℓ)ϕ ⇀ f ′(Bℓ)ϕ weakly in L2(0, T ;W 1,2(Ω;Rd×d

sym)) ∩ Lq+2(Q;Rd×d
sym).

If we apply this with (4.75), we get, for all φ ∈W 1,∞((0, T );R), φ(T ) = 0, that

|⟨∂tBε
ℓ , f

′(Bε
ℓ)ϕφ⟩ − ⟨∂tBℓ, f

′(Bℓ)ϕφ⟩|
≤ |⟨∂tBε

ℓ − ∂tBℓ, f
′(Bε

ℓ)ϕφ⟩|+ |⟨∂tBℓφ, f
′(Bε

ℓ)ϕ− f ′(Bℓ)ϕ⟩| → 0

as ε→ 0+. This validates the limit on the left-hand side of (4.76), and thus

⟨∂tBℓ, f
′(Bℓ)ϕφ⟩ = −(f(Bω

0 ), ϕφ(0))− (f(Bℓ), ϕ∂tφ)Q (4.81)

for all φ ∈ W 1,∞(Ω;R), φ(T ) = 0, and every ϕ ∈ W 1,∞(Ω;R). Therefore, after
application of (4.74) and (4.81), entropy equation (4.73) becomes

− (ηℓ, ϕ∂tφ)Q − (ηω0 , ϕ)φ(0)− (vℓηℓ,∇ϕφ)Q
+
(
(κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − λ(θℓ)∇f(Bℓ),∇ϕφ

)
Q
= (ξℓ, ϕφ)Q

(4.82)

for all φ ∈W 1,∞(0, T ;R), φ(T ) = 0, and ϕ ∈W 1,∞(Ω;R), where

ηω0 := cv ln θ
ω
0 − f(Bω

0 ).

Moreover, since ln θℓ ∈ C([0, T ];L2(Ω;R)) and (4.80) hold, we easily read

ηℓ ∈ C([0, T ];L2(Ω;R)), ηℓ(0) = ηω0 . (4.83)

Total energy equality. The integrated version of the total energy equality is
important in the derivation of the a priori estimates below. We multiply the i-th
equation in (4.39) by (vℓ,wi), sum up the result over i = 1, . . . , ℓ and then we
add (4.59) with τ = 1. This way, after several cancellations using also (1.14)1, we
obtain

d

dt

∫
Ω

Eℓ + α

∫
∂Ω

|vℓ|2 = (g,vℓ) a.e. in (0, T ), (4.84)

where Eℓ :=
1
2 |vℓ|2 + cvθℓ.

5. Existence of a weak solution: limits ω → 0, ℓ→ ∞

This is the most essential part of the paper. Here, we first rigorously derive
the estimates independent of ω and ℓ and then let ω → 0+ and ℓ → ∞ (in fact,
we take these two limits simultaneously by setting ω = 1

ℓ ). Due to the linearity
of the leading differential operators, the limit passage is then relatively straight-
forward. On the other hand, to obtain the attainment of the initial condition in
the strong topology, we need to develop a new technique based on the combination
of the entropy inequality and the global energy inequality.
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Estimates independent of ℓ, ω based on global energy and entropy. Let us
first show that the total energy of the fluid remains bounded. In (4.84), we apply
Young’s inequality, (3.22) and θℓ > 0, to estimate

d

dt

∫
Ω

Eℓ ≤
1

2

∫
Ω

|vℓ|2 +
1

2

∫
Ω

|g|2 ≤
∫
Ω

Eℓ +
1

2

∫
Ω

|g|2

a.e. in (0, T ). Hence, by the Gronwall inequality, we get∫
Ω

Eℓ(t) ≤ et
(∫

Ω

Eℓ(0) +
1

2

∫ t

0

∥g∥22
)

for all t ∈ [0, T ].

Then, we apply (4.45), (4.56) to identify that

Eℓ(0) =
1

2
|Pℓv0|2 + cvθ

ω
0

and if we use properties of Pℓ, (4.6) and (3.22), we arrive at

∥θℓ∥L∞L1 + ∥vℓ∥L∞L2 ≤ C∥Eℓ∥L∞L1 ≤ C. (5.1)

Now we turn our attention to (4.82), which we localize in time by choosing2

φ = χ(0,t), leading to∫
Ω

ηℓ(t)ϕ+

∫ t

0

∫
Ω

jℓ · ∇ϕ =

∫
Ω

ηω0 ϕ+

∫ t

0

∫
Ω

ξℓϕ for all ϕ ∈W 1,∞(Ω;R) (5.2)

and all t ∈ (0, T ) (in fact, for all t ∈ [0, T ] due to continuity), where

jℓ := −vℓηℓ + (κ(θℓ) + ω|∇θℓ|r)∇ ln θℓ − λ(θℓ)∇f(Bℓ) ∈ L1(Q;Rd).

In particular, taking ϕ = 1, we deduce, using ξℓ ≥ 0, that the function t 7→
∫
Ω
ηℓ(t)

is non-decreasing, and thus∫
Q

ξℓ = max
t∈[0,T ]

∫ t

0

∫
Ω

ξℓ = max
t∈[0,T ]

∫
Ω

ηℓ(t)−
∫
Ω

ηω0 =

∫
Ω

ηℓ(T )−
∫
Ω

ηω0 . (5.3)

Then, using (4.71), the inequalities

lnx ≤ x− 1 for all x > 0 and f(Bℓ) ≥ 0, (5.4)

assumption (3.23) and (5.1) (recall also (4.51)), we obtain∫
Q

ξℓ ≤
∫
Ω

(cv ln θℓ(T )− f(Bℓ(T ))) + C ≤ C

∫
Ω

(θℓ(T )− 1) + C ≤ C, (5.5)

hence

∥ξℓ∥L1L1 ≤ C. (5.6)

Also, it is easy to see using (3.22), (3.23), (4.6), (4.7) and (5.3) that

∥ηℓ∥L∞L1 ≤ C. (5.7)

Estimate (5.6) implies, using (3.2) and (3.9), that

∥θ−
1
2

ℓ Dvℓ∥L2L2 + ∥
√
κ(θℓ)∇ ln θℓ∥L2L2 +

√
ω∥|∇θℓ|

r
2∇ ln θℓ∥L2L2

+ ∥B− 1
2

ℓ ∇BℓB
− 1

2

ℓ ∥L2L2 ≤ C.
(5.8)

2Strictly speaking, as χ(0,t) is not Lipschitz, we can not use it directly in (4.82). However,

a standard argument using a piecewise linear approximation of χ(0,t) with the Lebesgue differen-

tiation theorem and absolute continuity of integral shows that χ(0,t) is a reasonable test function.
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Improved ℓ, ω estimates. In what follows, we improve the uniform estimate (5.8)
considerably by choosing appropriate test functions in (4.40) and (4.59) and then
using (3.11). In fact, we repeat the scheme of estimates presented in (3.16)–(3.21),
but now, we prove it fully rigorously.

Our aim is to set A := Bq−1
ℓ in (4.40). To verify that this is a valid test function,

we show first that Bℓ is actually essentially bounded. Indeed, setting first A =
χ(0,t)ϕI, t ∈ (0, T ), ϕ ∈ Lq+2(0, T ;Lq+2(Ω;R)) ∩ L2(0, T ;W 1,2(Ω;R)), in (4.40)
yields∫ t

0

⟨∂t trBℓ, ϕ⟩+
∫ t

0

(v · ∇ trBℓ, ϕ) +

∫ t

0

(P(θℓ,Bℓ) · I, ϕ) +
∫ t

0

(λ(θℓ)∇ trBℓ,∇ϕ)

=

∫ t

0

(2agω(Bℓ, θℓ)Bℓ · Dvℓ, ϕ).

Hence, recalling (3.8) to bound the third term on the left hand side and using
(4.1) and (4.30) to estimate the right hand side, we see that there exists a constant
C(ℓ, ω) > 0, such that∫ t

0

⟨∂t trBℓ, ϕ⟩+
∫ t

0

(v · ∇ trBℓ, ϕ) +

∫ t

0

(λ(θℓ)∇ trBℓ,∇ϕ) ≤ C(ℓ, ω)

∫ t

0

∫
Ω

|ϕ|.

Substituting u(x, t) := trBℓ(x, t)− C(ℓ, ω)t leads to∫ t

0

⟨∂tu, ϕ⟩+
∫ t

0

(v · ∇u, ϕ) +
∫ t

0

(λ(θℓ)∇u,∇ϕ) ≤ C(ℓ, ω)

∫ t

0

∫
Ω

(|ϕ| − ϕ).

