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Abstract. In previous work, we proved that the continuous roots of a monic

polynomial of degree d whose coefficients depend in a Cd−1,1 way on real
parameters belong to the Sobolev space W 1,q for all 1 ≤ q < d/(d− 1). This

is optimal. We obtained uniform bounds that show that the solution map

“coefficients-to-roots” is bounded with respect to the Cd−1,1 and the Sobolev
W 1,q structures on source and target space, respectively. In this paper, we

prove that the solution map is continuous, provided that we consider the Cd

structure on the space of coefficients. Since there is no canonical choice of an
ordered d-tuple of the roots, we work in the space of d-valued Sobolev functions

equipped with a strong notion of convergence. We also interpret the results in

the Wasserstein space on the complex plane.
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1. Introduction

Consider a monic polynomial of degree d,

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j ,

where the coefficients aj , for 1 ≤ j ≤ d, are complex valued functions defined on a
bounded open interval I ⊆ R. Given that the coefficients are smooth, it is natural
to ask how regular the roots of Pa can be.

This question was answered in [17], [18], and [19] (see also Theorem 7.1): let
λ : I → C be a continuous root of Pa, i.e., Pa(x)(λ(x)) = 0 for all x ∈ I. If

a = (a1, . . . , ad) ∈ Cd−1,1(I,Cd), then λ is absolutely continuous and bounded
on I and λ′ ∈ Lq(I), in particular, λ ∈ W 1,q(I), for all 1 ≤ q < d/(d − 1).
Moreover, there is a uniform bound for the Lq norm of λ′ in terms of the Cd−1,1

norm of a (see (7.1)). This result is optimal in the sense that there are examples
of a ∈ C∞(I,Cd) ∩

⋂
0<γ<1 C

d−1,γ(I,Cd) such that no root of Pa has bounded

variation on I and polynomial curves a : R → Cd such that no root of Pa has
derivative in Ld/(d−1)(I).

Even though there always exists a continuous parameterization λ = (λ1, . . . , λd) :

I → Cd of the roots of Pa, i.e., Pa(x)(Z) =
∏d

j=1(Z − λj(x)) for all x ∈ I,1 there

is in general no canonical choice of a continuous ordered d-tuple of the roots. (The
situation is different for hyperbolic polynomials, see Section 1.3.) But we may con-
sider the unordered d-tuple Λ = [λ1, . . . , λd] of roots and thus obtain a continuous
curve Λ : I → Ad(C) in the complete metric space (Ad(C),d) of unordered tuples
of d complex numbers (see Lemma 6.4). We refer to Section 3.1 for the definition
of d, but it is worth mentioning that Ad(C) can naturally be identified with a
subset of the set P(C) of probability measures on C (sending [z1, . . . , zd] to the

formal sum
∑d

j=1 JzjK of Dirac delta measures at zj) and then d is induced by the

2-Wasserstein distance on P(C); see Section 11.1.
With this terminology the above result can be interpreted as follows: if a ∈

Cd−1,1(I,Cd), then Λ ∈ W 1,q(I,Ad(C)), for all 1 ≤ q < d/(d − 1), and the map
a 7→ Λ takes bounded sets to bounded sets. Here W 1,q(I,Ad(C)) denotes the space
of d-valued Sobolev functions (see (1.1) and Section 3). The boundedness of the
map a 7→ Λ follows from Corollary 7.2.

In the present paper, we address the natural question if the map a 7→ Λ is
continuous. We prove that this is true with respect to the Cd topology on the space
of coefficients a and various natural structures on the target space W 1,q(I,Ad(C))
(for 1 ≤ q < d/(d − 1)). These results will lead to multiparameter versions by a
sectioning argument.

1.1. The main results. Due to Almgren [2], there exists a bi-Lipschitz embedding
∆ : Ad(C) → RN , where N = N(d). Almgren used ∆ to define Sobolev spaces of
Ad(C)-valued functions: for open U ⊆ Rm and 1 ≤ q ≤ ∞ set

W 1,q(U,Ad(C)) := {f : U → Ad(C) : ∆ ◦ f ∈W 1,q(U,RN )}. (1.1)

1The roots of a monic polynomial Pa with a ∈ C0(I,Cd) admit a continuous parameterization
λ : I → Cd; see [12, II.5.2].
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An equivalent intrinsic definition ofW 1,q(U,Ad(C)) is due to De Lellis and Spadaro
[9].2 Then W 1,q(U,Ad(C)) carries the metric

(f, g) 7→ ∥∆ ◦ f −∆ ◦ g∥W 1,q(U,RN ) (1.2)

which makes it a complete metric space; see Lemma 3.1.
Let us first assume that m = 1 and U is a bounded open interval. We will

generally assume that the degree d is at least 2, since for d = 1 all results are
trivially true.

Theorem 1.1. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
an → a in Cd(I,Cd), i.e.,

∥a− an∥Cd(I,Cd) → 0 as n→ ∞.

Let Λ,Λn : I → Ad(C) be the curves of unordered roots of Pa, Pan
, respectively.

Then

∥∆ ◦ Λ−∆ ◦ Λn∥W 1,q(I,RN ) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

Theorem 1.1 is true for all Almgren embeddings ∆; see Definition 3.2. We will not
work directly with an Almgren embedding but (inspired by the intrinsic definition

of d-valued Sobolev functions of [9]) introduce a semimetric d1,q
I onW 1,q(I,Ad(C)),

without reference to any Almgren embedding, that generates the same topology as
the metric (1.2).

Theorem 1.2. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
an → a in Cd(I,Cd) as n→ ∞. Let Λ,Λn : I → Ad(C) be the curves of unordered
roots of Pa, Pan , respectively. Then

d1,q
I (Λ,Λn) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

The majority of the paper is dedicated to the proof of Theorem 1.2 which will
be completed in Section 8. We will see in Theorem 3.11 that the conclusions of
Theorem 1.1 and Theorem 1.2 are equivalent.

Let |Λ̇| denote the metric speed and Eq(Λ) the q-energy of the curve Λ ∈
ACq(I,Ad(C)); see Section 2.5 for definitions. As a consequence of Theorem 1.2,
we obtain the following.

Theorem 1.3. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
an → a in Cd(I,Cd) as n→ ∞. Let Λ,Λn : I → Ad(C) be the curves of unordered
roots of Pa, Pan , respectively. Then

∥d(Λ,Λn)∥L∞(I) → 0 as n→ ∞,∥∥|Λ̇| − |Λ̇n|
∥∥
Lq(I)

→ 0 as n→ ∞,∣∣Eq(Λ)− Eq(Λn)
∣∣ → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

2Actually, in [2] and [9] the theory is developed for Ad(Rn)-valued functions, where Ad(Rn)
is the space of unordered d-tuples of vectors in Rn. In this paper, we stick to the case n = 2 and

identify C = R2.
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Note that there always exist continuous parameterizations λ, λn : I → Cd of the
roots of Pa, Pan , respectively, i.e., Λ = [λ] and Λn = [λn] (see Footnote 1). By
Theorem 7.1, it follows that λ, λn ∈W 1,q(I,Cd) for all 1 ≤ q < d/(d− 1).

The next corollary is an easy consequence of Theorem 1.2, as shown in Sec-
tion 8.9.

Corollary 1.4. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
an → a in Cd(I,Cd) as n→ ∞. Let λ, λn : I → Cd be continuous parameterizations
of the roots of Pa, Pan

, respectively. Then∥∥∥λ′∥2 − ∥λ′n∥2
∥∥
Lq(I)

→ 0 as n→ ∞,

∥λ′n∥Lq(I,Cd) → ∥λ′∥Lq(I,Cd) as n→ ∞,

for all 1 ≤ q < d/(d− 1).

We shall see in Section 11 that Corollary 1.4 implies Theorem 1.3. Note that
Theorem 11.3 is an interpretation of Theorem 1.3 in the Wasserstein space on C.

Since the components of λn and λ are absolutely continuous, Corollary 1.4 for
q = 1 immediately gives the following consequence.

Corollary 1.5. In the setting of Corollary 1.4,

length(λn) → length(λ) as n→ ∞.

We have the following variant of Theorem 1.2.

Theorem 1.6. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
an → a in Cd(I,Cd) as n → ∞. Assume that λn : I → Cd is a continuous param-
eterization of the roots of Pan and that λn converges in C0(I,Cd) to a continuous
parameterization λ of the roots of Pa. Then

∥λ′ − λ′n∥Lq(I,Cd) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

It is clear that the conclusion of Corollary 1.4 holds in this setting.
Note that not every continuous parameterization λ of the roots of Pa is the limit

of continuous parameterizations λn of the roots of Pan ; see Example 5.20.

Remark 1.7. In all our results, we require convergence of the coefficient vectors
in Cd(I,Cd), not just in Cd−1,1(I,Cd). This seems natural (in view of a conti-
nuity instead of a boundedness result) but we do not know if it is necessary. See
Section 5.7.

We expect that our results have generalizations to d-degree algebraic hypersur-
faces in CPn, in the spirit of [4]. We hope to address this in a future work.

1.2. Multiparameter versions. Let ∆ : Ad(C) → RN be an Almgren embed-
ding.

Theorem 1.8. Let d ≥ 2 be an integer. Let U ⊆ Rm be a bounded open box,
U = I1 × · · · × Im. Let an → a in Cd(U,Cd), i.e.,

∥a− an∥Cd(U,Cd) → 0 as n→ ∞.

Let Λ,Λn : U → Ad(C) be the maps of unordered roots of Pa, Pan , respectively.
Then

∥∆ ◦ Λ−∆ ◦ Λn∥W 1,q(U,RN ) → 0 as n→ ∞,
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for all 1 ≤ q < d/(d− 1).

It should be added that the maps Λ,Λn : U → Ad(C) are continuous (see
Lemma 6.4) and that we even have uniform convergence ∆ ◦ Λn → ∆ ◦ Λ on U .
Theorem 1.8 will be proved in Section 10.

As a consequence, we immediately get a solution of [20, Open Problem 4.8]:

Corollary 1.9. Let U ⊆ Rm be open. For all 1 ≤ q < d/(d− 1), the “coefficients-
to-roots” map

Cd(U,Cd) →W 1,q
loc (U,Ad(C)), a 7→ Λ,

is continuous with respect to the topology induced by (1.2) for all relatively compact
open subsets in U .

We will see in Theorem 10.2 that the conclusions of Theorem 1.8 and Corol-
lary 1.9 are independent of the choice of the Almgren embedding ∆.

Remark 1.10. It is possible to obtain multiparameter versions of Theorem 1.2,
Theorem 1.3, Corollary 1.4, and Theorem 1.6, by working with suitable multivariate
definitions and adjusting the sectioning argument in the proof of Theorem 1.8. This
will be demonstrated in Theorem 10.4.

However, note that continuous parameterizations of the roots might not always
exist (even locally) if the parameter space is at least 2-dimensional because of
monodromy. Nevertheless, due to [19], there always exist parameterizations of the
roots by functions of bounded variation.

1.3. Hyperbolic polynomials. Let us briefly comment on the case of hyperbolic
polynomials, in which canonical choices of continuous parameterizations of the roots
exist and stronger results hold true. We refer to [21]. A monic polynomial Pa of
degree d is called hyperbolic if all its d roots (counted with multiplicities) are real.
The space Hyp(d) of monic hyperbolic polynomials of degree d can be identified
with a semialgebraic subset of Rd (via the coefficient vector a). Ordering the roots
of Pa ∈ Hyp(d) increasingly, induces a continuous solution map

λ↑ = (λ↑1, . . . , λ
↑
d) : Hyp(d) → Rd,

where λ↑1 ≤ λ↑2 ≤ · · · ≤ λ↑d. Bronshtein’s theorem [7] (see also [16]) states that

(λ↑)∗ : Cd−1,1(U,Hyp(d)) → C0,1(U,Rd),

(x 7→ Pa(x)) 7→ (x 7→ λ↑(Pa(x))),

is well-defined and bounded, where U ⊆ Rm is open. Hereby the space
Cd−1,1(U,Hyp(d)) = {f ∈ Cd−1,1(U,Rd) : f(U) ⊆ Hyp(d)} carries the trace topol-
ogy of the Fréchet topology of Cd−1,1(U,Rd).

Theorem 1.11 ([21]). The map (λ↑)∗ : Cd(U,Hyp(d)) → W 1,q
loc (U,Rd) is continu-

ous, for all 1 ≤ q <∞.

But (λ↑)∗ : Cd(U,Hyp(d)) → C0,1(U,Rd) is not continuous as shown by an
example in [21].

In the real case, the map (·)↑ : Ad(R) → Rd (that orders the coordinates increas-
ingly) is a Lipschitz right-inverse of [·] : Rd → Ad(R), thus a canonical version of
an Almgren embedding.

The proof of Theorem 1.11 follows the same general strategy as the one of The-
orem 1.2 but it is much simpler.
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1.4. Outline of the proof of Theorem 1.2. We first give a full proof of the
special case of radicals and then tackle the general case, using the result for radicals.

Radical case. Here the polynomials take the simple form

Zd = g and Zd = gn, n ≥ 1,

where we assume that gn → g in Cd(I,C) as n → ∞. Let λ, λn : I → C be
continuous functions satisfying λd = g and λdn = gn.

The proof essentially consists of two parts. First, on the complement of the
zero set Zg of g, we show that the distance of λ′(x) and θr(x)λ′n(x), where θ is a
d-th root of unity and the power r(x) ∈ {1, . . . , d} is chosen such that the distance
of λ(x) and θr(x)λn(x) is minimal, tends to zero as n → ∞. Then we use the
dominated convergence theorem; the domination is guaranteed by a result of Ghisi
and Gobbino [10] which we recall, in slightly adapted form, in Proposition 5.7.

Secondly, on the accumulation points acc(Zg) of Zg, the derivative λ′ vanishes
(where it exists). Using the uniform bounds for the Lq-norm (for 1 ≤ q < d/(d−1))
of λ′n given in Proposition 5.7, we prove that ∥λ′n∥Lq(acc(Zg)) → 0 as n→ ∞.

This is enough to conclude the proof since Zg \ acc(Zg) has measure zero.

General case. The proof of the general case proceeds by induction on the degree of
the polynomials. It follows the overall strategy of our proof of the optimal Sobolev
regularity of the roots in [18]; see also Theorem 7.1.

Without loss of generality we may assume that the polynomials Pãn
, for n ≥ 1,

and Pã are in Tschirnhausen form, i.e., the coefficients of Zd−1 vanish identically.
(For notational clarity, we consistently equip the coefficients of polynomials in
Tschirnhausen form with a “tilde”.) Let λ, λn : I → Cd be continuous parame-
terizations of the roots of Pã, Pãn

, respectively.
On the zero set Zã of the coefficient vector ã, all roots of Pã are equal to zero,

hence, λ′(x) = 0 for all x ∈ acc(Zã), where λ
′(x) exists. In analogy to the radical

case, we show that ∥λ′n∥Lq(acc(Zg),Cd) → 0 as n→ ∞, for all 1 ≤ q < d/(d− 1). To

this end, we modify in Theorem 7.5 the uniform bounds found in [18].
For each x0 in the complement of Zã, we find an interval I ′ ⊆ I containing x0

on which the polynomial Pã splits and, for large enough n, also Pãn
splits. More

precisely, on I ′ and for large n, we have simultaneous splittings into polynomial
factors

Pã = PbPb∗ and Pãn = PbnPb∗n
,

where

• db := degPb = degPbn < d, and
• there exist bounded analytic functions ψi with bounded partial derivatives
of all orders such that the coefficients of Pb and Pbn are given by

bi = ã
i/k
k ψi(ã

−2/k
k ã2, . . . , ã

−d/k
k ãd),

bn,i = ã
i/k
n,k ψi(ã

−2/k
n,k ãn,2, . . . , ã

−d/k
n,k ãn,d).

The same is true for the second factors in the splitting and similar formulas hold
for the coefficients of the factors after putting them in Tschirnhausen form. Here
k ∈ {2, . . . , d} is chosen such that |ãk(x0)|1/k ≥ |ãj(x0)|1/j for all 2 ≤ j ≤ d, which

entails |ãn,k(x0)|1/k ≥ 2
3 |ãn,j(x0)|

1/j for all 2 ≤ j ≤ d and large enough n. Note
that ãk and ãn,k are bounded away from zero on I ′.
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Using that the composition from the left with an analytic function is continuous
on the space of Cd maps (see Proposition 2.1), we conclude that

∥b− bn∥Cd(I′,Cdb ) → 0 as n→ ∞;

and similarly for the second factors. This allows us to argue by induction on the
degree; for the precise induction argument see Proposition 8.16.

Finally, the proof of Theorem 1.2 will be completed in Proposition 8.17 with an
application of Vitali’s convergence theorem. The uniform integrability follows from
the uniform bounds proved in [18].

1.5. Organization of the paper. After recalling general facts on the function
spaces and fixing notation in Section 2, we introduce in Section 3 the metric
space Ad(C) of unordered d-tuples of complex numbers and the Sobolev space

W 1,q(I,Ad(C)). In Section 3, we also define and discuss the semimetric d1,q
I on

this space and the corresponding notion of convergence.
Section 4 is dedicated to the proof of Theorem 3.11 which implies that the

conclusions of Theorem 1.1 and Theorem 1.2 are equivalent.
In Section 5, we give a complete proof of the radical case. While it contains

some of the main ideas, it is much simpler than the general case since the splitting
principle is not needed.

In Section 6, we collect facts on polynomials and prepare the tools for the general
case. We recall our result on the optimal Sobolev regularity of the roots in Section 7
proving a new uniform bound for the Lq norm of the derivatives of the roots. This
new bound is a crucial ingredient, besides the splitting principle and the result in
the radical case, for the proof of Theorem 1.2 which is carried out in Section 8.

In Section 9, we prove Theorem 1.6. In Section 10, multiparameter versions
are deduced by sectioning arguments, in particular, Theorem 1.8 is proved. In
Section 11, we interpret the main results in the Wasserstein space on C which
finally leads to the proof of Theorem 1.3.

In the Appendix A, we recall Vitali’s convergence theorem and give a short proof
of Proposition 2.1.

Notation. The m-dimensional Lebesgue measure in Rm is denoted by Lm. If
not stated otherwise, “measurable” means “Lebesgue measurable” and “almost
everywhere” means “almost everywhere with respect to Lebesgue measure”. For
measurable E ⊆ Rm, we usually write |E| = Lm(E).

For 1 ≤ p ≤ ∞, ∥z∥p denotes the p-norm of z ∈ Cd. If f : E → Cd, for
measurable E ⊆ Rm, is a measurable map, then we set

∥f∥Lp(E,Cd) :=
∥∥∥f∥2∥∥Lp(E)

.

For us a set is countable if it is either finite or has the cardinality of N.
A selection of a set-valued map F : X → 2Y between sets X and Y is a map

f : X → Y such that f(x) ∈ F (x) for all x ∈ X. A parameterization of F is
a pair (f, Z), where f : X × Z → Y is such that F (x) = {f(x, z) : z ∈ Z} for
all x ∈ X. For instance, the roots of a monic polynomial Pa of degree d form a
set-valued map Cd ∋ a 7→ Λ(a) ∈ 2C and a parameterization of the roots is a map
λ : Cd × {1, . . . , d} → C with Λ(a) = {λ(a, 1), . . . , λ(a, d)} for all a ∈ Cd.
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2. Function spaces

Let us fix notation and recall background on the function spaces used in this
paper.

2.1. Hölder–Lipschitz spaces. Let U ⊆ Rm be open and k ∈ N. Then Ck(U)
is the space of k-times continuously differentiable complex valued functions with
its natural Fréchet topology. If U is bounded, then Ck(U) denotes the space of all
f ∈ Ck(U) such that each ∂αf , 0 ≤ |α| ≤ k, has a continuous extension to the
closure U . Endowed with the norm

∥f∥Ck(U) := max
|α|≤k

sup
x∈U

|∂αf(x)|

it is a Banach space. For 0 < γ ≤ 1, we consider the Hölder–Lipschitz seminorm

|f |C0,γ(U) := sup
x,y∈U, x ̸=y

|f(x)− f(y)|
∥x− y∥γ2

.

For k ∈ N and 0 < γ ≤ 1, we have the Banach space

Ck,γ(U) := {f ∈ Ck(U) : ∥f∥Ck,γ(U) <∞},

where
∥f∥Ck,γ(U) := ∥f∥Ck(U) + max

|α|=k
|∂αf |C0,γ(U).

We write Ck,γ(U) for the space of Ck functions on U that belong to Ck,γ(V ) for
each relatively compact open V ⋐ U , with its natural Fréchet topology.

2.2. Lebesgue spaces. Let U ⊆ Rm be open and 1 ≤ p ≤ ∞. We denote by
Lp(U) the Lebesgue space with respect to the m-dimensional Lebesgue measure
Lm, and ∥ · ∥Lp(U) is the corresponding Lp-norm. For Lebesgue measurable sets
E ⊆ Rn we also write |E| = Lm(E).

Assume that U is bounded. A measurable function f : U → C belongs to the
weak Lp-space Lp

w(U) if

∥f∥p,w,U := sup
r≥0

(
r |{x ∈ U : |f(x)| > r}|1/p

)
<∞.

