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Hypergeometry

We call a series
∑

k ck hypergeometric if the ratio of consecutive terms is
a rational function of the index. Examples include your favourite Taylor
series

ex =
∞∑
k=0

xk

k!
, arctan(x) =

∞∑
k=0

(−1)kx2k+1

2k + 1
,

which have termwise ratios

k + 1, − (2k + 1)x2

2k + 3
.

Of course the series may be finite

(1 + x)n =
n∑

k=0

(
n

k

)
xk ,

ck+1

ck
=

(n − k)x

k + 1
.



The most important classical hypergeometric series is Gauss’
hypergeometric function

F2 1

[
a, b

c
; x

]
:=

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
,

where (a)k is the Pochhammer symbol

(a)k = (a)(a + 1) · · · (a + k − 1).

This has an equivalent expression as an integral due to Euler

F2 1

[
a, b

c
; x

]
=

Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−a dt,

where Re(c) > Re(b) > 0. This involves the gamma function

Γ(x) =

∫ ∞
0

tx−1e−t dt, Re(x) > 0.

These are both examples of hypergeometric integrals! But they’re not
the one we’re looking for.



Sending x → 1− Gauss was able to sum his series representation, giving

F2 1

[
a, b

c
; 1

]
=

Γ(c)Γ(c − a− b)

Γ(c − a)Γ(c − b)

where Re(c − a− b) > 0.

Equating Gauss’ and Euler’s expressions and doing some rearranging tells
us ∫ 1

0

tb−1(1− t)c−a−b−1 dt =
Γ(b)Γ(c − a− b)

Γ(c − a)
.

This is the beta integral, due to Euler,∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
, Re(α),Re(β) > 0,

with α = b and β = c − a− b.



The three levels

Elliptic hypergeometric series — (p, q)

ck+1/ck is an elliptic function of k

Basic hypergeometric series — (q)

ck+1/ck is a rational function of qk

Hypergeometric series

ck+1/ck is a rational function of k

p → 0

q → 1



Level two: basic hypergeometric series
Let p(n) denote the number of partitions of a nonnegative integer n, i.e.,
the number of ways of writing n as a sequence of nonnegative integers
λ1, λ2, . . . such that

λ1 ≥ λ2 ≥ λ3 ≥ · · ·
and

|λ| := λ1 + λ2 + λ3 + · · · = n.

The study of q-series was initiated by Euler who gave his famous
generating function for p(n)

∞∑
n=0

p(n)qn =
∏
i≥0

1

1− qi
.

We may write this succinctly in q-series notation. For n ∈ N ∪ {∞}
define the q-Pochhammer symbol (or q-shifted factorial) by

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Hence
∞∑
n=0

p(n)qn =
1

(q; q)∞
.



The study of q-series was invigorated by Heine who defined a q-analogue
of Gauss’ 2F1

φ2 1

[
a, b

c
; x , q

]
:=

∞∑
k=0

(a; q)k(b; q)k
(c ; q)k

xk

(q; q)k
.

He proved a transformation formula for this series that is a q-analogue of
Euler’s integral formula for the 2F1.

This motivated Thomae (and later Jackson) to define the q-integral∫ 1

0

f (t) dqt = (1− q)
∞∑
k=0

f (qk)qk ,

where f (t) is any function for which the right-hand side exists, as well as
the q-gamma function

Γq(z) = (1− q)1−z
(q; q)∞
(qz ; q)∞

.



Our goal is to obtain a q-analogue of the beta integral. This is in fact
hidden behind the q-binomial thoerem

φ1 0

[
a

−
; x , q

]
=
∞∑
k=0

(a; q)k
(q; q)k

xk =
(ax ; q)∞
(x ; q)∞

.

How? Set a = qβ and z = qα then rearrange using elementary q-series
identities to obtain

(1− q)
∞∑
k=0

qk(α−1)(qk+1; q)β−1 = (1− q)
(qα+β ; q)∞(q; q)∞

(qα; q)∞(qβ ; q)∞(q; q)2∞
.

The left-hand side is a q-integral with f (t) = tα−1(qt; q)β−1 and the
right-hand side is a ratio of q-gamma functions. Hence we may write the
identity as ∫ 1

0

tα−1(qt; q)β−1 dqt =
Γq(α)Γq(β)

Γq(α + β)
.



The Selberg integral

In 1941/1944 Atle Selberg proved a remarkable multidimensional
generalisation of Euler’s beta integral.

Let t := (t1, . . . , tn). Then Selberg’s formula states

Sn(α, β; γ) :=

∫
[0,1]n
|∆(t)|2γ

n∏
i=1

tα−1i (1− ti )
β−1 dt

=
n∏

i=1

Γ(α + (i − 1)γ)Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2n − i − 1)γ)Γ(1 + γ)

for Re(α),Re(β) > 0 and

Re(γ) > −min{1/n,Re(α)/(n − 1),Re(β)/(n − 1)}.

Here ∆(t) denotes the (type A) Vandermonde product

∆(t) =
∏

1≤i<j≤n

(ti − tj).



Since Selberg’s original paper (which went almost unknown until the late
1970s), the integral has played important roles in analytic number theory,
random matrix theory, conformal field theory, combinatorics... It is often
referred to as one of the most important hypergeometric integrals.

But can we prove it hypergeometrically?

Answer: Yes! Using a different type of basic hypergeometric series based
on symmetric functions.



