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Motivation

The main object of interest to us is the Selberg integral. It has played an
important role in:

Analytic number theory — the distribution of the Riemann zeros on
the critical line

Random matrices — the distribution of eigenvalues for certain
classes of random matrices

Conformal field theory — computation of conformal blocks and the
AGT conjecture



The Hypergeometric Differential Equation

x(1− x)
d2F

dx2
+ (c − (a + b + 1)x)

dF

dx
− abF = 0.

Gauss solved this ODE as a series:

2F1

[
a, b

c
; x

]
=
∞∑
k=0

(a)k(b)k
(c)k

xk

k!

where
(a)k = (a)(a + 1) · · · (a + k − 1).



Euler solved it as an integral:

2F1

[
a, b

c
; x

]
=

Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−a dt

where Γ(x) is the gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt, Re(x) > 0.



Sending x → 1 and using Gauss’ summation formula

∞∑
k=0

(a)k(b)k
(c)k

1

k!
=

Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)

one may deduce the integral formula

Γ(b)Γ(c − a− b)

Γ(c − a)
=

∫ 1

0

tb−1(1− t)c−b−a−1 dt.

This is simply the beta integral∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
, Re(α),Re(β) > 0

with α = b and β = c − a− b.



The Selberg integral

In 1944 Selberg proved the integral evaluation

1

k!

∫
[0,1]k

k∏
i=1

tα−1i (1− ti )
β−1

∏
16i<j6k

|ti − tj |2γ dt1 · · · dtk

=
k−1∏
j=0

Γ(α + (j − 1)γ)Γ(β + (j − 1)γ)Γ(jγ)

Γ(α + β + (k + j − 1)γ)Γ(γ)
.

Here k is a positive integer, Re(α),Re(β) > 0 and Re(γ) > . . .

Question:

Can we generalise the previous approach to the Selberg integral?



Partitions

A partition of a positive integer n is a weakly decreasing sequence of
positive integers λ = (λ1, λ2, . . . , λk) such that

|λ| = λ1 + λ2 + · · ·+ λk = n.

Here k is the length of λ, and denoted `(λ). For example there are five
partitions of 4:

4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1

We represent these graphically as Young diagrams:

This is the partition (6, 4, 3, 2, 2). It has length `(λ) = 5 and is a
partition of 17.



Given a partition λ and its Young diagram, we may define the arm and
leg lengths of a square s.

•

For the bulleted square we have

a(s) = 2, l(s) = 3.

The arm colength and leg colength are then

•

so
a′(s) = l ′(s) = 1.



Symmetric functions

We call a polynomial f ∈ Q[x1, . . . , xn] =: Q[X ] symmetric if it is
invariant permutation of the variables, i.e., for any w ∈ Sn,

f (x1, . . . , xn) = f (xw(1), . . . , xw(n)).

The set of such polynomials forms a subring ΛQ,n of Q[X ].

Examples are the power sums

pr (X ) = x r1 + x r2 + · · ·+ x rn .

One extends this to partitions by

pλ(X ) = pλ1(X ) · · · pλ`(λ)(X ).

We may define the Hall scalar product on ΛQ,n by imposing that the
power sums are orthogonal:

〈pλ, pµ〉 = 0, λ 6= µ.



Macdonald polynomials

In 1988 Macdonald introduced a remarkable new basis for ΛQ(q,t),
denoted by Pλ(X ; q, t).

They generalise many well-known classes of symmetric functions such as
the Schur functions and Hall–Littlewood polynomials.



The Pλ are orthogonal under a q, t-deformation of the scalar product:

〈Pλ(X ; q, t),Pµ(X ; q, t)〉q,t = 0, λ 6= µ.

Assume q ∈ C such that |q| < 1. Define the infinite q-shifted factorial

(a; q)∞ = (1− a)(1− aq)(1− aq2) · · ·

Equivalent to the orthogonality of the Macdonald polynomials is the
Cauchy identity

∑
λ

Pλ(X ; q, t)Pλ(Y ; q, t)
∏
s∈λ

1− qa(s)t l(s)+1

1− qa(s)+1t l(s)
=
∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

.



The last ingredient in our approch to generalised Selberg integrals is the
q-integral. For 0 < q < 1 define this by∫ 1

0

f (t) dqt = (1− q)
∞∑
i=0

qi f (qi ).

A simple q-beta integral is then∫ 1

0

tα−1
(tq; q)∞

(tqβ ; q)∞
dqt =

Γq(α)Γq(β)

Γq(α + β)

where the q-gamma function is given by

Γq(z) = (1− q)1−z
(q; q)∞
(qz ; q)∞

.

This q-integral is actually a heavily specialised version of the Cauchy
identity for Macdonald polynomials, as it is equivalent to the q-binomial
theorem

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az ; q)∞
(z ; q)∞

.



The approach

Cauchy-type identity for Macdonald polynomials

⇓

Multidimensional q-Selberg integral

⇓

Generalised Selberg integral



The relationship between symmetric functions and Selberg integrals has
long been known. Indeed Macdonald conjectured the following
evaluation, which was proved by Kadell:

1

k!