For 1 ≤ q < p <∞ we have (cf. [11, Ex. 1.1.11])

∥f∥q,w,U ≤ ∥f∥Lq(U) ≤
( p

p− q

)1/q

|U |1/q−1/p∥f∥p,w,U (2.1)

and hence Lp(U) ⊆ Lp
w(U) ⊆ Lq(U) ⊆ Lq

w(U) with strict inclusions. We remark
that ∥·∥p,w,U is only a quasinorm. Its p-th power is σ-subadditive but not σ-additive
(see [18, Section 2.2]).

We remark that for continuous functions f : U → C we have (and use inter-
changeably) ∥f∥L∞(U) = ∥f∥C0(U).

2.3. Sobolev spaces. For k ∈ N and 1 ≤ q ≤ ∞, we consider the Sobolev space

W k,q(U) := {f ∈ Lq(U) : ∂αf ∈ Lq(U) for |α| ≤ k},
where ∂αf are distributional derivatives. Endowed with the norm

∥f∥Wk,q(U) :=
∑
|α|≤k

∥∂αf∥Lq(U)

it is a Banach space.
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2.4. A result on composition. In the following proposition we use the norm

∥f∥Ck(U,Rℓ) := max
0≤j≤k

sup
x∈U

∥djf(x)∥Lj(Rm,Rℓ) (2.2)

on the space Ck(U,Rℓ) := (Ck(U,R))ℓ, where U ⊆ Rm and Lj(Rm,Rℓ) is the space
of j-linear maps with j arguments in Rm and values in Rℓ.

Proposition 2.1. Let U ⊆ Rm and V ⊆ Rℓ be open, bounded, and convex. Let
ψ ∈ Ck+1(V ,Rp). Then ψ∗ : Ck(U, V ) → Ck(U,Rp), ψ∗(φ) := ψ◦φ, is well-defined
and continuous. More precisely, for φ1, φ2 in a bounded subset B of Ck(U, V ),

∥ψ∗(φ1)− ψ∗(φ2)∥Ck(U,Rp) ≤ C ∥ψ∥Ck+1(V ,Rp)∥φ1 − φ2∥Ck(U,Rℓ),

where C = C(k,B).

This result must be well-known; we give a short proof in Appendix A.2.

2.5. Absolutely continuous curves in a metric space. Let I ⊆ R be a bounded
open interval. Let 1 ≤ q ≤ ∞. A curve γ : I → X in a complete metric space
(X, d) belongs to ACq(I,X) if there exists m ∈ Lq(I) such that

d(γ(x), γ(y)) ≤
∫ y

x

m(t) dt, for all x, y ∈ I, x ≤ y. (2.3)

In that case, the limit

lim
h→0

d(γ(x+ h), γ(x))

|h|
=: |γ̇|(x)

exists for almost every x ∈ I and is called the metric speed of γ at x. Furthermore,
|γ̇| ∈ Lq(I) and (2.3) holds with m replaced by |γ̇|; one has |γ̇| ≤ m almost
everywhere in I for any m that satisfies (2.3). See [3, Definition 1.1.1].

The q-energy Eq : C0(I,X) → [0,∞] is defined by

Eq(γ) :=

{∫
I
(|γ̇|(t))q dt if γ ∈ ACq(I,X),

∞ otherwise.

2.6. Absolutely continuous curves in Cd. Let I ⊆ R be a bounded open inter-
val. Let 1 ≤ q ≤ ∞. A continuous curve γ : I → Cd belongs to ACq(I,Cd) with
respect to the metric induced by ∥ · ∥2 if and only if γ is differentiable at almost
every x ∈ I, the derivative γ′ belongs to Lq(I,Cd), and

γ(y)− γ(x) =

∫ y

x

γ′(t) dt, for all x, y ∈ I, x ≤ y.

In that case,

|γ′|(x) = ∥γ′(x)∥2 for almost every x ∈ I.

See [3, Remark 1.1.3].
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3. d-valued Sobolev functions

3.1. Unordered d-tuples of complex numbers. The symmetric group Sd acts
on Cd by permuting the coordinates,

σz = σ(z1, . . . , zd) := (zσ(1), . . . , zσ(d)), σ ∈ Sd, z ∈ Cd,

and thus induces an equivalence relation. The equivalence class of z = (z1, . . . , zd)
is the unordered tuple [z] = [z1, . . . , zd]. Let us consider the set

Ad(C) := {[z] : z ∈ Cd}
of unordered complex d-tuples. It is a complete metric space if equipped with the
metric

d([z], [w]) := min
σ∈Sd

δ(z, σw),

where

δ(z, σw) :=
1√
d
∥z − σw∥2 =

1√
d

( d∑
i=1

|zi − wσ(i)|2
)1/2

.

It follows that the induced map [·] : Cd → Ad(C) is Lipschitz.
We will also represent the element [z1, . . . , zd] of Ad(C) by the sum

∑d
i=1 JziK,

where JziK denotes the Dirac mass at zi ∈ C. If normalized, i.e., 1
d

∑d
i=1 JziK, then,

in this picture, d is induced by the L2 based Wasserstein metric on the space of
probability measures on C; see Section 11.1.3

3.2. d-valued Sobolev functions. Due to Almgren [2], see also [9], there exist
an integer N = N(d), positive constants Ci = Ci(d), i = 1, 2, and an injective
Lipschitz mapping ∆ : Ad(C) → RN with Lipschitz constant ≤ C1 and Lipschitz
constant of ∆|−1

∆(Ad(C)) bounded by C2. Moreover, there is a Lipschitz retraction of

RN onto ∆(Ad(C)). Almgren used this bi-Lipschitz embedding to define Sobolev
spaces of Ad(C)-valued functions: for open U ⊆ Rm and 1 ≤ q ≤ ∞ set

W 1,q(U,Ad(C)) := {f : U → Ad(C) : ∆ ◦ f ∈W 1,q(U,RN )}.
For an equivalent intrinsic definition of W 1,q(U,Ad(C)), see [9, Definition 0.5 and
Theorem 2.4]. Then W 1,q(U,Ad(C)) carries the metric

(f, g) 7→ ∥∆ ◦ f −∆ ◦ g∥W 1,q(U,RN ) (3.1)

which makes it a complete metric space (where functions that coincide almost
everywhere are identified).

Lemma 3.1. The space W 1,q(U,Ad(C)) with the metric given in (3.1) is complete.

Proof. A Cauchy sequence fn inW 1,q(U,Ad(C)) is by definition a Cauchy sequence
∆ ◦ fn in W 1,q(U,RN ). The completeness of W 1,q(U,RN ) implies that ∆ ◦ fn
converges to a function h ∈ W 1,q(U,RN ). It remains to show that there exists f :
U → Ad(C) such that h = ∆◦f almost everywhere in U . There exist a subsequence
∆ ◦ fnk

and a nonnegative function g ∈ Lq(U) such that (∆ ◦ fnk
)(x) → h(x)

and ∥(∆ ◦ fnk
)(x)∥2 ≤ g(x) for almost every x ∈ U (cf. [13, Theorem 2.7]). For

each such x, it follows that fnk
(x) is a Cauchy sequence in Ad(C) and hence it

converges in Ad(C). So there is a function f : U → Ad(C) such that fnk
→ f

almost everywhere in U and hence ∆ ◦ fnk
→ ∆ ◦ f almost everywhere in U .

3This is the reason for the factor 1/
√
d in the definition of d.
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By the dominated convergence theorem, ∥∆ ◦ fnk
−∆ ◦ f∥Lq(U,RN ) → 0 and thus

∥∆ ◦ fn −∆ ◦ f∥Lq(U,RN ) → 0, since ∆ ◦ fn is a Cauchy sequence. Since the limit
is unique, we have h = ∆ ◦ f almost everywhere. □

3.3. Almgren’s embedding. Let us recall Almgren’s construction of ∆.

Definition 3.2. We say that

H : Ad(C) → Rd

is an Almgren map if there is a unit complex number θ ∈ C such that H([z]) is an
array of d real numbers η(zi) := Re(θzi) arranged in increasing order, i.e.,

H([z]) = H([z1, . . . , zd]) = (η(zσ(1)), . . . , η(zσ(d)),

where σ ∈ Sd is chosen so that η(zσ(1)) ≤ η(zσ(2)) ≤ · · · ≤ η(zσ(d)). We also say
that H is the Almgren map associated to the real linear form η.

By Almgren’s combinatorial lemma (see e.g. [9, Lemma 2.3]) there exists α =
α(d) > 0 and a finite set of linear forms Λ = {η1, . . . ηh}, where ηl(z) := Re(θlz) for
unit complex numbers θl, with the following property: given any set of d2 complex
numbers, {z1, . . . , zd2} ⊆ C, there exists ηl ∈ Λ such that

|ηl(zk)| ≥ α|zk| for all k ∈
{
1, . . . , d2

}
. (3.2)

For instance, we may take h = 2d2 + 1 and as {θ1, . . . θh} the set of all h-th roots
of unity. Let Hl denote the Almgren map associated to ηl. Almgren’s embedding
∆ : Ad(C) → RN , N = dh, is then defined by

∆([z]) = h−1/2(H1([z]), . . . ,Hh([z])). (3.3)

3.4. Curves of class W 1,q in Ad(C). We recall some basic constructions and
results from [9]. We focus our attention on the one parameter case, so let I ⊆ R be
an open interval.4

First we recall another (equivalent) definition of W 1,q(I,Ad(C)) (see [9, Defini-
tion 0.5]) which is independent of Almgren’s embedding.

Definition 3.3 (Intrinsic definition). A measurable function f : I → Ad(C) is in
the Sobolev class W 1,q (1 ≤ q ≤ ∞) if there exists a function φ ∈ Lq(I,R≥0) such
that

(i) x 7→ d(f(x), T ) ∈W 1,q(I) for all T ∈ Ad(C);
(ii) |(d(f, T ))′| ≤ φ almost everywhere in I for all T ∈ Ad(C).

The minimal function φ̃ fulfilling (ii), that is,

φ̃ ≤ φ almost everywhere for any other φ satisfying (ii),

is measurable and is denoted by |Df |. It can be characterized by the following
property: for every countable dense subset {Ti}i∈N of Ad(C),

|Df | = sup
i∈N

|(d(f, Ti))′| almost everywhere in I.

Proposition 3.4 ([9, Proposition 1.2]). Let f ∈W 1,q(I,Ad(C)). Then,

(a) f ∈ AC(I,Ad(C)) and, moreover, f ∈ C0,1− 1
q (I,Ad(C)) for q > 1;5

4Following our notation, the number Q of [9] is replaced by d.
5Here we mean that the statements hold after possibly redefining f on a set of measure 0.
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(b) there exists a parameterization6 f1, . . . , fd ∈W 1,q(I,C) of f , i.e.,

f = Jf1K + · · ·+ JfdK ,

such that |Dfi| = |f ′i | ≤ |Df | almost everywhere.

Actually, the proof of Proposition 3.4 in [9] implies that f ∈ W 1,q(I,Ad(C))
belongs to ACq(I,Ad(C)) in the sense of Section 2.5. In the situation of Propo-
sition 3.4, we will always mean without further mention that f and f1, . . . , fd are
the continuous representatives.

Since there exists an absolutely continuous parameterization of f ∈
W 1,q(I,Ad(C)) (by Proposition 3.4(ii)), we can define not only the absolute value
of its derivative |Df | but also its derivative Df .

Definition 3.5 ([9, Definition 1.9]). Let f =
∑

i JfiK : I → Ad(C) and x0 ∈ I. We
say that f is differentiable at x0 if there exist d complex numbers Li satisfying:

(i) d(f(x), Tx0f(x)) = o(|x− x0|), where

Tx0
f(x) :=

∑
i

Jfi(x0) + Li · (x− x0)K ; (3.4)

(ii) Li = Lj if fi(x0) = fj(x0).

The d-valued map Tx0f is called the first-order approximation of f at x0. We denote
Li by Dfi(x0) and the point

∑
i JDfi(x0)K ∈ Ad(C) will be called the differential

of f at x0 and will be denoted by Df(x0).

What we call here “differentiable”, following [9], is called “strongly affine ap-
proximable” by Almgren [2].

Note that, by (ii) in the definition, the notation is consistent (see [9, Remark
1.11]): if g1, . . . , gd is another parameterization of f , f is differentiable at x0, and
σ ∈ Sd is such that gi(x0) = fσ(i)(x0) for all 1 ≤ i ≤ d, then Dgi(x0) = Dfσ(i)(x0).

As follows from Proposition 3.4, every f ∈ W 1,q(I,Ad(C)) is differentiable al-
most everywhere. Moreover if f is represented as in (b) of Proposition 3.4 then
Li = Dfi(x0) almost everywhere. Indeed, let f1, . . . , fd ∈W 1,q(I,C) be a parame-
terization of f and assume that all fi are differentiable at x0. Then

fi(x) = fi(x0) + f ′(x0)(x− x0) + o(|x− x0|)

and

d
(
f(x),

∑
i

Jfi(x0) + f ′i(x0)(x− x0)K
)
= d

(
f(x),

∑
i

Jfi(x) + o(|x− x0|)K
)

= min
σ∈Sd

1√
d

(∑
i

|fi(x)− fσ(i)(x) + o(|x− x0|)|2
)1/2

= o(|x− x0|).

On each accumulation point x0 of {x ∈ I : fi(x) = fj(x)}, where the derivatives
f ′i(x0) and f ′j(x0) exist, we have f ′i(x0) = f ′j(x0). Now it is easy to conclude the
claim.

6In [9], it is called a selection of f .
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3.5. A distance notion on W 1,q(I,Ad(C)).

Definition 3.6. Let f, g ∈W 1,q(I,Ad(C)) and let

f = Jf1K + · · ·+ JfdK , g = Jg1K + · · ·+ JgdK

be parameterizations of f , g with fi, gi ∈W 1,q(I,C) as in Proposition 3.4. Fix any
ordering of the elements of Sd. For x ∈ I, let

τ(x) := min
{
τ ∈ Sd :

1√
d

(∑
i

|fi(x)− gτ(i)(x)|2
)1/2

= d(f(x), g(x))
}

and set

s0(f, g)(x) := d(f(x), g(x)).

For x ∈ I such that Df(x) =
∑

i JDfi(x)K and Dg(x) =
∑

i JDgi(x)K exist in the
sense of Definition 3.5, set

s1(f, g)(x) := max
1√
d

(∑
i

|Dfi(x)−Dgτ(x)(i)(x)|2
)1/2

, (3.5)

where the maximum is taken over all orderings of Sd. By the remarks above,
s1(f, g)(x) is defined for almost every x ∈ I. It is independent of the choices of
parameterizations f1, . . . , fd and g1, . . . , gd of f and g.

For any measurable subset E ⊆ I, we set

d1,q
E (f, g) := ∥s0(f, g)∥L∞(E) + ∥s1(f, g)∥Lq(E)

which is justified by Lemma 3.7.

Lemma 3.7. The functions si(f, g) : I → R, for i = 0, 1, are Borel measurable.
Here we extend s1(f, g) by 0 to those points in I, where it is not defined.

Proof. First of all, s0(f, g) is continuous. To see that s1(f, g) is Borel measurable,
it suffices to check that τ : I → Sd is Borel measurable (with respect to the power
set of Sd as σ-algebra). Fix σ ∈ Sd. Then

{x ∈ I : τ(x) ≤ σ}

=
⋃
κ≤σ

{
x ∈ I :

1√
d

(∑
i

|fi(x)− gκ(i)(x)|2
)1/2

= d([f(x)], [g(x)])
}

is Borel measurable. Since the sets {τ ∈ Sd : τ ≤ σ} generate the power set of Sd
as σ-algebra, the assertion follows. □

Lemma 3.8. Let I ⊆ R be a bounded open interval and E ⊆ I a measurable set.
Let f, g ∈W 1,q(I,Ad(C)). Then:

(1) d1,q
E (f, f) = 0.

(2) d1,q
E (f, g) = 0 implies f = g on E.

(3) d1,q
E (f, g) = d1,q

E (g, f).

In particular, d1,q
I is a semimetric on W 1,q(I,Ad(C)).

Proof. (1) In this case, for any x ∈ I, we have

τ(x) = min{τ ∈ Sd : fi(x) = fτ(i)(x) for all i}
so that s1(f, f)(x) = 0 thanks to Definition 3.5(ii) (if it is defined at x).

(2) If d1,q
E (f, g) = 0 then d(f, g) = 0 on E (since d(f, g) is continuous).
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(3) It is immediate from the definition that s0(f, g)(x) = s0(g, f)(x) and
s1(f, g)(x) = s1(g, f)(x) (where defined). □

3.6. Convergence in W 1,q(I,Ad(C)). There is a notion of weak convergence in
W 1,q(I,Ad(C)); see [9, Definition 2.9].

Definition 3.9 (Weak convergence). Let fn, f ∈ W 1,q(I,Ad(C)). We say that fn
converges weakly to f in W 1,q(I,Ad(C)) as n→ ∞ (and we write fn ⇀ f) if

(i)
∫
I
d(f(x), fn(x))

q dx→ 0 as n→ ∞;

(ii) there exists a constant C > 0 such that
∫
I
|Dfn(x)|q dx ≤ C for every n.

This notion is too weak for our purpose: weak convergence Λn ⇀ Λ does not
even imply the conclusion of Theorem 1.3. Let us introduce a stronger notion of
convergence based on the semimetric d1,q

I .

Definition 3.10 (Strong convergence). Let fn, f ∈ W 1,q(I,Ad(C)). We say that
fn converges to f in W 1,q(I,Ad(C)) as n→ ∞ (and we write fn → f), if

d1,q
I (f, fn) → 0 as n→ ∞.

Theorem 3.11. Let ∆ : Ad(C) → RN be an Almgren embedding. Then fn → f
in W 1,q(I,Ad(C)) as n → ∞ if and only if fn converges to f with respect to the
topology induced by the metric (3.1).

In particular, the topology induced by the metric (3.1) on W 1,q(I,Ad(C)) does
not depend on the choice of the Almgren embedding.

We will prove Theorem 3.11 in Section 4.

4. Proof of Theorem 3.11

Before we show Theorem 3.11 we need some preparatory results. In the following,
I ⊆ R is a bounded open interval and q ≥ 1. Moreover, H : Ad(C) → Rd is an
Almgren map with associated real linear form η (see Definition 3.2). Recall the H
is Lipschitz,

∥H([z])−H([w])∥2 ≤ C1 d([z], [w]), [z], [w] ∈ Ad(C), (4.1)

where C1 = C1(d) =
√
h =

√
2d2 + 1; see e.g. [9, Section 2.1.2] and the discussion

after Definition 3.2.

Lemma 4.1. Let f, g ∈ W 1,q(I,Ad(C)) and let f = [f1, . . . , fd], g = [g1, . . . , gd]
with all fi, gi continuous on I. Fix x0 ∈ I. For x ∈ I, let τ(x) ∈ Sd be a permutation
such that

d(f(x0), g(x)) =
1√
d

(∑
i

|fi(x0)− gτ(x)(i)(x)|2
)1/2

.

Denote Hf = H ◦ f and Hg = H ◦ g. Assume that not all η(fi(x0)) are equal
and let ρ denote the minimal distance between distinct η(fi(x0)). If x ∈ I satisfies
d(f(x0), g(x)) <

ρ
2C1

, where C1 is the constant from (4.1), then

(Hg)k(x) = η(gτ(x)(j)(x)) =⇒ (Hf )k(x0) = η(fj(x0)).

Proof. Because H is Lipschitz with Lipschitz constant ≤ C1,

|(Hg)k(x)− (Hf )k(x0)| ≤ C1 d(g(x), f(x0)
)
<
ρ

2
.
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Therefore, if (Hg)k(x) = η(gτ(x)(j)(x)), then

|(Hf )k(x0)− η(fj(x0))| ≤ |(Hg)k(x)− (Hf )k(x0)|+ |η(gτ(x)(j)(x)− fj(x0))| < ρ,

using that
√
d ≤ C1. Thus, (Hf )k(x0) = η(fj(x0)), by the definition of ρ. □

Corollary 4.2. Let f ∈W 1,q(I,Ad(C)) and let f = [f1, . . . , fd] with all fi contin-
uous on I. Fix x0 ∈ I. For x ∈ I, let τ(x) ∈ Sd be a permutation such that

d(f(x0), f(x)) =
1√
d

(∑
i

|fi(x0)− fτ(x)(i)(x)|2
)1/2

.

Then, if x is sufficiently close to x0, we have

(1) η(fτ(x)(i)(x0)) = η(fi(x0)) for all i;
(2) if (Hf )i(x) = η(fj(x)) then (Hf )i(x0) = η(fj(x0)).

Proof. If all η(fi(x0)) are equal, then the conclusion is trivially true. Assume that
not all η(fi(x0)) are equal. Let ρ be the minimal distance between distinct η(fi(x0)).
Let x be such that d(f(x), f(x0)

)
< ρ

2
√
d
and |fi(x)− fi(x0)| < ρ

2 for all i. Then

|η(fτ(x)(i)(x0)− fi(x0))| ≤ |fτ(x)(i)(x0)− fi(x0)|
≤ |fτ(x)(i)(x)− fi(x0)|+ |fτ(x)(i)(x)− fτ(x)(i)(x0)| < ρ.