If we choose ϕ = (u−K)+ and use (1.8), (1.14)1 to eliminate the convective term,
we obtain

1

2
∥(u(t)−K)+∥22 +

∫ t

0

∥
√
λ(θℓ)∇(u−K)+∥22 ≤ 1

2
∥(u(0)−K)+∥22.

If we let K := d
ω , then (4.44) and (4.5) imply

0 ≤ (u(0)−K)+ = (trBω
0 − d

ω )+ ≤ (
√
d|Bω

0 | − d
ω )+ = 0 in Ω.

Thus, we get ∥(u(t)− d
ω )+∥

2
2 = 0, hence

|Bℓ| ≤ trBℓ ≤ d
ω + C0t ≤ d

ω + C0T

and we see that indeed

Bℓ ∈ L∞(0, T ;L∞(Ω;Rd×d
>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d

>0 )). (5.9)

Due to the fact that Bℓ is strictly positive definite, we can use the above property
to show that the same holds also for Bq−1

ℓ , which is essential for showing that

A := Bq−1
ℓ can be used in (4.40) as a test function. Indeed, the boundedness of

Bq−1
ℓ is a direct consequence of (5.9) and the spectral decomposition. To show that

gradient of Bq−1
ℓ is square integrable, we recall the identity

∇Bq−1
ℓ

q − 1
=

∫ 1

0

∫ 1

0

B(1−s)(q−1)
ℓ ((1−t)I+ tBℓ)

−1∇Bℓ((1−t)I+ tBℓ)
−1Bs(q−1)

ℓ dsdt,

which is a consequence of the well known identities for ∇ expA and ∇ logA, see
e.g. [57, 58, 3] and references therein for details. Then using also (4.62) to estimate

|((1− t)I+ tBℓ)
−1| ≤

√
d

Λ((1− t)I+ tBℓ)
≤

√
d

ω
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and also (5.9), we see that ∇Bq−1
ℓ ∈ L2(0, T ;L2(R× Rd×d

sym)) and consequently

Bq−1
ℓ ∈ L∞(0, T ;L∞(Ω;Rd×d

>0 )) ∩ L2(0, T ;W 1,2(Ω;Rd×d
>0 )).

Hence, setting A := χ[0,t]Bq−1
ℓ in (4.40), using (3.7) and the identities3

⟨∂tBℓ,Bq−1
ℓ ⟩ = 1

q

∫
Ω

∂t trBq
ℓ ,

(v · ∇Bℓ,Bq−1
ℓ ) =

1

q

∫
Ω

v · ∇ trBq
ℓ = 0

and the estimate (see (iv) and (v) in Lemma A.3 below)

∇Bℓ · ∇Bq−1
ℓ ≥ 4(q − 1)

q2
|∇B

q
2

ℓ |
2,

we get

1

q

∫
Ω

(trBq
ℓ(t)− trBq

ℓ(0)) + Cq−1

∫ t

0

∫
Ω

|B|2q + 4(q − 1)

q2

∫ t

0

∫
Ω

λ(θℓ)|∇B
q
2

ℓ |
2

≤ 2a

∫ t

0

∫
Ω

g(Bℓ, θℓ)Dvℓ · Bq
ℓ + C.

If we apply (4.44), (3.4), gω ≤ 1 and |Bq
ℓ | ≤ max{1, d

1−q
2 }|Bℓ|q (see [3]), we deduce∫

Ω

trBq
ℓ(t) +

∫ t

0

∫
Ω

|Bℓ|2q +
∫ t

0

∫
Ω

|∇B
q
2

ℓ |
2

≤
∫
Ω

(trBω
0 )

q + C

(∫ t

0

∫
Ω

|Dvℓ||Bℓ|q + 1

)
.

(5.10)

Then, to estimate the term with trBω
0 , we use (4.6) and (3.22). On the last term

on the right hand side, we apply Young’s inequality, leading to

∥Bℓ∥qL∞Lq + ∥Bℓ∥2qL2qL2q + ∥∇B
q
2

ℓ ∥
2
L2L2 ≤ C

(
1 + ∥Dvℓ∥2L2L2

)
, (5.11)

where the right hand side is finite due to (4.30), but we do not have a uniform
bound yet. To obtain it, we combine the estimate (5.11) with the temperature
equation (4.59) and improve the information about θℓ and Dvℓ.

Let β ∈ [0, 12 ] be arbitrary. We define

τβ := −θ−β
ℓ .

Using Lemma A.2 with ψ(s) = −max(s, ω)−β to rewrite the time derivative,
the a priori bound (5.1) with Young’s inequality, (1.14)1 and (3.3), we obtain the es-
timate

⟨cv∂tθℓ, τβ⟩+ (κ(θℓ)∇θℓ,∇τβ)Q + ω(|∇θℓ|r∇θℓ,∇τβ)Q

≥ −cv
1− β

∫
Ω

θ1−β
ℓ (T ) + β

∫
Q

θ−1−β
ℓ κ(θℓ)|∇θℓ|2 + ωβ

∫
Q

θ−1−β
ℓ |∇θℓ|r+2

≥ Cβ

∫
Q

∣∣∣∇θ r+1−β
2

ℓ

∣∣∣2 + ωβ

∫
Q

θ−1−β
ℓ |∇θℓ|r+2 − C.

(5.12)

The function τβ evidently satisfies τβ ∈ Lr+2(0, T ;W 1,r+2(Ω)) ∩ L∞(0, T ;L∞(Ω))
(cf. (4.67)), and is thus an admissible test function in (4.59). This way, noting

3To interpret the duality pairing in the first identity, one has to approximate Bℓ similarly as

before when dealing with ⟨∂tBℓ, (I− B−1
ℓ )ϕ⟩.
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that the convective term (cvvℓ · ∇θℓ, τβ)Q disappears since div vℓ = 0, and having
the estimate (5.12) and using also gω ≤ 1, we deduce

β

∫
Q

(∣∣∣∇θ r+1−β
2

ℓ

∣∣∣2+ωθ−1−β
ℓ |∇θℓ|r+2

)
+

∫
Q

θ−β
ℓ |Dvℓ|2 ≤ C

(∫
Q

θ1−β
ℓ |Bℓ||Dvℓ|+1

)
.

Note that since β ∈ [0, 12 ] is arbitrary, we can reduce the above inequality to

β

∫
Q

(∣∣∣∇θ r+1−β
2

ℓ

∣∣∣2 + ωθ−1−β
ℓ |∇θℓ|r+2

)
+

∫
Q

|Dvℓ|2 ≤ C
(∫

Q

(θℓ + 1)|Bℓ||Dvℓ|+ 1
)
,

which is very much similar to (3.17), while the estimate (5.11) mimics (3.16). Hence,
applying the Young and the Hölder inequality, and using (5.11), we deduce similarly
as in (3.18) that

β

∫
Q

(∣∣∣∇θ r+1−β
2

ℓ

∣∣∣2 + ωθ−1−β
ℓ |∇θℓ|r+2

)
+

∫
Q

|Dvℓ|2 ≤ C
(
1 +

∫
Q

|θℓ|2q
′
)
. (5.13)

Next, we continue as after (3.18). We recall the interpolation inequality

∥θℓ∥2q
′

2q′ ≤ C∥θℓ∥
2q′− d(r−β+1)(2q′−1)

d(r−β)+2

1 ∥θ
r+1−β

2

ℓ ∥
2d(2q′−1)
d(r−β)+2

1,2 . (5.14)

Thus, using the uniform bound (5.1), the estimate (5.13) and the interpolation
inequality (5.14), we deduce

β

∫ T

0

∥θ
r+1−β

2

ℓ ∥21,2 ≤ Cβ

∫ T

0

(
∥∇θ

r+1−β
2

ℓ ∥22 + ∥θℓ∥r+1−β
1

)
≤ C

(
1 +

∫
Q

|θℓ|2q
′
)
≤ C + C

∫ T

0

∥θ
r+1−β

2

ℓ ∥
2d(2q′−1)
d(r−β)+2

1,2 .

(5.15)

Finally, thanks to (3.11), we can find β0 > 0 such that for all β ∈ (0, β0) we have

2d(2q′ − 1)

d(r − β) + 2
< 2.

