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1. An old theorem of D. E. Littlewood, served in several ways

2. Recent generalisations by Ayyer and Kumari for other group
characters

3. All of these in the same light
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A theorem of Littlewood

From The Theory of Group Characters and Matrix Representations of
Groups (1940) page 133.

Dictionary:

λ −→ partition with at most rm nonzero entries

θ −→ sign of a particular permutation

{λ} −→ Littlewood’s notation for the Schur function sλ
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A partition λ = (λ1, λ2, . . . ) is a weakly decreasing sequence

λ1 ⩾ λ2 ⩾ λ3 · · ·

such that only fintely λi ̸= 0. The number of nonzero λi , writen ℓ(λ), is
called the length and the sum is |λ| := λ1 + λ2 + λ3 + · · · .

For example λ = (6, 4, 3, 3) has ℓ(λ) = 4 and |λ| = 16. Its Young
diagram is given by

The conjugate partition is obtained by reflecting the Young diagram in
the “main diagonal”

so that (4, 4, 4, 2, 1, 1) is the conjugate of (6, 4, 3, 3).
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Littlewood’s {λ} are Schur functions, usually first defined by the
bialternant formula

sλ(x1, . . . , xn) =
det1⩽i,j⩽n(x

λj+n−j
i )

det1⩽i,j⩽n(x
n−j
i )

.

Note the denominator is the Vandermonde determinant

det
1⩽i,j⩽n

(xn−j
i ) =

∏
1⩽i<j⩽n

(xi − xj),

so the ratio is a polynomial, and moreover is homogeneous of degree |λ|
and symmetric in the xi .

For example

s(2,1)(x1, x2, x3) = x21 x2 + x21 x3 + x1x
2
2 + x22 x3 + x1x

2
3 + x2x

2
3 + 2x1x2x3.



For λ = (r) and λ = (1r ), a single row or column of length r , the Schur
functions reduce to the complete homogeneous and elementary
symmetric functions respectively:

s(r)(X ) =: hr (X ) =
∑

1⩽i1⩽···⩽ir

xi1 · · · xir ,

s(1r )(X ) =: er (X ) =
∑

1⩽i1<···<ir

xi1 · · · xir .

Here we let X = (x1, x2, . . . ) be an arbitrary countable set of variables.

Fact: Any symmetric function can be written as a polynomial in either
the hr or the er . The ring generated by them is the ring of symmetric
functions denoted Λ.

For the Schur functions the expansions are given by the Jacobi–Trudi
(and Nägelsbach–Kostka) identities

sλ = det
1⩽i,j⩽n

(hλi−i+j) = det
1⩽i,j⩽m

(eλ′
i−i+j),

where h0 = e0 = 1 and h−r = e−r = 0 for r ⩾ 1.
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(and Nägelsbach–Kostka) identities

sλ = det
1⩽i,j⩽n

(hλi−i+j) = det
1⩽i,j⩽m

(eλ′
i−i+j),

where h0 = e0 = 1 and h−r = e−r = 0 for r ⩾ 1.



For λ = (r) and λ = (1r ), a single row or column of length r , the Schur
functions reduce to the complete homogeneous and elementary
symmetric functions respectively:

s(r)(X ) =: hr (X ) =
∑

1⩽i1⩽···⩽ir

xi1 · · · xir ,

s(1r )(X ) =: er (X ) =
∑

1⩽i1<···<ir

xi1 · · · xir .

Here we let X = (x1, x2, . . . ) be an arbitrary countable set of variables.

Fact: Any symmetric function can be written as a polynomial in either
the hr or the er . The ring generated by them is the ring of symmetric
functions denoted Λ.

For the Schur functions the expansions are given by the Jacobi–Trudi
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Let t ⩾ 2 be an integer, ζ a primitive t-th root of unity, and
X = (x1, . . . , xn). Then Littlewood’s result may be phrased as follows.

Theorem (Littlewood (1940), version II)

Let λ be a partition of length at most nt. If the set

{λ1 + nt − 1, λ2 + nt − 2, . . . , λnt}

contains n integers of residue r modulo t for each 0 ⩽ r ⩽ t − 1 then

sλ(X , ζX , . . . , ζt−1X ) = ±
t−1∏
r=0

sλ(r)(X t),

where the λ(r) are some partitions defined in terms of λ and t. Else,

sλ(X , ζX , . . . , ζt−1X ) = 0.

The t-core and t-quotient of λ are hiding behind this statement.
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Cores and quotients

The t-core of a partition was defined by Nakayama in 1940 in terms of
the removal of ribbons (or border strips, skew hooks) from its Young
diagram.