This implies (1). Now (2) follows from (1) and Lemma 4.1 for g = f . □

There is a chain rule formula for compositions (from the right and from the left)
of differentiable (in the sense of Definition 3.5) maps f : I → Ad(C) with classically
differentiable maps; see [9, Proposition 1.12]. Let us show a version of (iii) of that
proposition.

Proposition 4.3. Let f ∈ W 1,q(I,Ad(C)) and let f1, . . . , fd ∈ W 1,q(I,C) be a
parameterization of f (see Proposition 3.4). Let η : C → R be a real linear form
and let F = Fη : Ad(C) → Rd associate to [z1, . . . , zd] an array of d real numbers
η(zi) arranged in increasing order. Then F ◦ f is differentiable almost everywhere
and at a point x0 of differentiability, after renumbering the fi such that F (f(x0)) =
(η(f1(x0), η(f2(x0)), . . . , η(fd(x0))), we have

D(F ◦ f)(x0) = (η(Df1(x0)), . . . , η(Dfd(x0))).

Proof. This would follow from (iii) of [9, Proposition 1.12] if F were induced by a
differentiable Sd-invariant map Cd → Rd, but this is not the case, although there is a
semialgebraic stratification of Ad(C) such that F restricted to every stratum is real
analytic. Denote F ◦ f by H : I → Rd. Suppose for simplicity that η(z) := Re(θz)
as in Definition 3.2.

Let x0 ∈ I be such that f , all f1, . . . , fd, and all η(f1), . . . , η(fd) are differentiable
at x0. After renumbering the fi, we may assume that Hi(x0) = η(fi(x0)) for all
i. We also assume that η(Dfi(x0)) = η(Dfj(x0)) whenever η(fi(x0)) = η(fj(x0)).
Indeed, if fi(x0) = fj(x0) then the assertion follows from (ii) in Definition 3.5. The
assertion is also true at accumulations points of {x ∈ I : fi(x) ̸= fj(x), η(fi(x)) =
η(fj(x))}. All the other points where η(fi(x)) = η(fj(x)) form a set of measure
zero.

We want to show that, for each component Hi of H,

|Hi(x)−Hi(x0)− η(Dfi(x0))(x− x0)| = o(|x− x0|). (4.2)
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Let Hi(x) = η(fj(x)). Then, by (2) of Corollary 4.2, η(fi(x0)) = Hi(x0) =
η(fj(x0)). Since fj is differentiable at x0

|η
(
fj(x)− fj(x0)−Dfj(x0)(x− x0)

)
| = o(|x− x0|).

That implies (4.2) because η(Dfi(x0)) = η(Dfj(x0)) (see the previous paragraph).
This ends the proof of Proposition 4.3. □

Fix x0 and x satisfying the assumption of Lemma 4.1. After changing the order
of the fi (or the gi) we may suppose τ(x) = id. Then, changing the order of fi and
the gi simultaneously we have both

d(f(x0), g(x)) =
1√
d

(∑
i

|fi(x0)− gi(x)|2
)1/2

,

(Hg)k(x) = η(gk(x)), (Hf )k(x0) = η(fk(x0)) for all k.

(4.3)

Now we use the above formula for x = x0.

Corollary 4.4. Let f, g ∈ W 1,q(I,Ad(C)). Let x0 ∈ I. If not all η(fi(x0)) are
equal, assume that

d(f(x0), g(x0)) <
ρ

2C1
,

where ρ is the minimal distance between distinct η(fi(x0)) and C1 is the constant
from (4.1). Then, provided that all derivatives exist at x0, we have

∥(Hf −Hg)
′(x0)∥2 ≤

√
d · s1(f, g)(x0),

where s1(f, g)(x0) is defined in Definition 3.6.

Proof. Let f1, . . . , fd ∈ W 1,q(I,C) and g1, . . . , gd ∈ W 1,q(I,C) be parameteriza-
tions of f and g, respectively (see Proposition 3.4). We may assume that (4.3)
holds with x = x0 (irrespective if all η(fi(x0)) are equal or not). Moreover, we may
assume that τ(x0) (= id) gives the maximum in (3.5) for x = x0. Then(∑

i

|Dfi(x0)−Dgi(x0)|2
)1/2

=
√
d · s1(f, g)(x0),

By Proposition 4.3,

(Hf )
′(x0) = (H ◦ f)′(x0) = (η(Df1(x0)), . . . , η(Dfd(x0))),

(Hg)
′(x0) = (H ◦ g)′(x0) = (η(Dg1(x0)), . . . , η(Dgd(x0))),

and therefore

∥(Hf −Hg)
′(x0)∥2 =

(∑
i

|η(Dfi(x0)−Dgi(x0))|2
)1/2

≤
(∑

i

|Dfi(x0)−Dgi(x0)|2
)1/2

=
√
d · s1(f, g)(x0)

as claimed. □

Corollary 4.5. Let ∆ = h−1/2(H1, . . . ,Hh) : Ad(C) → RN be an Almgren em-
bedding as in (3.3) and let ηl be the real linear form associated with Hl. Let
f, g ∈ W 1,q(I,Ad(C)). Let x0 ∈ I. For all 1 ≤ l ≤ h assume the following: if
not all ηl(fi(x0)) are equal, then

d(f(x0), g(x0)) <
ρl
2C1

,
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where ρl is the minimal distance between distinct ηl(fi(x0)) and C1 is the constant
from (4.1). Then, provided that all derivatives exist at x0, we have

s1(f, g)(x0) ≤ C(d) ∥(∆ ◦ f −∆ ◦ g)′(x0)∥2.

Proof. Let f1, . . . , fd ∈ W 1,q(I,C) and g1, . . . , gd ∈ W 1,q(I,C) be parameter-
izations of f and g, respectively (see Proposition 3.4). Now (3.2) applied to
zk = f ′i(x0) − g′j(x0), for 1 ≤ i, j ≤ d, gives the existence of some l ∈ {1, . . . , h}
such that

|ηl(f ′i(x0)− g′j(x0))| ≥ α |f ′i(x0)− g′j(x0)| for all 1 ≤ i, j ≤ d,

assuming that the derivatives exist at x0 ∈ I. We may assume that (4.3) holds
with x = x0 for H = Hℓ. As in the proof of Corollary 4.4, we find that

∥(Hl ◦ f −Hl ◦ g)′(x0)∥2 =
(∑

i

|η(Dfi(x0)−Dgi(x0))|2
)1/2

.

Thus,

∥(Hl ◦ f −Hl ◦ g)′(x0)∥2 ≥ α
(∑

i

|Dfi(x0)−Dgi(x0)|2
)1/2

which implies the assertion. □

4.1. Proof of Theorem 3.11. Before we start the proof, let us recall an elemen-
tary lemma which will be used several more times.

Lemma 4.6. Let (rn) be a sequence of real numbers. Then rn → 0 as n → ∞ if
and only if each subsequence of (rn) has a subsequence that converges to 0.

Proof. Suppose that rn ̸→ 0 as n → 0. Then there exist ϵ > 0 and a sequence
n1 < n2 < · · · such that |rnk

| ≥ ϵ for all k ≥ 1. So no subsequence of (rnk
)

converges to 0. The opposite direction is trivial. □

Let ∆ = h−1/2(H1, . . . ,Hh) : Ad(C) → RN be an Almgren embedding as in
(3.3) and let ηl be the real linear form associated with Hl. Assume that fn → f in
W 1,q(I,Ad(C)) as n→ ∞, in the sense of Definition 3.10. Then ∥d(f, fn)∥L∞(I) →
0 as n → ∞. Fix x0 ∈ I. For all 1 ≤ l ≤ h, let ρl(x0) be the minimal distance
between distinct ηl(fi(x0)), if not all ηl(fi(x0)) are equal. Let C1 be the constant
from (4.1). Then there exists n0 ≥ 1 such that, for all 1 ≤ l ≤ h,

d(f(x0), fn(x0)) <
ρl(x0)

2C1
, n ≥ n0, (4.4)

provided not all ηl(fi(x0)) are equal. By Corollary 4.4, provided that all the deriva-
tives exist at x0, we have

∥(∆ ◦ f −∆ ◦ fn)′(x0)∥2 ≤ C(d) s1(f, fn)(x0), n ≥ n0. (4.5)

Since ∥s1(f, fn)∥Lq(I) → 0 as n → ∞, by assumption, there is a subsequence (nk)
such that s1(f, fnk

) → 0 almost everywhere in I as k → ∞. By (4.5), for almost
every x0 ∈ I,

∥(∆ ◦ f −∆ ◦ fnk
)′(x0)∥2 → 0 as k → ∞.

By [9, Theorem 2.4 and Proposition 2.7], almost everywhere in I,

∥(∆ ◦ fn)′∥2 ≤ ∥Dfn∥2 ≤ s1(f, fn) + ∥Df∥2,
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using that ∥Dfn∥2 is independent of the parameterization of fn. Since
supn≥1 s1(f, fn) + ∥Df∥2 is in Lq(I), by assumption, the dominated convergence
theorem implies that

∥(∆ ◦ f −∆ ◦ fnk
)′∥Lq(I,RN ) → 0 as k → ∞.

This implies that

∥(∆ ◦ f −∆ ◦ fn)′∥Lq(I,RN ) → 0 as n→ ∞,

by Lemma 4.6. Clearly, also

∥∆ ◦ f −∆ ◦ fn∥Lq(I,RN ) → 0 as n→ ∞,

by the Lipschitz property of ∆ and ∥d(f, fn)∥L∞(I) → 0.
Conversely, assume that

∥∆ ◦ f −∆ ◦ fn∥W 1,q(I,RN ) → 0 as n→ ∞. (4.6)

By Morrey’s theorem, we have ∥d(f, fn)∥L∞(I) → 0 as n → ∞. So there exists
n0 ≥ 1 such that (4.4) holds. By Corollary 4.5, we have the opposite of (4.5):
provided that all the derivatives exist at x0,

s1(f, fn)(x0) ≤ C(d) ∥(∆ ◦ f −∆ ◦ fn)′(x0)∥2, n ≥ n0.

As above, this and the assumption (4.6) imply that there is a subsequence (nk)
such that, for almost every x0 ∈ I,

s1(f, fnk
)(x0) → 0 as k → ∞.

By the dominated convergence theorem, we conclude

∥s1(f, fnk
)∥Lq(I) → 0 as k → ∞,

and, in turn, by Lemma 4.6,

∥s1(f, fn)∥Lq(I) → 0 as n→ ∞.

For the domination, observe that, by [9, Theorem 2.4 and Proposition 2.7], almost
everywhere in I,
√
d · s1(f, fn) ≤ ∥Df∥2 + ∥Dfn∥2,

∥Dfn∥2 ≤ C(d) ∥(∆ ◦ fn)′∥2 ≤ C(d)
(
∥(∆ ◦ f −∆ ◦ fn)′∥2 + ∥(∆ ◦ f)′∥2

)
and the supremum over all n ≥ 1 of the right-hand side is in Lq(I), by assumption.
The proof of Theorem 3.11 is complete.

5. The continuity problem for radicals

This section is devoted to the radical case, i.e., solutions of the equation

Zd = g,

where g is a suitable function. The goal is to prove the following theorem.

Theorem 5.1. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
gn → g in Cd(I,C), i.e.,

∥g − gn∥Cd(I) → 0 as n→ ∞. (5.1)

Let Λ,Λn : I → Ad(C) be the curves of unordered solutions of

Zd = g and Zd = gn, respectively. (5.2)
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Then

d1,q
rad,I(Λ,Λn) → 0 as n→ ∞, (5.3)

for all 1 ≤ q < d/(d− 1).

The distance d1,q
rad,I is induced by d1,q

I ; see Definition 5.5.

Corollary 5.2. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval. Let
gn → g in Cd(I,C) as n→ ∞. Let λ, λn : I → C be continuous functions satisfying

λd = g and λdn = gn, respectively.

Then ∥∥|λ′| − |λ′n|
∥∥
Lq(I)

→ 0 as n→ ∞, (5.4)

∥λ′n∥Lq(I) → ∥λ′∥Lq(I) as n→ ∞, (5.5)

for all 1 ≤ q < d/(d− 1).

Corollary 5.2 will be proved in Section 5.3. It will be used in the proof of
Theorem 1.2.

5.1. Unordered d-tuples of radicals. Let us consider the set

Arad,d(C) := {[z1, . . . , zd] ∈ Ad(C) : zd1 = zd2 = · · · = zdd}.

Definition 5.3. Let d be a positive integer and θ a d-th root of unity. For any
λ ∈ C we define the unordered d-tuple

[λ]θ := [λ, θλ, θ2λ, . . . , θd−1λ].

Note that, for all a ∈ C, [aλ]θ = a [λ]θ = λ [a]θ.

We have the equivalent representation

Arad,d(C) = {[λ]θ : λ ∈ C}.

The restriction of the metric d to Arad,d(C) is very simple:

Lemma 5.4. For λ, µ ∈ C,

d([λ]θ , [µ]θ) = min
1≤j≤d

|λ− θjµ|.

In particular, the map C ∋ λ 7→ [λ]θ ∈ Arad,d(C) is Lipschitz with Lipschitz constant
≤ 1.

Proof. Clearly, the minimum over Sd in the definition of d([λ]θ , [µ]θ) is attained on
a permutation induced by a rotation θi 7→ θi+j . Hence

d([λ]θ , [µ]θ) = min
σ∈Sd

(1
d

d∑
i=1

|θiλ− θσ(i)µ|2
)1/2

= min
1≤j≤d

(1
d

d∑
i=1

|θiλ− θi+jµ|2
)1/2

= min
1≤j≤d

(1
d

d∑
i=1

|λ− θjµ|2
)1/2

= min
1≤j≤d

|λ− θjµ|

as claimed. □
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5.2. The distance d1,q
rad,E. The distance d1,q

I from Definition 3.6 induces a distance

d1,q
rad,I on W 1,q(I,Arad,d(C)).

Definition 5.5. Let f, g ∈ W 1,q(I,Arad,d(C)) and fix a d-th root of unity θ. By
Proposition 3.4, there exist λ, µ ∈W 1,q(I,C) such that

f = JλK + JθλK + · · ·+
q
θd−1λ

y
, g = JµK + JθµK + · · ·+

q
θd−1µ

y
.

For x ∈ I, let

r(x) := min
{
r ∈ {0, 1, . . . , d− 1} : |λ(x)− θrµ(x)| = d(f(x), g(x))

}
and set

srad,0(f, g)(x) := d(f(x), g(x)).

For x ∈ I such that Df(x) =
∑d−1

i=0

q
θiDλ(x)

y
and Dg(x) =

∑r−1
i=0

q
θiDµ(x)

y
exist

in the sense of Definition 3.5, set

srad,1(f, g)(x) := max
θ

|Dλ(x)− θr(x)Dµ(x)|,

where the maximum is taken over all d-th roots of unity. Then srad,1(f, g)(x) is
defined for almost every x ∈ I. It is independent of the choices of λ, µ, and θ.

For any measurable subset E ⊆ I, we set

d1,q
rad,E(f, g) := ∥srad,0(f, g)∥L∞(E) + ∥srad,1(f, g)∥Lq(E).

That srad,i(f, g), for i = 0, 1, are Borel measurable can be seen as in Lemma 3.7.

Lemma 5.6. Let I ⊆ R be a bounded open interval and E ⊆ I a measurable set.
Let f, g ∈W 1,q(I,Arad,d(C)). Then:

(1) d1,q
rad,E(f, f) = 0.

(2) d1,q
rad,E(f, g) = 0 implies f = g on E.

(3) d1,q
rad,E(f, g) = d1,q

rad,E(g, f).

In particular, d1,q
rad,I is a semimetric on W 1,q(I,Arad,d(C)).

Proof. (1) In this case, for any x ∈ I, we have r(x) = 0 and the assertion is obvious.

(2) If d1,q
rad,E(f, g) = 0 then d(f, g) = 0 on E (since d(f, g) is continuous).

(3) This is immediate from the definition. □

5.3. Proof of Corollary 5.2. Recall that λ, λn are absolutely continuous and
belong to W 1,q(I,C), and that Λ := [λ]θ, Λn := [λn]θ are the curves of unordered
solutions of (5.2). For each 1 ≤ j ≤ d and x ∈ I, where λ′(x) and λ′n(x) exist,∣∣|λ′(x)| − |λ′n(x)|

∣∣ = ∣∣|λ′(x)| − |θjλ′n(x)|
∣∣ ≤ |λ′(x)− θjλ′n(x)|.

Fix 1 ≤ q < d/(d − 1). For x ∈ I, let r(x) ∈ {0, 1, . . . , d − 1} be as defined in
Definition 5.5. Then∥∥|λ′| − |λ′n|

∥∥
Lq(I)

≤ ∥λ′ − θrλ′n∥Lq(I)

≤ ∥srad,1(Λ,Λn)∥Lq(I) ≤ d1,q
rad,I(Λ,Λn).

Thus (5.4) follows from Theorem 5.1. Since∣∣∥λ′∥Lq(I) − ∥λ′n∥Lq(I)

∣∣ ≤ ∥∥|λ′| − |λ′n|
∥∥
Lq(I)

,

(5.4) implies (5.5). This ends the proof of Corollary 5.2.
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5.4. Ghisi and Gobbino’s higher order Glaeser inequalities. The following
proposition is a variant of the results obtained in [10].

Proposition 5.7 ([18, Proposition 1]). Let k ≥ 1 be an integer, γ ∈ (0, 1], and
I ⊆ R a bounded open interval. Let g ∈ Ck,γ(I) be a complex valued function. Then

there exists a nonnegative function m ∈ Lp
w(I), for p =

k+γ
k+γ−1 , with

∥m∥p,w,I ≤ C(k) max
{
|g(k)|1/(k+γ)

C0,γ(I)
|I|1/p, ∥g′∥1/(k+γ)

L∞(I)

}
such that

|g′(x)| ≤ m(x) |g(x)|1−1/(k+γ) for almost every x ∈ I.

Corollary 5.8 ([18, Corollary 2]). Let d be a positive integer. Let I ⊆ R be a
bounded open interval. For any continuous function f : I → C such that fd = g ∈
Cd−1,1(I), we have f ′ ∈ Lp

w(I), where p = d/(d− 1), and

∥f ′∥p,w,I ≤ C(d) max
{
|g(d−1)|1/d

C0,1(I)
|I|1/p, ∥g′∥1/dL∞(I)

}
.

5.5. Proof of Theorem 5.1. Let d ≥ 2 be an integer and I ⊆ R a bounded open
interval. Let gn → g in Cd(I,C) as n → ∞. Let Λ,Λn : I → Ad(C) be the curves
of unordered solutions of (5.2). We have to show that

d1,q
rad,I(Λ,Λn) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).
Let λ, λn : I → C be continuous functions satisfying

λd = g and λdn = gn.

By Corollary 5.8, λ, λn ∈W 1,q(I), for all 1 ≤ q < d/(d− 1), and

Λ = [λ]θ and Λn = [λn]θ.

Remark 5.9. By assumption, all derivatives of order ≤ d of g and gn extend
continuously to the endpoints of the interval I. In particular, also λ and λn extend
continuously to I. For technical reasons, we will work with the compact interval I.

We consider the zero set of g in I,

Zg := {x ∈ I : g(x) = 0},

and its complement in I,

Ωg := I \ Zg = {x ∈ I : g(x) ̸= 0}.

The set of accumulation points of Zg is denoted by acc(Zg). Let

p :=
d

d− 1

for the rest of the section.
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Strategy of the proof of Theorem 5.1.

Step 0: We prove that

∥srad,0(Λ,Λn)∥L∞(I) = ∥d(Λ,Λn)∥L∞(I) → 0 as n→ ∞.

Thus, it suffices to show that, for all 1 ≤ q < p,

∥srad,1(Λ,Λn)∥Lq(I) → 0 as n→ ∞. (5.6)

Step 1: We show that, for each x ∈ Ωg,

srad,1(Λ,Λn)(x) → 0 as n→ ∞,

and thus conclude, using the dominated convergence theorem, that, for all
1 ≤ q < p,

∥srad,1(Λ,Λn)∥Lq(Ωg) → 0 as n→ ∞.

Step 2: We prove that for each ϵ > 0 there exist a neighborhood U of acc(Zg)

in I and n0 ≥ 1 such that, for all 1 ≤ q < p,

∥λ′n∥Lq(U) ≤ C(d, q, |I|) ϵ, n ≥ n0.

Note that for x ∈ acc(Zg) we have λ(x) = 0 and λ′(x) = 0 (if the latter
exists). The set Zg \ acc(Zg) has measure zero.

Step 3: At this stage, it is not difficult to combine the results of Step 1 and
Step 2 to complete the proof of (5.6) and hence of Theorem 5.1.

Step 0. Uniform convergence.

Lemma 5.10. If gn → g in C0(I) as n → ∞ and λ, λn ∈ C0(I) are such that
λd = g and λdn = gn, then

∥d([λ]θ , [λn]θ)∥L∞(I) → 0 as n→ ∞.

Proof. This follows from Corollary 6.5. Here is a direct argument: for fixed x ∈ I,

d∏
j=1

|λ(x)− θjλn(x)| = |λ(x)d − gn(x)| = |g(x)− gn(x)|

so that d([λ(x)]θ , [λn(x)]θ) = min1≤j≤d |λ(x)− θjλn(x)| ≤ |g(x)− gn(x)|1/d. □

Step 1. Continuity on Ωg.