Consequently, we can use the Young inequality in (5.15) and conclude that

∥θ
r+1−β

2

ℓ ∥L2W 1,2 ≤ C(β) (5.16)

for all β ∈ (0, β0) (which can be however easily extended via (5.8) to the validity
for all β ∈ (0, 1)). Furthermore, from the interpolation inequality

∥θℓ∥
r+1+ 2

d−β

r+1+ 2
d−β

≤ C∥θℓ∥
2
d
1 ∥θ

r+1−β
2

ℓ ∥21,2, (5.17)

(5.1) and (5.16), we conclude

∥θℓ∥
Lr+1+ 2

d
−βLr+1+ 2

d
−β ≤ C(β). (5.18)

Summary of all uniform estimates. To summarize the estimates proved up to
this point, we recall (5.1), (5.6), (5.7) and (5.8) based on the use of total energy and

entropy estimates. Next, having (5.16), we can choose β := β0

2 and go backward in
the computation in the previous part and obtain further a priori estimates. Namely,
using (5.16) and (5.14), we see that the right hand side of (5.13) is uniformly
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bounded. Then, using (5.13) in (5.11) we deduce also the a priori bound for Bℓ.
Thus, we can conclude with the following set of estimates

∥vℓ∥L∞L2 + ∥Dvℓ∥L2L2 ≤ C, (5.19)

∥Bℓ∥L∞Lq + ∥Bℓ∥L2qL2q + ∥∇B
q
2

ℓ ∥L2L2 ≤ C, (5.20)

∥θℓ∥L∞L1 + ∥∇θ
r+1−ε

2

ℓ ∥L2L2 + ∥θℓ∥
Lr+1+ 2

d
−εLr+1+ 2

d
−ε ≤ C(ε) (5.21)

for all ε ∈ (0, 1). Next, in order to obtain estimates on ∇Bℓ, we separate two cases.
If 1 < q < 2, we use (A.23) and Hölder’s inequality, (A.20) and (5.20) to estimate

∥∇Bℓ∥ 4q
q+2

≤ 2∥B1− q
2

ℓ ∥ 4q
2−q

∥∇B
q
2

ℓ ∥2 ≤ C.

On the other hand, if q ≥ 2, the optimal estimate on ∇Bℓ is obtained simply by
testing (4.40) with Bℓ (instead of Bq−1

ℓ ). Indeed, using (5.9), we eventually obtain
(5.11), but with q = 2. Combination of these two cases leads to

∥∇Bℓ∥LmLm ≤ C. (5.22)

Uniform time derivatives estimates. We end this part by derivation of the uni-
form estimates for the time derivatives. To this end, we need to determine in-
tegrability of the non-linear terms in (4.39), (4.40) and (4.82). It follows from
an interpolation inequality, Korn’s inequality, (5.1) and (5.19) that

∥vℓ∥
L2 d+2

d L2 d+2
d

≤ C∥vℓ∥
2

d+2

L∞L2∥Dvℓ∥
d

d+2

L2L2 ≤ C. (5.23)

Furthermore, the Hölder inequality, (5.21) and (5.11) yield

∥θℓBℓ∥L2L2 ≤ C, (5.24)

Hence, as d ≥ 2, we read from (4.39) that

∥∂tvℓ∥
L

d+2
d W

−1, d+2
d

n,div

≤ C. (5.25)

Next, we focus on the non-linear terms in (4.40). Using Hölder’s inequality and
(5.11), (5.23), we observe that

∥Bℓ ⊗ vℓ∥Ls1Ls1 ≤ C, (5.26)

with

s1 :=
( 1

2q
+

d

2(d+ 2)

)−1

>
( 1

2q
+

1

2

)−1

=
2q

q + 1
. (5.27)

Moreover, making use of (5.20) and (3.6), we obtain

∥P(θℓ,Bℓ)∥
L

2q
q+1 L

2q
q+1

≤ C. (5.28)

Furthermore, using (5.20), (5.19) and Hölder’s inequality, we also get

∥(aDvℓ +Wvℓ)Bℓ∥
L

2q
q+1 L

2q
q+1

≤ C. (5.29)

Thus, we read from (4.40) using (5.22) (where note that m > 2q
q+1 ), (5.26), (5.27)

and (5.28), (5.29) that

∥∂tBℓ∥
L

2q
q+1 W

−1,
2q

q+1
≤ C. (5.30)



34 M. BATHORY, M. BULÍČEK, AND J. MÁLEK

Next, we examine the non-linearities related to (4.82). Since ξℓ is controlled
by (5.6), the problematic terms could be only on the left hand side. To get an ap-
propriate uniform control over the convective term, we estimate

ηℓ ≤ ηℓ + f(Bℓ) = cv ln θℓ ≤ cv(θℓ − 1).

This, together with (5.1) and (5.7), yields

∥ln θℓ∥L∞L1 ≤ C. (5.31)

Then, since (5.8) and (3.3) give

∥∇ ln θℓ∥L2L2 ≤ C, (5.32)

we can use Sobolev’s inequality, Poincaré’s inequality and an interpolation to obtain

∥ln θℓ∥
L2+ 2

d L2+ 2
d
≤ C∥ln θℓ∥

1
d+1

L∞L1∥ln θℓ∥
d

d+1

L2W 1,2 ≤ C. (5.33)

Now we observe that a similar reasoning applies also for the quantity ln detBℓ.
Indeed, using (5.7), (5.31), (5.11) and (4.71) in the form

ln detBℓ =
1

µ
(ηℓ − cv ln θℓ) + trBℓ − d,

it is clear that

∥ln detBℓ∥L∞L1 ≤ C. (5.34)

Further, the estimate of its derivative follows from a version of Jacobi’s formula
(see Lemma A.3 below) and (5.8) as

∥∇ ln detBℓ∥L2L2 = ∥tr(B− 1
2

ℓ ∇BℓB
− 1

2

ℓ )∥L2L2 ≤ C. (5.35)

Hence, using again the Sobolev, the Poincaré and interpolation inequalities, we get

∥ln detBℓ∥
L2+ 2

d L2+ 2
d
≤ C. (5.36)

From (5.33), (5.36), (5.11) and (4.71), we deduce

∥ηℓ∥Ls2Ls2 ≤ C, where s2 := min{2 + 2
d , 2q} > 2, (5.37)

and thus

∥vℓηℓ∥Ls3Ls3 ≤ C, where s3 :=
( d

2(d+ 2)
+

1

s2

)−1

> 1. (5.38)

We remark that, since

∇ηℓ = cv∇ ln θℓ − µ(tr∇Bℓ − tr(B− 1
2

ℓ ∇BℓB
− 1

2

ℓ )),

we also have, using (5.35), (5.32), (5.22), (5.8) and Poincaré’s inequality that

∥ηℓ∥LmW 1,m ≤ C. (5.39)

Looking at (4.82), we still need to verify that the flux terms are controlled. For
the term κ(θℓ)∇ ln θℓ, we first use (3.3) and (5.21) to estimate

∥
√
κ(θℓ)∥

L
2d(r+1)+4

dr (Q;R)
≤ C∥1 + θ∥

r
2

Lr+1+ 2
d (Q;R)

≤ C

and then, by Hölder’s inequality and (5.8), we get

∥κ(θℓ)∇ ln θℓ∥
L

2d(r+1)+4
2d(r+1)+2−d (Q;Rd)

≤ ∥
√
κ(θℓ)∥

L
2d(r+1)+4

dr (Q;R)
∥
√
κ(θℓ)∇ ln θℓ∥L2(Q;Rd) ≤ C.

(5.40)
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Further, let us derive an estimate on ω|∇θℓ|r∇ ln θℓ, from which it follows that this
term vanishes as ω → 0+. The Hölder inequality, (5.8) and (5.21) yield

ω

∫
Q

|∇θℓ|r|∇ ln θℓ| = ω
1

r+2

∫
Q

(
ωθ−2

ℓ |∇θℓ|r+2
) r+1

r+2 θ
2 r+1

r+2−1

ℓ

≤ Cω
1

r+2

(∫
Q

θrℓ

) 1
r+2 ≤ Cω

1
r+2 .

(5.41)

From this and from (5.40), (5.32), (5.35), (5.38), (5.8), (4.82), we see, using the def-
inition of a weak time derivative, that

∥∂tηℓ∥L1W−M,2 ≤ C, (5.42)

where M is so large that WM,2(Ω;R) ↪→W 1,∞(Ω;R).
Finally, we focus on terms appearing in the temperature equation (4.68). First,

we note that it is a consequence of assumption (3.11), a priori estimates (5.19)–
(5.21) and the Hölder inequality, that∫

Q

|θℓvℓ|+
∫
Q

|Sωℓ · Dvℓ| ≤ C. (5.43)

In the terms involving temperature gradient, we use (3.3), (5.8), (5.21) and the in-
equality max{2, r + 1 + ε} < r + 1 + 2

d − ε for ε small (recall (3.11)) to estimate∫
Q

|κ(θℓ)∇θℓ| ≤ C

∫
Q

(θℓ|∇ ln θℓ|+ θ
r+1+ε

2

ℓ |∇θ
r+1−ε

2 |)

≤ C

∫
Q

(θ2ℓ + θr+1+ε
ℓ ) ≤ C.

