
ON SPACES OF ARC-SMOOTH MAPS

ARMIN RAINER

Abstract. It is well-known that a function on an open set in Rd is smooth

if and only if it is arc-smooth, i.e., its composites with all smooth curves are

smooth. In recent work, we extended this and related results (for instance a
real analytic version) to suitable closed sets, notably, sets with Hölder bound-

ary and fat subanalytic sets satisfying a necessary topological condition. In this

paper, we prove that the resulting set-theoretic identities of function spaces are
bornological isomorphisms with respect to their natural locally convex topolo-

gies. Extending the results to maps with values in convenient vector spaces,

we obtain corresponding exponential laws. Additionally, we show analogous
results for special ultradifferentiable Braun–Meise–Taylor classes.

1. Introduction

A result of Boman [9] states that a function f defined on an open subset U of
Rd is smooth (C∞) if and only if it is arc-smooth (AC∞), i.e., f ◦ c is C∞ for each
C∞ curve c in U . Arc-smooth functions are meaningful on arbitrary nonempty
subsets X of Rd but a few assumptions are necessary in order to expect a result
similar to Boman’s. Let us assume that X is closed and fat, i.e., X is contained
in the closure of its interior; thus X = X = X◦. This is a natural assumption
for our purpose: for example, on the algebraic set X = {(x, y) ∈ R2 : x3 = y2}
the function X ∋ (x, y) 7→ y1/3 is arc-smooth, by a theorem of Joris [18], but it
is not the restriction to X of a C∞ function on R2. Moreover, we assume that
X is simple, i.e., each x ∈ X has a basis of neighborhoods U such that X◦ ∩ U
is connected for all U ∈ U . This condition is needed to guarantee uniqueness of
potential candidates for derivatives at boundary points. The third assumption is a
certain tameness of X: we will suppose that X is subanalytic or a Hölder set (see
the definition in Section 2.3)

For simple closed fat subanalytic or Hölder sets X ⊆ Rd we proved in [33] (see
also [36]) that the arc-smooth functions on X are precisely the restrictions of C∞

functions on Rd:

AC∞(X) = C∞(X). (1.1)

(This can be extended to sets definable in a polynomially bounded o-minimal ex-
pansion of the real field that admit smooth rectilinearization, see [36].) It is false
on infinitely flat cusps, see [33, Example 10.4].
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The real analytic analog of Boman’s theorem is wrong, but the arc-smooth func-
tions on an open set U ⊆ Rd that additionally respect Cω curves are precisely the
real analytic functions on U , by a theorem of Bochnak and Siciak [41, 5].

We proved in [33] (see also [37]) that this is also true on simple closed fat sub-
analytic or Hölder sets X ⊆ Rd in the sense that the arc-smooth functions on
X that also respect Cω curves (ACω) have a real analytic extension to an open
neighborhood of X:

ACω(X) = Cω(X). (1.2)

In contrast to the case of open domains, for closed domains there is a loss of
regularity, namely, the discrepancy between m and n, where m is the number of
derivatives of f ◦ c necessary to determine the n first derivatives of f . This loss of
derivatives was linked in an exact way to the sharpness of the (outward pointing)
cusps in the boundary of X in [36]. Even at smooth parts of the boundary 2n
derivatives of f ◦ c are needed for the first n derivatives of f . See also [37] for the
real analytic case.

This loss of regularity manifests itself also in the ultradifferentiable framework
of Denjoy–Carleman classes (as explored in [33]) while on open sets we have an
ultradifferentiable version of Boman’s theorem, see [25].

In this paper, we work with special ultradifferentiable Braun–Meise–Taylor
classes whose defining weight functions ω have a property (see (5.1)) that allows
for absorption of the loss of derivatives. We show that, for all simple fat closed
subanalytic sets X ⊆ Rd, the functions on X that respect all curves of class E{ω}

in X (AE{ω}) are restrictions of C∞ functions on Rd that satisfy the defining E{ω}

bounds on compact subsets of X:

AE{ω}(X) = E{ω}(X). (1.3)

It should be mentioned that the class E{ω} is assumed to be non-quasianalytic and
stable under composition. In the quasianalytic case, there is no hope for a result
like this, see [17] and [34].

We will show that the set-theoretic identities (1.1), (1.2), and (1.3) are bornolog-
ical isomorphisms with respect to their natural locally convex topologies. Further-
more, we prove the bornological isomorphisms (exponential laws)

AC∞(X1,AC∞(X2, E)) ∼= AC∞(X1 ×X2, E),

ACω(X1,ACω(X2, E)) ∼= ACω(X1 ×X2, E),

AE{ω}(X1,AE{ω}(X2, E)) ∼= AE{ω}(X1 ×X2, E),

where Xi ⊆ Rdi , i = 1, 2, are arbitrary simple fat closed subanalytic sets and E
is any convenient vector space (see the definition in Section 2.1). To make sense
of the left-hand sides (even if E = R) we have to extend the definitions of AC∞,

ACω, and AE{ω} to maps with values in convenient vector spaces. It turns out that
the bornological isomorphisms (1.1), (1.2), and (1.3) lift to versions for such vector
valued maps. As a consequence we obtain the exponential laws

C∞(X1, C∞(X2, E)) ∼= C∞(X1 ×X2, E),

Cω(X1, Cω(X2, E)) ∼= Cω(X1 ×X2, E),

E{ω}(X1, E{ω}(X2, E)) ∼= E{ω}(X1 ×X2, E).
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Note that the product X1 ×X2 is a simple fat closed subanalytic set in Rd1 × Rd2

(see Lemma 3.9).
For open sets Xi, even c∞-open in convenient vector spaces (see Section 2.1),

the exponential laws are well known: for C∞ by [14, 15, 20, 21], for Cω by [23], and
in the ultradifferentiable case by [25, 26, 27, 40]. For convex sets Xi in convenient
vector spaces with nonempty c∞-interior, similar results in the C∞ and Cω case
were obtained by [22].

Let us briefly describe the structure of the paper. In Section 2, we recall facts
on convenient analysis needed later on, in particular, the uniform boundedness
principle which will be used frequently. Moreover, we define Hölder sets and list
their most important properties. Section 3 is devoted to the C∞ case. The real
analytic case is treated in Section 4. Here (in Section 4.6) we also investigate maps
that respect 2-dimensional real analytic plots (without presupposing smoothness)
and obtain a corresponding exponential law. In general, this class of maps strictly
contains all ACω maps, but on open sets and Lipschitz sets in Rd the two classes
coincide. In Section 4.7, we comment briefly on the holomorphic case. The ultra-
differentiable case E{ω} is studied in Section 5. We use a result which was proved
for Denjoy–Carleman classes by [1] (see also [11]). An adaptation of their result to
our setting is proved in the appendix, see Theorem A.1.

Notation. For a locally convex vector space E, we denote by E∗ (resp. E′) the
dual space consisting of all continuous (resp. bounded) linear functionals on E.

If S is a regularity class (e.g., C∞, Cω, E{ω}) and X is a nonempty subset of Rd,
then S(R, X) denotes the set of S curves c : R → Rd that lie in X, i.e., c(R) ⊆ X.

The euclidean open ball in Rd with radius r and center a is denoted by B(a, r)
and B(a, r) denotes its closure.

For a map f : X × Y → Z defined on a product, we denote by f∨ : X → ZY

the map defined by f∨(x)(y) := f(x, y). Conversely, given g : X 7→ ZY , the map
g∧ : X × Y → Z is defined by g∧(x, y) := g(x)(y).

For a map f : X → Y we have the push-forward f∗ : XZ → Y Z , f∗(g) = f ◦ g,
and the pull-back f∗ : ZY → ZX , f∗(g) = g ◦ f .

The evaluation map ev : Y X ×X → Y is defined by ev(f, x) = f(x). For x ∈ X,
evx : Y X → Y is given by evx(f) = f(x).

2. Preliminaries

2.1. Convenient vector spaces and c∞-topology. Let us recall some of the
fundamentals of convenient analysis. The main reference is the book [24], see also
the three appendices in [25] for a brief overview.

A locally convex vector space E is called a convenient vector space if it is c∞-
complete, i.e., a curve c in E is smooth if and only if ℓ◦c is smooth for all ℓ ∈ E∗ (or
equivalently ℓ ∈ E′). An equivalent condition is that each Mackey Cauchy sequence
(xn) (i.e., µmn(xm − xn) is bounded for some real sequence µmn → ∞) converges
in E.