Lemma 5.11. Let x ∈ Ωg. Then λ′(x) and λ′n(x) exist for sufficiently large n. Let
1 ≤ j ≤ d. If

|λ(x)− θjλn(x)| → 0 as n→ ∞,

then also
|λ′(x)− θjλ′n(x)| → 0 as n→ ∞.

Proof. Fix x ∈ Ωg. Then g(x) ̸= 0 and there is n0 ≥ 1 such that gn(x) ̸= 0 for all
n ≥ n0. Fix n ≥ n0. So λ(x) ̸= 0, λn(x) ̸= 0, and the derivatives λ′(x) and λ′n(x)
exist. Differentiating λ(x)d = g(x) gives

λ′(x) = λ(x) · 1
d

g′(x)

g(x)
,

and analogously for λ′n(x). For each 1 ≤ j ≤ d, we have

|λ′(x)− θjλ′n(x)| =
∣∣∣λ(x) · 1

d

g′(x)

g(x)
− θjλn(x) ·

1

d

g′n(x)

gn(x)

∣∣∣



ON THE CONTINUITY OF THE SOLUTION MAP FOR POLYNOMIALS 23

≤ |λ(x)− θjλn(x)| ·
1

d

∣∣∣g′(x)
g(x)

∣∣∣+ |λn(x)|
d

∣∣∣g′(x)
g(x)

− g′n(x)

gn(x)

∣∣∣.
We have

∣∣ g′(x)
g(x) − g′

n(x)
gn(x)

∣∣ → 0 as n → ∞ and |λn(x)| is bounded, by (5.1). The

statement follows. □

Lemma 5.12. For each x ∈ Ωg,

srad,1(Λ,Λn)(x) → 0 as n→ 0.

Proof. This follows from Lemma 5.11, since

|λ(x)− θr(x)λn(x)| = d(Λ(x),Λn(x)) → 0 as n→ 0,

by Lemma 5.10. (Here r(x) is independent of n, for n sufficiently big. Note that if
x ∈ Ωg then r(x) is unique and constant on the connected components of Ωg.) □

Proposition 5.13. For all 1 ≤ q < p,

∥srad,1(Λ,Λn)∥Lq(Ωg) → 0 as n→ ∞.

Proof. Fix 1 ≤ q < p. By Proposition 5.7, for almost every x ∈ I,

|λ′(x)− θr(x)λ′n(x)| ≤ C(d) (m(x) +mn(x)),

where m and mn are the nonnegative functions in Lp
w from Proposition 5.7 for

g and gn, respectively. By the monotone convergence theorem, m + supn≥1mn

is a measurable nonnegative function belonging to Lq(I), for 1 ≤ q < p, since
{gn : n ≥ 1} is a bounded set in Cd−1,1(I).

By Lemma 5.12 and the dominated convergence theorem, we may conclude that∫
Ωg

(
srad,1(Λ,Λn)(x)

)q
dx→ 0 as n→ ∞,

which implies the assertion. □

Step 2. On accumulation points of Zg.

Lemma 5.14. Let g ∈ Cd(I). If x0 ∈ acc(Zg), then

g(x0) = g′(x0) = · · · = g(d)(x0) = 0.

Proof. By Taylor’s formula,

g(x) = g(x0) + g′(x0)(x− x0) + · · ·+ g(d)(x0)

d!
(x− x0)

d + o((x− x0)
d).

For contradiction, assume that k ∈ {1, . . . , d} is minimal with the property that
g(k)(x0) ̸= 0. If Zg ∋ xn → x0, then

0 =
g(k)(x0)

k!
+
g(k+1)(x0)

(k + 1)!
(xn − x0) + · · ·+ g(d)(x0)

d!
(xn − x0)

d−k + o((xn − x0)
d−k)

leads to a contradiction. □

In the following, I(x0, δ) denotes the open δ-neighborhood of x0 in I and I(x0, δ)
denotes its closure.
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Lemma 5.15. Let x0 ∈ acc(Zg). For every ϵ > 0 there exist δ = δ(x0, ϵ) > 0 and
n0 = n0(x0, ϵ, δ) ≥ 1 such that

∥λ′n∥p,w,I(x0,δ) ≤ C(d) δ1/p ϵ, n ≥ n0. (5.7)

In particular,

∥λ′n∥Lq(I(x0,δ)) ≤ C(d)
( p

p− q

)1/q

|I(x0, δ)|1/q ϵ, n ≥ n0, (5.8)

for all 1 ≤ q < p.

Proof. By Lemma 5.14, g(x0) = g′(x0) = · · · = g(d)(x0) = 0. Fix ϵ > 0. By
continuity, there exists δ > 0 such that

∥g∥Cd(I(x0,δ))
≤ ϵd

2
.

Furthermore, by (5.1), there exists n0 ≥ 1 such that, for all n ≥ n0,

∥g − gn∥Cd(I(x0,δ))
≤ ϵd

2

and

|g(k)n (x0)| ≤ ϵdδd−k, 0 ≤ k ≤ d.

Then

∥gn∥Cd(I(x0,δ))
≤ ϵd, n ≥ n0.

By Taylor’s formula, for x ∈ I(x0, δ) and n ≥ n0,

|g′n(x)| =
∣∣∣g′n(x0) + g′′n(x0)(x− x0) + · · ·+

∫ x

x0

g(d)n (t)
(x− t)d−2

(d− 2)!
dt
∣∣∣ ≤ d ϵdδd−1.

Hence,

∥g′n∥L∞(I(x0,δ)) ≤ d ϵdδd−1, n ≥ n0.

By Proposition 5.7, we may conclude that

∥λ′n∥p,w,I(x0,δ) ≤ C(d) max
{
|g(d)n |1/dL∞(I(x0,δ))

(2δ)1/p, ∥g′n∥
1/d
L∞(I(x0,δ))

}
≤ C(d) δ1/p ϵ, n ≥ n0,

that is (5.7). Finally, (5.8) follows from (2.1). □

Proposition 5.16. For every ϵ > 0 there exist a neighborhood U of acc(Zg) in I
and n0 ≥ 1 such that

∥λ′n∥Lq(U) ≤ C(d)
( p

p− q

)1/q

|U |1/q ϵ, n ≥ n0,

for all 1 ≤ q < p.

Proof. Let ϵ > 0. For each x0 ∈ acc(Zg) there exist δ = δ(x0, ϵ) > 0 and n0 =
n0(x0, ϵ, δ) ≥ 1 such that

∥λ′n∥Lq(I(x0,δ)) ≤ C(d)
( p

p− q

)1/q

|I(x0, δ)|1/q ϵ, n ≥ n0,

for all 1 ≤ q < p, by Lemma 5.15. Since acc(Zg) is compact, it is covered by
finitely many I1, . . . , Is among the intervals I(x0, δ). Let U = I1 ∪ · · · ∪ Is. By
removing some of the intervals (see Lemma 5.17), we may assume that each point
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of U belongs to exactly one or two of the intervals Iℓ. Then U and the maximum
of the corresponding n0 are as required:

∥λ′n∥
q
Lq(U) ≤

s∑
ℓ=1

∥λ′n∥
q
Lq(Iℓ)

≤ C(d)q
( p

p− q

)
ϵq

s∑
i=1

|Iℓ| ≤ C(d)q
( p

p− q

)
2|U | ϵq,

and the statement follows. □

Lemma 5.17. Let I = {I1, . . . , Is} be a finite collection of bounded open intervals
in R. There exists a subset J ⊆ I such that

U =
⋃
I∈I

I =
⋃
I∈J

I

and each point of U belongs to exactly one or two intervals in J .

Proof. We may assume that U =
⋃

I∈I I is connected. Let us write Iℓ = (aℓ, bℓ).
By relabeling the intervals, we may assume that a1 ≤ a2 ≤ · · · ≤ as. Let ℓ1 be
defined by bℓ1 = max{bℓ : aℓ = a1}. If U = (aℓ1 , bℓ1) we are done. Otherwise,
bℓ1 ∈ U , since U is connected. Let ℓ2 be defined by bℓ2 = max{bℓ : aℓ < bℓ1}.
Then bℓ1 < bℓ2 . If U = (aℓ1 , bℓ1) ∪ (aℓ2 , bℓ2) we are done. Otherwise, we repeat the
procedure. It terminates with the right endpoint bℓk of U and

aℓi < bℓi−1 < aℓi+1 < bℓi , 2 ≤ i ≤ k − 1.

This implies the statement. □

Step 3. End of proof of Theorem 5.1. Fix 1 ≤ q < p. If x ∈ acc(Zg), then
λ(x) = 0 and λ′(x) = 0 (if the derivative exists) so that

srad,1(Λ,Λn)(x) = |λ′n(x)|.

As Zg \ acc(Zg) has measure zero, we have∫
I

(
srad,1(Λ,Λn)(x)

)q
dx =

∫
Ωg

(
srad,1(Λ,Λn)(x)

)q
dx+

∫
acc(Zg)

|λ′n(x)|q dx.

By Proposition 5.13 and Proposition 5.16, both integrals on the right-hand side
tend to 0 as n → ∞. This shows (5.6) and hence the proof of Theorem 5.1 is
complete.

5.6. Variants of Theorem 5.1.

Remark 5.18. In the setting of Theorem 5.1, let λ, λn : I → C be continuous
functions satisfying λd = g and λdn = gn, fix a d-th root of unity θ, and, for x ∈ I
and n ≥ 1, define

rn(x) = min
{
r ∈ {0, 1, . . . , d− 1} : |λ(x)− θrλn(x)| < d(Λ(x),Λn(x)) +

1
n

}
.

As in Lemma 3.7, one sees that rn : I → {0, 1, . . . , d−1} is Borel measurable. Thus

we can replace r(x) by rn(x) in the definition of d1,q
rad,I(Λ,Λn) and get a slightly

stronger version of Theorem 5.1. In fact, we have

|λ(x)− θrn(x)λn(x)| < d(Λ(x),Λn(x)) +
1
n → 0 as n→ ∞

so that Lemma 5.12 remains true.
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Corollary 5.19. Let d ≥ 2 be an integer and I ⊆ R a bounded open interval. Let
gn → g in Cd(I) as n → ∞. Assume that λn : I → C is a continuous function
satisfying λdn = gn, for all n ≥ 1, and that there is a continuous function λ : I → C
such that, for all x ∈ I,

λn(x) → λ(x) as n→ ∞. (5.9)

Then λd = g and

∥λ− λn∥L∞(I) + ∥λ′ − λ′n∥Lq(I) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

Proof. It is clear that λd = g. So λ′n and λ′ exist almost everywhere in I and
belong to Lq(I) for all 1 ≤ q < d/(d − 1), by Corollary 5.8. By Lemma 5.11, we
may conclude that

λ′n(x) → λ′(x) as n→ ∞,

for each x ∈ Ωg. Thus the dominated convergence theorem implies that, for 1 ≤
q < p = d/(d− 1),

∥λ′ − λ′n∥Lq(Ωg) → 0 as n→ ∞;

the domination follows from Proposition 5.7 as in the proof of Proposition 5.13.
Using Proposition 5.16, it is easy to conclude (as in Step 3) that, for 1 ≤ q < p,

∥λ′ − λ′n∥Lq(I) → 0 as n→ ∞.

Now fix x0 ∈ I. Since λ and λn are absolutely continuous, we have, for any x ∈ I,

|λ(x)− λn(x)| =
∣∣∣λ(x0)− λn(x0) +

∫ x

x0

λ′(t)− λ′n(t) dt
∣∣∣

≤ |λ(x0)− λn(x0)|+ ∥λ′ − λ′n∥L1(I).

Consequently,

∥λ− λn∥L∞(I) → 0 as n→ ∞,

and the proof is complete. □

This raises the question as to whether the assumption (5.9) on λn and λ in
Corollary 5.19 can always be fulfilled. Not for every continuous function λ satisfying
λd = g on I there exist continuous functions λn satisfying λdn = gn on I, for n ≥ 1,
such that (5.9) holds for almost every x ∈ Ωg. See Example 5.20.

Example 5.20. (1) Consider gn(x) = x2 + 1
n → g(x) = x2. The continuous

solutions of Z2 = gn converge to either |x| or −|x|, but not to x or −x.
(2) Let gn(x) = x + i 1n → g(x) = x. For n fixed, gn never vanishes, so there

are exactly two continuous square roots of gn. Since Im(gn(x)) > 0 for all x, one

solution stays in the first quadrant and approaches
√
x for x > 0 and i

√
|x| for

x < 0 as n→ ∞. The other one approaches −
√
x for x > 0 and −i

√
|x| for x < 0.

Now consider another sequence hn(x) = x − i 1n → g(x) = x. Since Im(hn(x)) < 0
for all x, one solution stays in the forth quadrant and approaches

√
x for x > 0 and

−i
√
|x| for x < 0 as n → ∞. The other one approaches −

√
x for x > 0 and i

√
|x|

for x < 0.

We end this section with a version of Theorem 5.1 in the setting of [10] for
radicals with real exponents.
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Proposition 5.21. Let k ∈ N and γ ∈ (0, 1]. Let I ⊆ R be a bounded open interval.
Let gn → g in Ck+1(I,R) as n → ∞. Let f, fn : I → R be continuous functions
satisfying

|f |k+γ = |g| and |fn|k+γ = |gn|.
For each x ∈ I and n ≥ 1, let

r(x) = min
{
r ∈ {0, 1} : |f(x)− (−1)rfn(x)| = min

j∈{0,1}
|f(x)− (−1)jfn(x)|

}
.

Then f and fn are absolutely continuous and satisfy

∥f − (−1)rfn∥L∞(I) → 0 and ∥f ′ − (−1)rf ′n∥Lq(I) → 0 as n→ ∞,

for all 1 ≤ q < k+γ
k+γ−1 .

In particular, for λ := |g|1/(k+γ) and λn := |gn|1/(k+γ), we have

∥λ− λn∥L∞(I) → 0 and ∥λ′ − λ′n∥Lq(I) → 0 as n→ ∞,

for all 1 ≤ q < k+γ
k+γ−1 .

Proof. By [10, Theorem 2.2], each continuous solution f : I → R of

|f |k+γ = |g|

is absolutely continuous and f ′ ∈ Lp
w(I) with p :=

k+γ
k+γ−1 and

∥f ′∥p,w,I ≤ C(k) max
{
|g(k)|1/(k+γ)

C0,γ(I)
|I|1/p, ∥g′∥1/(k+γ)

L∞(I)

}
.

Let fn : I → R be a continuous function satisfying |fn|k+γ = |gn|. In analogy
to Proposition 5.16, we see that for each ϵ > 0 there exist a neighborhood U of
acc(Zg) in I and n0 ≥ 1 such that

∥f ′n∥Lq(U) ≤ C(k, p, q) |U |1/qϵ, n ≥ n0.

Now fix x ∈ Ωg. Then f ′(x) and |f |′(x) exist and satisfy f ′(x) = sgn f(x) · |f |′(x)
and

|f |′(x) = |f(x)| · 1

k + γ

|g|′(x)
|g(x)|

.

For large enough n, fn(x) ̸= 0 and f ′n(x) exists. As in Lemma 5.11, we conclude
that, for j ∈ {0, 1},

|f ′(x)− (−1)jf ′n(x)| → 0 as n→ ∞,

provided that |f(x)− (−1)jfn(x)| → 0. A simple modification of Lemma 5.10 gives
∥f − (−1)rfn∥L∞(I) → 0 and hence the proposition follows by an application of the
dominated convergence theorem, as in Proposition 5.13.

For f := |g|1/(k+γ) and fn := |gn|1/(k+γ), for n ≥ 1, we have r ≡ 0. □

5.7. Optimality of the result. By Proposition 5.7, in the setting of Corollary 5.2
the set {λ′} ∪ {λ′n : n ≥ 1} is bounded in Lp

w(I), where p := d/(d − 1). But, in
general, ∥∥|λ′| − |λ′n|

∥∥
p,w,I

̸→ 0 as n→ ∞,

as seen in Example 5.22.
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Example 5.22. Let d ∈ R>1 and set p := d/(d − 1). Let g, gn : R → R, n ≥ 1,
be given by g(x) := x and gn(x) := x+ 1/np. For x ∈ (0, 1), consider λ(x) := x1/d

and λn(x) := (x+ 1/np)1/d. Then, for x ∈ (0, 1),

|λ′(x)| − |λ′n(x)| =
1

d
(x−1/p − (x+ 1/np)−1/p) > 0.

For r > 0, we have

{x ∈ (0, 1) : |λ′(x)| − |λ′n(x)| > r} ⊇ {x ∈ (0, 1) : x−1/p − n > dr}
= (0, (dr + n)−p).

Thus ∥∥|λ′| − |λ′n|
∥∥
p,w,(0,1)

≥ sup
r>0

r

dr + n
=

1

d
.

On the other hand,7

∥λ′n∥p,w,(0,1) → ∥λ′∥p,w,(0,1) as n→ ∞.

Indeed,

{x ∈ (0, 1) : x−1/p > dr} = (0,min{1, (dr)−p})
so that

∥λ′∥p,w,(0,1) = max
{

sup
0<r≤1/d

r, sup
r>1/d

r

dr

}
=

1

d
.

Moreover,

{x ∈ (0, 1) : (x+ 1
np )

−1/p > dr} =

{
(0,min{1, (dr)−p − n−p}) if n > dr,

∅ if n ≤ dr.

Hence, as (dr)−p − n−p < 1 if and only if r > n
d(np+1)1/p

,

∥λ′n∥p,w,(0,1) = max
{

sup
0<r≤ n

d(np+1)1/p

r, sup
r> n

d(np+1)1/p

r((dr)−p − n−p)1/p
}

= max
{ n

d(np + 1)1/p
, sup
r> n

d(np+1)1/p

(np − (dr)p)1/p

dn

}
= max

{ n

d(np + 1)1/p
,

n

d(np + 1)1/p

}
=

n

d(np + 1)1/p

which tends to 1/d as n→ ∞.

6. Monic polynomials

Let us gather basic facts on monic complex polynomials of degree d,

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j ∈ C[Z].

We often identify Pa with its coefficient vector a = (a1, a2, . . . , ad) ∈ Cd so that Cd

is the space of all monic complex polynomials of degree d.

7We do not have an example with ∥λ′
n∥p,w,I ̸→ ∥λ′∥p,w,I as n → ∞.
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6.1. Cauchy bound. If λ ∈ C is a root of Pa(Z) ∈ C[Z], then

|λ| ≤ 2 max
1≤j≤d

|aj |1/j . (6.1)

See e.g. [14, IV Lemma 2.3].

6.2. Uniform Hölder continuity of the roots.

Lemma 6.1 ([14, IV Lemma 2.5]). Let I = I ⊆ R be a bounded closed interval. Let
Pa be a monic polynomial of degree d with coefficient vector a ∈ C0,γ(I,Cd), where
γ ∈ (0, 1]. Let λ ∈ C0(I) be a continuous root of Pa on I. Then λ ∈ C0,γ/d(I) and

|λ(x)− λ(y)| ≤ H |x− y|γ/d, x, y ∈ I,

where

H := 4d max
1≤j≤d

∥aj∥1/jC0,γ(I). (6.2)

Corollary 6.2. Let I = I ⊆ R be a bounded closed interval. Let Pa be a monic
polynomial of degree d with coefficient vector a ∈ C0,γ(I,Cd), where γ ∈ (0, 1]. Let
Λ : I → Ad(C) be the curve of unordered roots of Pa. Then

d(Λ(x),Λ(y)) ≤ H |x− y|γ/d, x, y ∈ I,

for H in (6.2).

Proof. Let λ : I → Cd be a continuous parameterization of the roots of Pa so that
Λ = [λ]. In view of

d([λ(x)], [λ(y)]) = min
σ∈Sd

1√
d
∥λ(x)− σλ(y)∥2

≤ 1√
d
∥λ(x)− λ(y)∥2 ≤ max

1≤j≤d
|λj(x)− λj(y)|,

the statement follows from Lemma 6.1. □

Lemma 6.3. Lemma 6.1 and Corollary 6.2 also hold with H replaced by

H1 := 2dA1/d
(
1 +B +B2 + · · ·+Bd−1

)1/d
, (6.3)

where

A := |a|C0,γ(I) and B := 2 max
1≤j≤d

∥aj∥1/jL∞(I).

Proof. We modify the proof of [14, IV Lemma 2.5].
First we show the following claim. Let λ1, . . . , λd ∈ C and µ1, . . . , µd ∈ C be the

roots of Pa and Pb, respectively. Assume that, for α, β > 0,

max
1≤j≤d

|aj − bj | ≤ α and 2 max
1≤j≤d

|aj |1/j ≤ β.

Then, for each i there exists j such that

|λi − µj | ≤ α1/d
(
1 + β + β2 + · · ·+ βd−1

)1/d
.

To see this, fix i. Then

d∏
j=1

|λi − µj | = |Pb(λi)| = |Pb(λi)− Pa(λi)| =
∣∣∣ d∑
k=1

(bk − ak)λ
d−k
i

∣∣∣ ≤ α

d∑
k=1

βd−k,

using (6.1), and the claim follows.
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Now suppose we are in the setting of Lemma 6.1. Fix x < y ∈ I and let
λ1 = λ(x), λ2, . . . , λd be the roots of Pa(x). Let K be the union of the closed

disks with radius H1

2d |x − y|γ/d and centers λj . Then λ([x, y]) ⊆ K, by the claim,
and, since λ is continuous, λ([x, y]) is contained in the connected component of K
containing λ1. This implies Lemma 6.1, and in turn Corollary 6.2, with H1 instead
of H. □

6.3. The solution map. The elementary symmetric polynomials induce a bijec-
tive map a = (a1, . . . , ad) : Ad(C) → Cd,

aj([z1, . . . , zd]) := (−1)j
∑

i1<...<ij

zi1 · · · zij , 1 ≤ j ≤ d.

