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This talk is about...

1. Generalisations of the Selberg integral, itself a k-dimensional
generalisation of Euler’s beta integral∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
, Re(α),Re(β) > 0.

2. Summation formulae for Macdonald polynomials, symmetric
functions which are q, t-deformations of the Schur functions.

3. How to get from one to the other!



Selberg’s integral and sl2

Writing t := (t1, . . . , tk), Selberg’s formula states

Sk(α, β; γ) :=

∫
[0,1]k
|∆(t)|2γ

k∏
i=1

tα−1i (1− ti )
β−1 dt

=
k∏

i=1

Γ(α + (i − 1)γ)Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ)Γ(1 + γ)

for Re(α),Re(β) > 0 and

Re(γ) > −min{1/k ,Re(α)/(k − 1),Re(β)/(k − 1)}.

Here ∆(t) denotes the (type A) Vandermonde product

∆(t) =
∏

16i<j6k

(ti − tj).

This leads to a natural and fruitful association with Ak−1 (Macdonald
conjectures).



The Selberg integral has played a role in analytic number theory, random
matrix theory, and conformal field theory.

First we will describe a connection with representation theory, associating
Sk(α, β; γ) to sl2 (A1).

Let Vλ,Vµ be two irreducible sl2-modules with highest weights λ, µ and
Ω ∈ sl2 ⊗ sl2 the Casimir element

Ω = e ⊗ f + f ⊗ e +
1

2
h ⊗ h.

Then we may state the Knizhnik–Zamolodchikov (KZ) equations as

∂u

∂z
= γ

Ω

z − w
u,

∂u

∂w
= γ

Ω

w − z
u,

where γ ∈ C and u(z ,w) is a function of the form

u : C2 −→ Vλ ⊗ Vµ.



If u(z ,w) takes values in the space of singular vectors of weight
λ+ µ− 2k then Schechtman and Varchenko (1991) showed that

u(z ,w) =
k∑

r=0

ur (z ,w)(f ivλ ⊗ f r−ivµ)

where the coordinate functions ur (z ,w) are given by

ur (z ,w) := (z −w)λµγ
∫
C

Ar (z ,w ; t)∆2γ(t)
k∏

i=1

(ti − z)−λγ(ti −w)−µγ dt,

and Ar (z ,w ; t) is some explicitly known rational function. The domain of
integration is the simplex

C = {t ∈ Rk : z 6 tk 6 · · · 6 t1 6 w}.



In general it is not known how to compute the above integral. However,
when r = 0 the evaluation follows from the Selberg integral

u0(z ,w) =
(−1)a(z − w)b

k!
Sk(1− λγ,−µγ; γ),

for some constants a, b involving k , λ, µ, γ. For z = 0,w = 1 this is
simply the Selberg integral.

The previous derivation of solutions u(z ,w) to the KZ equations may be
generalised to an arbitrary simple Lie algebra g of rank n. Letting
α1, . . . , αn denote the simple roots then the coordinate functions for
z = 0,w = 1 now involve the scaled master function

Φ(t) =
k∏

i=1

t
(λ,αti

)

i (1− ti )
(µ,αti

)
∏

16i<j6k

(ti − tj)
(αti

,αtj
)

where k := k1 + · · ·+ kn and for each 1 6 r 6 n we define αti := αr if

k1 + · · ·+ kr−1 < i 6 k1 + · · ·+ kr .



For g = sl2 the scaled master function is the integrand of the Selberg
integral. This motivated Mukhin and Varchenko (2000) to make the
following remarkable conjecture.

Conjecture (Mukhin & Varchenko)

If the space of singular vectors of weight λ + µ −
∑n

i=1 kiαi is one-
dimensional then∫

C

|Φ(t)|γ = product of gamma functions.

Neither the domain of integration C nor the form the product of gamma
functions should take is specified by the conjecture.

The first nontrivial case of the conjecture was resolved by Tarasov and
Varchenko (2003) who dealt with g = sl3. A uniform approach for sln
was developed by Warnaar (2009) using Macdonald polynomial theory.



Symmetric functions

Let Λ denote the ring of symmetric functions over Q in countably many
indeterminates X = (x1, x2, . . .). An algebraic basis for Λ is given by the
power sums

pr (X ) = x r1 + x r2 + x r3 + · · · , r ∈ Z>0,

and p0(X ) := 1. This is extended to partitions by

pλ = pλ1pλ2 · · · pλn .