Symmetric functions

Let X = (x1, . . . , xn). For this whirlwind tour we work over the Q[X ].
The ring of symmetric functions is the subring Λn ⊆ Q[X ] of all elements
invariant under the action of the symmetric group, i.e., for any w ∈ Sn,

f (x1, . . . , xn) = f (xw(1), . . . , xw(n)).

An example of a family of symmetric functions are the power sums

pr (X ) = x r1 + · · ·+ x rn , r ∈ Z>0,

and p0(X ) := 1. This extended to partitions by

pλ(X ) = pλ1(X )pλ2(X ) · · · pλn(X ),

where we assume λ has at most n nonzero parts. The power sums form a
basis for Λn over Q (but not over Z).



The most important (linear) basis for Λn is given by the Schur functions,
most simply defined as a ratio of determinants

sλ(X ) =
det(xλi+n−i

j )1≤i,j≤n

det(xn−ij )1≤i,j≤n
.

For example

s(1)(x1, x2, x3) = x1 + x2 + x3,

s(1,1)(x1, x2, x3) = x1x2 + x1x3 + x2x3,

s(2)(x1, x2, x3) = x1x2 + x1x3 + x2x3 + x21 + x22 + x23 ,

s(2,1)(x1, x2, x3) = x1x
2
2 + x1x

2
3 + x21 x2 + x21 x3 + x22 x3 + x2x

2
3 + 2x1x2x3.

In the late 1980s, Ian Macdonald introduced a new class of symmetric
functions with two parameters q, t, denoted Pλ(X ; q, t), that generalise
the Schur functions. Unfortunately they are notoriously difficult to define.
Note that when q = t they reduce to the Schur functions

Pλ(X ; q, q) = sλ(X ).



Kaneko–Macdonald basic hypergeometric series

In the 20th century Milne and others had been studying hypergeometric
series with symmetric function argument. More explicitly∑

k≥0

fk(a,b; q)xk
replace with−−−−−−−→

∑
λ

gλ(a,b; q, t)Pλ(X ; q, t)

Note that the new series are multivariate hypergeometric series

In particular, Kaneko and Macdonald both considered hypergeometric
series generalising the q-binomial theorem and discovered that

Φ1 0

[
a

−
;X , q, t

]
:=
∑
λ

tn(λ)(a; q, t)λ
c ′λ(q, t)

Pλ(X ; q, t) =
∏
x∈X

(ax ; q)∞
(x ; q)∞

,

where X is now an arbitrary alphabet.



Using a similar (but more complicated) process as before, one may use
the Kaneko–Macdonald q-binomial theorem to prove a q-analogue of the
Selberg integral, known as the Askey–Habseiger–Kadell integral∫

[0,1]n
∆(t; q, 2γ)

n∏
i=1

tα−1i (qti ; q)β−1 dqt

= qαγ(k
2)+2γ2(k

3)
n∏

i=1

Γq(α + (i − 1)γ)Γq(β + (i − 1)γ)Γq(1 + iγ)

Γq(α + β + (n − i − 2)γ)Γq(1 + γ)
,

where
∆(t; q, 2γ) :=

∏
1≤i<j≤n

t2γi (tjq
1−γ/ti ; q)2γ ,

and γ is a positive integer.

Taking the limit as q → 1− we obtain the Selberg integral. The case of
general γ may be obtain either through analytic continuation or a
different limiting procedure.



Generalised Selberg integrals

A one-parameter deformation of the Schur functions are given by the
Jack symmetric functions, which can be defined as a limit of the
Macdonald polynomials

P
(1/γ)
λ (X ) = lim

q→1
Pλ(X ; q, qγ).

Macdonald conjectured and Kadell proved the following generalised
Selberg integral with a Jack polynomial in the integrand.∫

[0,1]n
P

(1/γ)
λ (t)|∆(t)|2γ

n∏
i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ (1, 1, . . . , 1)

n∏
i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2n − i − 1)γ + λi )Γ(1 + γ)



In 2010, Alday, Gaiotto, and Tachikawa (AGT) conjectured a relationship
between conformal blocks in Liouville field theory and N = 2
supersymmetric gauge theory. In their following proof of the AGT
relation for SU(n) by Alba, Fateev, Litvinov, and Tarnopolskiy required
an integral over a pair of Jack polynomials∫

[0,1]n
P

(1/γ)
λ (t)P(1/γ)

µ [t + β/γ − 1]|∆(t)|2γ
n∏

i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ [n]P(1/γ)

µ [n + β/γ − 1]

×
n∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2n − `− i − 1)γ + λi )Γ(1 + γ)

×
n∏

i=1

∏̀
j=1

Γ(α + β + (2n − i − j − 1)γ + λi + µj)

Γ(α + β + (2n − i − j)γ + λi + µj)
,

which they could prove only in some special cases.

Using the full Cauchy identity for Macdonald polynomials (a
generalisation of the Kaneko–Macdonald q-binomial theorem), we were
able to prove the AFLT integral in generality.



Beyond

Through a representation-theoretic interpretation of the Selberg integral,
one may think of Sn(α, β; γ) as associated to the Lie algebra sl2(C). In
2009, Warnaar extended the Selberg integral to sln(C).

Using extensions of the previous symmetric functions approach one may
extend the AFLT integral to sln(C).

Unfortunately this is not enough for the SU(n) AGT conjecture, which
requires an sln(C) Selberg integral over n Jack polynomials∫

C

P
(1/γ)

λ(1) · · ·P
(1/γ)

λ(n) × |Φ(t(1)), . . . , t(n))|γ dt

= “Product of gamma functions”.



The End