Let E be a locally convex vector space. The final topology with respect to all
smooth curves in E is called c∞-topology. Equivalently, it is the final topology with
respect to all Mackey convergent sequences xn → x, i.e., there is a real positive
sequence µn → ∞ such that µn(xn − x) is bounded; in this case we say that xn is
µn-convergent to x.
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In general, the c∞-topology is finer that the given locally convex topology and
it is not a vector space topology. On Fréchet spaces the two topologies coincide.

For smooth, real analytic, and holomorphic convenient analysis in convenient vec-
tor spaces, see [24], and for ultradifferentiable convenient analysis, see [25, 26, 27]
and [40]. Let us point out (since this will be used several times) that (multi)linear
maps between convenient vector spaces are smooth, real analyic, and of ultradiffer-
entiable class E{ω} if and only if they are bounded (see [24, 5.5 and 11.13] and [27,
Proposition 8.3]).

2.2. Uniform boundedness principle. Let E be a locally convex space and
let S be a point separating set of bounded linear maps with common domain E.
Following [24, 5.22], we say that E satisfies the uniform S-boundedness principle
if any linear map T : F → E on a convenient vector space F is bounded provided
that ℓ ◦ T is bounded for all ℓ ∈ S.

By [24, 5.24], any locally convex space E that is webbed satisfies the uniform S
boundedness principle for any point separating family S ⊆ E′.

For later reference, we recall the following stability result.

Lemma 2.1 ([24, 5.25]). Let F be a set of bounded linear maps f : E → Ef

between locally convex spaces, let Sf be a point separating set of bounded linear
maps on Ef for every f ∈ F , and let S := {g ◦ f : f ∈ F , g ∈ Sf}. If F generates
the bornology and Ef satisfies the uniform Sf -boundedness principle for all f ∈ F ,
then E satisfies the uniform S-boundedness principle.

2.3. Hölder sets. A closed fat set X ⊆ Rd is a Hölder set (resp. a Lipschitz set)
if its interior X◦ has the uniform α-cusp property for some α ∈ (0, 1] (resp. for
α = 1), i.e., for each x ∈ ∂X there exist ϵ, h, r > 0 and A ∈ O(d) such that
y +AΓα

d (r, h) ⊆ X◦ for all y ∈ X ∩B(x, ϵ), where

Γα
d (r, h) := {(x′, xd) ∈ Rd−1 × R : |x′| < r, h · ( |x

′|
r )α < xd < h}

is a truncated open α-cusp of radius r and height h. If X◦ is bounded, then this is
equivalent to X◦ having α-Hölder boundary (i.e., in local orthogonal coordinates,
X◦ = {xd > a(x′)} and ∂X◦ = {xd = a(x′)}, where a is an α-Hölder function).

Hölder sets are simple, (1/α)-regular (if the α-cusp property holds), and their
c∞-topology coincides with the trace topology from Rd; see [33] and [36] for details
and examples.

2.4. Subanalytic sets. A subset X of a real analytic manifold M is called suban-
alytic if each point in M has a neighborhood U such that X ∩ U is a projection of
a relatively compact semianalytic (i.e., locally described by finitely many analytic
equations and inequalities) set. See e.g. [3] which serves as a reference for the main
properties of subanalytic sets.

3. Smooth maps

3.1. Arc-smooth functions. Let X ⊆ Rd be nonempty. We equip the vector
space

AC∞(X) = {f : X → R : f∗C∞(R, X) ⊆ C∞(R,R)}
with the initial locally convex structure with respect to the family of maps

AC∞(X)
c∗−→ C∞(R,R), c ∈ C∞(R, X), (3.1)
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where C∞(R,R) carries the topology of compact convergence in each derivative sep-
arately. Then the space AC∞(X) is c∞-closed in the product

∏
c∈C∞(R,X) C∞(R,R)

and thus a convenient vector space.

Lemma 3.1. AC∞(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.
Proof. The assertion follows from Lemma 2.1 and the fact that C∞(R,R) is a
Fréchet space, and hence webbed; note that {evt ◦c∗ : c ∈ C∞(R, X), t ∈ R} =
{evx : x ∈ X}. □

Remark 3.2. Note that (X, C∞(R, X),AC∞(X)) is the unique Frölicher space
generated by the inclusion X → Rd; see [24, 23.1].

If Rd carries its natural diffeology, then AC∞(X) is the space of smooth maps
X → R in the category of diffeological spaces, where X ⊆ Rd is endowed with the
subspace diffeology; see [16]. Indeed, a map f : X → R is smooth if and only if
f ◦ p is C∞ for all C∞ maps p : U → Rd with p(U) ⊆ X, where U is an open subset
of some Rn. By Boman’s theorem, these are precisely the functions f ∈ AC∞(X).

3.2. The space C∞(X). Let X ⊆ Rd be closed and nonempty. Let

C∞(X) := {f : X → R : f = F |X for some C∞(Rd)}
be endowed with the quotient topology; then C∞(X) is a Fréchet space.

Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic set. Then X is
C∞ determining (see [32]) in the sense that, for each f ∈ C∞(Rd), f |X = 0 implies
∂αf |X = 0 for all α ∈ Nd. Moreover, every g ∈ C∞(X◦) such that all ∂αg, α ∈ Nd,
extend continuously to X is the restriction of a C∞ function on Rd, see [33, Lemma
1.10]. It follows that C∞(X) is isomorphic to the space of Whitney jets of class C∞

and, moreover, the topology is determined by the seminorms

∥f∥K,ℓ := sup
x∈K∩X◦

sup
|α|≤ℓ

|∂αf(x)|, ℓ ∈ N, K ⊆ X compact.

Furthermore, there is a continuous linear extension operator E : C∞(X) → C∞(Rd),
so that E(f)|X = f ; see [2] and also [13].

Lemma 3.3. C∞(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.
Proof. C∞(X) is a Fréchet space and thus webbed. Clearly, the point evaluations
are bounded and point separating on C∞(X). □

3.3. Arc-smooth functions have smooth extensions.

Theorem 3.4. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic set.
Then

AC∞(X) = C∞(X) (3.2)

and the identity is a bornological isomorphism.

Proof. The set-theoretic identity (3.2) was established in [33], see also [36].
Boundedness of the inclusion C∞(X) ⊆ AC∞(X) follows from Lemma 3.1. We

give an alternative argument that shows that the inclusion is even continuous. For
any fixed c ∈ C∞(R, X) we have to show that the linear map c∗ : C∞(X) →
C∞(R,R) is continuous. Let I = [−r, r] and R > 0 such that c(I) ⊆ B(0, R).
Let f ∈ C∞(X) and let F := E(f) ∈ C∞(Rd), where E : C∞(X) → C∞(Rd) is a
continuous linear extension operator. Then (see e.g. [31, Lemma A.5]), for all k,

∥c∗(F )∥Ck(I,Rd) ≤ C(k) ∥F∥Ck(B(0,R))(1 + ∥c∥Ck(I,Rd))
k
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where ∥g∥Ck(U,Rd) := max0≤j≤k supx∈U ∥djg(x)∥Lj(Rn,Rd) and U ⊆ Rn is either

(−r, r) ⊆ R or B(0, R) ⊆ Rd. Now c∗(F ) = c∗(f) and there exist C > 0, ℓ ∈ N,
and a compact subset K ⊆ X such that

∥F∥Ck(B(0,R)) ≤ C ∥f∥K,ℓ.

This implies the assertion.
To see that the inclusion AC∞(X) ⊆ C∞(X) is bounded, we have to check, by

Lemma 3.3, that AC∞(X) ∋ f 7→ f(x) ∈ R is bounded for each x ∈ X. This
follows from (3.1), using the constant curves cx : t 7→ x. □

3.4. The vector valued case. Let X ⊆ Rd be nonempty and E a convenient
vector space. Consider

AC∞(X,E) := {f : X → E : f∗C∞(R, X) ⊆ C∞(R, E)},
and equip AC∞(X,E) with the initial locally convex structure with respect to the
family of maps

AC∞(X,E)
ℓ∗◦c∗−→ C∞(R,R), c ∈ C∞(R, X), ℓ ∈ E∗.