(5.44)

Proceeding similarly as in (5.41), but using now (5.13) instead of (5.8), we also find∫
Q

ω|∇θℓ|r+1 = ω
1

r+2

∫
Q

(
ωθ−1−β

ℓ |∇θℓ|r+2
) r+1

r+2 θ
(β+1)(r+1)

r+2

ℓ

≤ Cω
1

r+2

(∫
Q

θ
(β+1)(r+1)
ℓ

) 1
r+2 ≤ Cω

1
r+2 ,

(5.45)

where β > 0 is chosen so small that (β + 1)(r + 1) < r + 1 + 2
d . Using the above

estimates in (4.59), we deduce

∥∂tθℓ∥L1W−M,2 ≤ C, (5.46)

for sufficiently large M . Very similarly, choosing θ
− 1

2

ℓ ϕ in (4.59) and repeating
the method for estimating ∂tηℓ, we can find that

∥∂tθ
1
2

ℓ ∥L1W−M,2 ≤ C. (5.47)

Finally, returning to (4.70) with (4.81) and using the uniform estimates proved so
far, it is easy to see that also

∥∂tf(Bℓ)∥L1W−M,2 ≤ C. (5.48)

The last two properties will be useful in the initial condition identification.
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Limits ω → 0, ℓ→ ∞. Let us note that the estimates above are independent not
only of ℓ, but also of ω. Hence, we can set ω := ℓ−1 and hereby, it remains to take
the limit ℓ→ ∞ only.

By collecting the estimates (5.1), (5.21)–(5.20), (5.22), (5.30), (5.25), (5.37),
(5.39), (5.42), (5.44), (5.46), (5.47) and using the Aubin–Lions lemma and Vitali’s
convergence theorem, we get the following results:

vℓ ⇀ v weakly in L2(0, T ;W 1,2
n,div), (5.49)

vℓ → v strongly in L2 d+2
d −ε(Q;Rd) and a.e. in Q, (5.50)

∂tvℓ ⇀ ∂tv weakly in L
d+2
d (0, T ;W

−1, d+2
d

n,div ), (5.51)

Bℓ ⇀ B weakly in Lm(0, T ;W 1,m(Ω;Rd×d
sym)), (5.52)

Bℓ → B strongly in L2q−ε(Q;Rd×d
sym) and a.e. in Q, (5.53)

∂tBℓ ⇀ ∂tB weakly in L
2q

q+1 (0, T ;W−1, 2q
q+1 (Ω;Rd×d

sym)), (5.54)

ηℓ ⇀ η weakly in Lm(0, T ;W 1,m(Ω;R)), (5.55)

ηℓ → η strongly in Ls2−ε(Q;R) and a.e. in Q, (5.56)

ηℓ
∗
⇀ η weakly∗ in BV (0, T ;W−M,2(Ω;R)), (5.57)

θ
r+1−ε

2

ℓ ⇀ θ
r+1−ε

2 weakly in L2(0, T ;W 1,2(Ω;R)), (5.58)

θℓ → θ strongly in Lr+1+ 2
d−ε(Q;R), (5.59)

θ
1
2

ℓ
∗
⇀ θ

1
2 weakly∗ in BV (0, T ;W−M,2(Ω;R)), (5.60)

θℓ
∗
⇀ θ weakly∗ in BV (0, T ;W−M,2(Ω;R)) (5.61)

for any ε ∈ (0, 1). Using these properties, we shall now explain how to take the limit
in equations (4.39), (4.40), (4.82), (4.84) and (4.59).

First, we focus on taking the limit in the function g 1
ℓ
. From (4.62), (4.66) and

(5.49), (5.52) (or (5.50), (5.53)), we obtain

Bx · x ≥ 0 for all x ∈ Rd and θ ≥ 0 a.e. in Q, (5.62)

however, we need these properties with strict inequalities. To this end, we use
the Fatou lemma, (5.53) and (5.34) to get∫

Ω

| ln detB| ≤ lim inf
ℓ→∞

∫
Ω

| ln detBℓ| ≤ C a.e. in (0, T ).

Thus, by taking the essential supremum over (0, T ), we obtain

∥ln detB∥L∞L1 <∞, (5.63)

which, together with (5.62) implies

Bx · x > 0 for all x ∈ Rd a.e. in Q. (5.64)

An analogous argument, using now (5.59) and (5.31), shows that

θ > 0 a.e. in Q. (5.65)

With this in hand, note that the property (1.6) follows from (4.71) and the pointwise
a.e. convergence of ηℓ, θℓ and Bℓ. Also, from (5.64), (5.65) and the pointwise
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convergence we deduce that, at almost every point (t, x) ∈ Q, we can find Mt,x ∈ N
such that for all ℓ > Mt,x we have

Λ(Bℓ(t, x)) >
1

2
Λ(B(t, x)) >

1

ℓ
and θℓ(t, x) >

1

2
θ(t, x) >

1

ℓ
.

Then, looking at the definition of gλ, we see that at almost every point (t, x) ∈ Q
and for ℓ > Mt,x, the positive parts max{0, ·} can be removed and thus, it is clear
that g 1

ℓ
(Bℓ, θℓ) converges pointwise a.e. in Q to 1. Hence, the Vitali theorem and

0 ≤ g 1
ℓ
< 1, imply

g 1
ℓ
(Bℓ, θℓ) → 1 strongly in Lp(Q;R) for any 1 ≤ p <∞. (5.66)

Therefore, regarding the first two equations (4.39) and (4.40), we can take the limit
in the same way as we did in the limit n→ ∞. Indeed, the integrability of the re-
sulting non-linear limits was already verified when estimating ∂tvℓ and ∂tBℓ ((5.23)–
(5.29)). This way, taking (5.66) into account, using the density of span{wi}∞i=1 in

W
1, d2+1

n,div and extending the functional ∂tB to the space stated in (3.30) using (5.30),

we obtain precisely (3.37) and (3.38).
Next, we show how to take the limit in (4.82). Regarding the initial condition,

using (4.7) and (4.6), we estimate

|ηω0 | ≤ cv| ln θω0 |+ µ(| trBω
0 |+ d+ | ln detBω

0 |) ≤ C(| ln θ0|+ |B0|+ | ln detB0|+ 1),

where the right hand side is integrable by assumptions (3.22) and (3.23). Moreover,

the function η
1/ℓ
0 converges point-wise a.e. in Ω due to (4.8) and (4.9). Thus, by

the dominated convergence theorem, the function η
1
ℓ
0 converges to η0 in L1(Ω;R).

In order to take the limit in the convective term, we use (5.50), (5.56) and (5.38).
Next, the properties (5.33), (5.36), (5.59), (5.53) and (5.35), (5.32) imply

ln θℓ ⇀ ln θ weakly in L2(0, T ;W 1,2(Ω;R)), (5.67)

ln detBℓ ⇀ ln detB weakly in L2(0, T ;W 1,2(Ω;R)). (5.68)

Further, we use (3.1), (3.3), (5.21) and Vitali’s theorem to find that√
κ(θℓ)⇀

√
κ(θ) strongly in L

2(r+1)
r (Q;R). (5.69)

As a consequence of this, (5.67) and (5.8), we get√
κ(θℓ)∇ ln θℓ ⇀

√
κ(θ)∇ ln θ weakly in L2(Q;Rd). (5.70)

Therefore, using again (5.69), we obtain

κ(θℓ)∇ ln θℓ ⇀ κ(θ)∇ ln θ weakly in L1(Q;Rd).

Next, in the term µλ(θℓ)∇ trBℓ, we use (3.1), (3.4), (5.59), Vitali’s theorem and
(5.52). Analogously, we take the limit in the term µλ(θℓ)∇ ln detBℓ, only we use
(5.68) instead of (5.52). The term containing ω|∇θℓ|r∇ ln θℓ tends to zero by (5.41).