Let Λ : Cd → Ad(C) be the inverse of a. Then Λ(a) is the unordered d-tuple
consisting of the d roots of Pa (with multiplicities). The map a : Ad(C) → Cd is a
homeomorphism as seen in the following lemma.

Lemma 6.4. For K ≥ 1 we have:

(1) The map a : Ad(C) → Cd is locally Lipschitz: if [z0], [z1], [z2] ∈ Ad(C) and
d([z0], [zi]) ≤ K, for i = 1, 2, then

∥a([z1])− a([z2])∥2 ≤ C(d,K)d([z1], [z2]).

(2) The map Λ : Cd → Ad(C) is locally 1/d-Hölder: if a1, a2 ∈ Cd and ∥ai∥2 ≤
K, for i = 1, 2, then

d(Λ(a1),Λ(a2)) ≤ C(d,K) ∥a1 − a2∥1/d2 .

Proof. (1) The polynomial map a : Cd → Cd clearly is locally Lipschitz: for z1, z2 ∈
Cd with ∥zi∥2 ≤ K, for i = 1, 2, we have

∥a(z1)− a(z2)∥2 ≤ C(d,K) ∥z1 − z2∥2.
But the left-hand side equals ∥a([z1])−a([z2])∥2 and on the right-hand side we may
replace z2 by σz2 for any σ ∈ Sd. This implies (1).

(2) This follows from Corollary 6.2 and Lemma 6.3 applied to the family a(t) :=
ta1 + (1− t)a2, γ = 1, x = 0 and y = 1. Then A = ∥a1 − a2∥2 and B ≤ C(d,K) so

that H1 ≤ C(d,K) ∥a1 − a2∥1/d2 . □

Corollary 6.5. Let K ⊆ Rm be a compact set. Then the map Λ∗ : C0(K,Cd) →
C0(K,Ad(C)), Λ∗(a) := Λ ◦ a, is locally 1/d-Hölder: if a1, a2 ∈ C0(K,Cd) and
∥ai∥C0(K,Cd) ≤ L, for i = 1, 2, then

∥d(Λ∗(a1),Λ∗(a2))∥C0(K) ≤ C(d, L) ∥a1 − a2∥1/dC0(K,Cd)
.

Proof. This is immediate from Lemma 6.4(2). □

6.4. Tschirnhausen form. We say that a monic polynomial

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j

is in Tschirnhausen form if a1 = 0. Every Pa can be put in Tschirnhausen form by
the substitution, called Tschirnhausen transformation,

Pã(Z) = Pa(Z − a1

d ) = Zd +

d∑
j=2

ãjZ
d−j .
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Note that

ãj =

j∑
i=0

Ciaia
j−i
1 , 2 ≤ j ≤ d, (6.4)

where the Ci are universal constants and a0 = 1.
For clarity of notation, we consistently equip the coefficients of polynomials in

Tschirnhausen form with a “tilde”.

6.5. Splitting. The following well-known lemma (see e.g. [1] or [5]) is a conse-
quence of the inverse function theorem.

Lemma 6.6. Let Pa = PbPc, where Pb and Pc are monic complex polynomials
without common root. Then for P near Pa we have P = Pb(P )Pc(P ) for analytic
mappings of monic polynomials P 7→ b(P ) and P 7→ c(P ), defined for P near Pa,
with the given initial values.

Proof. The splitting Pa = PbPc defines on the coefficients a polynomial mapping
φ such that a = φ(b, c), where a = (ai), b = (bi), and c = (ci). The Jacobian
determinant det dφ(b, c) equals the resultant of Pb and Pc which is non-zero by
assumption. Thus φ can be inverted locally. □

If Pã is in Tschirnhausen form and if ã ̸= 0, then Pã splits, i.e., Pã = PbPc for
monic polynomials Pb and Pc with positive degree and without common zero. For,
if λ1, . . . , λd denote the roots of Pã and they all coincide, then since

λ1 + · · ·+ λd = ã1 = 0

they all must vanish, contradicting ã ̸= 0.
Let ã1, . . . , ãd denote the coordinates in Cd. Fix k ∈ {2, . . . , d} and let p̃ ∈

Cd ∩ {ã1 = 0, ãk ̸= 0}; p̃ corresponds to the polynomial Pã in Tschirnhausen form.
We associate the polynomial

Qa(Z) := ã
−d/k
k Pã(ã

1/k
k Z) = Zd +

d∑
j=2

ã
−j/k
k ãjZ

d−j = Zd +

d∑
j=2

ajZ
d−j ,

aj := ã
−j/k
k ãj , j = 1, . . . , d,

where some branch of the radical is fixed. Then Qa is in Tschirnhausen form and

ak = 1; it corresponds to a point p ∈ Cd ∩ {ak = 1}. By Lemma 6.6, we have a
splitting Qa = QbQc on some open ball B(p, ρ) centered at p with radius ρ > 0. In
particular, there exist analytic functions ψi on B(p, ρ) such that

bi = ψi

(
ã
−2/k
k ã2, ã

−3/k
k ã3, . . . , ã

−d/k
k ãd

)
, i = 1, . . . ,degQb.

The splitting Qa = QbQc induces a splitting Pã = PbPc, where

bi = ã
i/k
k ψi

(
ã
−2/k
k ã2, ã

−3/k
k ã3, . . . , ã

−d/k
k ãd

)
, i = 1, . . . , db := degPb; (6.5)

likewise for cj . Shrinking ρ slightly, we may assume that ψi and all its partial

derivatives are bounded on B(p, ρ). Let b̃j denote the coefficients of the polynomial
Pb̃ resulting from Pb by the Tschirnhausen transformation. Then, by (6.4),

b̃i = ã
i/k
k ψ̃i

(
ã
−2/k
k ã2, ã

−3/k
k ã3, . . . , ã

−d/k
k ãd

)
, i = 2, . . . , db, (6.6)

for analytic functions ψ̃i which, together with all their partial derivatives, are
bounded on B(p, ρ).
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6.6. Universal splitting of polynomials in Tschirnhausen form. The set

K :=

d⋃
k=2

{(0, a2, . . . , ad) ∈ Cd : a1 = 0, ak = 1, |aj | ≤ 1 for j ̸= k}

is compact. For each point p ∈ K there exists ρ(p) > 0 such that we have a splitting
Pã = PbPc on the open ball B(p, ρ(p)), and we fix this splitting; cf. Section 6.5.
Choose a finite subcover of K by open balls B(p

δ
, ρδ), δ ∈ ∆. Then there exists

ρ > 0 such that for every p ∈ K there is a δ ∈ ∆ such that B(p, ρ) ⊆ B(p
δ
, ρδ).

To summarize, for each integer d ≥ 2 we have fixed

(1) a finite cover B of K by open balls B,
(2) a splitting Pã = PbPc on each B ∈ B together with analytic functions ψi

and ψ̃i which are bounded on B along with all their partial derivatives,
(3) a positive number ρ such that for each p ∈ K there is a B ∈ B such that

B(p, ρ) ⊆ B (note that ρ is a Lebesgue number of the cover B).

Remark 6.7. Additionally, there exists χ > 0 such that for all pairs Pã1
= Pb1Pc1

and Pã2
= Pb2Pc2 in some fixed B ∈ B, where a1,k = a2,k = 1,

min
Pb1

(µ1)=0, Pc2
(ν2)=0

|ã1/k2,k µ1 − ã
1/k
1,k ν2| > χ · |ã1,k|1/k|ã2,k|1/k. (6.7)

Indeed, by shrinking the balls B(p, ρ(p)), we may assume that

min
Qb1

(µ
1
)=0, Qc2

(ν2)=0
|µ

1
− ν2| > χp > 0, (6.8)

for all pairs Qa1
= Qb1

Qc1
and Qa2

= Qb2
Qc2

in B(p, ρ(p)). Then take a finite
subcover B of K and let χ be the minimum of the respective χp. Multiplying (6.8)

by |ã1,k|1/k|ã2,k|1/k and observing that the roots of Pbi , Pci are the roots of Qbi
,

Qci
times ã

1/k
i,k , gives (6.7).

Definition 6.8. We will refer to the data fixed in (1), (2), and (3) including
χ > 0 such that (6.7) holds as a universal splitting of polynomials of degree d in
Tschirnhausen form and to ρ as the radius of the splitting.

7. Optimal Sobolev regularity of the roots

In this section, we recall the main result of [18] and prove a related bound that
will be essential for the proof of Theorem 1.2.

7.1. Boundedness. Let us recall the main result of [18].

Theorem 7.1 ([18, Theorem 1]). Let (α, β) ⊆ R be a bounded open interval.8 Let
Pa be a monic polynomial of degree d with coefficient vector a ∈ Cd−1,1([α, β],Cd).
Let λ ∈ C0((α, β)) be a continuous root of Pa on (α, β). Then λ ∈W 1,q((α, β)) for
every 1 ≤ q < d/(d− 1) and

∥λ′∥Lq((α,β)) ≤ C(d, q) max{1, (β − α)1/q} max
1≤j≤d

∥aj∥1/jCd−1,1([α,β])
. (7.1)

Let Λ : Cd → Ad(C) be the solution map defined in Section 6.3.

8In this section and the next two, the main parameter interval is denoted by (α, β) so that the
notation is close to the one in [18] because we will frequently refer to [18].
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Corollary 7.2 ([18, Section 10.3]). The map

Λ∗ : Cd−1,1([α, β],Cd) →W 1,q((α, β),Ad(C)), a 7→ Λ ◦ a,
is well-defined and bounded, for every 1 ≤ q < d/(d−1), where W 1,q((α, β),Ad(C))
carries the metric structure given in (3.1).

Remark 7.3. Corollary 7.2 remains true if the interval (α, β) is replaced by a
bounded open box U = I1 × · · · × Im ⊆ Rm (and [α, β] by U). This follows from
the proof of [18, Theorem 6].

7.2. A different bound. We shall need a different bound for ∥λ′∥Lq((α,β)); see Re-
mark 8.3 for the reason. We formulate and use it for polynomials in Tschirnhausen
form. Some details of the proof of Theorem 7.1 in [18] must be recalled, before the
bound can be given.

Let (α, β) ⊆ R be a bounded open interval. Let Pã be a monic polynomial of
degree d in Tschirnhausen form with coefficient vector ã ∈ Cd−1,1([α, β],Cd), where
ã is not identically zero. Let ρ > 0 be the radius of the fixed universal splitting of
polynomials of degree d in Tschirnhausen form (see Definition 6.8). Fix a positive
constant B satisfying

B < min
{1

3
,

ρ

3d22d

}
. (7.2)

Let x0 ∈ (α, β) be such that ã(x0) ̸= 0 and let k = k(x0) ∈ {2, . . . , d} be such that

|ãk(x0)|1/k = max
2≤j≤d

|ãj(x0)|1/j . (7.3)

Let M =M(x0) be defined by

M := max
2≤j≤d

(
|ã(d−1)

j |1/dC0,1([α,β])|ãk(x0)|
(d−j)/(kd)

)
. (7.4)

Choose a maximal open interval I = I(x0) ⊆ (α, β) containing x0 such that

M |I|+
d∑

j=2

∥(ã1/jj )′∥L1(I) ≤ B |ãk(x0)|1/k. (7.5)

Convention 7.4. Abusing notation, ã
1/j
j denotes one fixed continuous selection

of the multi-valued function ã
1/j
j ; the value of ∥(ã1/jj )′∥L1(I) is independent of the

choice of the selection (by [18, Lemma 1]).

Let us consider the following two cases:

Case (i): For each x0 ∈ (α, β) with ã(x0) ̸= 0, we have equality in (7.5),

M |I|+
d∑

j=2

∥(ã1/jj )′∥L1(I) = B |ãk(x0)|1/k. (7.6)

Case (ii): There exists x0 ∈ (α, β) with ã(x0) ̸= 0 such that the inequality
in (7.5) is strict,

M |I|+
d∑

j=2

∥(ã1/jj )′∥L1(I) < B |ãk(x0)|1/k. (7.7)

The condition (7.5) guarantees that we have a splitting Pã = PbPb∗ on the
interval I; see [18, Section 8, Step 1]. In particular, as I is assumed to be maximal,
in Case (ii), we have a splitting on the whole interval I = (α, β).
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Theorem 7.5. Let (α, β) ⊆ R be a bounded open interval. Let Pã be a
monic polynomial of degree d in Tschirnhausen form with coefficient vector ã ∈
Cd−1,1([α, β],Cd), where ã is not identically zero. Let λ ∈ C0((α, β)) be a continu-
ous root of Pã on (α, β). Then, for every 1 ≤ q < d/(d− 1), λ ∈ W 1,q((α, β)) and
∥λ′∥Lq((α,β)) admits the following bound.

In Case (i),

∥λ′∥Lq((α,β)) ≤ C(d, q)
(
(β − α)1/q max

2≤j≤d
∥ãj∥1/jCd−1,1([α,β])

+

d∑
j=2

∥(ã1/jj )′∥Lq((α,β))

)
.

(7.8)
In Case (ii), for each x ∈ (α, β),

∥λ′∥Lq((α,β)) ≤ C(d, q) (β − α)−1+1/q |ãk(x)|1/k. (7.9)

Proof. We refer to the proof of Theorem 7.1 in [18]. Assume that B, x0, k, M ,
and I are chosen as above. By Proposition 3 and Lemma 15 in [18], Pã = PbPb∗

splits on I and every continuous root µ ∈ C0(I) of Pb̃ (which results from Pb by the
Tschirnhausen tranformation) on I is absolutely continuous and satisfies, for every
1 ≤ q < d/(d− 1),

∥µ′∥Lq(I) ≤ C(d, q)
(
∥|I|−1|ãk(x0)|1/k∥Lq(I) +

db∑
i=2

∥(b̃1/ii )′∥Lq(I)

)
. (7.10)

By Lemmas 8 and 9 in [18], we may bound the right-hand side of (7.10) by

∥|I|−1|ãk(x0)|1/k∥Lq(I) +

db∑
i=2

∥(b̃1/ii )′∥Lq(I) ≤ C(d, q) |I|−1+1/q |ãk(x0)|1/k. (7.11)

We may assume that, on I, λ is a root of Pb, so that

λ(x) = −b1(x)
db

+ µ(x), x ∈ I, (7.12)

where db = degPb. By Remark 3 in [18],

∥b′1∥L∞(I) ≤ C(d) |I|−1 |ãk(x0)|1/k. (7.13)

Case (i). For each x0 ∈ (α, β) with ã(x0) ̸= 0 we have (7.6). We may combine
(7.10) and (7.11) with (7.6) to get

∥µ′∥Lq(I) ≤ C(d, q) |I|−1+1/q B−1
(
M |I|+

d∑
j=2

∥(ã1/jj )′∥L1(I)

)
.

= C(d, q) |I|1/q B−1
(
M +

d∑
j=2

|I|−1∥(ã1/jj )′∥L1(I)

)
.

≤ C(d, q) |I|1/q B−1
(
M +

d∑
j=2

|I|−1/q∥(ã1/jj )′∥Lq(I)

)
.

= C(d, q)B−1
(
M |I|1/q +

d∑
j=2

∥(ã1/jj )′∥Lq(I)

)
;
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the second inequality follows from Hölder’s inequality. By (7.3),

|ãk(x0)|1/k = max
2≤j≤d

|ãj(x0)|1/j ≤ max
2≤j≤d

∥ãj∥1/jCd−1,1([α,β])
=: A

and hence, by (7.4),

M = max
2≤j≤d

(
|ã(d−1)

j |1/dC0,1([α,β])|ãk(x0)|
(d−j)/(kd)

)
≤ max

2≤j≤d

(
Aj/dA(d−j)/d

)
= A.

Since B was universal (see (7.2)), we obtain

∥µ′∥Lq(I) ≤ C(d, q)
(
|I|1/q max

2≤j≤d
∥ãj∥1/jCd−1,1([α,β])

+

d∑
j=2

∥(ã1/jj )′∥Lq(I)

)
.

By (7.13),

∥b′1∥Lq(I) ≤ C(d) |I|−1+1/q |ãk(x0)|1/k

which is estimated the same way. So, in view of (7.12), we conclude

∥λ′∥Lq(I) ≤ C(d, q)
(
|I|1/q max

2≤j≤d
∥ãj∥1/jCd−1,1([α,β])

+

d∑
j=2

∥(ã1/jj )′∥Lq(I)

)
. (7.14)

To summarize, for each x0 ∈ (α, β) with ã(x0) ̸= 0 we have (7.6) and (7.14), where
the interval I contains x0 and is contained in Ωã := (α, β)∩{ã ̸= 0}. By Proposition

2 in [18] (applied to ã instead of b̃), there is a cover of Ωã by a countable family I
of open intervals I on which (7.14) holds and such that every point of Ωã belongs
to precisely one or two intervals in I. Thus, it follows from (7.14) that

∥λ′∥Lq(Ωã) ≤ C(d, q)
(
(β − α)1/q max

2≤j≤d
∥ãj∥1/jCd−1,1([α,β])

+

d∑
j=2

∥(ã1/jj )′∥Lq((α,β))

)
.

Now it suffices to apply Lemma 1 in [18] to have the same bound for ∥λ′∥Lq((α,β)),
i.e., (7.8).

Case (ii). In this case, there exists x0 ∈ (α, β) such that (7.7) holds. Then I =
(α, β) so that (7.10) and (7.11) give

∥µ′∥Lq(I) ≤ C(d, q) (β − α)−1+1/q |ãk(x0)|1/k.
Furthermore, by Lemma 5 in [18],

2

3
≤

∣∣∣ ãk(x)
ãk(x0)

∣∣∣1/k ≤ 4

3
, x ∈ (α, β).

Together with (7.12) and (7.13), we conclude (7.9). □

8. Proof of Theorem 1.2

Let d ≥ 2 be an integer. Let (α, β) ⊆ R be a bounded open interval. Let an → a
in Cd([α, β],Cd) as n→ ∞. Let Λ,Λn : (α, β) → Ad(C) be the curves of unordered
roots of Pa, Pan

, respectively. We have to show that

d1,q
(α,β)(Λ,Λn) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).
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By Corollary 7.2, Λ,Λn ∈ W 1,q((α, β),Ad(C)), for all 1 ≤ q < d/(d − 1). Let
λ, λn : (α, β) → Cd be continuous parameterizations of the roots of Pa, Pan , i.e.,

Λ = [λ] and Λn = [λn].

Then λ, λn ∈ W 1,q((α, β),Cd), for all 1 ≤ q < d/(d − 1) (by Theorem 7.1). For
1 ≤ i ≤ d, n ≥ 1, and almost every x ∈ (α, β),

Dλi(x) = λ′i(x) and Dλn,i(x) = λ′n,i(x);

see Definition 3.5.

8.1. Uniform convergence of d(Λ,Λn). By Corollary 6.5,

∥s0(Λ,Λn)∥L∞((α,β)) = ∥d(Λ,Λn)∥L∞((α,β)) → 0 as n→ ∞. (8.1)

Thus, it suffices to show that, for all 1 ≤ q < d/(d− 1),

d̂1,q
(α,β)(Λ,Λn) → 0 as n→ ∞,

where, for any measurable set E ⊆ (α, β), we define

d̂1,q
E (Λ,Λn) := ∥s1(Λ,Λn)∥Lq(E).

8.2. Invariance under the Tschirnhausen transformation.

Lemma 8.1. Let I ⊆ R be a bounded open interval. Let Pa, Pan
, for n ≥ 1, be

monic polynomials with a, an ∈ Cd(I,Cd). Let Pã, Pãn
result from Pa, Pan

by

the Tschirnhausen transformation. Let Λ,Λn, Λ̃, Λ̃n : I → Ad(C) be the curves of
unordered roots of Pa, Pan

, Pã, Pãn
, respectively. Then, as n→ ∞,

(1) an → a in Cd(I,Cd) if and only if ãn → ã in Cd(I,Cd);

(2) if the equivalent conditions of (1) hold, then d̂1,q
I (Λ,Λn) → 0 if and only if

d̂1,q
I (Λ̃, Λ̃n) → 0, for all 1 ≤ q < d/(d− 1).