Then the space AC∞(X,E) is c∞-closed in the product
∏

c∈C∞(R,X),ℓ∈E∗ C∞(R,R)
and thus a convenient vector space.

Lemma 3.5. AC∞(X,E) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 3.1 and Lemma 2.1. □

Let X ⊆ Rd be closed and nonempty. We define

C∞(X,E) := {f : X → E : ℓ ◦ f ∈ C∞(X) for all ℓ ∈ E∗}
and endow C∞(X,E) with the initial locally convex structure with respect to the
family of maps

C∞(X,E)
ℓ∗−→ C∞(X), ℓ ∈ E∗.

Then C∞(X,E) is a convenient vector spaces since it is c∞-closed in the product∏
ℓ∈E∗ C∞(X).

Lemma 3.6. C∞(X,E) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 3.3 and Lemma 2.1. □

We are ready to deduce a vector valued version of Theorem 3.4.

Theorem 3.7. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic set
and E a convenient vector space. Then

AC∞(X,E) = C∞(X,E) (3.3)

and the identity is a bornological isomorphism.

Proof. The set-theoretic identity (3.3) follows from Theorem 3.4:

f ∈ AC∞(X,E) ⇔ ∀ℓ ∈ E∗ ∀c ∈ C∞(R, X) : ℓ ◦ f ◦ c ∈ C∞(R,R)
⇔ ∀ℓ ∈ E∗ : ℓ ◦ f ∈ AC∞(X)

⇔ ∀ℓ ∈ E∗ : ℓ ◦ f ∈ C∞(X)

⇔ f ∈ C∞(X,E).
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That the identity (3.3) is a bornological isomorphism is a consequence of the fact
thatAC∞(X,E) and C∞(X,E) both satisfy the uniform boundedness principle with
respect to point evaluations, see Lemma 3.5 and Lemma 3.6. □

Remark 3.8. In the setting of Theorem 3.7, each f ∈ AC∞(X,E) is of class C∞ in
the interior X◦ and all derivatives (f |X◦)(n) : X◦ → Ln(Rd, E) extend continuously
to X. This can be seen by repeating the proof in [33] for the vector valued case
(see also [22]).

3.5. Exponential laws.

Lemma 3.9. Let Xi ⊆ Rdi , i = 1, 2, be simple closed fat subanalytic sets. Then
also X1 ×X2 is simple closed fat subanalytic.

Proof. Clearly, the product X1 ×X2 is closed and subanalytic. It is fat because

(X1 ×X2)◦ = X◦
1 ×X◦

2 = X◦
1 ×X◦

2 = X1 ×X2.

Let us check that X1 × X2 is simple. Fix (x1, x2) ∈ X1 × X2. Since X1 and X2

are simple, for i = 1, 2, there exist basis of neighborhoods Ui of xi in Xi such that
Ui ∩X◦

i is connected for all Ui ∈ Ui. Then {U1 ×U2 : U1 ∈ U1, U2 ∈ U2} is a basis
of neighborhoods of (x1, x2) in X1 ×X2 and for all U1 ∈ U1, U2 ∈ U2,

(U1 × U2) ∩ (X1 ×X2)
◦ = (U1 ∩X◦

1 )× (U2 ∩X◦
2 )

is connected. □

Theorem 3.10. Let Xi ⊆ Rdi , i = 1, 2, be simple closed fat subanalytic sets.
Let E be a convenient vector space. Then the following exponential laws hold as
bornological isomorphisms:

(1) AC∞(X1,AC∞(X2, E)) ∼= AC∞(X1 ×X2, E);
(2) C∞(X1, C∞(X2, E)) ∼= C∞(X1 ×X2, E).

Proof. (1) This is precisely the exponential law in the category of Frölicher spaces
(see [24, 23.2 and 23.4]), where X is the Frölicher space described in Remark 3.2
and E is the Frölicher space generated by the bounded linear functionals (see [24,
23.3]).

(2) By Theorem 3.7 we have a bornological isomorphism AC∞(X2, E) =
C∞(X2, E) and thus a diffeomorphism in the category of Frölicher spaces. Thus,
again by Theorem 3.7, we have bornological isomorphisms

AC∞(X1,AC∞(X2, E)) = AC∞(X1, C∞(X2, E)) = C∞(X1, C∞(X2, E)),

and, using Lemma 3.9,

AC∞(X1 ×X2, E) = C∞(X1 ×X2, E).

Then (2) follows from (1). □

Remark 3.11. In Theorem 3.10(1), the sets Xi can actually be arbitrary. Theo-
rem 3.10(2) remains valid (with the same proof) if X1, X2, and also X1 ×X2 are
Hölder sets, for instance, if X1 = Rn.

Corollary 3.12. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic
set. Then we have a bornological isomorphism

C∞(Rn, C∞(X)) ∼= C∞(Rn ×X).
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4. Real analytic maps

4.1. The space ACω(X). Let X ⊆ Rd be nonempty. We consider the vector space

ACω(X) := {f ∈ AC∞(X) : f∗Cω(R, X) ⊆ Cω(R,R)}
and endow it with the locally convex structure with respect to the family of maps

ACω(X)
c∗−→ C∞(R,R), c ∈ C∞(R, X),

ACω(X)
c∗−→ Cω(R,R), c ∈ Cω(R, X),

where Cω(R,R) carries the final locally convex topology with respect to the embed-
dings (restrictions) of all spaces of holomorphic maps φ : U → C with φ|R : R → R,
where U is a neighborhood of R in C, with their topology of compact convergence.
Then ACω(X) is a convenient vector space.

Lemma 4.1. ACω(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 2.1 since C∞(R,R) and Cω(R,R) satisfy the uni-
form boundedness principle with respect to point evaluations; see [24, Theorem
11.12]. □

4.2. The space Cω(X). LetX ⊆ Rd be closed and nonempty. Let Cω(X) be the set
of all functions f : X → R such that there exists an open neighborhood U ofX in Cd

and a holomorphic function F : U → C such that f = F |X . We topologize Cω(X)
as the inductive limit of the Fréchet spaces of holomorphic functions F ∈ H(U)
such that F (U ∩ Rd) ⊆ R, where U ranges over the directed set (with respect to
inclusion) of open neighborhoods of X in Cd.

Lemma 4.2. Cω(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. Cω(X) is webbed since it is an inductive limit of webbed spaces, see [24,
52.13], and S is point separating. □

4.3. The spaces ACω(X) and Cω(X) coincide.

Theorem 4.3. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic set.
Then

ACω(X) = Cω(X) (4.1)

and the identity is a bornological isomorphism.

Proof. The set-theoretic identity (4.1) was proved in [33, Corollary 1.17], see also
[37, Corollary 1.2]. Then Lemma 4.1 and Lemma 4.2 imply that it is a bornological
isomorphism. □

4.4. The vector valued case. Let X ⊆ Rd be nonempty and E a convenient
vector space. We consider the space

ACω(X,E) := {f : X → E : ℓ ◦ f ∈ ACω(X) for all ℓ ∈ E∗}
with the initial locally convex structure with respect to the family of maps

ACω(X,E)
ℓ∗−→ ACω(X), ℓ ∈ E∗.

Then ACω(X,E) is a convenient vector space.

Lemma 4.4. ACω(X,E) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 2.1 and Lemma 4.1. □
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For X ⊆ Rd closed and nonempty, we consider the space

Cω(X,E) := {f : X → E : ℓ ◦ f ∈ Cω(X) for all ℓ ∈ E∗}
with the initial locally convex structure with respect to the family of maps

Cω(X,E)
ℓ∗−→ Cω(X), ℓ ∈ E∗.

Then Cω(X,E) is a convenient vector space.

Lemma 4.5. Cω(X,E) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 2.1 and Lemma 4.2. □

We easily obtain a vector valued version of Theorem 4.3.

Theorem 4.6. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic set
and E a convenient vector space. Then

ACω(X,E) = Cω(X,E) (4.2)

and the identity is a bornological isomorphism.

Proof. This is an easy consequence of Theorem 4.3, Lemma 4.4, and Lemma 4.5. □

In the case that on the dual E∗ there exists a Baire topology for which the point
evaluations are continuous (for instance, if E is a Banach space), the elements of
(4.2) have holomorphic extensions.