Now we take the limit in the terms on the right hand side of (4.82), i.e., the func-
tion ξℓ defined in (4.72). Note that we just need to pass to the limit with possible
inequality sign (selecting non-negative test functions ϕ, φ). To take the limit in
the term P(θℓ,Bℓ) ·(I−B−1

ℓ )ϕφ ≥ 0, we use (5.59), (5.53) and apply Fatou’s lemma.
Next, in term κ(θℓ)|∇ ln θℓ|2ϕφ, we use (5.70) and the weak lower semi-continuity.
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Moreover, the auxiliary term ω|∇θℓ|r|∇ ln θℓ|2ϕφ is simply estimated from below
by zero. Thus, in order to let ℓ→ ∞ in (4.82), it remains to show that

lim inf
ℓ→∞

∫
Q

(
2ν(θℓ)

θℓ
|Dvℓ|2 + λ(θℓ)

∣∣∣B− 1
2

ℓ ∇BℓB
− 1

2

ℓ

∣∣∣2)ϕφ
≥
∫
Q

(
2ν(θ)

θ
|Dv|2 + λ(θ)

∣∣∣B− 1
2∇BB− 1

2

∣∣∣2)ϕφ.
The above inequality is however consequence of the weak lower semicontinuity and
the following claim√

λ(θℓ)B
− 1

2

ℓ ∇BℓB
− 1

2

ℓ ⇀
√
λ(θ)B− 1

2∇BB− 1
2 weakly in L2(Q;Rd × Rd×d

sym),√
2ν(θℓ)

θℓ
Dvℓ ⇀

√
2ν(θ)

θ
Dv weakly in L2(Q;Rd×d

sym),
(5.71)

which we need to obtain. To do so, we start with (5.8) and therefore we have (for
a proper subsequence) that√

λ(θℓ)B
− 1

2

ℓ ∇BℓB
− 1

2

ℓ ⇀ G weakly in L2(Q;Rd × Rd×d
sym), (5.72)√

2ν(θℓ)

θℓ
Dvℓ ⇀ K weakly in L2(Q;Rd×d

sym). (5.73)

Thus, it remains to show√
λ(θ)B− 1

2∇BB− 1
2 = G,

√
2ν(θ)

θ
Dv = K. (5.74)

First, we use the Egorov theorem and then it follows from (5.34), (5.53), (5.63),
(5.65) and (5.59) that for any ε > 0 there exists measurable Qε ⊂ Q fulfilling
|Q \Qε| ≤ ε such that

B− 1
2

ℓ ⇒ B− 1
2 ,

√
λ(θℓ) ⇒

√
λ(θ),

√
2ν(θℓ)

θℓ
⇒

√
2ν(θ)

θ

uniformly in Qε. Combining the above uniform convergence results with the weak
convergence results (5.49) and (5.52), we deduce√

λ(θℓ)B
− 1

2

ℓ ∇BℓB
− 1

2

ℓ ⇀
√
λ(θ)B− 1

2∇BB− 1
2 weakly in L1(Qε;Rd × Rd×d

sym),√
2ν(θℓ)

θℓ
Dvℓ ⇀

√
2ν(θ)

θ
Dv weakly in L1(Qε;Rd×d

sym).

(5.75)
Thus, the uniqueness of a weak limit implies that (5.74) is satisfied a.e. in Qε. Since
ε > 0 was arbitrary, we can let ε→ 0+ and conclude that (5.74) holds true a.e. in
Q. Consequently, we deduced (5.71) and therefore we proved (3.40).

In addition, in very similar manner we can let ℓ→ ∞ in (4.59) to obtain (3.39).
Note that contrary to the entropy inequality, we use here in addition the estimates
(5.43), (5.44) and (5.45). Otherwise, the proof is almost identical.

To take the limit in (4.84), we first note, using (4.45) and (4.56), that it implies

−(Eℓ, ∂tϕ)Q + α(|vℓ|2, ϕ)Σ = ( 12 |Pℓv0|2 + cvθ
1
ℓ
0 , ϕ(0)) + (g,vℓϕ)Q (5.76)
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for all ϕ ∈ C1([0, T ];R) with ϕ(T ) = 0. Then, recalling (5.50) and (5.59), we see
that Eℓ =

1
2 |vℓ|2 + cvθℓ converges strongly to E and thus, using also properties of

Pℓ and (4.9), we can take the limit in (5.76) to conclude

−(E, ∂tϕ)Q + α(|v|2, ϕ)Σ = (E0, ϕ(0)) + (g,vϕ)Q, (5.77)

where we set E0 := 1
2 |v0|2+cvθ0. In particular, by choosing an appropriate sequence

of test functions ϕ, we obtain (3.41).

Attainment of initial conditions. To finish the existence proof, it remains to
identify the initial conditions and show that they are attained strongly. Let us start
by an observation that v and B are weakly continuous in time. Indeed, first of all,
we recall that

v ∈ L∞(0, T ;L2(Ω;Rd)), ∂tv ∈ L
d+2
d (0, T ;W

−1, d+2
d

n,div (Ω;Rd)),

B ∈ L∞(0, T ;Lq(Ω;Rd×d
>0 )), ∂tB ∈ L

2q
q+1 (0, T ;W−1, 2q

q+1 (Ω;Rd×d
sym)),

(5.78)

cf. (5.20) and (5.30). From this we obtain, by a standard argument known from
the theory of Navier–Stokes equations (see e.g. [43, Sect. 3.8.]), that

v ∈ Cw([0, T ];L2(Ω;Rd)) and B ∈ Cw([0, T ];Lq(Ω;Rd)). (5.79)

Then, to identify the corresponding weak limits, we can use an analogous idea as
in the part where the limit n → ∞ was taken together with (4.8). This way, we
obtain

lim
t→0+

(v(t),w) = (v0,w) for all w ∈ L2(Ω;Rd) (5.80)

and

lim
t→0+

(B(t),W) = (B0,W) for all W ∈ Lq′(Ω;Rd×d
sym). (5.81)

Next, we use a similar procedure for entropy and temperature. Recalling (5.57)

and (5.60), we can define for all t0 ∈ [0, T ] the values
√
θ(t0±), η(t

0
±) such that

lim
t→t0±

(∥∥√θ(t)−√θ(t0±)∥∥W−M,2(Ω;R) + ∥η(t)− η(t0±)∥W−M,2(Ω;R)
)
= 0. (5.82)

Therefore, using the density of Lw(Ω;R) in W−M,2(Ω;R), which is valid for all w ∈
(1,∞) and M sufficiently large, and recalling the fact that θ ∈ L∞(0, T ;L1(Ω;R)),
we can deduce that there is non-negative θ∗0 ∈ L1(Ω;R) fulfilling

lim
t→0+

(
√
θ(t), ζ) = (

√
θ∗0 , ζ) for all ζ ∈ L2(Ω;R). (5.83)

Our aim is to show that θ∗0 = θ0 and that it is attained strongly.
Unlike in the theory of Navier–Stokes(–Fourier) systems, we can not draw in-

formation about lim supt→0+∥v(t)∥22 from the (kinetic) energy estimate directly
because of the presence of θB in (3.37). Instead, we need first to combine the total
energy and entropy balances to obtain the initial condition for θ. In (5.77) we
choose a sequence of test functions ϕ approximating the function χ[0,t), t ∈ (0, T ).
This way, after taking the appropriate limit, we arrive at∫

Ω

E(t) + α

∫ t

0

∫
Ω

|v|2 =

∫
Ω

E0 +

∫ t

0

∫
Ω

g · v for a.a. t ∈ (0, T ). (5.84)
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Next, we strengthen the above relation to be valid for all t ∈ (0, T ) with possibly
inequality sign. Due to the weak continuity of v, see (5.79), we see that v(τ) is
uniquely defined for all τ ∈ (0, T ) and

lim
t→τ

(v(t),w) = (v(τ),w) for all w ∈ L2(Ω;Rd). (5.85)

The same is however not true for θ since it is not weakly continuous w.r.t. t ∈
(0, T ). Nevertheless, we can define one-side values for every t ∈ (0, T ) with the help
of (5.60), i.e., using the similar arguments as in (5.83), we have the one-sided
uniquely defined weak limit

lim
t→τ±

(
√
θ(t), ζ) = (

√
θ(τ±), ζ) for all ζ ∈ L2(Ω;R). (5.86)

Next, we use above weak convergence results in (5.84). Integrating it with respect
to t ∈ (τ, τ + δ), we get∫ τ+δ

τ

∫
Ω

E(t) dt =

∫ τ+δ

τ

∫ t

0

(∫
Ω

g · v − α

∫
Ω

|v|2
)

dt+ δ

∫
Ω

E0.