Proof. (1) This follows easily from (6.4) and Proposition 2.1.
(2) Fix 1 ≤ q < d/(d − 1). By Corollary 6.5, ∥d(Λ,Λn)∥L∞(I) → 0 as well as

∥d(Λ̃, Λ̃n)∥L∞(I) → 0 as n → ∞. Assume that d̂1,q
I (Λ,Λn) → 0 as n → ∞. By

Theorem 3.11, we have

∥∆ ◦ Λ−∆ ◦ Λn∥W 1,q(I,RN ) → 0 as n→ ∞,

for any Almgren embedding ∆ : Ad(C) → RN (see (3.3)). Let H : Ad(C) → Rd

be an Almgren map with associated real linear form η (see Definition 3.2). The
Tschirnhausen transformation shifts H ◦ Λ and H ◦ Λn by 1

d (η(a1), . . . , η(a1)) and
1
d (η(an,1), . . . , η(an,1)), respectively. Thus ∥(H ◦ Λ̃)′ − (H ◦ Λ̃n)

′∥Lq(I,Rd) → 0 and,
consequently,

∥(∆ ◦ Λ̃)′ − (∆ ◦ Λ̃n)
′∥Lq(I,RN ) → 0 as n→ ∞,

which implies d̂1,q
I (Λ̃, Λ̃n) → 0, again by Theorem 3.11. The opposite direction

follows from the same arguments. □

Thanks to Lemma 8.1, we may assume that all polynomials are in Tschirnhausen
form.
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8.3. Accumulation points of Zã. Let Pã be a monic complex polynomial of
degree d in Tschirnhausen form with coefficient vector ã ∈ Cd([α, β],Cd). We
denote by Zã the zero set of ã in [α, β],

Zã := {x ∈ [α, β] : ã(x) = 0}.
Let acc(Zã) be the set of accumulation points of Zã.

Proposition 8.2. Let d ≥ 2 be an integer. Let (α, β) ⊆ R be a bounded open
interval. Let (Pãn

)n≥1 be a sequence of monic complex polynomials of degree d
in Tschirnhausen form such that ãn → ã in Cd([α, β],Cd) as n → ∞. For each
n ≥ 1, let λn be a continuous root of Pãn

on [α, β]. For every ϵ > 0 there exist a
neighborhood U of acc(Zã) in [α, β] and n0 ≥ 1 such that

∥λ′n∥Lq(U) ≤ C(d, q) |U |1/q ϵ, n ≥ n0,

for all 1 ≤ q < d/(d− 1).

Proof. Fix 1 ≤ q < d/(d− 1). Let x0 ∈ acc(Zã). By Lemma 5.14,

ã
(s)
j (x0) = 0, 2 ≤ j ≤ d, 0 ≤ s ≤ d.

Fix ϵ > 0. By continuity, there exists δ > 0 such that

∥ãj∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d,

where I(x0, δ) is the open δ-neighborhood of x0 in [α, β] and I(x0, δ) is the closure
of I(x0, δ). As ãn → ã in Cd([α, β],Cd), there exists n0 ≥ 1 such that, for all
n ≥ n0,

∥ãj − ãn,j∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d,

and

|ã(s)n,j(x0)| ≤ δj−sϵj , 2 ≤ j ≤ d, 0 ≤ s ≤ d.

Then, by (the proof of) Lemma 5.15,

∥(ã1/jn,j )
′∥Lq(I(x0,δ)) ≤ C(d, q) |I(x0, δ)|1/q ϵ, n ≥ n0.

Consequently, by Theorem 7.5,

∥λ′n∥Lq(I(x0,δ)) ≤ C(d, q) |I(x0, δ)|1/q ϵ, n ≥ n0.

Since acc(Zã) is compact, we may proceed as in the proof of Proposition 5.16
and the assertion follows. □

Remark 8.3. For the gluing of the bounds on a cover by intervals (see the proof
of Proposition 5.16), we need a bound for ∥λ′n∥

q
Lq(I(x0,δ))

that is proportional to the

length of the interval |I(x0, δ)|. For this purpose, we proved Theorem 7.5.

8.4. Some background from [18]. We recall and slightly adapt several lemmas
from [18].

Lemma 8.4 ([18, Lemma 5]). Let I ⊆ R be a bounded open interval. Let Pã be a
monic complex polynomial of degree d in Tschirnhausen form with coefficient vector
ã ∈ Cd−1,1(I,Cd), where ã is not identically zero. Let x0 ∈ I be such that ã(x0) ̸= 0
and k ∈ {2, . . . , d} such that

|ãk(x0)|1/k ≥ |ãj(x0)|1/j , 2 ≤ j ≤ d. (8.2)
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Assume that, for some positive constant B < 1/3,

d∑
j=2

∥(ã1/jj )′∥L1(I) ≤ B |ãk(x0)|1/k. (8.3)

Then, for all x ∈ I and 2 ≤ j ≤ d,

|ã1/jj (x)− ã
1/j
j (x0)| ≤ B |ãk(x0)|1/k, (8.4)

2

3
< 1−B ≤

∣∣∣ ãk(x)
ãk(x0)

∣∣∣1/k ≤ 1 +B <
4

3
, (8.5)

|ãj(x)|1/j ≤
4

3
|ãk(x0)|1/k ≤ 2 |ãk(x)|1/k. (8.6)

Remark 8.5. If we replace (8.2) by

|ãk(x0)|1/k ≥ 2

3
|ãj(x0)|1/j , 2 ≤ j ≤ d, (8.7)

then the conclusions (8.4) and (8.5) remain valid (cf. the proof of Lemma 5 in [18])
and instead of (8.6) we have

|ãj(x)|1/j ≤ 2 |ãk(x0)|1/k ≤ 3 |ãk(x)|1/k. (8.8)

Indeed, by (8.4) and (8.7),

|ãj(x)|1/j ≤ |ãj(x0)|1/j +B |ãk(x0)|1/k ≤
(3
2
+B

)
|ãk(x0)|1/k

which yields the first inequality in (8.8); the second one follows from (8.5).

Lemma 8.6 ([18, Lemma 6]). In the setting of Lemma 8.4, we may consider the Cd

curve a = (a1, . . . , ad) : I → Cd, where a1 := 0 and aj := ã
−j/k
k ãj, for 2 ≤ j ≤ d.

Then the length of a is bounded by 3d22dB.
If we replace (8.2) by (8.7), then the length of a is bounded by 2d23dB.

Proof. Let us assume that (8.7) holds. We estimate |a′j | ≤ |(ã−j/k
k )′ãj |+ |ã−j/k

k ã′j |,
using (8.5) and (8.8):

|(ã−j/k
k )′ãj | ≤ j 3j |(ã1/kk )′||ãk|(−j−1)/k|ãk|j/k ≤ j 3j+1

2
|(ã1/kk )′||ãk(x0)|−1/k,

|ã−j/k
k ã′j | ≤ 3j−1|ãj |−(j−1)/j |ã′j ||ãk|−1/k ≤ j 3j

2
|(ã1/jj )′||ãk(x0)|−1/k,

whence

|a′j | ≤ 2d 3d |ãk(x0)|−1/k
(
|(ã1/kk )′|+ |(ã1/jj )′|

)
.

Thus, by (8.3),∫
I

∥a′(x)∥2 dx ≤
∫
I

d∑
j=2

|a′j(x)| dx

≤ 2d 3d |ãk(x0)|−1/k
(
(d− 1)∥(ã1/kk )′∥L1(I) +

d∑
j=2

∥(ã1/jj )′∥L1(I)

)
≤ 2d23dB

as required. □
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Lemma 8.7 ([18, Lemma 7]). In the setting of Lemma 8.4, replace (8.3) by the
stronger condition

M |I|+
d∑

j=2

∥(ã1/jj )′∥L1(I) ≤ B |ãk(x0)|1/k, (8.9)

where

M := max
2≤j≤d

(
|ã(d−1)

j |1/d
C0,1(I)

|ãk(x0)|(d−j)/(kd)
)
. (8.10)

Then, for all 2 ≤ j ≤ d and 1 ≤ s ≤ d− 1,

∥ã(s)j ∥L∞(I) ≤ C(d) |I|−s|ãk(x0)|j/k,

|ã(d−1)
j |C0,1(I) ≤ C(d) |I|−d|ãk(x0)|j/k.

(8.11)

This remains true (with a different constant C(d)) if additionally (8.2) is replaced
by (8.7).

Lemma 8.8 ([18, Lemma 8]). In the setting of Lemma 8.4, assume that (8.11)
holds. Additionally, suppose that we have a splitting on I,

Pã = PbPb∗ ,

with db := degPb < d and coefficients given by (6.5). Then (after Tschirnhausen

transformation bi ; b̃i), for all 2 ≤ i ≤ db and 1 ≤ s ≤ d− 1,

∥b̃(s)i ∥L∞(I) ≤ C(d) |I|−s|ãk(x0)|i/k,

|b̃(d−1)
i |C0,1(I) ≤ C(d) |I|−d|ãk(x0)|i/k.

(8.12)

This remains true (with a different constant C(d)) if additionally (8.2) is replaced
by (8.7).

Lemma 8.9 ([18, Lemma 10]). In the setting of Lemma 8.8, suppose that x1 ∈ I

is such that b̃(x1) ̸= 0 and ℓ ∈ {2, . . . , db} is such that

|b̃ℓ(x1)|1/ℓ ≥
2

3
|b̃i(x1)|1/i, 2 ≤ i ≤ db.

Assume that, for some positive constant D < 1/3 and some open interval J ⊆ I
with x1 ∈ J ,

|J ||I|−1|ãk(x0)|1/k +

db∑
i=2

∥(b̃1/ii )′∥L1(J) ≤ D |b̃ℓ(x1)|1/ℓ. (8.13)

Then the functions b̃i on J satisfy the following.

(1) For all x ∈ J and 2 ≤ j ≤ db,

|b̃1/ii (x)− b̃
1/i
i (x1)| ≤ D |b̃ℓ(x1)|1/ℓ, (8.14)

2

3
< 1−D ≤

∣∣∣ b̃ℓ(x)
b̃ℓ(x1)

∣∣∣1/ℓ ≤ 1 +D <
4

3
, (8.15)

|b̃i(x)|1/i ≤ 2 |b̃ℓ(x1)|1/ℓ ≤ 3 |b̃ℓ(x)|1/ℓ. (8.16)

(2) The length of the curve b : J → Cdb , where b1 := 0 and bi := b̃
−i/ℓ
ℓ b̃i, for

2 ≤ i ≤ db, is bounded by 2d2b3
dbD.



40 ADAM PARUSIŃSKI AND ARMIN RAINER

(3) For all 2 ≤ i ≤ db and 1 ≤ s ≤ d− 1,

∥b̃(s)i ∥L∞(J) ≤ C(d) |J |−s|b̃ℓ(x1)|i/ℓ,

|b̃(d−1)
i |C0,1(J) ≤ C(d) |J |−d|b̃ℓ(x1)|i/ℓ.

(8.17)

Proof. We give a short argument, because in [18, Lemma 10] equality in (8.13) was
assumed, but this was for other reasons.

(1) follows from Lemma 8.4 and Remark 8.5.
(2) is a consequence of Lemma 8.6.
(3) By (8.12), for x ∈ I and 2 ≤ i ≤ db,

|b̃(i)i (x)| ≤ C(d) |I|−i|ãk(x0)|i/k. (8.18)

The interpolation lemma [18, Lemma 4] yields, for x ∈ J and 1 ≤ s ≤ i,

|b̃(s)i (x)| ≤ C(i) |J |−s
(
VJ(b̃i) + VJ(b̃i)

(i−s)/i∥b̃(i)i ∥s/iL∞(J)|J |
s
)
,

where VJ(b̃i) := supx,y∈J |b̃i(x)− b̃i(y)|. Thus, by (8.16), (8.18), and (8.13),

|b̃(s)i (x)| ≤ C1(d) |J |−s
(
|b̃ℓ(x1)|i/ℓ + |b̃ℓ(x1)|(i−s)/ℓ|J |s|I|−s|ãk(x0)|s/k

)
≤ C2(d) |J |−s|b̃ℓ(x1)|i/ℓ.

So (8.17) holds for 1 ≤ s ≤ i. For s > i, (|J ||I|−1)s ≤ (|J ||I|−1)i and thus

|I|−s|ãk(x0)|i/k ≤ |J |−s
(
|J ||I|−1|ãk(x0)|1/k

)i ≤ |J |−s|b̃ℓ(x1)|i/ℓ,

by (8.13). Then (8.17) for s > i follows from (8.12). □

Remark 8.10. Below we will assume that the coefficients of the polynomials are

of class Cd (instead of Cd−1,1). Then we can replace the bounds for |ã(d−1)
j |C0,1(I)

(e.g. in Lemma 8.7) by the same bounds for ∥ã(d)j ∥L∞(I). We will do this without
further mention.

8.5. Towards a simultaneous splitting. Let d ≥ 2 be an integer. Let (α, β) ⊆
R be a bounded open interval. Let (Pãn

)n≥1 be a sequence of monic complex
polynomials of degree d in Tschirnhausen form such that ãn → ã in Cd([α, β],Cd)
as n→ ∞.

Assume that ã ̸≡ 0. Let x0 ∈ (α, β) be such that ã(x0) ̸= 0 and k ∈ {2, . . . , d}
such that

|ãk(x0)|1/k ≥ |ãj(x0)|1/j , 2 ≤ j ≤ d. (8.19)

In particular, |ãk(x0)|1/k > 0. As ãn → ã in Cd([α, β],Cd), there is n0 ≥ 1 such
that, for all n ≥ n0 and 2 ≤ j ≤ d,∣∣∣|ãj(x0)|1/j − |ãn,j(x0)|1/j

∣∣∣ ≤ 1

5
|ãk(x0)|1/k.

In particular, for n ≥ n0,

|ãn,k(x0)|1/k ≥ 4

5
|ãk(x0)|1/k (8.20)

and, for 2 ≤ j ≤ d,

|ãn,j(x0)|1/j ≤ |ãj(x0)|1/j +
1

5
|ãk(x0)|1/k ≤ 6

5
|ãk(x0)|1/k
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so that

|ãn,k(x0)|1/k ≥ 2

3
|ãn,j(x0)|1/j . (8.21)

For n ≥ 1, let Mn be the quantity defined in (8.10) for ãn and (α, β), i.e.,

Mn := max
2≤j≤d

(
|ã(d−1)

n,j |1/dC0,1([α,β])|ãn,k(x0)|
(d−j)/(kd)

)
,

and let M0 be the same quantity for ã. Define

M := sup
n≥0

Mn. (8.22)

Let ρ > 0 be the radius of the fixed universal splitting of polynomials of degree d
in Tschirnhausen form (see Definition 6.8) and let B be a fixed constant satisfying

B < min
{1

3
,

ρ

23d23d

}
. (8.23)

Choose an open interval I ⊆ (α, β) containing x0 (independent of n) such that

M |I|+
d∑

j=2

∥(ã1/jj )′∥L1(I) ≤
B

3
|ãk(x0)|1/k. (8.24)

By Corollary 5.2, there is n1 ≥ n0 such that, for all n ≥ n1,∣∣∣ d∑
j=2

∥(ã1/jj )′∥L1(I) −
d∑

j=2

∥(ã1/jn,j )
′∥L1(I)

∣∣∣ ≤ B

3
|ãk(x0)|1/k.

Consequently, for all n ≥ n1,

M |I|+
d∑

j=2

∥(ã1/jn,j )
′∥L1(I) ≤

2B

3
|ãk(x0)|1/k ≤ B |ãn,k(x0)|1/k, (8.25)

using (8.20) and (8.24).
Observe that the assumptions of Lemma 8.4, respectively Remark 8.5, are sat-

isfied for ã and ãn, where n ≥ n1, on I. Indeed, (8.19) and (8.21) amount to (8.2)
and (8.7), respectively, and (8.24) and (8.25) imply (8.3).

Furthermore, Lemma 8.7 yields that, for all 2 ≤ j ≤ d, 1 ≤ s ≤ d, and n ≥ n1,

∥ã(s)n,j∥L∞(I) ≤ C(d) |I|−s|ãn,k(x0)|j/k,

as well as

∥ã(s)j ∥L∞(I) ≤ C(d) |I|−s|ãk(x0)|j/k.

In particular, by (8.5), the multivalued functions ã
1/k
k and ã

1/k
n,k , where n ≥ n1,

are bounded away from zero on I. So the continuous selections of ã
1/k
k and ã

1/k
n,k on

I, respectively, just differ by a multiplicative factor θr for some 1 ≤ r ≤ k, where
θ is a k-th root of unity. Thus, since ãn → a in Cd([α, β],Cd), we may assume

that the continuous selections of ã
1/k
k and ã

1/k
n,k are chosen such that they belong to

Cd(I) and satisfy

∥ã1/kk − ã
1/k
n,k∥Cd(I) → 0 as n→ ∞, (8.26)

where abusing notation we denote the continuous selection by the same symbol as
the multivalued function. See Proposition 2.1 and Convention 7.4.
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By Lemma 8.6, the length of the Cd curves a : I → Cd and an : I → Cd, where
n ≥ n1, is bounded by

2d23dB ≤ ρ

4
,

thanks to (8.23). By (8.26), there is n2 ≥ n1 such that, for n ≥ n2,

∥a(x0)− an(x0)∥2 <
ρ

4
.

Then, for n ≥ n2, the ball B(an(x0), ρ/4) is contained in the ball B(a(x0), ρ/2)
which in turn is contained in some ball of the finite cover B ofK (see Definition 6.8).
It follows that we have splittings on I,

Pã = PbPb∗ and Pãn
= PbnPb∗n

, n ≥ n2, (8.27)

with the following properties:

(1) db := degPb = degPbn , for all n ≥ n2, and db < d.
(2) There exist bounded analytic functions ψ1, . . . , ψdb

with bounded partial
derivatives of all orders such that, for all x ∈ I and 1 ≤ i ≤ db,

bi(x) = ãk(x)
i/kψi(a(x)),

bn,i(x) = ãn,k(x)
i/kψi(an(x)), n ≥ n2.

The same is true for the second factors Pb∗ and Pb∗n
.

Definition 8.11. We say that the family {Pã} ∪ {Pãn}n≥n2 has a simultaneous
splitting on I if (8.27) and the properties (1) and (2) are satisfied.

We remark that, applying the Tschirnhausen transformation to Pb and Pbn , we

find bounded analytic functions ψ̃1, . . . , ψ̃db
with bounded partial derivatives of all

orders such that, for all x ∈ I and 2 ≤ i ≤ db,

b̃i(x) = ãk(x)
i/kψ̃i(a(x)),

b̃n,i(x) = ãn,k(x)
i/kψ̃i(an(x)), n ≥ n2.

That follows from (6.4).

Lemma 8.12. We have bn → b and b̃n → b̃ in Cd(I,Cdb) as n→ ∞.

Proof. By (8.26), ã
1/k
k , ã

1/k
n,k ∈ Cd(I) and a, an ∈ Cd(I,Cd), for n ≥ n1, and the

assertion follows from Proposition 2.1. □

We have proved the following proposition.

Proposition 8.13. Let d ≥ 2 be an integer. Let (α, β) ⊆ R be a bounded open
interval. Let (Pãn)n≥1 be a sequence of monic complex polynomials of degree d in
Tschirnhausen form such that ãn → ã in Cd([α, β],Cd) as n→ ∞.

Assume that ã ̸≡ 0. Let x0 ∈ (α, β) be such that ã(x0) ̸= 0 and k ∈ {2, . . . , d}
such that (8.19) holds. Choose an open interval I ⊆ (α, β) containing x0 such that
(8.24) holds, where M and B are given by (8.22) and (8.23), respectively.

Then there exists n0 ≥ 1 such that the following holds:

(1) For all 2 ≤ j ≤ d, 1 ≤ s ≤ d, and n ≥ n0,

∥ã(s)n,j∥L∞(I) ≤ C(d) |I|−s|ãn,k(x0)|j/k,
as well as

∥ã(s)j ∥L∞(I) ≤ C(d) |I|−s|ãk(x0)|j/k.
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(2) The family {Pã} ∪ {Pãn
}n≥n0

has a simultaneous splitting on I,

Pã = PbPb∗ and Pãn
= PbnPb∗n

, n ≥ n0.

(3) We have bn → b and b̃n → b̃ in Cd(I,Cdb) as n → ∞ and analogously

b∗n → b∗ and b̃∗n → b̃∗ in Cd(I,Cd−db).

8.6. Minimizing permutations respect the splitting. Our next goal is Propo-
sition 8.15 which will be needed (at the end of the proof of Proposition 8.16 and in

the proof of Proposition 8.17) to relate the quantity d̂1,q
E for the roots of the two

separate factors of a simultaneous splitting with the quantity d̂1,q
E for the roots of

the product of the two factors.

Definition 8.14. Let Pa = PbPc, where Pb and Pc are monic complex polynomials
with distinct sets of roots {λ1, . . . , λdb

} and {λdb+1, . . . , λd} (with multiplicities),
where d = degPa, 1 ≤ db = degPb < d, and degPc = d − db. A permutation
τ ∈ Sd is said to respect the splitting Pa = PbPc if τ({1, . . . , db}) = {1, . . . , db} and
τ({db + 1, . . . , d}) = {db + 1, . . . , d}.

Proposition 8.15. Let d ≥ 2 be an integer. Let (α, β) ⊆ R be a bounded open
interval. Let (Pãn

)n≥1 be a sequence of monic complex polynomials of degree d in
Tschirnhausen form such that ãn → ã in Cd([α, β],Cd) as n → ∞. Let λ, λn :
(α, β) → Cd be continuous parameterizations of the roots of Pã, Pãn , respectively.

Assume that ã ̸≡ 0. Let x0 ∈ (α, β) be such that ã(x0) ̸= 0 and k ∈ {2, . . . , d}
such that (8.19) holds and let I ⊆ (α, β) be an interval containing x0 such that
(8.3) holds. Suppose that the family {Pã} ∪ {Pãn

}n≥n0
has a simultaneous splitting

on I,
Pã = PbPb∗ and Pãn = PbnPb∗n

, n ≥ n0.