The t-quotient was defined by Littlewood in 1951. However his student
Farahat showed that his construction is equivalent to the star diagrams of
Nakayama, Osima, Robinson and Staal.
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We say µ is contained in λ if its Young diagram fits inside the Young
diagram of λ, written µ ⊆ λ.

So (3, 2, 2, 2) ⊆ (7, 4, 3, 3), and we form the skew shape by removing µ’s
Young diagram from λ’s.

What remains here is a skew shape with no 2× 2 square. Such a shape is
called a ribbon. Since it has 8 cells, it is an 8-ribbon. The height of this
ribbon is 3, with definition

ht(λ) = #rows− 1.

For a fixed t, Nakayama considered successively removing t-ribbons from
a Young diagram, so that at each step a valid Young diagram remains.
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Let’s try with λ = (7, 4, 3, 3) and t = 4:

Theorem (Nakayama): Applying this procedure produces a unique
partition with no hook of length t. This partition is called the t-core of λ.

For our example 4-core((7, 4, 3, 3)) = (3, 1, 1).

A different description of this procedue—which also naturally explains the
t-quotinet—is due to James (but appears in the book of James and
Kerber).
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Lay out the integers {0, 1, 2, 3, . . . } in infinite columns according to their
residue modulo t.

Given a partition λ and an integer n ⩾ ℓ(λ), place a bead at position
λi + n − i for each 1 ⩽ i ⩽ n. This is called a bead configuration.

In the above, for λ = (7, 4, 3, 3) and n = 7, place beads at

{13, 9, 7, 6, 2, 1, 0}.

The key observation:

Moving a bead up one space ←→ Removing a t-ribbon from λ
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{13, 9, 7, 6, 2, 1, 0} −→ (7, 4, 3, 3)



{13, 9, 6, 3, 2, 1, 0} −→ (7, 4, 2)



{13, 6, 5, 3, 2, 1, 0} −→ (7, 1, 1)



{9, 6, 5, 3, 2, 1, 0} −→ (3, 1, 1)



The t-quotient is obtained by reading each column as a bead
configuration in the bead configuration for λ:

(
{0}, {3, 2, 0}, {1, 0}, {1}

)
−→

(
∅, (1, 1),∅, (1)

)
=:
(
λ(0), λ(1), λ(2), λ(3)

)

Changing n, as long as n ⩾ ℓ(λ), cyclically permutes the elements of the
quotient. In what follows we fix n as a multiple of t.

Note in this case t-core(λ) is empty if and only if each column contains
the same number of beads.
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Theorem (Littlewood, 1951): For each t ⩾ 2 the map

ϕt : P −→ Ct ×P t

λ 7−→
(
t-core(λ), (λ(0), . . . , λ(t−1))

)
is a bijection such that

|λ| = |t-core(λ)|+ t
(
|λ(0)|+ · · ·+ |λ(t−1)|

)
.

Our previous example gives

ϕ4

(
(7, 4, 3, 3)

)
=
(
(3, 1, 1), ((1),∅, (1, 1),∅)

)
and

17 = 5 + 3× 4.
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If t-core(λ) is empty, then the Young diagram has a decomposition

∅ = ν(0) ⊆ ν(1) ⊆ · · · ⊆ ν(k−1) ⊆ ν(k) = λ,

where k = |λ|/t and ν(r)/ν(r−1) is a t-ribbon. It is a non-obvious fact
that for any such ribbon decomposition the sign

sgnt(λ) := (−1)
∑k

r=1 ht(ν
(r)/ν(r−1))

is the same. This has been shown both by van Leeuwen and Pak.

sgnt
(
(6, 4, 3, 3)

)
= (−1)6 = 1
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Putting this all together...

Theorem (Littlewood (1940), version III)

Let λ be a partition. If t-core(λ) is empty, then

sλ(X , ζX , . . . , ζt−1X ) = sgnt(λ)
t−1∏
r=0

sλ(r)(X t).

Else, if t-core(λ) is non-empty, then

sλ(X , ζX , . . . , ζt−1X ) = 0.

Littlewood’s theorem has been rediscovered many times, both in this
form and as a statement for the characters of the symmetric group.
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In Littlewood defines what he calls “S-functions of series”. The hr
may be defined by the generating function

n∏
i=1

1

1− zxi
=
∑
r⩾0

hr (x1, . . . , xn)z
n.

The “S-functions” (Schur functions) of this series are the ordinary Schur
functions sλ(x1, . . . , xn), defined by the Jacobi–Trudi determinant

sλ(x1, . . . , xn) = det
1⩽i,j⩽n

(hλi−i+j)

By considering other series f (z), one essentially chooses different values
for the hr , resulting in different Schur functions.