Thus, dividing by δ, letting first δ → 0+ and then τ → 0+, we get

lim
τ→0+

lim
δ→0+

δ−1

∫ τ+δ

τ

∫
Ω

E(t) dt =

∫
Ω

E0 =

∫
Ω

( 12 |v0|2 + cvθ0) (5.87)

and in a very similar manner, we obtain

lim
τ→0+

lim
δ→0+

δ−1

∫ τ

τ−δ

∫
Ω

E(t) dt =

∫
Ω

E0 =

∫
Ω

( 12 |v0|2 + cvθ0). (5.88)

We focus on the term on the left hand side. Using the convexity, we have

δ−1

∫ τ+δ

τ

∫
Ω

E(t) dt = δ−1

∫ τ+δ

τ

∫
Ω

( 12 |v(t)|
2 + cvθ(t)) dt

≥ δ−1

∫ τ+δ

τ

∫
Ω

( 12 |v(τ)|
2 + cvθ(τ+)) + v(τ) · (v(t)− v(τ))

+ 2cv
√
θ(τ+)

(√
θ(t)−

√
θ(τ+)

)
dt

≥
∫
Ω

( 12 |v(τ)|
2 + cvθ(τ+))

− sup
t∈(τ,τ+δ)

∣∣∣∣∫
Ω

v(τ) · (v(t)− v(τ)) + 2cv
√
θ(τ+)

(√
θ(t)−

√
θ(τ+)

)∣∣∣∣ .
Then, it follows from the weak continuity results (5.85) and (5.86) and also from
the above inequality that

lim
δ→0+

δ−1

∫ τ+δ

τ

∫
Ω

E(t) dt ≥
∫
Ω

( 12 |v(τ)|
2 + cvθ(τ+)).

Repeating the same procedure we also get

lim
δ→0+

δ−1

∫ τ

τ−δ

∫
Ω

E(t) dt ≥
∫
Ω

( 12 |v(τ)|
2 + cvθ(τ−)).
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Consequently, combining it with (5.87) and (5.88), and also with (3.22), (5.80),
(5.83) and weak lower semi-continuity, we get∫

Ω

( 12 |v0|2 + cvθ0) ≥ lim sup
t→0+

∫
Ω

( 12 |v(t)|
2 + cvθ(t±))

≥ lim inf
t→0+

∫
Ω

1
2 |v(t)|

2 + lim sup
t→0+

∫
Ω

cvθ(t±)

≥
∫
Ω

1
2 |v0|2 + lim sup

t→0+

∫
Ω

cvθ(t±),

hence due to (5.83) and the convexity of the second power, we have∫
Ω

θ∗0 ≤ lim sup
t→0+

∫
Ω

θ(t±) ≤
∫
Ω

θ0. (5.89)

In what follows we will not distinguish “±” in θ(t±) and η(t±) and simply write
θ(t) and η(t). To obtain also the corresponding lower estimate, we need to extract
the available information from the entropy inequality (3.40). To this end, we local-
ize (3.40) in time, using a sequence of non-negative functions approximating χ[0,t).
This way, we eventually obtain∫

Ω

η(t)ϕ+

∫ t

0

∫
Ω

j · ∇ϕ ≥
∫
Ω

η0ϕ+

∫ t

0

∫
Ω

ξϕ (5.90)

a.e. in (0, T ) and for all ϕ ∈WM,2(Ω;R≥0), where

j := −vη + κ(θ)∇ ln θ − µλ(θ)∇(trB− d− ln detB) ∈ L1(Q;Rd).

Hence, using (5.82) and taking lim inft→0+ of (5.90) (which surely exists due to
(5.82)), we deduce (3.45). Let us now fix φ ∈ CM (Ω;R≥0) such that

∫
Ω
φ = 1.

Since f is convex, we get from (3.45) and (5.81) (or (3.43)) that∫
Ω

cv ln θ0 φ =

∫
Ω

η0φ+

∫
Ω

f(B0)φ ≤ lim inf
t→0+

∫
Ω

η(t)φ+ lim inf
t→0+

∫
Ω

f(B(t))φ

≤ lim inf
t→0+

∫
Ω

cv ln θ(t)φ.

If we use this information together with Jensen’s inequality and the fact that
the function s 7→ exp(s/2), is increasing and convex in R, we are led to

exp

(
1

2

∫
Ω

ln θ0φ

)
≤ exp

(
1

2
lim inf
t→0+

∫
Ω

ln θ(t)φ

)
= lim inf

t→0+
exp

(∫
Ω

ln
√
θ(t)φ

)
≤ lim inf

t→0+

∫
Ω

√
θ(t)φ

=

∫
Ω

√
θ∗0φ.

(5.91)

In every Lebesgue point x0 ∈ Ω of both ln θ0 and θ
∗
0 , we can localize inequality (5.91)

in Ω by choosing a sequence of functions φ that approximates the Dirac delta
distribution at x0 ∈ Ω. Indeed, appealing to the Lebesgue differentiation theorem,
we get this way that√

θ0(x0) = exp

(
1

2
ln θ(x0)

)
≤
√
θ∗0(x0),
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hence θ0 ≤ θ∗0 a.e. in Ω, which together with (5.89) implies θ∗0 = θ0 a.e. in Ω. To
show the strong convergence, we use (5.83) with ζ :=

√
θ0 and also (5.89), to deduce

lim sup
t→0+

∥∥√θ(t)−√θ0∥∥22 = lim sup
t→0+

∫
Ω

θ(t) +

∫
Ω

θ0 − 2 lim
t→0+

∫
Ω

√
θ(t)

√
θ0 ≤ 0.

Hence, the above inequality implies that√
θ(t) →

√
θ0 strongly in L2(Ω;R),

which implies (3.44).
Using information above, we can now improve the initial condition for v as well.

Indeed, from (5.84), (3.44) and (3.22), we obtain

lim sup
t→0+

∫
Ω

1
2 |v(t)|

2 ≤ lim sup
t→0+

∫
Ω

E(t)− lim inf
t→0+

∫
Ω

cvθ(t)

≤
∫
Ω

E0 + lim
t→0+

∫ t

0

(g,v)−
∫
Ω

cvθ0 =

∫
Ω

1
2 |v0|2.

Thus, using also (5.80), we conclude that

lim sup
t→0+

∥v(t)− v0∥22 = lim sup
t→0+

∫
Ω

|v(t)|2 +
∫
Ω

|v0|2 − 2 lim
t→0+

∫
Ω

v(t) · v0 ≤ 0,

which implies (3.42).

Finally, since f is strictly convex on Rd×d
>0 as

f ′′(B)A · A = µB−1AB−1 · A = µ|B− 1
2AB− 1

2 |2, B ∈ Rd×d
>0 , A ∈ Rd×d,

the strong attainment of the initial condition for B (3.43) follows readily from
(5.81), the classical result [55, Theorem 3 (i)] and the Vitali’s theorem once we
show the property

lim sup
t→0+

∫
Ω

f(B(t)) ≤
∫
Ω

f(B0). (5.92)

To this end, we make an observation that in (4.70) (with (4.81) in place), we can
choose ϕ = 1, drop the non-negative terms, integrate over (0, t) and then estimate
the right-hand side using Hölder inequality, (5.20) and (5.19) to obtain∫

Ω

f(Bℓ(t))−
∫
Ω

f(B
1
ℓ
0 ) ≤

∫ t

0

∫
Ω

2aµg 1
ℓ
(Bℓ, θℓ)Bℓ · Dvℓ ≤ Ct

1
2q′ . (5.93)

Note that again we rely on (5.48) to give a proper meaning to the left-hand side of

(5.93) for all t ∈ (0, T ). Utilizing now the convexity and continuity of f on Rd×d
>0

and (4.8), taking the limit ℓ→ ∞ in (5.93) leads to∫
Ω

f(B(t))−
∫
Ω

f(B0) ≤ lim inf
ℓ→∞

(∫
Ω

f(Bℓ(t))−
∫
Ω

f(B
1
ℓ
0 )
)
≤ Ct

1
2q′ ,

from which (5.92) immediately follows.

6. Global energy equality for d ≤ 3

To derive (3.46) (which is a weak version of (1.12)), we need to construct the pres-
sure p and ensure that every term appearing (3.46) is integrable. To this end, we
apply the conditions (3.11). Moreover, we need to be able to test the momen-
tum equation with vϕ, where ϕ is some smooth function on Q. Unfortunately, we
can not do this operation in (3.37) nor at any stage of our approximation scheme.
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The remedy is to truncate the convection term in the balance of momentum. How-
ever, then we are just mimicking the existence proof that is done in [7] for a different
non-linear fluid. Thus, let us only verify the weak compactness of weak solutions
(vδ,pδ,Bδ, θδ, ηδ) to the system div vδ = 0, (3.38), (3.40),

⟨∂tvδ,φ⟩−(Tδvδ⊗vδ,∇φ)Q+(Sδ,∇φ)Q+α(vδφ)Σ = (pδ,divφ)Q+(g,φ)Q (6.1)

for all φ ∈ L∞(0, T ;W 1,∞
n ), with Tδvδ = ((vδsδ) ∗ rδ)div, where sδ is a trunca-

tion near ∂Ω, rδ is a standard mollifier and (·)div is a Helmholtz projection onto
divergence-free functions, and

− (E0, ϕ)φ(0)− (Eδ, ϕ∂tφ)Q + α(|vδ|2, ϕφ)Σ + (κ(θδ)∇θδ,∇ϕφ)Q
= (Eδvδ + pδvδ − Sδvδ,∇ϕφ)Q (6.2)

for all φ ∈ W 1,∞((0, T );R), φ(T ) = 0, and every ϕ ∈ W 1,∞(Ω;R). The existence
of such solutions follows by combining the approximation scheme from Section 4
together with the one in [7]. In view of the uniform estimates derived in Sections 4–
5, we may suppose that the sequence {(vδ,pδ,Bδ, θδ, ηδ)}δ>0 is uniformly bounded
in the spaces depicted in (3.25)–(3.36) and that we have the same convergence
results as in (5.49)–(5.59) and so forth (with ℓ replaced by δ). We may also suppose
that, say pδ ∈ L2(Q;R) with

∫
Ω
pδ = 0. Then, since we have ν(θδ)Dvδ, θδBδ ∈

L2(Q;Rd×d
sym) and the convection term is truncated, equation (6.1) is valid for all

φ ∈ L2(0, T ;W 1,2
n ), in fact. What is missing is the uniform estimate of the pressure.