One defines a scalar product (the Hall scalar product) on Λ by
demanding that

〈pλ, pµ〉 = δλµzλ.

This is equivalent to the Cauchy identity∑
λ

1

zλ
pλ(X )pλ(Y ) =

∏
x∈X

∏
y∈Y

1

1− xy
.



Another important basis for Λ are the Schur functions, most simply
defined in the case of n indeterminates as a ratio of determinants

sλ(x1, . . . , xn) =
det(xλi+n−i

j )16i,j6n

det(xn−ij )16i,j6n

,

and their definition may be extended to the case of countably many
indeterminates.

Like the power sums they are orthogonal (indeed orthonormal) under the
Hall scalar product

〈sλ, sµ〉 = δλµ,

and so also satisfy a Cauchy identity∑
λ

sλ(X )sλ(Y ) =
∏
x∈X

∏
y∈Y

1

1− xy
.



Macdonald polynomials

In the late 1980s Macdonald introduced a new basis for Λ over the field
Q(q, t) which is unfortunately difficult to define. Instead we will discuss
some fundamental properties of this basis.

Define the q, t-Hall scalar product on ΛQ(q,t) by

〈pλ, pµ〉q,t = δλµzλ
∏
i>1

1− qλi

1− tλi
.

The Macdonald polynomials Pλ(X ; q, t) are orthogonal under this scalar
product

〈Pλ,Pµ〉q,t = δλµ
c ′λ(q, t)

cλ(q, t)
,

where cλ(q, t) and c ′λ(q, t) are generalised hook polynomials.
If we set q = t then we recover the Schur functions

sλ(X ) = Pλ(X ; q, q).



For n ∈ N ∪ {∞} define the q-shifted factorial by

(x ; q)n = (1− x)(1− xq) · · · (1− xqn−1).

As with the power sums and Schur functions, the orthogonality of the
Macdonald polynomials implies they also satisfy a Cauchy identity

∑
λ

c ′λ(q, t)

cλ(q, t)
Pλ(X )Pλ(Y ) =

∏
x∈X

∏
y∈Y

(txy ; q)∞
(xy ; q)∞

.

Upon suitable specialisation, the above identity simplifies dramatically to
the well-known q-binomial theorem

∞∑
r=0

(a; q)k
(q; q)k

xk =
(ax ; q)∞
(x ; q)∞

.

Taking appropriate definitions of the q-integral and q-gamma function,
this identity is a q-analogue of the beta integral.



Getting back to Selberg

In order to obtain the Selberg integral a similar (but much more
complicated) procedure may be carried out

Cauchy identity for Macdonald polynomials

“Multidimensional q-Selberg integral”

Specialisation & t = qγ

The Selberg integral Sk(α, β; γ)

q → 1



Kadell’s integral

Define the Jack polynomials by

P
(1/γ)
λ (X ) := lim

q→1
Pλ(X ; q, qγ).

Then Macdonald conjectured and Kadell proved∫
[0,1]k

P
(1/γ)
λ (t)|∆(t)|2γ

k∏
i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ (1, . . . , 1︸ ︷︷ ︸

k times

)
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k − i − 1)γ + λi )Γ(1 + γ)
.

If λ = (1r ) then the integral is a symmetrised version of Aomoto’s
integral.



The Hua–Kadell integral

In 1993, for β = γ Kadell (and for much earlier for γ = 1, Hua) extended
this by adding a second Jack polynomial∫

[0,1]n
P

(1/γ)
λ (t)P(1/γ)

µ (t)|∆(t)|2γ
n∏

i=1

tα−1i (1− ti )
γ−1 dt

= P
(1/γ)
λ (1, . . . , 1︸ ︷︷ ︸

k times

)P(1/γ)
µ (1, . . . , 1︸ ︷︷ ︸

k times

)

×
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(γ + (i − 1)γ)Γ(1 + iγ)

Γ(α + γ + (2k − `− i − 1)γ + λi )Γ(1 + γ)

×
k∏

i,j=1

Γ(α + γ + (2k − i − j − 1)γ + λi + µj)

Γ(α + γ + (2k − i − j)γ + λi + µj)
.



The AGT Conjecture

In 2010, Alday, Gaiotto, and Tachikawa conjectured a relationship
between conformal blocks in Liouville field theory and N = 2
supersymmetric gauge theory.