Theorem 4.7. Let X ⊆ Rd be a Hölder set or a simple closed fat subanalytic
set and E a convenient vector space. Assume that on E∗ exists a Baire topol-
ogy for which the point evaluations evx, x ∈ E, are continuous. Then for each
f ∈ ACω(X,E) = Cω(X,E) there is an open neighborhood U of X in Cd and a
holomorphic map F : U → EC such that F |X = f , where EC is the complexification
of E.

Proof. Let f ∈ ACω(X,E). Then f ∈ AC∞(X,E) and hence the derivatives
f (n) : X → Ln(Rd, E) exist; see Remark 3.8. Fix x ∈ ∂X and consider the sequence
( 1
n!f

(n)(x))n≥0. For each ℓ ∈ E∗, the composite ℓ◦f extends to a holomorphic func-
tion Fℓ defined on an open neighborhood of X, since ACω(X,E) = Cω(X,E), by

Theorem 4.6. For each v ∈ Rd and y ∈ X◦ close enough to x, we have F
(n)
ℓ (y)(vn) =

ℓ(f (n)(y)(vn)) and letting y → x we find F
(n)
ℓ (x)(vn) = ℓ(f (n)(x)(vn)), by continu-

ity. We conclude that the power series∑
n≥0

ℓ
(

1
n!f

(n)(x)(vn)
)
tn =

∑
n≥0

1
n!F

(n)
ℓ (x)(vn)tn

has positive radius of convergence. It follows from [24, Theorem 25.1] that the
power series

∑
n≥0

1
n!f

(n)(x)(vn) converges for v in some neighborhood of 0 ∈ Cd

and hence represents a holomorphic map Fx in a neighborhood Ux of x. For each
ℓ ∈ E∗ and each n,

(ℓ ◦ Fx)
(n)(x) = ℓ(f (n)(x)) = F

(n)
ℓ (x)

so that the holomorphic functions ℓ ◦ Fx and Fℓ coincide on a neighborhood Ux

of x. Thus if y ∈ X◦ ∩ Ux then ℓ(Fx(y)) = Fℓ(y) = ℓ(f(y)). Since this holds for
all ℓ ∈ E∗, we conclude that the holomorphic extension Fx : Ux → EC satisfies
Fx|X◦∩Ux

= f |X◦∩Ux
.
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Now it remains to check that f and the Fx glue coherently to a holomorphic
extension of f which follows from the arguments in the proof of [37, Proposition
2.2]. □

4.5. Exponential laws. The following lemma is a special case of [24, 25.11].

Lemma 4.8. Let X ⊆ Rd be nonempty. If f : R×X → R is locally the restriction
of a holomorphic map and c ∈ C∞(R, X), then c∗ ◦ f∨ : R → C∞(R,R) is real
analytic.

Theorem 4.9. Let Xi ⊆ Rdi , i = 1, 2, be simple closed fat subanalytic sets. Let E
be a convenient vector space. Then the following exponential laws hold as bornolog-
ical isomorphisms:

(1) ACω(X1,ACω(X2, E)) ∼= ACω(X1 ×X2, E);
(2) Cω(X1, Cω(X2, E)) ∼= Cω(X1 ×X2, E).

Proof. (1) Let f ∈ ACω(X1,ACω(X2, E)) and consider the associated map f∧ :
X1 × X2 → E. Let c = (c1, c2) : R → X1 × X2 be Ca, for a = ∞ or a = ω,
and ℓ ∈ E∗. It suffices to show that ℓ ◦ f∧ ◦ (c1 × c2) : R × R → R is Ca. Now
(ℓ ◦ f∧ ◦ (c1 × c2))

∨ = ℓ∗ ◦ c∗2 ◦ f ◦ c1 : R → Ca(R,R) is of class Ca by assumption.
By the Ca exponential law (on open domains), see [24, 3.12 and 11.18], we may
conclude that f∧ ∈ ACω(X1 ×X2, E).

Conversely, let f ∈ ACω(X1 × X2, E). Then f∨ : X1 → ACω(X2, E) is well-
defined; we want to show that this map is of class ACω. Let c1 ∈ Ca(R, X1), for
a = ∞ or a = ω, c2 ∈ Cb(R, X2), for b = ∞ or b = ω, and ℓ ∈ E∗. We have to
prove that ℓ∗ ◦ c∗2 ◦ f∨ ◦ c1 : R → Cb(R,R) is Ca. We distinguish three cases:

(i) If a = b, the desired property follows from the Ca exponential law (on open
domains).

(ii) Now assume that c1 ∈ Cω and c2 ∈ C∞. Then ℓ ◦ f ◦ (c1 × id) : R×X2 → R
is of class Cω. By Theorem 4.3, ℓ ◦ f ◦ (c1 × id) has a holomorphic extension. By
Lemma 4.8, c∗2 ◦ (ℓ ◦ f ◦ (c1 × id))∨ = ℓ ◦ c∗2 ◦ f∨ ◦ c1 : R → C∞(R,R) is of class Cω.

(iii) Finally, let c1 ∈ C∞ and c2 ∈ Cω. We may apply case (ii) to the map

f̃(x, y) := f(y, x) to conclude that ℓ ◦ c∗1 ◦ (f̃)∨ ◦ c2 : R → C∞(R,R) is of class Cω.
By [24, 11.16], this means that ℓ ◦ c∗2 ◦ f∨ ◦ c1 : R → Cω(R,R) is of class C∞.

Thus we have proved that f ∈ ACω(X1,AE{ω}(X2, E)) if and only if
f∧ ∈ ACω(X1 × X2, E). That it is a bornological isomorphism is seen as
follows. By Lemma 4.4 applied to ACω(X1 × X2, E), the linear map (·)∧ :
ACω(X1,ACω(X2, E)) → ACω(X1 ×X2, E) is bounded provided that

f 7→ ℓ∗ ◦ ev(x1,x2) ◦(·)
∧(f) = ℓ(f∧(x1, x2))

is bounded for all (x1, x2) ∈ X1 ×X2 and ℓ ∈ E∗. This follows from the definition
of the structure on ACω(X1,ACω(X2, E)), viewing x1 and x2 as constant (C∞ or
Cω) curves and noting that ℓ∗ ◦x∗

2 is a continuous linear functional on ACω(X2, E).
To see that the linear map (·)∨ : ACω(X1 ×X2, E) → ACω(X1,ACω(X2, E)) is

bounded we have to check, by Lemma 4.4, that

g 7→ evx1
◦(·)∨(g) = g∨(x1) ∈ ACω(X2, E)

is bounded for all x1 ∈ X1, or equivalently, again by Lemma 4.4, that

g 7→ ℓ∗ ◦ evx2
(g∨(x1)) = ℓ(g∨(x1)(x2)) = ℓ(g(x1, x2))
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is bounded for all x1 ∈ X1, x2 ∈ X2, and ℓ ∈ E∗. As before, it follows from the
structure on ACω(X1×X2, E) and viewing x1×x2 as a constant (C∞ or Cω) curve
in X1 ×X2.

(2) This follows from (1), Lemma 3.9, and Theorem 4.6, by arguments similar
to those in the proof of Theorem 3.10(2). □

Remark 4.10. Note that in (1) we could replace one of the Xi with any convenient
vector space; the proof of the fact that f 7→ f∧ is a bijection remains the same (using
[24, 11.17 or 25.11] instead of Lemma 4.8). Then the boundedness (even if both Xi

are subanalytic) can be deduced as in [24, Corollary 3.13].

Remark 4.11. Theorem 4.9 remains valid (with the same proof) if X1, X2, and
also X1 ×X2 are Hölder sets, for instance, if X1 = Rn. Notice that Theorem 4.3
was used in the proof of (1) (and of (2)). Indeed, (1) is not always true as seen in
the following example.

Example 4.12 ([24, 25.12]). Let X ⊆ R2 be the graph of h : R → R, h(t) :=
exp(−t−2) if t ̸= 0 and h(0) := 0 and f : R × X → R be defined by f(x, y, z) :=

z
x2+y2 for x2 + y2 ̸= 0 and f(0, 0, z) := 0. Then f ∈ ACω(R × X) but f∨ : R →
ACω(X,R) is not Cω. Indeed, for c(t) := (t, h(t)) the map c∗ ◦ f∨ : R → C∞(R,R),
x 7→ (y 7→ f(x, c(y)) = h(y)

x2+y2 ) is not Cω. For details see [24, 25.12].