Then, after possibly shrinking I and increasing n0, for all x ∈ I and n ≥ n0,

{τ ∈ Sd : δ(λ(x), τλn(x)) = d([λ(x)], [λn(x)])} (8.28)

= {τ ∈ S′d : δ(λ(x), τλn(x)) = d([λ(x)], [λn(x)])},

where S′d denotes the subset of permutations in Sd that respect the splitting Pãn(x) =
Pbn(x)Pb∗n(x)

.

Proof. Let H := supn≥0Hn, where

H0 := 4d max
1≤j≤d

∥ãj∥1/jC0,1([α,β]) and Hn := 4d max
1≤j≤d

∥ãn,j∥1/jC0,1([α,β]), n ≥ 1.

Let χ > 0 be as in Remark 6.7. By shrinking I, we may assume that

|I|1/d ≤ χ

15
√
dH

· |ãk(x0)|1/k.

Moreover (by (8.1)), there is n1 ≥ n0 such that, for all n ≥ n1,

d([λ(x0)], [λn(x0)]) ≤
χ

15
√
d
· |ãk(x0)|1/k.

Then, for x ∈ I and n ≥ n1,

d([λ(x)], [λn(x)]) ≤ d([λ(x)], [λ(x0)]) + d([λ(x0)], [λn(x0)]) + d([λn(x0)], [λn(x)])

≤ H |x− x0|1/d +
χ

15
√
d
· |ãk(x0)|1/k +H |x− x0|1/d

≤ χ

5
√
d
· |ãk(x0)|1/k, (8.29)
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by Corollary 6.2.
After possibly reordering them, we may assume that λ1, . . . , λdb

are the roots of
Pb and λdb+1, . . . , λd are the roots of Pb∗ and, analogously, that λn,1, . . . , λn,db

are
the roots of Pbn and λn,db+1, . . . , λn,d are the roots of Pb∗n

.
By (6.1), for all x ∈ I,

max
1≤i≤d

|λi(x)| ≤ A := 2 max
1≤j≤d

∥ãj∥1/jL∞(I).

By Remark 6.7, for all x ∈ I, n ≥ n1, 1 ≤ i ≤ db, and db + 1 ≤ j ≤ d,

|ã1/kn,k (x)λi(x)− ã
1/k
k (x)λn,j(x)| > χ · |ãk(x)|1/k|ãn,k(x)|1/k.

By (8.5) and (8.20), there is n2 ≥ n1 such that, for n ≥ n2 and all x ∈ I,

|ãk(x)|1/k|ãn,k(x)|1/k ≥ 16

45
|ãk(x0)|2/k,

and, in view of (8.26),

|ã1/kk (x)− ã
1/k
n,k (x)| ≤

χ

45A
|ãk(x0)|2/k.

We conclude that, for all x ∈ I, n ≥ n2, 1 ≤ i ≤ db, and db + 1 ≤ j ≤ d,

16χ

45
|ãk(x0)|2/k < |ã1/kn,k (x)λi(x)− ã

1/k
k (x)λn,j(x)|

≤ |ã1/kn,k (x)− ã
1/k
k (x)||λi(x)|+ |ãk(x)|1/k|λi(x)− λn,j(x)|

≤ χ

45A
|ãk(x0)|2/k ·A+

4

3
|ãk(x0)|1/k|λi(x)− λn,j(x)|,

using (8.5). Thus, for all x ∈ I, n ≥ n2, 1 ≤ i ≤ db, and db + 1 ≤ j ≤ d,

|λi(x)− λn,j(x)| >
χ

4
|ãk(x0)|1/k. (8.30)

Now we show that (8.28) holds, for all x ∈ I and n ≥ n2. If not, there exist
x ∈ I, n ≥ n2, and a permutation τ ∈ Sd that does not respect the splitting
Pãn(x) = Pbn(x)Pb∗n(x)

such that

δ(λ(x), τλn(x)) = d([λ(x)], [λn(x)]).

So there exist i ∈ {1, . . . , db} and j ∈ {db+1, . . . , d} with τ(i) = j. Thus, by (8.30),

δ(λ(x), τλn(x)) =
1√
d
∥λ(x)− τλn(x)∥2

≥ 1√
d
|λi(x)− λn,j(x)|

>
χ

4
√
d
|ãk(x0)|1/k

which contradicts (8.29). □

8.7. The induction argument.

Proposition 8.16. Let d ≥ 2 be an integer. Let I ⊆ R be a bounded open interval.
Let (Pãn

)n≥1 be a sequence of monic complex polynomials of degree d in Tschirn-

hausen form such that ãn → ã in Cd(I,Cd) as n → ∞. Assume that ã ̸≡ 0. Let
x0 ∈ I and k ∈ {2, . . . , d} be such that the following conditions are satisfied:

(1) ã(x0) ̸= 0.
(2) |ãk(x0)|1/k ≥ |ãj(x0)|1/j for all 2 ≤ j ≤ d.
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(3)
∑d

j=2 ∥(ã
1/j
j )′∥L1(I) ≤ B |ãk(x0)|1/k for some constant B < 1/32.

(4) There exists n0 ≥ 1, such that for all 2 ≤ j ≤ d, 1 ≤ s ≤ d, and n ≥ n0,

∥ã(s)n,j∥L∞(I) ≤ C(d) |I|−s |ãn,k(x0)|j/k.

(5) The family {Pã} ∪ {Pãn
}n≥n0

has a simultaneous splitting on I,

Pã = PbPb∗ and Pãn = PbnPb∗n
, n ≥ n0.

Let µ, µn : I → Cdb be continuous parameterizations of the roots of Pb̃, Pb̃n
(which

result from Pb, Pbn by means of the Tschirnhausen transformation), respectively.
Then there exist a set E0 ⊆ I of measure zero and a countable cover E of I \E0

by measurable sets with the property that, for each E ∈ E,

d̂1,q
E ([µ], [µn]) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

Clearly, d̂1,q
E ([µ], [µn]) is here understood in dimension db. By symmetry, the

conclusion of Proposition 8.16 also holds for continuous parameterizations of the
roots of the second factors Pb̃∗ and Pb̃∗n

in (5).

Proof. We proceed by induction on d.

Base case. If d = 2 then db = 1 and Pb̃(Z) = Pb̃n
(Z) = Z. Hence µ = µn = 0 and

thus d̂1,q
I ([µ], [µn]) = 0. So the assertion is trivially true.

Induction step. Let d > 2 and assume that the statement holds if the degree of the
polynomials is smaller than d.

By Lemma 8.12,

∥b̃− b̃n∥Cd(I,Cdb ) → 0 as n→ ∞. (8.31)

Here Lemma 8.12 is valid, because only the existence of a simultaneous splitting
and the assumptions (8.19) and

d∑
j=2

∥(ã1/jj )′∥L1(I) ≤ B |ãk(x0)|1/k,

for some constant B < 1/32, are needed to conclude (8.26) which is used in the
proof of Lemma 8.12.

By Proposition 8.2, for every ϵ > 0 there exist a neighborhood U of acc(Zb̃) in I
and n1 ≥ n0 such that

∥µ′
n∥Lq(U,Cdb ) ≤ C(d, q) |U |1/q ϵ, n ≥ n1,

for all 1 ≤ q < d/(d− 1) (since db < d). It follows that

d̂1,q
acc(Zb̃)

([µ], [µn]) → 0 as n→ ∞. (8.32)

Indeed, µ|acc(Zb̃)
= 0 and hence, for all x ∈ acc(Zb̃) where µ′(x) and µ′

n(x) exist,

we have µ′(x) = 0 and thus

s1([µ], [µn])(x) =
1√
db

∥µ′
n(x)∥2

which implies (8.32).
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Assume that x1 ∈ I is such that b̃(x1) ̸= 0, in particular, db ≥ 2. Let ℓ ∈
{2, . . . , db} be such that

|b̃ℓ(x1)|1/ℓ ≥ |b̃i(x1)|1/i, 2 ≤ i ≤ db.

As in the derivation of (8.20) and (8.21) from (8.19), we find that there is n1 ≥ n0
such that, for all n ≥ n1,

|b̃n,ℓ(x1)|1/ℓ ≥
4

5
|b̃ℓ(x1)|1/ℓ (8.33)

and, for 2 ≤ i ≤ db,

|b̃n,ℓ(x1)|1/ℓ ≥
2

3
|b̃n,i(x1)|1/i.

Choose an open interval J ⊆ I containing x1 such that

|J ||I|−1|ãk(x0)|1/k +

de∑
i=2

∥(b̃1/ii )′∥L1(J) ≤
D

3
|b̃ℓ(x1)|1/ℓ,

where D is a positive constant satisfying

D < min
{1

3
,

σ

23d2b3
db

}
(8.34)

and σ is the radius of the universal splitting of polynomials of degree db in Tschirn-
hausen form (see Definition 6.8).

By (8.31) and Corollary 5.2, there is n2 ≥ n1 such that, for all n ≥ n2,∣∣∣ db∑
i=2

∥(b̃1/ii )′∥L1(J) −
db∑
i=2

∥(b̃1/in,i )
′∥L1(J)

∣∣∣ ≤ D

6
|b̃ℓ(x1)|1/ℓ

and (cf. (8.26))

|J ||I|−1
∣∣|ãk(x0)|1/k − ãn,k(x0)|1/k

∣∣ ≤ D

6
|b̃ℓ(x1)|1/ℓ.

Consequently, for all n ≥ n2,

|J ||I|−1|ãn,k(x0)|1/k +

db∑
j=2

∥(b̃1/in,i )
′∥L1(J) ≤

2D

3
|b̃ℓ(x1)|1/ℓ ≤ D |b̃n,ℓ(x1)|1/ℓ,

using (8.33).

We see that Lemma 8.9 applies to b̃ and to b̃n, for n ≥ n2. So, for all 2 ≤ i ≤ db,
1 ≤ s ≤ d, and n ≥ n2,

∥b̃(s)n,i∥L∞(J) ≤ C(d) |J |−s |b̃n,ℓ(x1)|j/ℓ.

Moreover, the length of the curves b : J → Cdb and bn : J → Cdb , for n ≥ n2, is
bounded by

2d2b3
dbD ≤ σ

4
,

using (8.34). By (8.15), we conclude (as in the derivation of (8.26)) that there

are continuous selections b̃
1/ℓ
ℓ and b̃

1/ℓ
n,ℓ , for n ≥ n2, in C

d(J) of the corresponding
multivalued functions and

∥b̃1/ℓℓ − b̃
1/ℓ
n,ℓ∥Cd(J) → 0 as n→ ∞.
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It follows (as in the derivation of (8.27)) that there is n3 ≥ n2 such that the family
{Pb̃} ∪ {Pb̃n

}n≥n3 has a simultaneous splitting on J ,

Pb̃ = PcPc∗ and Pb̃n
= PcnPc∗n

, n ≥ n3.

We may assume that

µ|J = (ν, ν∗) and µn|J = (νn, ν
∗
n), n ≥ n3, (8.35)

where ν, νn : J → Cdc , ν∗, ν∗n : J → Cdc∗ are continuous parameterizations of the
roots of Pc, Pcn , Pc∗ , Pc∗n

, respectively. Hereby 1 ≤ dc := degPc = degPcn < db
and dc∗ := degPc∗ = degPc∗n

= db − dc. Set

ν̃ := ν + 1
dc
(c1, . . . , c1), ν̃∗ := ν∗ + 1

dc∗
(c∗1, . . . , c

∗
1),

ν̃n := νn + 1
dc
(cn,1, . . . , cn,1), ν̃∗n := ν∗n + 1

dc∗
(c∗n,1, . . . , c

∗
n,1).

Then ν̃, ν̃n : J → Cdc , ν̃∗, ν̃∗n : J → Cdc∗ are continuous parameterizations of the
roots of Pc̃, Pc̃n , Pc̃∗ , Pc̃∗n

, respectively.
By the induction hypothesis, there is a set EJ,0 ⊆ J of measure zero and a

countable cover EJ of J \ EJ,0 by measurable sets with the property that, for each
EJ ∈ EJ ,

d̂1,q
EJ

([ν̃], [ν̃n]) → 0 and d̂1,q
EJ

([ν̃∗], [ν̃∗n]) → 0 as n→ ∞,

for all 1 ≤ q < d/(d − 1) (since db < d), where d̂1,q
EJ

([ν̃], [ν̃n]) is understood in

dimension dc and d̂1,q
EJ

([ν̃∗], [ν̃∗n]) in dimension dc∗ . By Lemma 8.1, this implies

d̂1,q
EJ

([ν], [νn]) → 0 and d̂1,q
EJ

([ν∗], [ν∗n]) → 0 as n→ ∞, (8.36)

for all 1 ≤ q < d/(d− 1), since cn → c in Cd(J,Cdc) and c∗n → c∗ in Cd(J,Cdc∗ ) as
n→ ∞, by Lemma 8.12.

We conclude that, for each EJ ∈ EJ ,

d̂1,q
EJ

([µ], [µn]) → 0 as n→ ∞, (8.37)

for all 1 ≤ q < d/(d− 1), where d̂1,q
EJ

([µ], [µn]) is now understood in dimension db.
This follows from (8.35), (8.36) and Proposition 8.15.

Then the induction step is a consequence of (8.32), (8.37), and the fact that

{x ∈ I : b̃(x) ̸= 0} can be covered by countably many intervals J . The proposition
is proved. □

8.8. Proof of Theorem 1.2. By Lemma 8.1, we may assume that all polynomials
are in Tschirnhausen form. So let d ≥ 2 be an integer, (α, β) ⊆ R a bounded open
interval, and ãn → ã in Cd([α, β],Cd) as n → ∞. Let Λ,Λn : (α, β) → Ad(C) be
the curves of unordered roots of Pã, Pãn

, respectively.
In view of (8.1), it remains to show that, for all 1 ≤ q < d/(d− 1),

d̂1,q
(α,β)(Λ,Λn) → 0 as n→ ∞. (8.38)

To this end, we prove the following proposition.

Proposition 8.17. There is a subsequence (nk) such that, for all 1 ≤ q < d/(d−1),

d̂1,q
(α,β)(Λ,Λnk

) → 0 as k → ∞.
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Proposition 8.17 implies (8.38), in view of Lemma 4.6.
In the proof of Proposition 8.17, we will use Vitali’s convergence theorem, i.e.,

Theorem A.2. As a preparation, we first show the following lemma.

Lemma 8.18. The set {s1(Λ,Λn)
q : n ≥ 1} is uniformly integrable, for each

1 ≤ q < d/(d− 1).

Proof. Let λ, λn : (α, β) → Cd be continuous parameterizations of the roots so that
Λ = [λ] and Λn = [λn].

Let p := d
d−1 , fix 1 ≤ q < p, and let r := p+q

2q . Then r > 1 and qr < p. The

function G(t) := tr for t ≥ 0 is nonnegative, increasing, and G(t)/t→ ∞ as t→ ∞.
We have

sup
n≥1

∫ β

α

G(|λ′n(x)|q) dx = sup
n≥1

∫ β

α

|λ′n(x)|qr dx <∞,

by (7.1). Thus the assertion follows from the fact that, for almost every x ∈ (α, β),

s1(Λ,Λn)(x) ≤
1√
d

(
∥λ′(x)∥2 + ∥λ′n(x)∥2

)
,

and from de la Vallée Poussin’s criterion, i.e., Theorem A.1. □

Proof of Proposition 8.17. We claim that there is a set F0 ⊆ (α, β) of measure
zero and a countable cover {F1, F2, . . .} of (α, β) \ F0 by measurable sets with the
property that, for each Fi with i ≥ 1,

d̂1,q
Fi

(Λ,Λn) → 0 as n→ ∞, (8.39)

for all 1 ≤ q < d/(d − 1). By Proposition 8.2, we may take F1 = acc(Zã). For
x0 ∈ (α, β) with ã(x0) ̸= 0, let k ∈ {2, . . . , d} be such that (8.19) holds and let
I ∋ x0 be an interval such that (8.24) holds with M and B defined in (8.22) and
(8.23), respectively. Then, by Proposition 8.13, the assumptions of Proposition 8.16
are satisfied. Thus, there is a set E0 ⊆ I of measure zero and a countable cover E
of I \ E0 by measurable sets with the property that, for each E ∈ E ,

d̂1,q
E (Λ,Λn) → 0 as n→ ∞,

for all 1 ≤ q < d/(d − 1) (arguing as at the end of the proof of Proposition 8.16
with Proposition 8.15). The claim follows, since the set Zã \ acc(Zã) has measure
zero and (α, β) \ Zã can be covered by countably many intervals I.

Next we assert that there is a subsequence (nk) such that, as k → ∞,

s1(Λ,Λnk
) → 0 almost everywhere in (α, β). (8.40)

Indeed, setting un := s1(Λ,Λn), we infer from (8.39) that there is a subsequence
n11 < n12 < · · · such that

un1
k
→ 0 almost everywhere in F1.

Again by (8.39), there is a subsequence n21 < n22 < · · · of (n1k) such that

un2
k
→ 0 almost everywhere in F2,

and, in general, let ni+1
1 < ni+1

2 < · · · be a subsequence of (nik) such that

uni+1
k

→ 0 almost everywhere in Fi+1.

Then (8.40) holds for the subsequence nk := nkk.



ON THE CONTINUITY OF THE SOLUTION MAP FOR POLYNOMIALS 49

In view of (8.40) and Lemma 8.18, we now use Vitali’s convergence theorem,
i.e., Theorem A.2, to conclude the assertion of the proposition.9 □

This completes the proof of Theorem 1.2.

8.9. Proof of Corollary 1.4. Fix 1 ≤ q < d/(d − 1). Fix an ordering of Sd. For
x ∈ I, let τ(x) ∈ Sd be as defined in Definition 3.6. Then∥∥∥λ′∥2 − ∥λ′n∥2

∥∥
Lq(I)

=
∥∥∥λ′∥2 − ∥τλ′n∥2

∥∥
Lq(I)

≤
∥∥∥λ′ − τλ′n∥2

∥∥
Lq(I)

≤
√
d
∥∥s1([λ], [λn])∥∥Lq(I)

≤
√
d · d1,q

I ([λ], [λn]).

Thus, Theorem 1.2 implies that∥∥∥λ′∥2 − ∥λ′n∥2
∥∥
Lq(I)

→ 0 as n→ ∞.

Since ∣∣∥λ′∥Lq(I,Cd) − ∥λ′n∥Lq(I,Cd)

∣∣ = ∣∣∥∥∥λ′∥2∥∥Lq(I)
−
∥∥∥λ′n∥2∥∥Lq(I)

∣∣
≤

∥∥∥λ′∥2 − ∥λ′n∥2
∥∥
Lq(I)

,

we also have

∥λ′n∥Lq(I,Cd) → ∥λ′∥Lq(,Cd) as n→ ∞.

Corollary 1.4 is proved.

9. Proof of Theorem 1.6

Theorem 1.6 follows from an adaptation of the proof of Theorem 1.2; actually,
the proof simplifies.

Let d ≥ 2 be an integer. Let (α, β) ⊆ R be a bounded open interval. Let
an → a in Cd([α, β],Cd) as n→ ∞. Assume that λn : (α, β) → Cd is a continuous
parameterization of the roots of Pan and that λn converges in C0([α, β],Cd) to a
continuous parameterization λ of the roots of Pa.

Our goal is to show that

∥λ′ − λ′n∥Lq((α,β),Cd) → 0 as n→ ∞, (9.1)

for all 1 ≤ q < d/(d− 1).
Without loss of generality we may assume that all polynomials are in Tschirn-

hausen form.
Instead of Proposition 8.16 we use:

Proposition 9.1. In the setting of Proposition 8.16, let µn : I → Cdb be continuous
parameterizations of the roots of Pb̃n

that converge in C0(I,Cd) to a continuous
parameterization of the roots of Pb̃.

Then there exist a set E0 ⊆ I of measure zero and a countable cover E of I \E0

by measurable sets with the property that, for each E ∈ E,

∥µ′ − µ′
n∥Lq(E) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

9Note that on a finite measure space almost everywhere convergence implies convergence in
measure, by Egorov’s theorem.
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Proof. The proof is analogous to the one of Proposition 8.16 but simpler. We only
indicate the necessary modifications. The base case of the induction on d is trivial.
In the induction step, we may take E1 = acc(Zb̃), by Proposition 8.2. By the
proof of Proposition 8.16, there is n3 ≥ 1 such that the family {Pb̃} ∪ {Pb̃n

}n≥n3

has a simultaneous splitting on J and µ, µn satisfy (8.35). We observe that νn →
ν and ν∗n → ν∗ uniformly on J as n → ∞, by the uniform convergence of µn.
The induction hypothesis (after Tschirnhausen transformation) and the fact that

{x ∈ I : b̃(x) ̸= 0} can be covered by countably many intervals J easily imply the
assertion. □

We claim that there is a set F0 ⊆ (α, β) of measure zero and a countable cover
{F1, F2, . . .} of (α, β) \ F0 by measurable sets with the property that, for each Fi

with i ≥ 1,

∥λ′ − λ′n∥Lq(Fi) → 0 as n→ ∞,

for all 1 ≤ q < d/(d − 1). By Proposition 8.2, we may take F1 = acc(Zã). In the
complement of Zã, we use Proposition 9.1 to conclude the claim.