For example if we choose

f (z) =
n∏

i=1

1− zyi
1− zxi

then the associated h
f (z)
r are

r∑
k=0

(−1)r−khk(x1, . . . , xn)er−k(y1, . . . , yn).
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From now on we will work with the series

f (z) :=
∏
i⩾1

1

1− xiz
=
∑
r⩾0

hr (X )z r ,

where X = (x1, x2, . . . ) and as before

hr (X ) =
∑

1⩽i1⩽···⩽ir

xi1 · · · xir .

Littlewood’s theorem is really about comparing the Schur functions
obtained from the series

f (z t) =
∑
r⩾0

hr (X )z tr

with those obtained from f (z). We can encode this by an operator

φt : Λ −→ Λ

hr 7−→

{
hr/t if t divides r

0 otherwise.
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Of course by equating coefficients in∑
r⩾0

hr (X )z tr =
∏
i⩾1

1

1− xiz t

=
∏
i⩾1

t−1∏
r=0

1

1− ζrx
1/t
i z

=
∑
r⩾0

hr
(
X 1/t , ζX 1/t , . . . , ζt−1X 1/t

)
z r ,

we see that

φthr (X ) = hr
(
X 1/t , ζX 1/t , . . . , ζt−1X 1/t

)
.



Theorem (Littlewood (1940), version IV)

We have that φtsλ = 0 unless t-core(λ) is empty, in which case

φtsλ = sgnt(λ)
t−1∏
r=0

sλ(r) .

The proof is simple, only involving the “right” rearrangement of the
rows/columns of the determinant

φtsλ = det
1⩽i,j⩽nt

(
φtsλi−i+j

)
.

All of the information needed is hidden in the Littlewood decomposition.
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There is a simple generalisations for the skew Schur functions

sλ/µ := det
1⩽i,j⩽n

(hλi−µj−i+j).

Theorem Farahat (1954) & Macdonald (1995): For any skew shape λ/µ,
φtsλ/µ = 0 unless λ/µ is tilable by t-ribbons, in which case

φtsλ/µ = sgnt(λ/µ)
t−1∏
r=0

sλ(r)/µ(r) .

The proof is identical to the straight shape case!
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Inspired by a rediscovery of Littlewood’s theorem by Prasad, Ayyer and
Kumari proved similar factorisation theorems for the characters of the
groups Sp(2n,C), O(2n,C) and SO(2n + 1,C).

These characters, which we denote by spλ, oλ and soλ respectively, are
Laurent polynomials in x1, . . . , xn which are symmetric under permutation
and inversion of variables.

Rather than working with the characters directly, in this context it is
much better to work with the universal characters as defined in part by
Weyl, and in part by Koike and Terada. These are lifts of the symmetric
Laurent polynomials to symmetric functions:

spλ :=
1

2
det

1⩽i,j⩽n

(
hλi−i+j + hλi−i−j+2

)
oλ := det

1⩽i,j⩽n

(
hλi−i+j − hλi−i−j

)
so±λ := det

1⩽i,j⩽n

(
hλi−i+j ± hλi−i−j+1

)
Specialising to x±1 , . . . , x±n give actual characters of the labelled groups.
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The Durfee square of a partition is the largest square which fits inside the
Young diagram

Call the side lengths d(λ). The Frobenius notation for a partition records
how many cells are below/to the right of each cell on the main diagonal.
For example

(5, 4, 3, 3, 2, 1) = (4, 2, 0 | 5, 3, 1).

So any pair of strictly decreasing nonnegative integer sequences
a1, . . . , ad , b1, . . . , bd determine a partition with d × d Durfee square.
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Ayyer and Kumari were led to what they call z-asymmetric partitions,
which are those of the form

(a1, . . . , ad | a1 + z , . . . , ad + z)

for some integers d and z .

is 1-asymmetric. A 0-asymmetric partition is called self-conjugate.

These partitions naturally arise in the proof of the factorisations for the
universal characters, as we saw for the Schur functions.
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Theorem: We have that φtspλ = 0 unless t-core(λ) is 1-asymmetric, in
which case

φtspλ = sgnspt (λ; nt)spλ(t−1)

⌊(t−3)/2⌋∏
r=0

rsλ(r),λ(t−r−2)×

{
soλ((t−2)/2) if t is even,

1 if t is odd.

Theorem: We have that φtoλ = 0 unless t-core(λ) is (−1)-asymmetric,

in which case

φtoλ = sgnot (λ; nt)oλ(0)

⌊(t−1)/2⌋∏
r=1

rsλ(r),λ(t−r) ×

{
so−

λ(t/2) if t is even,

1 if t is odd.