4.6. Real analyticity on 2-dimensional plots. Instead of asking that a map
respects C∞ and Cω curves we will now assume that it respects 2-dimensional Cω

plots.
It is known that a function f on an open nonempty set U ⊆ Rd is real analytic if

and only if the restriction of f to each affine 2-plane that meets U is real analytic,
by [6, 8]. See also [4] for a global version this result.

For any nonempty subset X ⊆ Rd and any convenient vector space E let us
consider

PCω(X,E) := {f : X → E : ℓ ◦ f ◦ p ∈ Cω(R2,R) for all p ∈ Cω(R2, X), ℓ ∈ E∗}
endowed with the initial locally convex structure with respect to the family

PCω(X,E)
ℓ∗◦p∗

−→ Cω(R2,R), p ∈ Cω(R2, X), ℓ ∈ E∗,

where Cω(R2,R) carries the usual structure defined in analogy to the structure on
Cω(R,R). Then PCω(X,E) is a convenient vector space.

Lemma 4.13. PCω(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.
Proof. This follows from Lemma 2.1 since Cω(R2,R) satisfies the uniform S-
boundedness principle; see [24, Theorem 11.12]. □

Theorem 4.14. Let Xi ⊆ Rdi , i = 1, 2, arbitrary nonempty sets and E a conve-
nient vector space. Then the exponential law holds as bornological isomorphism:

PCω(X1,PCω(X2, E)) ∼= PCω(X1 ×X2, E).

Proof. The proof of the fact that f ∈ PCω(X1,PCω(X2, E)) if and only if f∧ ∈
PCω(X1 ×X2, E) can be reduced, by the definition of the convenient structure, to
the case X1 = X2 = R2 and E = R, which then is a simple instance of the real
analytic exponential law on open domains (see [24, 11.18]).

That this gives a bornological isomorphism can be seen using the uniform bound-
edness principle, Lemma 4.13, similarly as in the proof of Theorem 4.9(1). □
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Let us now compare the spaces ACω(X,E) and PCω(X,E).

Lemma 4.15. Let X ⊆ Rd be nonempty and E a convenient vector space. We
always have the bounded inclusion

ACω(X,E) ⊆ PCω(X,E). (4.3)

There exist X and E such that this inclusion is strict.

Proof. Let f ∈ ACω(X,E), p ∈ Cω(R2, X), and ℓ ∈ E∗. We have to show that
g := ℓ ◦ f ◦ p ∈ Cω(R2,R) which holds since g respects C∞ and Cω curves in R2.

Boundedness of the inclusion follows from Lemma 4.13.
Let X := {(x, y) ∈ R2 : x ≥ 0, x

√
2 ≤ y ≤ x

√
2 + x2}. Then f |X\{(0,0)} := 0 and

f(0, 0) := 1 belongs to PCω(X) but not to ACω(X). Indeed, any p ∈ Cω(R2, X)
such that (0, 0) ∈ p(R2) must be constant, which follows from [36, Example 6.7].
On the other hand, for the C∞ curve c : R → X,

c(t) :=
(
e−1/t2 , e−

√
2/t2 + 1

2e
−2/t2

)
, if t ̸= 0, c(0) := (0, 0),

the composite f ◦ c is discontinuous. (One can argue similarly for the set defined
in Example 4.12.) □

We will see that (4.3) is an equality for open sets and Lipschitz sets X ⊆ Rd. To
this end we recall a result of Bochnak and Siciak.

Theorem 4.16 ([8]). Let U ⊆ Rd be an open set, where d ≥ 2. Let f : U → R be
a function. If the restriction f |U∩P is real analytic for each affine 2-plane P in E,
then f is real analytic.

Remark 4.17. The result is true for open subsets U of infinite dimensional Banach
spaces E and continuous functions f : U → R. By [5, Theorem 7.5], it is enough
to check that f is infinitely Gateaux differentiable and f |U∩L is real analytic for
each affine line L in E. That f is infinitely Gateaux differentiable follows from [7,
Theorem 4]: by the finite dimensional case Theorem 4.16, f |U∩V is real analytic
for each finite-dimensional subspace V of E.

Theorem 4.18. Let X ⊆ Rd be open or a Lipschitz set and E a convenient vector
space. Then

ACω(X,E) = PCω(X,E) (4.4)

and the identity is a bornological isomorphism.

Proof. The set-theoretic identity (4.4) follows, after composing with ℓ ∈ E∗, from
Lemma 4.15 and Theorem 4.16 for open X and [37, Theorem 1.3] for Lipschitz sets.

That the identity is a bornological isomorphism is a consequence of the fact
that both sides satisfy the uniform boundedness principle with respect to point
evaluations; see Lemma 4.4 and Lemma 4.13. □

Remark 4.19. The theorem remains true if X ⊆ Rd is any simple closed set such
that for each z ∈ ∂X there is a nondegenerate simplex Xz with z ∈ Xz ⊆ X. In
dimension 2, it holds if this condition is fulfilled with compact fat subanalytic Xz,
in particular, it is true for all Hölder sets and all simple closed fat subanalytic sets
in R2. See [37].

Remark 4.20. Theorem 4.14 and Theorem 4.18 together yield a shorter proof
of the ACω exponential law, see Theorem 4.9(1), in the cases where X1, X2, and
X1 ×X2 satisfy the assumptions of Theorem 4.18 or Remark 4.19.
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4.7. Remarks on holomorphic maps. One cannot expect that holomorphic
curves can detect holomorphy even on nice closed sets in Cd (by the open mapping
theorem for holomorphic maps).

Theorem 4.21. Let X ⊆ Cd ∼= R2d be a Hölder set or a simple closed fat subana-
lytic set and E a complex convenient vector space. If f ∈ ACω(X,E) is such that
its derivative f ′(x) is C-linear for all x ∈ Xo, then f has a holomorphic extension
to some open neighborhood of X in Cd.

Proof. By Theorem 4.6, f has a real analytic extension F to some open connected
neighborhood U of X. For fixed v ∈ Cd, the real analytic map g(x) := iF ′(x)(v)−
F ′(x)(iv) on U vanishes on X◦, thus on U . Hence F is holomorphic. □

In this spirit we define

AH(X,E) := {f ∈ ACω(X,E) : f ′(x) is C-linear for all x ∈ X◦}.
Then AH(X,E) is a closed linear subspace of ACω(X,E) and thus a convenient
vector space.

Theorem 4.22. Let Xi ⊆ Rdi , i = 1, 2, be simple closed fat subanalytic sets. Then
the following exponential law holds as bornological isomorphism:

AH(X1,AH(X2, E)) ∼= AH(X1 ×X2, E).

Proof. By Theorem 4.9, if suffices to check that C-linearity of the respective deriva-
tives is transferred which follows from

f ′(x1, x2)(v1, v2) = evx2

(
(f∨)′(x1)(v1)

)
+
(
(f∨)(x1)

)′
(x2)(v2).

□

5. Ultradifferentiable maps

Ultradifferentiable functions form classes of C∞ functions defined by restrictions
on the growth of the iterated derivatives. They include the real analytic class,
Gevrey classes, Denjoy–Carleman classes, and Braun–Meise–Taylor classes. We
will focus on the latter since, under certain circumstances, they admit analogues
of the smooth and real analytic results of Sections 3 and 4. For background on
ultradifferentiable classes, see the survey article [35].

5.1. Weight functions. A weight function is a continuous increasing function
ω : [0,∞) → [0,∞) with ω(0) = 0 and satisfying:

(1) ω(2t) = O(ω(t)) as t → ∞;
(2) log t = o(ω(t)) as t → ∞;
(3) φ := ω ◦ exp is convex on [0,∞).

Two weight functions ω and σ are called equivalent if ω(t) = O(σ(t)) and σ(t) =
O(ω(t)) as t → ∞. Up to equivalence, we may always assume that ω|[0,1] = 0. Let
φ∗ be the Young conjugate of φ,

φ∗(t) = sup
s≥0

(st− φ(s)), t ≥ 0.

We associate with ω a family {W [ξ]}ξ>0 of positive sequences:

W
[ξ]
k := exp( 1ξφ

∗(ξk)), k ∈ N.

We will also use w
[ξ]
k := W

[ξ]
k /k!.
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Lemma 5.1 ([35, Lemma 11.3] or [38]). Let ω be a weight function with associated
family {W [ξ]}ξ>0. Then:

(1) Each W [ξ] is a weight sequence, i.e., W [ξ] is log-convex and satisfies W
[ξ]
0 =

1 ≤ W
[ξ]
1 and (W

[ξ]
k )1/k → ∞ as k → ∞. In particular, W [ξ] is increasing.