∫
[0,1]k

P̃
(1/γ)
λ (t)

k∏
i=1

tα−1i (1− ti )
β−1

∏
16i<j6k

|ti − tj |2γ dt1, . . . , dtk

=
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(γi)

Γ(α + β + (k + i − 2)γ + λi )Γ(γ)
.

Here P
(1/γ)
λ is a Jack polynomial, obtained from the Macdonald

polynomials by setting (q, t) = (q, qγ) and sending q → 1.



In their studies of conformal field theory, Alba, Fateev, Litvinov and
Tarnopolsky (2011) discovered the even more general integral formula∫
[0,1]k

P̃
(1/γ)
λ (t)P̃(1/γ)

µ [t + β/γ − 1]
k∏

i=1

tα−1i (1− ti )
β−1

∏
16i<j6k

|ti − tj |2γ dt

=
n∏

i=1

Γ(α + λi + γ(n − i))Γ(β + γ(n − i))Γ(1 + iγ)

Γ(α + β + λi + γ(n − i − 1))Γ(1 + γ)

×
n∏

i,j=1

Γ(α + β + λi + µj + γ(2n − i − j − 1))

Γ(α + β + λi + µj + γ(2n − i − j))
.

Using the full Cauchy identity for Macdonald polynomials a proof of this
integral and a q-analogue are possible.



Higher rank cases

The left-hand side of the Cauchy identity contains two Macdonald
polynomials on different alphabets, yet indexed by the same partition:

∑
λ

Pλ(X )Pλ(Y )
∏
s∈λ

1− qa(s)t l(s)+1

1− qa(s)+1t l(s)

We think of this as associating two alphabets X ,Y to the Dynkin
diagram of sl2:

X

Y



We therefore think of a higher rank Cauchy identity as having two
alphabets associated to each vertex:

X (1)

Y (1)

X (2)

Y (2)

X (n)

Y (n)

Indeed we are interested in evaluating the sums of the form

∑
λ(1),...,λ(n)

n∏
s=1

Pλ(s)(X (s); q, t)Pλ(s)(Y (s); q, t)
n−1∏
i=1

f
(s)

λ(s),λ(s+1)

where f is some function representing the edges of the Dynkin diagram.



Knizhnik–Zamolodchikov equations

Question: Why should such higher rank integrals exist?

Answer: The Knizhnik–Zamolodchikov (KZ) equations:

κ
∂u

∂z
=

Ω

z − w
u,

κ
∂u

∂w
=

Ω

w − z
u.

These are a system of partial differential equations based on Lie algebras.
Indeed u(z ,w) takes values in Vλ ⊗ Vµ where Vλ,Vµ are highest weight
modules for a simple Lie algebra g.

For g = sl2 the Selberg integral arrises as a solution analagous to the
case of the beta integral and the hypergeometric differential equation.



The Mukhin–Varchenko Conjecture

The case of the Selberg integral lead Mukhin and Varchenko to
conjecture the existence of a generalised Selberg integral for each simple
Lie algebra g.

Conjecture (Mukhin–Varchenko (2000))

If the space of singular vectors of weight λ+ µ−
∑

ki ᾱi is
one-dimensional, then there exists some domain of integration D such
that the integral ∫

D

|Φ(t)|1/κ dt

evaluates as a product of gamma functions. The function Φ(t) is the
specialised master function.

Neither the domain D or the form the product of gamma functions takes
are specified by the conjecture.



The Mukhin–Varchenko conjecture has a satisfactory only in the case
g = sln+1, due to Warnaar (2009). The proof relies on a rank n
Cauchy-type identity where each alphabet is specialised, except for X (1)

which is finite:

X (1)

Y (1)

X (2)

Y (2)

X (n)

Y (n)

By adapting Warnaar’s technique, it is possible to prove a rank n Cauchy
identity for which the alphabet Y (n) is arbitrary:

X (1)

Y (1)

X (2)

Y (2)

X (n)

Y (n)

This extra freedom allows the extension of the integral of Alba et. al to
rank n.



Theorem (sln+1 Alba–Fateev–Litvinov–Tarnopolsky Integral)

Let n be a positive integer and 0 6 k1 6 · · · 6 kn nonnegative integers.
Suppose α1, . . . , αn, β, γ ∈ C are such that

Re(α1), . . . ,Re(αn),Re(β) > 0

(plus some more complicated conditions involving γ). Then∫
C

k1,...,kn
γ

P̃
(1/γ)
λ (t(1))P̃(1/γ)

µ [t(n) + β/γ − 1]

×
n∏

s=1

[ ∏
16i<j6ks

|t(s)i − t
(s)
j |

2γ
ks∏
i=1

(t
(s)
i )αs−1(1− t

(s)
i )βs−1

]

×
n−1∏
s=1

( ks∏
i=1

ks+1∏
j=1

|t(s)i − t
(s+1)
j |−γ

)
dt

= product of gamma functions.

In the above β1, . . . , βn−1 = 1 and βn = β.