By localizing (6.1) in time, choosing φ = ∇u and using div vδ = 0, we obtain

−(pδ,∆u) = (Tδvδ ⊗ vδ − Sδ,∇∇u)− α(vδ,∇u)∂Ω + (g,∇u)

a.e. in (0, T ). There the convective term, if not truncated, is the most irregular
one (recall that ∥vδ ⊗ vδ∥

L
d+2
d L

d+2
d

≤ C). Thus, expecting pδ to have the same

integrability, we may choose u ∈W 2,( d+2
d )′(Ω;R) to be the solution to the Neumann

problem

−∆u = |p0|
d+2
d −2p0 −

1

|Ω|

∫
Ω

|p0|
d+2
d −2p0 in Ω,

∇u · n = 0 on ∂Ω

a.e. in (0, T ), where p0 = pδ − 1
|Ω|
∫
Ω
pδ. Since ∥u∥2,( d+2

d )′ ≤ C∥p0∥ d+2
d

by the cor-

responding Lq-theory (here we used Ω ∈ C1,1), the test function u eventually leads
to

∥pδ∥
L

d+2
d L

d+2
d

≤ C,

see [7] for details.
Taking the limit δ → 0+ in (6.1), (3.38) and (3.40) can be done analogously as

when we considered the limit ℓ→ ∞. Indeed, in the additional term
∫ T

0
(pδ,divφ),

we simply use the fact that pδ ⇀ p weakly in L
d+2
d (Q;R). It remains to take

the limit δ → 0+ in (6.2). Since vδ converges strongly in L2 d+2
d −ε(Q;Rd) and

d ≤ 3, we deduce that the terms pδvδ and |vδ|2vδ converge weakly to their lim-
its. The limits in other terms were already discussed and we omit it here. Thus,
the proof of Theorem 3.1 is complete.
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Appendix A. Auxiliary results

In this additional section, we prove those auxiliary results which were used above
but are not completely standard in the existing literature. On the other hand, they
are not new and serve only to clarify some arguments used in the proof.

For the purposes of this section, we replace the interval (0, T ) (or [0, T ]) by
an arbitrary bounded interval I ⊂ R and set Q = I × Ω. The set Ω is always
assumed to be a bounded Lipschitz domain in Rd, d ∈ N.

Intersections of Sobolev-Bochner spaces. If X
dense
↪→ H

dense
↪→ X∗ is a Gelfand

triple, it is well known that

C1(I;X)
dense
↪→ Wp

X ↪→ C(I;H), (A.1)

where

Wp
X :=

(
{u ∈ Lp(I;X); ∂tu ∈ (Lp(I;X))∗}, ∥·∥LpX + ∥∂t·∥Lp′X∗

)
, 1 < p <∞.

The first embedding in (A.1) is useful to manipulate certain duality pairings involv-
ing time derivatives, while the second embedding is important for the identification
of boundary values (i.e. initial conditions) and the corresponding integration by
parts formulas. We would like to generalize (A.1) for the space

Wp,q
X,Y :=

(
{u ∈ Lp(I;X) ∩ Lq(I;Y ); ∂tu ∈ (Lp(I;X) ∩ Lq(I;Y ))∗},
∥·∥LpX∩LqY + ∥∂t·∥(LpX∩LqY )∗

)
, 1 < p, q <∞,

The primary application which we have in mind is the case where X = W 1,2(Ω),
Y = Lω(Ω) and ω > 2d

d−2 (i.e., we know better integrability than what follows from

the Sobolev embedding, recall the function Bℓ). Thus, we may assume that both
X and Y admit the Gelfand triplet structure with a common Hilbert space H.

Lemma A.1. Let 1 < p, q < ∞ and suppose that X, Y are separable reflexive
Banach spaces and H is separable Hilbert space forming Gelfand triples in the sense
that

X
dense
↪→ H

dense
↪→ X∗ and Y

dense
↪→ H

dense
↪→ Y ∗. (A.2)

Then, we have the embeddings

C1(I;X ∩ Y )
dense
↪→ Wp,q

X,Y ↪→ C(I;H). (A.3)

Moreover, the integration by parts formula

(u(t2), v(t2))H − (u(t1), v(t1))H =

∫ t2

t1

⟨∂tu, v⟩+
∫ t2

t1

⟨∂tv, u⟩ (A.4)

holds for any u, v ∈ Wp,q
X,Y and any t1, t2 ∈ I.

Proof. The proof of the first embedding in (A.3) can be done in a standard way
by extending u outside I evenly, taking the convolution with a smooth kernel and
then estimating the difference from u and ∂tu in the respective norms. See [27] or
[60] for details.

If u, v ∈ C1(I;X ∩ Y ) ↪→ C(I;H), then ∂tu, ∂tv ∈ C(I;X ∩ Y ) ↪→ C(I;H) and,
using density of the embeddings in (A.2), the duality in (A.4) can be represented
as

⟨∂tu, v⟩+ ⟨∂tv, u⟩ = (∂tu, v)H + (∂tv, u)H = ∂t(u, v)H a.e. in I,
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hence (A.4) is obvious in that case. Next, we can proceed as in [53, Lemma 7.3.]
to prove that

∥u(t)∥H ≤ C(∥u∥L1H + ∥u∥Wp,q
X,Y

) (A.5)

for all t ∈ I and every u ∈ C1(I;X ∩ Y ). Moreover, by (A.2), we have

Wp,q
X,Y ↪→ Lp(I;X)∩Lq(I;Y ) ↪→ L1(I;X)∩L1(I;Y ) ↪→ L1(I;X + Y ) ↪→ L1(I;H),

and thus (A.5) yields

∥u∥C(I;H) ≤ C∥u∥Wp,q
X,Y

. (A.6)

Since C1(I;X ∩ Y ) is dense in Wp,q
X,Y , the estimate (A.6) and identity (A.4) remain

valid for all u ∈ Wp,q
X,Y . Moreover, if u ∈ Wp,q

X,Y , then we can take v = u and t2 → t1
in (A.4) to deduce that u ∈ C(I;H). Thus, the embedding Wp,q

X,Y ↪→ C(I;H) holds
and the proof is finished. □

Since Wp,p
X,X = Wp

X , the classical result (A.1) can be seen as an obvious corollary.

Fundamental theorem of calculus in the Sobolev-Bochner setting. Let
H = L2(Ω). The formula (A.4) can be used to identify that

⟨∂tu, u⟩ =
1

2

d

dt

∫
Ω

u2 (A.7)

a.e. in I. However, in certain situations we would like to generalize (A.7) to

⟨∂tu, ψ(u)⟩ =
d

dt

∫
Ω

∫ u

w

ψ(s) ds.

Whether this is possible depends on what kind of function ψ is and also on the choice
of X. The next lemma characterizes one such situation.

Lemma A.2. Let 1 < p, q < ∞. Suppose that ψ : R → R is a Lipschitz function.
For w ∈ R, we define

Ψ(x) =

∫ x

w

ψ(s) ds, x ∈ R.

Then, for any u ∈ Wp
W 1,q(Ω), there holds

Ψ(u) ∈ C(I;L1(Ω)) (A.8)

and ∫ t2

t1

⟨∂tu, ψ(u)⟩ =
∫
Ω

Ψ(u(t2))−
∫
Ω

Ψ(u(t1)) for all t1, t2 ∈ I. (A.9)

Moreover, if ψ is bounded, then

Ψ(u) ∈ C(I;L2(Ω)).