(2) W
[ξ]
k ≤ W

[ζ]
k for all k if ξ ≤ ζ.

(3) For all ξ > 0 and all j, k ∈ N, W [ξ]
j+k ≤ W

[2ξ]
j W

[2ξ]
k .

(4) ∀ρ > 0 ∃H ≥ 1 ∀ξ > 0 ∃C ≥ 1 ∀k ∈ N : ρkW
[ξ]
k ≤ CW

[Hξ]
k .

It is evident, that (2), (3), and (4) also hold for the sequences w[ξ] instead of W [ξ].

Let ω be a weight function. A crucial property for this paper is the following:

∃B > 1 ∀t ≥ 0 : ω(t2) ≤ Bω(t) +B. (5.1)

Lemma 5.2. Let ω be a weight function with associated family {W [ξ]}ξ>0. If ω
satisfies (5.1), then

W
[ξ]
2k ≤ e1/ξW

[Bξ]
k , k ∈ N, ξ > 0. (5.2)

Moreover, for every integer a ≥ 2 there are constants C,H > 1 such

W
[ξ]
ak ≤ eG/ξW

[Hξ]
k , k ∈ N, ξ > 0. (5.3)

We may take G := B
B−1 and H := Bp, if p is an integer with a ≤ 2p.

Proof. By (5.1), for all t ≥ 0,

Bφ∗( 2tB ) = sup
s≥0

(2st−Bφ(s)) = sup
u≥0

(2t log u−Bω(u))

≤ sup
u≥0

(t log u2 − ω(u2)) +B = sup
v≥0

(t log v − ω(v)) +B = φ∗(t) +B.

Consequently,

W
[ξ]
2k = exp( 1ξφ

∗(2ξk)) = exp( B
Bξφ

∗( 2Bξk
B ))

≤ exp( 1
Bξ (φ

∗(Bξk) +B)) = e1/ξW
[Bξ]
k .

Let p ≥ 1 be an integer such that a ≤ 2p. Then (5.3) follows by iterating (5.2):

W
[ξ]
ak ≤ W

[ξ]
2pk ≤ e

1
ξW

[Bξ]
2p−1k ≤ e

1
ξ

(
1+

1
B

)
W

[B2ξ]
2p−2k ≤ · · · ≤ e

1
ξ
∑p−1

i=0
1
Bi W

[Bpξ]
k .

□

We recall that a weight function ω is called

• non-quasianalytic if
∫∞
1

ω(t)
t2 dt < ∞, and

• strong if there is C > 0 such that
∫∞
1

ω(tu)
u2 du ≤ Cω(t) + C for all t > 0.

Note that a strong weight function is always equivalent to a concave weight function,
see [28, Propositions 1.3 and 1.7].

We remark that if ω is non-quasianalytic then each associated weight sequence

W [ξ] is non-quasianalytic, i.e.,
∑

k(W
[ξ]
k )−1/k < ∞; see e.g. [35, Theorem 11.17]

and Section 5.3.

Definition 5.3. A weight function ω is said to be robust if it is non-quasianalytic,
concave up to equivalence, and it satisfies (5.1).
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Example 5.4. For each s > 1, ωs(t) := ((log t)+)
s is a strong robust weight

function. On the other hand, γs(t) := t1/s for s > 1 are strong weight functions
that are not robust; they give rise to the Gevrey classes Gs = E{γs}.

5.2. The ultradifferentiable classes E{ω}(X). Let ω be a weight function. Let
X ⊆ Rd be nonempty and either open or closed. Let E{ω}(X) be the set of all
functions f ∈ C∞(X) such that for all compact K ⊆ X there exists ρ > 0 such that

∥f∥ωK,ρ := sup
x∈K

sup
α∈Nd

|∂αf(x)| exp(− 1
ρφ

∗(ρ|α|)) < ∞. (5.4)

Equivalently, f ∈ E{ω}(X) if and only if f ∈ C∞(X) and for all compact K ⊆ X
there exist ξ, ρ > 0 such that

sup
x∈K

sup
α∈Nd

|∂αf(x)|
ρ|α|W

[ξ]
|α|

< ∞. (5.5)

This follows from Lemma 5.1(4); see [35, Theorem 11.4] and [38, Theorem 5.14].
We will be interested in the case that X ⊆ Rd is a simple fat closed subanalytic

set. We topologize E{ω}(X) by

E{ω}(X) = projn∈N indm∈N Eω
m(X ∩B(0, n)),

where

Eω
m(X ∩B(0, n)) := {f ∈ C∞(X ∩B(0, n)) : ∥f∥ω

X∩B(0,n),m
< ∞}

is a Banach space, by Whitney’s extension theorem. The inductive limit can be
equivalently written as an inductive limit with compact connecting mappings; see
Lemma A.2. It follows that E{ω}(X) is complete and webbed and hence satisfies
the uniform boundedness principle with respect to point evaluations.

Lemma 5.5. Let X ⊆ Rd be a simple fat closed subanalytic set. Then E{ω}(X)
satisfies the uniform S-boundedness principle for S = {evx : x ∈ X}.

The topology on E{ω}(X) is defined analogously if X ⊆ Rd is an open set (see
e.g. [10]). In particular, this gives the topology on E{ω}(R) that will be used below.

Let us recall some facts; details can be found in [35]. The class E{ω} is non-
quasianalytic and hence admits nontrivial functions with compact support if and
only if ω is non-quasianalytic. It is stable under composition if and only if ω is
equivalent to a concave weight function (see [12] and [38]).

If ω is strong and satisfies (5.1) and X ⊆ Rd is a simple fat closed subanalytic
set, then each function in E{ω}(X) extends to a function in E{ω}(Rd). Indeed,
the strong weight functions are precisely those among the non-quasianalytic ones
that admit a E{ω} version of the Whitney extension theorem. That a function
in E{ω}(X) defines a Whitney jet of class E{ω} on X follows from (5.3) and [33,
Lemma 10.1].

5.3. Weight sequences. By definition, a weight sequence is a positive log-
convex sequence M = (Mk) satisfying M0 = 1 ≤ M1 and (Mk)

1/k → ∞ (see
Lemma 5.1(1)). Log-convexity means that the sequence µk = Mk/Mk−1 is increas-
ing. For a weight sequence is increasing and also (Mk)

1/k is increasing. Note that
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(Mk)
1/k ≤ µk and (Mk)

1/k → ∞ if and only if µk → ∞; see [35, Lemma 2.3]. A
weight sequence M = (Mk) is non-quasianalytic if∑

k

1

(Mk)1/k
< ∞ or equivalently

∑
k

1

µk
< ∞.

For later reference, we recall the definition of curves of class E{M} in a Banach
space E:

E{M}(R, E) :=
{
f ∈ C∞(R, E) : ∀r > 0 ∃ρ > 0 : sup

|t|≤r

sup
k∈N

∥f (k)(t)∥
ρkMk

< ∞
}
.

5.4. The space AE{ω}(X). Let X ⊆ Rd be nonempty. We consider the vector
space of arc-E{ω} functions,

AE{ω}(X) := {f : X → R : f∗E{ω}(R, X) ⊆ E{ω}(R,R)}
and equip it with the initial locally convex structure with respect to the family of
maps

AE{ω}(X)
c∗−→ E{ω}(R,R), c ∈ E{ω}(R, X),

where E{ω}(R,R) carries the topology described in Section 5.2. Then the space

AE{ω}(X) is c∞-closed in the product
∏

c∈E{ω}(R,X) E{ω}(R,R) and thus a conve-
nient vector space.

Lemma 5.6. AE{ω}(X) satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 2.1 and the fact that E{ω}(R,R) is webbed. □

Remark 5.7. (1) Let ω be a quasianalytic concave weight function satisfying
ω(t) = o(t) as t → ∞ (i.e., the quasianalytic class E{ω} strictly contains the real
analytic class). Then, by [34, Theorem 3], for each integer d ≥ 2 and each positive

sequence N = (Nk) there exists f ∈ AE{ω}(Rd) ∩ C∞(Rd) such that f |Rd\{0} ∈
E{ω}(Rd \ {0}) but, for all r, ρ > 0,

sup
x∈[−r,r]d

sup
α∈Nd

|∂αf(x)|
ρ|α|N|α|

= ∞.