As in (8.40), we infer that we have pointwise almost everywhere convergence
λ′nk

→ λ′ in (α, β) of a subsequence (nk) and thus (9.1) is true on the subse-
quence (nk), by the dominated convergence theorem. Consequently, (9.1) holds (by
Lemma 4.6). The proof of Theorem 1.6 is complete.

10. Proofs of the multiparameter versions

Let ∆ : Ad(C) → RN be an Almgren embedding.

10.1. Proof of Theorem 1.8. Assume that an → a in Cd(U,Cd) as n → ∞,
where U = I1 × · · · × Im. Let Λ,Λn : U → Ad(C) be the maps of unordered roots
of Pa, Pan

, respectively.
First observe that d(Λ,Λn) → 0 uniformly on U , by Corollary 6.5. Consequently,

∆ ◦ Λn → ∆ ◦ Λ uniformly on U , by the fact that ∆ is Lipschitz.
For brevity, we write F := ∆ ◦ Λ and Fn := ∆ ◦ Λn. We know that F := {Fn :

n ≥ 1} ∪ {F} is a bounded set in W 1,q(U,RN ) for all 1 ≤ q < d/(d − 1) (see
Remark 7.3). Fix 1 ≤ q < d/(d− 1). Let x = (x1, x

′). For x′ ∈ U ′ = I2 × · · · × Im,
consider

An(x
′) =

∫
I1

∥∥∂1F (x1, x′)− ∂1Fn(x1, x
′)
∥∥q
2
dx1.

Then An(x
′) → 0 as n→ ∞, by Theorem 1.1. By Tonelli’s theorem,∫

U

∥∥∂1F (x)− ∂1Fn(x)
∥∥q
2
dx =

∫
U ′
An(x

′) dx′. (10.1)

Let us check that the family {An : n ≥ 1} is uniformly integrable. Set

r :=
1

2q

(
q +

d

d− 1

)
. (10.2)

By Jensen’s inequality,

sup
n≥1

∫
U ′
An(x

′)r dx′ = sup
n≥1

∫
U ′

(∫
I1

∥∥∂1F (x1, x′)− ∂1Fn(x1, x
′)
∥∥q
2
dx1

)r

dx′

≤ |I1|r−1 sup
n≥1

∫
U ′

∫
I1

∥∥∂1F (x1, x′)− ∂1Fn(x1, x
′)
∥∥qr
2
dx1 dx

′
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= |I1|r−1 sup
n≥1

∫
U

∥∥∂1F (x)− ∂1Fn(x)
∥∥qr
2
dx (10.3)

which is finite, by the boundedness of F , as qr < d/(d−1). Since r > 1, we conclude
that {An : n ≥ 1} is uniformly integrable, by de la Vallée Poussin’s criterion, i.e.,
Theorem A.1.

By Vitali’s convergence theorem, see Theorem A.2, and (10.1),∫
U

∥∥∂1F (x)− ∂1Fn(x)
∥∥q
2
dx→ 0 as n→ ∞.

The partial derivatives ∂j , for 2 ≤ j ≤ m, are handled in the same way. Thus
Theorem 1.8 is proved.

10.2. Independence from the Almgren embedding.

Lemma 10.1. Let U ⊆ Rm be open. The bornology of W 1,q(U,Ad(C)) (induced
by the metric (3.1)) is independent of the Almgren embedding ∆.

Proof. Let ∆i : Ad(C) → RNi , for i = 1, 2, be two Almgren embeddings. The map

∆2 ◦ (∆1)|−1
∆1(Ad(C)) : ∆

1(Ad(C)) → RN2

is Lipschitz and has a Lipschitz extension Γ to all of RN1 . It is well-known
that superposition with Γ maps bounded sets in W 1,q(U,RN1) to bounded sets
in W 1,q(U,RN2) (see e.g. [15]). The lemma follows. □

Theorem 10.2. Let ∆i : Ad(C) → RNi , for i = 1, 2, be two Almgren embeddings.
Let U ⊆ Rm be a bounded open box, U = I1 × · · · × Im. Let p > 1. Let f, fn ∈
W 1,p(U,Ad(C)), for n ≥ 1. Then, as n→ ∞,

∥∆1 ◦ f −∆1 ◦ fn∥W 1,p(U,RN1 ) → 0 =⇒ ∥∆2 ◦ f −∆2 ◦ fn∥W 1,q(U,RN2 ) → 0,

for each 1 ≤ q < p.

Proof. Set F i := ∆i ◦ f and F i
n := ∆i ◦ fn. For x′ ∈ U ′ = I2 × · · · × Im, consider

A1
n(x

′) =

∫
I1

∥∥∂1F 1(x1, x
′)− ∂1F

1
n(x1, x

′)
∥∥p
2
dx1,

B1
n(x

′) =

∫
I1

∥∥F 1(x1, x
′)− F 1

n(x1, x
′)
∥∥p
2
dx1.

Assume that

∥F 1 − F 1
n∥W 1,p(U,RN1 ) → 0 as n→ ∞.

Then {F 1
n : n ≥ 1} is a bounded subset of W 1,p(U,RN1) and thus {F 2

n : n ≥ 1} is
a bounded subset of W 1,p(U,RN2), by Lemma 10.1.

By assumption and Tonelli’s theorem,∫
U ′
A1

n(x
′) dx′ → 0 and

∫
U ′
B1

n(x
′) dx′ → 0 as n→ ∞.

Thus there is a subsequence (nk) such that A1
nk
(x′) → 0 and B1

nk
(x′) → 0 for

almost every x′ ∈ U ′ as k → ∞. For each such x′, Theorem 3.11 implies that
A2

nk
(x′) → 0 and B2

nk
(x′) → 0 as k → ∞, which are defined in analogy to A1

n(x
′)

and B1
n(x

′) with p replaced by q. Set r = q+p
2q . Then, as in (10.3), we see that

{A2
n : n ≥ 1} and {B2 : n ≥ 1} are uniformly integrable, because {F 2

n : n ≥ 1} is
bounded in W 1,p(U,RN2).
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Then Theorem A.2 and Tonelli’s theorem imply that

∥F 2 − F 2
nk
∥Lq(U,RN2 ) → 0 and ∥∂1F 2 − ∂1F

2
nk
∥Lq(U,RN2 ) → 0

as k → ∞. Since the partial derivatives ∂j , for 2 ≤ j ≤ m, can be treated in the
same way, we have showed that there is a subsequence (nk) such that

∥F 2 − F 2
nk
∥W 1,q(U,RN2 ) → 0 as k → ∞.

This implies the assertion, by Lemma 4.6. □

10.3. A multiparameter version of Theorem 1.2.

Definition 10.3. Let U = I1 × · · · × Im be a bounded open box in Rm. Let
f, g : U → Ad(C) be such that the restriction to each segment in U parallel to the
coordinate axes belongs to W 1,q: writing

x =

m∑
j=1

xjej = xiei +
∑
j ̸=i

xjej =: xiei + xi

and fxi
(xi) := f(xiei + xi), we have fxi

, gxi
∈ W 1,q(Ii,Ad(C)) for all 1 ≤ i ≤ m

and all xi ∈ Ui :=
∏

j ̸=i Ij . Define

s1(f, g)(x) := max
1≤i≤m

s1(fxi
, gxi

)(xi).

Theorem 10.4. Let d ≥ 2 be an integer. Let U ⊆ Rm be a bounded open box,
U = I1 × · · · × Im. Let an → a in Cd(U,Cd). Let Λ,Λn : U → Ad(C) be the maps
of unordered roots of Pa, Pan

, respectively. Then

∥s1(Λ,Λn)∥Lq(U) → 0 as n→ ∞,

for all 1 ≤ q < d/(d− 1).

Proof. Fix 1 ≤ q < d/(d− 1). Without loss of generality let i = 1 and set x1 = x′

and U1 = U ′. For x′ ∈ U ′, consider

An(x
′) =

∫
I1

(s1(Λx′ , (Λn)x′)(x1))
q dx1.

Then An(x
′) → 0 as n→ ∞, by Theorem 1.2. The family {An : n ≥ 1} is uniformly

integrable: with r as defined in (10.2) we have (see (10.3))

sup
n≥1

∫
U ′
An(x

′)r dx′ ≤ |I1|r−1 sup
n≥1

∫
U ′

∫
I1

(s1(Λx′ , (Λn)x′)(x1))
qr dx1 dx

′.

Let λx′ , (λn)x′ be a continuous parameterization of the roots of Pa(·,x′), Pan(·,x′),
respectively. Then

∥s1(Λx′ , (Λn)x′)∥Lqr(I1) ≤
1√
d

(
∥λ′x′∥Lqr(I1,Cd) + ∥(λn)′x′∥Lqr(I1,Cd)

)
≤ C(d, qr, |I1|)

(
max
1≤j≤d

∥aj(·, x′)∥1/jCd−1,1(I1)
+ max

1≤j≤d
∥an,j(·, x′)∥1/jCd−1,1(I1)

)
,

by Theorem 7.1, as qr < d/(d− 1). By assumption, the right-hand side is bounded
by a constant that is independent of x′ and n. Thus, uniform integrability follows
from Theorem A.1. So Tonelli’s theorem and Theorem A.2 imply the theorem. □
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11. Interpretation of the results in the Wasserstein space on C

In this section, we interpret our results in the space of probability measures on
C. This point of view allowed Antonini, Cavalletti, and Lerario to study optimal
transport between algebraic hypersurfaces in CPn in [4]. We will also finish the
proof of Theorem 1.3.

11.1. The roots as a probability measure. With a monic polynomial Pa(Z) =

Zd+
∑d

j=1 ajZ
d−j , where a = (a1, . . . , ad) ∈ Cd, we may associate in a natural way

a probability measure µ(a) on C defined by

µ(a) :=
1

d

∑
Pa(λ)=0

mλ(a) · JλK ,

where mλ(a) denotes the multiplicity of λ as a root of Pa and JλK is the Dirac mass
at λ.

Let us endow the set P(C) of probability measures on C (with its Euclidean
structure) with the q-Wasserstein distance Wq, for q ≥ 1, and denote the resulting
metric space by Pq(C).

Then we get a map

µ : Cd → Pq(C)

which, besides Λ : Cd → Ad(C) from Section 6.3, is another incarnation of the
solution map. The image of µ can be indentified with Ad(C) or with the quotient of
Cd by the symmetric group Sd. The restriction of theW2-metric to µ(Cd) ⊆ P2(C)
is given by

W2([z], [w])
2 = min

σ∈Sd

1

d

d∑
j=1

|zj − wσ(j)|2,

and thus coincides with the metric d on Ad(C) from Section 3.1. (For this reason

we chose the factor 1/
√
d in the definition of d.) We get a similar expression for

q ̸= 2, but all of them are equivalent.
It turns out that µ(Cd) is geodesically convex in Pq(C).

11.2. Some distances on ACq(I,X). Let (X, d) be a complete metric space and
ACq(I,X) the set introduced in Section 2.5. The set ACq(I,X) can be seen as
a subset of the metric space C0(I,X) with the uniform norm. Additionally, the
metric speed or the q-energy can be used in a natural way to measure “closeness”
in ACq(I,X). Thus, we define, for γ1, γ2 ∈ ACq(I,X),

distsq(γ1, γ2) := sup
x∈I

d(γ1(x), γ2(x)) +
∥∥|γ̇1| − |γ̇2|

∥∥
Lq(I)

and

disteq(γ1, γ2) := sup
x∈I

d(γ1(x), γ2(x)) +
∣∣Eq(γ1)− Eq(γ2)

∣∣.
Both distsq and disteq are metrics on ACq(I,X).

11.3. Boundedness and continuity of the map µ∗. In the following, we identify
µ(Cd) with Ad(C). Recall that the map [·] : Cd → Ad(C) which sends an ordered
d-tuple to the corresponding unordered one is Lipschitz.
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Lemma 11.1. Let λ : I → Cd be an absolutely continuous curve and let γ : I →
P2(C) be defined by γ(x) := [λ(x)], for x ∈ I. Then the metric speed of γ is given
by

|γ̇|(x) = 1√
d
∥λ′(x)∥2 for almost every x ∈ I.

Proof. For x ∈ I and |h| sufficiently small,

W2(γ(x), γ(x+ h)) = d([λ(x)], [λ(x+ h)]) ≤ 1√
d
∥λ(x)− λ(x+ h)∥2.

Let σh ∈ Sd be such that

d([λ(x)], [λ(x+ h)]) =
1√
d
∥λ(x)− σhλ(x+ h)∥2.

We claim that, for sufficiently small |h|, σh lies in the stabilizer group of λ(x), i.e.,
σhλ(x) = λ(x). Otherwise, there is a sequence hn → 0 such that σhnλ(x) ̸= λ(x).
Since Sd is finite, by passing to a subsequence, we may assume that σhn

=: σ is
independent of n. But continuity of λ implies

d([λ(x)], [λ(x+ hn)]) =
1√
d
∥λ(x)− σλ(x+ hn)∥2 → 0 as n→ ∞,

and hence σλ(x) = λ(x), a contradition.
By the claim, for small enough |h|,

d([λ(x)], [λ(x+ h)]) =
1√
d
∥λ(x)− λ(x+ h)∥2.

Now the assertion follows easily. □

Now Theorem 7.1 implies the following.

Theorem 11.2. Let I ⊆ R be a bounded open interval. The map

µ∗ : Cd−1,1(I,Cd) → ACq(I,P2(C)), a 7→ µ ◦ a,
is well-defined and bounded, for every 1 ≤ q < d/(d − 1), where ACq(I,P2(C))
carries the metric distsq or disteq from Section 11.2.

Proof. Let a ∈ Cd−1,1(I,Cd) and let λ : I → Cd be a continuous parameterization
of the roots of Pa. Fix 1 ≤ q < d/(d− 1). Then λ ∈ ACq(I,Cd), by Theorem 7.1.
Since µ(a(x)) = [λ(x)], for all x ∈ I, the statement is a consequence of (6.1), (7.1),
and Lemma 11.1. □

Theorem 1.2 and Corollary 1.4 lead to the following continuity result.

Theorem 11.3. Let I ⊆ R be a bounded open interval. The map

µ∗ : Cd(I,Cd) → ACq(I,P2(C)), a 7→ µ ◦ a,
is continuous, for every 1 ≤ q < d/(d−1), where ACq(I,P2(C)) carries the metric
distsq or disteq.

Proof. Let an → a in Cd(I,Cd) as n → ∞. We must show that µ∗(an) → µ∗(a)
with respect to distsq and disteq. There exist continuous parameterizations λ, λn :

I → Cd of the roots of Pa, Pan
, respectively. Then µ(a(x)) = [λ(x)] and µ(an(x)) =

[λn(x)], for all x ∈ I and n. So Theorem 1.2 (or Corollary 6.5) shows that

sup
x∈I

d(µ(a(x)), µ(an(x))) → 0 as n→ ∞.
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The rest follows from Corollary 1.4 and Lemma 11.1. □

Clearly, Theorem 11.3 implies Theorem 1.3.

Appendix A.

A.1. Vitali’s convergence theorem. Let (X,A, µ) be a measure space with non-
negative measure µ (finite or with values in [0,∞]). A set of functions F ⊆ L1(µ)
is called uniformly integrable if

lim
C→+∞

sup
f∈F

∫
|f |>C

|f | dµ = 0.

Theorem A.1 (De la Vallée Poussin’s criterion [6, Theorem 4.5.9]). Let µ be
a finite nonnegative measure. A family F of µ-integrable functions is uniformly
integrable if and only if there exists a nonnegative increasing function G on [0,∞)
such that

lim
t→+∞

G(t)

t
= ∞ and sup

f∈F

∫
G(|f(x)|)µ(dx) <∞.

In such a case, one can choose a convex increasing function G.

Recall that a sequence of complex valued measurable functions fn on X is said
to converge in measure to f if, for all ϵ > 0,

µ({x ∈ X : |f(x)− fn(x)| ≥ ϵ}) → 0 as n→ ∞.

Theorem A.2 (Vitali’s convergence theorem [6, Theorem 4.5.4]). Let µ be a finite
measure. Suppose that f is a µ-measurable function and {fn} is a sequence of
µ-integrable functions. Then the following assertions are equivalent:

(1) fn → f in measure and {fn} is uniformly integrable.
(2) f is integrable and fn → f in L1(µ).

A.2. Proof of Proposition 2.1. We follow [8] in which Hölder–Lipschitz spaces
are treated; the proofs simplify considerably.

Let U ⊆ Rm and V ⊆ Rℓ be open, bounded, and convex. For brevity, we will
simply write ∥ · ∥k for the Ck norm from (2.2).

Lemma A.3. Let ψ : Rℓ → Rp be a linear map. Then ψ∗ : Ck(U,Rℓ) → Ck(U,Rp)
is linear and continuous with operator norm ∥ψ∗∥ = ∥ψ∥.

Proof. For k = 0 and φ ∈ C0(U,Rℓ), ∥ψ ◦ φ∥0 ≤ ∥ψ∥∥φ∥0. Let k ≥ 1 and
φ ∈ Ck(U,Rℓ). Then d(ψ ◦φ) = ψ ◦dφ and the statement follows by induction. □

Lemma A.4. Let ψ : Rℓ1 × Rℓ2 → Rp be a bilinear map. Then ψ∗ : Ck(U,Rℓ1)×
Ck(U,Rℓ2) → Ck(U,Rp) is bilinear and continuous with ∥ψ∗∥ ≤ C(k)∥ψ∥.

Proof. For k = 0 and φi ∈ C0(U,Rℓi), i = 1, 2,

∥ψ∗(φ1, φ2)∥0 ≤ 2∥ψ∥∥φ1∥0∥φ2∥0.
For k ≥ 1 and φi ∈ C1(U,Rℓi), i = 1, 2,

d(ψ∗(φ1, φ2)) = (ψ1)∗(dφ1, φ2) + (ψ2)∗(φ1, dφ2),

where ψ1 and ψ2 are the bilinear maps

ψ1 : L(Rm,Rℓ1)× Rℓ2 → L(Rm,Rp), (h1, y2) 7→ (x 7→ ψ(h1(x), y2)),

ψ2 : Rℓ1 × L(Rm,Rℓ2) → L(Rm,Rp), (y1, h2) 7→ (x 7→ ψ(y1, h2(x))).
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Thus the statement follows by induction. □

Lemma A.5. Let φ ∈ Ck(U, V ). Then φ∗ : Ck(V ,Rp) → Ck(U,Rp), φ∗(ψ) :=
ψ ◦ φ, is well-defined, linear, and continuous. More precisely, for ψ ∈ Ck(V ,Rp),

∥φ∗(ψ)∥k ≤ C(k) ∥ψ∥k(1 + ∥φ∥k)k.

Proof. The statement for k = 0 is clear. Now let us proceed by induction on k
and assume that the statement holds for k − 1. By Lemma A.4 and the induction
hypothesis,

∥d(ψ ◦ φ)∥k−1 ≤ C ∥dψ ◦ φ∥k−1∥dφ∥k−1

≤ C1 ∥dψ∥k−1(1 + ∥φ∥k−1)
k−1∥dφ∥k−1

≤ C1 ∥ψ∥k(1 + ∥φ∥k)k

and the assertion for k follows easily. □

Now we are ready to prove Proposition 2.1 which is reformulated in the following
lemma.

Lemma A.6. Let ψ ∈ Ck+1(V ,Rp). Then ψ∗ : Ck(U, V ) → Ck(U,Rp), ψ∗(φ) :=
ψ◦φ, is well-defined and continuous. More precisely, for φ1, φ2 in a bounded subset
B of Ck(U, V ),

∥ψ∗(φ1)− ψ∗(φ2)∥k ≤ C ∥ψ∥k+1∥φ1 − φ2∥k,

where C = C(k,B).

Proof. For k = 0, we have

∥ψ ◦ φ1 − ψ ◦ φ2∥0 ≤ C ∥dψ∥0∥φ1 − φ2∥0 ≤ C ∥ψ∥1∥φ1 − φ2∥0.

Let us proceed by induction on k and assume that the statement holds for k − 1.
We have

∥d(ψ ◦ φ1)− d(ψ ◦ φ2)∥k−1

= ∥(dψ ◦ φ1).(dφ1 − dφ2)− (dψ ◦ φ2 − dψ ◦ φ1).dφ2∥k−1

≤ C ∥dψ ◦ φ1∥k−1∥dφ1 − dφ2∥k−1 + C ∥dψ ◦ φ2 − dψ ◦ φ1∥k−1∥dφ2∥k−1,

where we used Lemma A.4 in the last step. By Lemma A.5,

∥dψ ◦ φ1∥k−1∥dφ1 − dφ2∥k−1 ≤ C1 ∥dψ∥k−1(1 + ∥φ1∥k−1)
k−1∥φ1 − φ2∥k

≤ C1 ∥ψ∥k(1 + ∥φ1∥k−1)
k−1∥φ1 − φ2∥k.

By the induction hypothesis,

∥dψ ◦ φ2 − dψ ◦ φ1∥k−1∥dφ2∥k−1 ≤ C2 ∥dψ∥k∥φ1 − φ2∥k−1∥φ2∥k
≤ C2 ∥ψ∥k+1∥φ1 − φ2∥k∥φ2∥k.

Now the statement follows easily. □
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about the continuity of the solution map.
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