Proof. First of all, we remark that ψ(u) ∈ W 1,q(Ω) a.e. in I, by a classical result
(see e.g. [61, Theorem 2.1.11.]), and thus the duality in (A.9) is well defined. Next,
we apply Theorem A.1 to find uε ∈ C1(I;W 1,q(Ω)) satisfying

∥uε − u∥LpW 1,q + ∥∂tuε − ∂tu∥Lp′W−1,q′ → 0 as ε→ 0 + . (A.10)
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Then, using the standard calculus, it is easy to see that the identity∫ t2

t1

⟨∂tuε, ψ(uε)⟩ =
∫ t2

t1

∫
Ω

ψ(uε)∂tuε

=

∫ t2

t1

∫
Ω

∂tΨ(uε) =

∫
Ω

Ψ(uε(t2))−
∫
Ω

Ψ(uε(t1))

(A.11)

holds for any t1, t2 ∈ I. Denoting the Lipschitz constant of ψ by L ≥ 0, we estimate

|ψ(uε)| ≤ |ψ(uε)− ψ(0)|+ |ψ(0)| ≤ L|uε|+ |ψ(0)|
and

|∇ψ(uε)| ≤ |ψ′(uε)||∇uε| ≤ L|∇uε|.
Hence, the sequence ψ(uε) is bounded in Lp(I;W 1,q(Ω)). As 1 < p, q < ∞, this
is a separable reflexive space, and thus, there exist a subsequence and its limit
ψ(u) ∈ Lp(I;W 1,q(Ω)) such that

ψ(uε)⇀ ψ(u) weakly in Lp(I;W 1,q(Ω)). (A.12)

Since p > 1, a subsequence of uε converges point-wise a.e. in Q to u, and thus
ψ(u) = ψ(u) using the continuity of ψ. Hence, by (A.10) and (A.12), we obtain∫ t2

t1

⟨∂tuε, ψ(uε)⟩ =
∫ t2

t1

⟨∂tuε − ∂tu, ψ(uε)⟩+
∫ t2

t1

⟨∂tu, ψ(uε)⟩

→
∫ t2

t1

⟨∂tu, ψ(u)⟩
(A.13)

as ε → 0+. Next, using the embedding Wp
W 1,q(Ω) ↪→ C(I;L2(Ω)) and (A.10), we

get, for any t0 ∈ I, that

∥u(t)− u(t0)∥2 → 0 as t→ t0 (A.14)

and

∥uε(t0)− u(t0)∥2 → 0 as ε→ 0+. (A.15)

Then, the Lipschitz continuity of ψ, Hölder’s inequality and (A.14) yield∫
Ω

|Ψ(u(t))−Ψ(u(t0))| =
∫
Ω

∣∣∣∣∣
∫ u(t)

u(t0)

ψ(s) ds

∣∣∣∣∣ ≤
∫
Ω

∫ u(t)

u(t0)

(|ψ(0)|+ L|s|) ds

≤
∫
Ω

∫ u(t)

u(t0)

C(1 + |u(t0)|+ |u(t)|) ≤ C

∫
Ω

(1 + |u(t0)|+ |u(t)|)|u(t)− u(t0)|

≤ C∥1 + |u(t0)|+ |u(t)|∥2∥u(t)− u(t0)∥2 ≤ C∥u(t)− u(t0)∥2 → 0 (A.16)

as t→ t0, which proves (A.8) (and thus, the values Φ(u(t)), t ∈ I, are well defined).
By an analogous estimate, using (A.15) instead of (A.14), we can prove that∫

Ω

|Ψ(uε(t0))−Ψ(u(t0))| → 0 as ε→ 0+

for any t ∈ I. This and (A.13) used in (A.11) to take the limit ε → 0+ proves
(A.9).

If ψ is bounded, we replace (A.16) by∫
Ω

|Ψ(u(t))−Ψ(u(t0))|2 =

∫
Ω

∣∣∣∣∣
∫ u(t)

u(t0)

ψ(s) ds

∣∣∣∣∣
2

≤ C

∫
Ω

|u(t)− u(t0)|2
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and the rest of the proof remains the same. □

Clearly, we can also replace ψ by ψϕ, where ϕ ∈W 1,∞(Ω;R), leading to∫ t

0

⟨∂tu, ψ(u)ϕ⟩ =
∫
Ω

∫ u(t)

w

ψ(s) ds ϕ−
∫
Ω

∫ u(0)

w

ψ(s) ds ϕ for all t ∈ I. (A.17)

Then, since ϕ is a Lipschitz (time independent) function, the proof is basically
the same as the one presented above.

Calculus for positive definite matrices. We recall that the operations “·” and
| · | on matrices are defined by

A1 · A2 =

d∑
i=1

d∑
j=1

(A1)ij(A2)ij and |A| =
√
A · A,

respectively. Then, the object |A| coincides, in fact, with the Frobenius matrix
norm of A.

The next lemma is formulated for a function A : Q→ Rd×d
>0 and for simplicity, we

shall assume that A is continuously differentiable with respect to all variables, i.e.,
A ∈ C1(Q;Rd×d

>0 ). In particular situations, this assumption can be of course removed
by an appropriate approximation (convolution smoothing) and the assertions of
the following lemma hereby extend to the setting of weakly differentiable functions.
Let us also denote any of the space-time derivatives by a generic symbol ∂.

Lemma A.3. Let A ∈ C1(Q;Rd×d
>0 ). Then

(i) 0 ≤ trA− d− ln detA, (A.18)

(ii) |A| ≤ trA ≤
√
d|A|, (A.19)

(iii) min{1, d
1−α
2 }|A|α ≤ |Aα| ≤ max{1, d

1−α
2 }|A|α for any α ≥ 0, (A.20)

(iv) ∂A · Aα =
{ 1

α+1∂ trA
α+1 if α ̸= −1;

∂ ln detA = ∂ tr logA if α = −1,
(A.21)

(v) (signα)∂A · ∂Aα ≥
{ 4|α|

(α+1)2 |∂A
α+1
2 |2 if α ̸= −1;

|∂ logA|2 if α = −1,
(A.22)

(vi) |∂A| ≤ 2|A1−α∂Aα| for all α ∈ [ 12 , 1). (A.23)

Proof. Property (i) follows by passing to the spectral decomposition of A and from
the fact that x 7→ x − 1 − lnx attains its minimum at x = 1. Estimate (ii) is
a consequence of the Cauchy–Schwarz inequality since

|A| = |(A 1
2 )TA

1
2 | ≤ |A 1

2 |2 = trA = I · A ≤ |I||A| =
√
d|A|.

For (iii), we refer to [3, Proposition 1] and for (iv), (v) to [3, Theorem 1]. The re-
lation (iv) with α = −1 is also known as the Jacobi identity.

Finally, property (A.23) can be shown using the idea from the proof of [3, The-
orem 3], which we briefly sketch here. For any natural numbers p, q satisfying
q − p ≤ p < q (so that α = p

q ∈ [ 12 , 1)), we may use the Young inequality to write

|∂Bq|2 = |∂Bq−pBp+Bq−p∂Bp|2 ≤ 2|∂Bq−pBp|2+2|Bq−p∂Bp|2 =: 2A+2B. (A.24)
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Now we simply expand the derivative and rearrange the terms to get

A =
∣∣∣ q−p−1∑

i=0

Bi∂BBq−1−i
∣∣∣2 =

q−p−1∑
i=0

q−p−1∑
j=0

∣∣B i+j
2 ∂BBq−1− i+j

2

∣∣2
=

2(q−p−1)∑
s=0

(1 + min{s, 2(q − p− 1)− s})
∣∣B s

2 ∂BBq−1− s
2

∣∣2, (A.25)

whereas for B, a completely analogous computation yields

B =

2(p−1)∑
s=0

(1 + min{s, 2(p− 1)− s})
∣∣B s

2 ∂BBq−1− s
2

∣∣2.
Then, using q−p ≤ p first inside the minimum in (A.25) and then in the number of
terms of the sum (relying on the non-negativity of each term), we see that A ≤ B.

Returning with this information to (A.24) and setting B = A
1
q , we easily conclude

(A.23) for rational powers α. The general case follows by a density argument (the
continuity of the mapping α 7→ A1−α follows immediately from the spectral decom-
position, while continuity of α 7→ ∂Aα is a consequence of the integral representation
formula for ∂ expX, see [57] or [3] for more details).

□
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[15] M. Buĺıček, J. Málek, and K. R. Rajagopal, Navier’s slip and evolutionary Navier-

Stokes-like systems with pressure and shear-rate dependent viscosity, Indiana University
Mathematics Journal, 56 (2007), pp. 51–85.
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