Thus we will only consider non-quasianalytic weight functions ω.
(2) The function f : X := {(x, y) ∈ R2 : x3 = y2} ∋ (x, y) 7→ y1/3 ∈ R belongs to

AE{ω}(X) for any concave weight function ω (quasianalytic or non-quasianalytic),
which follows from [30, Corollary 1.2] (see also [29] and [42]), but clearly f ̸∈ C∞(X).

5.5. AE{ω}(X) and E{ω}(X) coincide for robust ω and suitable X. The fol-
lowing lemma goes back to [9]; we recall a version that appeared in [33, Lemma
2.4] and repeat the proof for later reference.

We start with the setup for the next lemma. Choose a sequence

Tj ∈ (0, 1] with
∑
j

Tj < ∞ and let tk := 2
∑
j<k

Tj + Tk. (5.6)

Then tk → t∞ ∈ R.
Let M = (Mk) be any non-quasianalytic weight sequence. There exists a non-

quasianalytic weight sequence L = (Lk) such that (Mk/Lk)
1/k → ∞ (use e.g. [35,

Corollary 3.5] with αk = 1/µk).
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Choose a deceasing sequence λj > 0 such that the following conditions are ful-
filled:

0 <
λj

T k
j

≤ Mk

Lk
for all j, k, (5.7)

λj

T k
j

→ 0 as j → ∞ for all k. (5.8)

It suffices to take λj ≤ infk T
k+1
j Mk/Lk.

Lemma 5.8 ([33, Lemma 2.4]). Let (Tk) and (tk) be the sequences defined in
(5.6). Let M = (Mk) and L = (Lk) be non-quasianalytic weight sequences such
that (Mk/Lk)

1/k → ∞. Let (λk) be a positive sequence satisfying (5.7) and (5.8).
If (ck) is a sequence in C∞(R, E), where E is a Banach space, such that the set{c

(ℓ)
k (t)

λk
: t ∈ I, k, ℓ ∈ N

}
(5.9)

is bounded in E for each bounded interval I ⊆ R, then there exists c ∈ E{M}(R, E)
with compact support such that c(tk + t) = ck(t) for |t| ≤ Tk/3.

Proof. Choose a E{L}-function φ : R → [0, 1] which is 0 on {t : |t| ≥ 1/2} and 1 on
{t : |t| ≤ 1/3}. Define

c(t) :=
∑
j

φ
( t− tj

Tj

)
cj(t− tj).

The summands have disjoint supports. Thus c is C∞ on R \ {t∞}. By assumption
(5.9), there is R > 0 such that

∥c(ℓ)k (t)∥ ≤ Rλk for all |t| ≤ 1/2, ℓ, k ∈ N.
So there exist C, ρ ≥ 1 such that, for |t− tj | ≤ Tj/2,

∥c(ℓ)(t)∥ =
∥∥∥ ℓ∑

i=0

(
ℓ

i

)
T−i
j φ(i)

( t− tj
Tj

)
c
(ℓ−i)
j (t− tj)

∥∥∥
≤ Rλj

ℓ∑
i=0

(
ℓ

i

)
T−i
j CρiLi ≤ CRλj

(
1 +

ρ

Tj

)ℓ

Lℓ ≤ CRλj

(2ρ
Tj

)ℓ

Lℓ.

Consequently, by (5.7),

∥c(ℓ)(t)∥ ≤ CR(2ρ)ℓMℓ for t ̸= t∞.

It follows that c : R → E has compact support and is of class E{M} (cf. [24, Lemma
2.9] and [25, Lemma 3.7]). □

Lemma 5.9. Let ω be a non-quasianalytic weight function. Let X ⊆ Rd be a Hölder
set or a simple fat closed subanalytic set. Then we have the bounded inclusion

AE{ω}(X) ⊆ AC∞(X) = C∞(X).

Proof. We show the bounded inclusion AE{ω}(X) ⊆ C∞(X); the rest was seen in
Theorem 3.4.

Let {W [ξ]}ξ>0 be the family of weight sequences associated with ω and fix ξ0 >

0. Let f ∈ AE{ω}(X) and c ∈ E{W [ξ0]}(R, X). Then f ◦ c ∈ C∞(R,R) since

E{W [ξ0]}(R, X) ⊆ E{ω}(R, X). This implies that f ∈ C∞(X) by [33, Theorem 1.13]
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if X is a Hölder set. (In [33] it was assumed that the sequence (Mk/k!) is log-convex
but this assumption is not needed in the proof; cf. Lemma 5.8.) Similarly, we get
that f ∈ C∞(X) if X is a simple closed fat subanalytic set: repeat the proof of [33,

Theorem 1.14], notice that the composites of E{W [ξ0]} curves with the polynomial

maps Ψx,v are still E{W [ξ0]} curves (because W [ξ0] being log-convex implies the ring
property), and use [33, Lemma 2.6] in the argument for Claim 1.

That the inclusion is bounded follows from Lemma 3.1 or Lemma 3.3. □

Theorem 5.10. Let ω be a robust weight function. For each Lipschitz set X ⊆ Rd,

AE{ω}(X) = E{ω}(X). (5.10)

Proof. The inclusion E{ω}(X) ⊆ AE{ω}(X) is an easy consequence of Faà di Bruno’s
formula; the assumption that ω is (up to equivalence) concave entails that the class
E{ω} is stable under composition, see [35] or [38].

To prove the inclusion AE{ω}(X) ⊆ E{ω}(X), let f ∈ AE{ω}(X). Then f ∈
C∞(X), by Lemma 5.9. Suppose for contradiction that f ̸∈ E{ω}(X). Then, in
view of [33, Proposition 7.2], there exists a ∈ X such that for all δ, C, ξ, ρ > 0 and
all nonempty open subsets V of Sd−1 there exist x ∈ X ∩B(a, δ), v ∈ V , and k ∈ N
such that

|dkvf(x)| > CρkW
[ξ]
k . (5.11)

We may assume that a ∈ ∂X because AE{ω}(X◦) = E{ω}(X◦) (see [25, Theorem
3.9] the proof of which can be adapted easily to the case E{ω}). Then, X being a
Lipschitz set, there is ϵ > 0 and a truncated open cone Γ such that y+Γ ⊆ X◦ for
all y ∈ X ∩ B(a, ϵ) (in suitable coordinates). Set C(y, r) := y + rΓ, for 0 < r ≤ 1.
There is a universal constant c > 0 such that C(y1, r1)∩C(y2, r2) ̸= ∅ if |y1− y2| <
cmin{r1, r2}.

Fix ξ0 > 0 and a non-quasianalytic weight sequence L satisfying (W
[ξ0]
k /Lk)

1/k →
∞. Let (Tn) and (tn) be the sequences defined in (5.6) and (λk) a sequence satisfying
(5.7) and (5.8) for M = W [ξ0].

Let B ≥ 1 be the constant from (5.1). Taking δ := cλn+1/3, C := e1/n, ξ := Bn,
ρ := λ−3

n , and V := Sd−1 ∩ R+Γ, we find sequences xn ∈ X ∩ B(a, cλn+1/3),
vn ∈ Sd−1 ∩ R+Γ, and kn ∈ N such that

|dkn
vnf(xn)| ≥ e1/nλ−3kn

n W
[Bn]
kn

for all n. (5.12)

Consider Cn := C(xn, λn) which lies in X◦ for sufficiently large n. Since |xn −
xn+1| < cλn+1 there is a sequence (un) of points in X satisfying un+1 ∈ Cn ∩Cn+1

for all n. Note that xn and un are λ−1
n -convergent to a.

After a translation, we may assume that a = 0. Consider the curves cn(t) =
xn + t2λnvn. Choose a E{L}-function φ : R → [0, 1] which is 0 on {t : |t| ≥ 1/2}
and 1 on {t : |t| ≤ 1/3}.