Theorem: We have that φtsoλ = 0 unless t-core(λ) is self-conjugate, in

which case

φtsoλ = sgnsot (λ; nt)

⌊(t−2)/2⌋∏
r=0

rsλ(r),λ(t−r−1) ×

{
1 if t is even,

soλ((t−1)/2) if t is odd.
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These factorisations involve a fourth universal character

rsλ,µ(X ;Y ) := det
1⩽i,j⩽n+m

 (
hλi−i+j(X )

)
1⩽i,j⩽n

(
hλi−i−j+1(X )

)
1⩽i⩽n
1⩽j⩽m(

hµi−i−j+1(Y )
)
1⩽i⩽m
1⩽j⩽n

(
hµi−i+j(Y )

)
1⩽i,j⩽m


For X = Y we write this simply as rsλ,µ. This was first defined by
Balantekin and Bars (also Cummins and King), and again by Koike. It
appears frequently in the physics literature under the name “composite
Schur function”.

This object arises from the rational representation theory of GL(n,C). It
is, in a sense, the “correct” universal character analogue of the Schur
function in 2n variables

sν
(
x±1 , . . . , x±n

)
.

The key identity is

s(λ1,...,λn)(x1, . . . , xn) = (x1 · · · xn)s(λ1−1,...,λn−1)(x1, . . . , xn),

which allows for Schur functions to be extended to weakly decreasing
sequences of integers with length exactly n.
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Given a pair of partitions λ, µ such that ℓ(λ) + ℓ(µ) ⩽ n, define the
staircase

[λ, µ] = (λ1, λ2, . . . ,−µ2,−µ1︸ ︷︷ ︸
length n

).

Littlewood showed that

rsλ,µ(x1, . . . , xn; 1/x1, . . . , 1/xn) = s[λ,µ](x1, . . . , xn),

i.e., in this case rsλ,µ is, up to a power of x1 · · · xn, a Schur function. The
right-hand side is the character of a rational representation of GL(n,C)
indexed by [λ, µ].

The proofs of the factorisation φtspλ and its cousin proceed exactly as in
the Schur case, the precise rearrangement of the determinants just
requires a more careful analysis.
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Recall the involution ω : Λ −→ Λ on symmetric functions defined by
ωhr = er . This satisfies

ωsλ/µ = sλ′/µ′

ωspλ = oλ′

ωsoλ = soλ′ .

Proposition: There holds

ωφtsλ/µ = (−1)(t−1)(|λ(0)/µ(0)|+···+|λ(t−1)/µ(t−1)|)φtωsλ/µ

and
ωφt•λ = (−1)(t−1)(|λ(0)|+···+|λ(t−1)|)φtω•λ

for • ∈ {sp, o, so}.

This implies that ω and φt commute for t odd.
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Extras

Let (mn) be a rectangular partition, e.g.

m

n

In 2009, Ciucu and Krattenthaler observed and proved that

s(2m)n(x
±
1 , . . . , x±n ) = so(mn)(x

±
1 , . . . , x±n )so−(mn)(x

±
1 , . . . , x±n ),

and

s(2m+1)n(x
±
1 , . . . , x±n ) = sp(mn)(x

±
1 , . . . , x±n )o((m+1)n)(x

±
1 , . . . , x±n ).



These were generalised by Ayyer and Behrend to the identities

s(λ1,...,λn,−λn,...,−λ1)(x
±
1 , . . . , x±n )

= so(λ1,...,λn)(x
±
1 , . . . , x±n )so−(λ1,...,λn)

(x±1 , . . . , x±n ),

and

s(λ1+1,...,λn+1,−λn,...,−λ1)(x
±
1 , . . . , x±n )

= sp(λ1,...,λn)(x
±
1 , . . . , x±n )o−(λ1+1,...,λn+1)(x

±
1 , . . . , x±n ).

These identities can be given universal character analogues of the form

rsλ,λ = soλso
−
λ and rsλ+1n,λ = spλoλ+1n .

Moreover, the proofs are short and sweet.
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For example, in

rsλ,λ = det
1⩽i,j⩽2n

( (
hλi−i+j

)
1⩽i,j⩽n

(
hλi−i−j+1

)
1⩽i,j⩽n(

hλi−i−j+1

)
1⩽i,j⩽n

(
hλi−i+j

)
1⩽i,j⩽n

)
,

add the blocks on the right to the blocks on the left, and then subtract
the blocks on the top from the blocks on the bottom, giving

rsλ,λ = det
1⩽i,j⩽2n

((
hλi−i+j + hλi−i−j+1

)
1⩽i,j⩽n

(
hλi−i−j+1

)
1⩽i,j⩽n

0
(
hλi−i+j − hλi−i−j+1

)
1⩽i,j⩽n

)
= soλso

−
λ .

The other identities (including some not shown) have similarly short
proofs.



S. P. Albion, Universal characters twisted by roots of unity,
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