For SU(2) this was verified by Alba, Fateev, Litvinov, and Tarnopolskiy
(2010), who required a Selberg integral over a pair of Jack polynomials
which removes the restriction β = γ coming from the Hua–Kadell
integral.

Further, Matsuo and Zhang (2011) showed that a verification of the
SU(n) AGT conjecture would require an sln Selberg integral generalising
Warnaar’s sln Kadell integral.



The AFLT integral
In order to state the AFLT integral we require a little plethystic notation.
Let X = (x1, x2, x3, . . .) and Y = (y1, y2, y3, . . .) be countable alphabets.
Then we may define symmetric functions on the sum/difference of
alphabets using the power sums

pr [X + Y ] := pr [X ] + pr [Y ], pr [X − Y ] := pr [X ]− pr [Y ],

and extending to an arbitrary f ∈ Λ using the fact that the pr generate Λ
as a Q(q, t)-algebra.

In particular for k a positive integer

pr [kX ] = pr [X + · · ·+ X︸ ︷︷ ︸
k times

] = k pr [X ].

This may be extended to any z ∈ C by

pr [zX ] = z pr [X ].

Note that we write

pr [X + z ] = pr [X ] + z , f [1 + 1 + · · ·+ 1︸ ︷︷ ︸
ktimes

] = f [k].



The AFLT integral may therefore be stated as∫
[0,1]k

P
(1/γ)
λ (t)P(1/γ)

µ [t + β/γ − 1]|∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ [k]P(1/γ)

µ [k + β/γ − 1]

×
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k − `− i − 1)γ + λi )Γ(1 + γ)

×
k∏

i=1

∏̀
j=1

Γ(α + β + (2k − i − j − 1)γ + λi + µj)

Γ(α + β + (2k − i − j)γ + λi + µj)
,

where ` is an arbitrary integer such that `(µ) 6 `.

Using the full Cauchy identity for Macdonald polynomials it is possible to
prove this formula in full generality. In doing so one also obtains a
q-AFLT integral.



Higher rank Selberg integrals

We think of the Cauchy identity∑
λ

c ′λ(q, t)

cλ(q, t)
Pλ(X ; q, t)Pλ(Y ; q, t) =

∏
x∈X

∏
y∈Y

(txy ; q)∞
(xy ; q)∞

as associated to sl2, where X and Y are attached to the single node of
the Dynkin diagram:

Y

X

From this interpretation it is natural to consider an extension to sln+1 as

X (1)

Y (1)

X (2)

Y (2)

X (n)

Y (n)



The corresponding sum is of the form

∑
λ(1),...,λ(n)

n∏
r=1

c ′
λ(r)(q, t)

cλ(r)(q, t)
Pλ(r)

(
X (r)

)
Pλ(r)

(
Y (r)

) n−1∏
r=1

f
(r)

λ(r),λ(r+1)(q, t),

where f (r) is some function representing the edges of the Dynkin
diagram. This evaluates in closed form in the case

X (1)

Y (1)

X (2)

Y (2)

X (n)

Y (n)

where all but X (1) and Y (n) are specialised.

Such sln+1 Cauchy identities allows the extension of the AFLT integral to
sln+1, which generalises previous results of Warnaar.



Unfortunately the previous Cauchy identity is not enough for the SU(n)
AGT conjecture, which requires a Selberg integral of the form

Iλ(1),...,λ(n+1)(α1, . . . , αn, β; γ)

:=

∫
C

P
(1/γ)

λ(1) [t(1)] · · ·P(1/γ)

λ(n+1) [t(n) + β/γ − 1]|Φ(t(1), . . . , t(n))|γ dt.

For γ = 1, the Schur case, although the sln+1 Selberg integral diverges, it
is possible to make sense of the Selberg average

〈
sλ(1) [t(1)] · · · sλ(n+1) [t(n) + β − 1]

〉
:= lim

γ→1

Iλ(1),...,λ(n+1)(α1, . . . , αn, β; γ)

I0,...,0(α1, . . . , αn, β; γ)
,

where the denominator on the right is simply the sln+1 Selberg integral.

The Selberg average (conjecturally for n > 2) evaluates as a product of
gamma functions. For n = 1 this is the AFLT integral. For n = 2 the
result follows from the inverse Pieri rule and some (very) complicated
rational function identities.



The end