For t ∈ [tn − Tn, tn + Tn], we set

c(t) := φ( t−tn
Tn

)cn(t− tn) + (1− φ( t−tn
Tn

))(un1(−∞,tn](t) + un+11[tn,+∞)(t))

and c(t) := 0 for t ∈ [t∞,∞). By the proof of Lemma 5.8, c is a curve of class

E{W [ξ0]}, in particular, of class E{ω}, which lies in X, by construction.
Now, for all k,

(f ◦ c)(2k)(tn) =
(2k)!

k!
λk
nd

k
vnf(xn);
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here we use that f ∈ C∞(X) so that the use of the chain rule is justified. By (5.2)
and (5.12), we conclude( |(f ◦ c)(2kn)(tn)|

W
[n]
2kn

) 1
2kn

=
( (2kn)!λkn

n |dkn
vnf(xn)|

kn!W
[n]
2kn

) 1
2kn

≥
( (2kn)!

kn!

λkn
n |dkn

vnf(xn)|
e1/nW

[Bn]
kn

) 1
2kn ≥ 1

λn
→ ∞.

This contradicts the assumption f ∈ AE{ω}(X). □

Lemma 5.11. Let ω be a robust weight function. Let Xi ⊆ Rdi , i = 1, 2, and
φ ∈ E{ω}(X1, X2), i.e., all components prj ◦φ of the map φ : X1 → X2 belong to

E{ω}(X1). If AE{ω}(X1) = E{ω}(X1), then φ∗AE{ω}(X2) ⊆ E{ω}(X1).

Proof. Let f ∈ AE{ω}(X2). Assume for contradiction that f ◦ φ ̸∈ E{ω}(X1) =

AE{ω}(X1). Thus there exists a E{ω} curve c in X1 such that f ◦φ◦c ̸∈ E{ω}(R,R).
Since φ ◦ c is a E{ω} curve in X2 (because E{ω} is stable under composition) this

contradicts f ∈ AE{ω}(X2). □

Proposition 5.12. Let ω be a robust weight function. Let X ⊆ Rd be a fat closed
subanalytic set. There is a locally finite collection of real analytic maps φα : Uα →
Rd, where the Uα are open sets in Rd, such that

φ∗
αAE{ω}(X) ⊆ E{ω}(φ−1

α (X)) for all α.

Proof. We use the rectilinearization theorem for subanalytic sets (see [3]). There
exists a locally finite collection of real analytic maps φα : Uα → Rd such that each
φα is the composite of a finite sequence of local blowings-up with smooth centers
and

• each Uα is diffeomorphic to Rd and there are compact subsets Kα ⊆ Uα

such that
⋃

α φα(Kα) is a neighborhood of X in Rd,
• φ−1

α (X) is a union of quadrants in Rd, for each α.

A quadrant is a set

Q(I0, I−, I+) = {x ∈ Rd : xi = 0 if i ∈ I0, xi ≤ 0 if i ∈ I−, xi ≥ 0 if i ∈ I+},

where I0, I−, I+ is any partition of {1, 2, . . . , d}. In our case, I0 = ∅ since X is fat.

We claim that for any union Y of quadrants Q(∅, I−, I+) we have AE{ω}(Y ) =
E{ω}(Y ). Then Lemma 5.11 implies the assertion of the proposition.

To see the claim, let f ∈ AE{ω}(Y ). Then f ∈ C∞(Y ), by (the proof of) [33,
Theorem 8.2]. Hence it suffices to check that f satisfies the defining estimates on
each compact subset of Y (see Section 5.2). This follows from the fact that, by
Theorem 5.10, the estimates hold on all compact subsets of each of the finitely

many quadrants that make up Y . The inclusion E{ω}(Y ) ⊆ AE{ω}(Y ) is a simple
consequence of the fact that E{ω} is stable under composition. □

Theorem 5.13. Let ω be a robust weight function. Let X ⊆ Rd be a simple fat
closed subanalytic set. Then

AE{ω}(X) = E{ω}(X) (5.13)

and the identity is a bornological isomorphism.
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Proof. Let us show the inclusion AE{ω}(X) ⊆ E{ω}(X); the opposite inclusion
follows easily by Faà di Bruno’s formula. To this end we work with the maps φα

from the proof of Proposition 5.12. We may assume that the Jacobian determinant

of each φα is a monomial times a nowhere vanishing factor. Let f ∈ AE{ω}(X). By
Lemma 5.9, we have f ∈ C∞(X). By Proposition 5.12, f ◦ φα ∈ E{ω}(Yα), where
Yα is a union of quadrants Q(∅, I−, I+) in Rd. By Theorem A.1, f is of class E{ω}

on φα(Yα) for all α. We conclude that f ∈ E{ω}(X).
The identity (5.13) is a bornological isomorphism, by Lemma 5.5 and Lemma 5.6.

□

5.6. The vector valued case. Let X ⊆ Rd be nonempty and E a convenient

vector space. We consider the set AE{ω}(X,E) of all maps f : X → E such that

ℓ ◦ f ◦ c ∈ E{ω}(R,R) for all c ∈ E{ω}(R, X) and ℓ ∈ E∗. We equip AE{ω}(X,E)
with the initial locally convex structure with respect to the family of maps

AE{ω}(X,E)
ℓ∗◦c∗−→ E{ω}(R,R), c ∈ E{ω}(R, X), ℓ ∈ E∗,

which makes AE{ω}(X,E) a convenient vector space.

Lemma 5.14. AE{ω}(X,E) satisfies the uniform S-principle for S = {evx : x ∈
X}.

Proof. This follows from Lemma 5.5 (or Lemma 5.6) and Lemma 2.1. □

Let X ⊆ Rd be a simple fat closed subanalytic set. We define the set

E{ω}(X,E) := {f : X → E : ℓ ◦ f ∈ E{ω}(X) for all ℓ ∈ E∗}
and endow it with the initial locally convex structure with respect to the family of
maps

E{ω}(X,E)
ℓ∗−→ E{ω}(X), ℓ ∈ E∗.

Then E{ω}(X,E) is a convenient vector space.

Lemma 5.15. Let X ⊆ Rd be a simple fat closed subanalytic set. Then E{ω}(X,E)
satisfies the uniform S-principle for S = {evx : x ∈ X}.

Proof. This follows from Lemma 5.5 and Lemma 2.1. □

Theorem 5.16. Let ω be a robust weight function. Let X ⊆ Rd be a simple closed
fat subanalytic set and E a convenient vector space. Then

AE{ω}(X,E) = E{ω}(X,E)

and the identity is a bornological isomorphism.

Proof. The set-theoretic identity follows from Theorem 5.13, by composing with
ℓ ∈ E∗. It is a bornological isomorphism, by Lemma 5.14 and Lemma 5.15. □

5.7. Exponential laws.

Theorem 5.17. Let ω be a robust weight function. Let Xi ⊆ Rdi , i = 1, 2, be
simple closed fat subanalytic sets. Let E be a convenient vector space. Then the
following exponential laws hold as bornological isomorphisms:

(1) AE{ω}(X1,AE{ω}(X2, E)) ∼= AE{ω}(X1 ×X2, E);
(2) E{ω}(X1, E{ω}(X2, E)) ∼= E{ω}(X1 ×X2, E).
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Proof. (1) It is well-known that (1) holds for the special case X1 = X2 = E = R;
see [40]. Let f ∈ AE{ω}(X1,AE{ω}(X2, E)). Let ci ∈ E{ω}(R, Xi), i = 1, 2, and
ℓ ∈ E∗. Then

(ℓ ◦ f∧ ◦ (c1 × c2))
∨ = (ℓ∗ ◦ c∗2) ◦ f ◦ c1 : R → E{ω}(R,R) (5.14)

is of class E{ω}. By the special case, ℓ ◦ f∧ ◦ (c1 × c2) ∈ E{ω}(R2) and thus

f∧ ∈ AE{ω}(X1 ×X2, E).

Conversely, let g ∈ AE{ω}(X1 ×X2, E). Then g∨ takes values in AE{ω}(X2, E).

Each continuous linear functional on AE{ω}(X2, E) factors over some map ℓ∗ ◦ c∗2 :

AE{ω}(X2, E) → E{ω}(R,R) for some c2 ∈ E{ω}(R, X2) and ℓ ∈ E∗. So it suffices
to show that, for each c1 ∈ E{ω}(R, X1), the map (5.14) with f = g∨ is of class
E{ω}. This follows from the special case.

Thus we have proved that f ∈ AE{ω}(X1,AE{ω}(X2, E)) if and only if f∧ ∈
AE{ω}(X1 ×X2, E). To see that it is a bornological isomorphism we may proceed
precisely as in the proof of Theorem 4.9(1), using the uniform boundedness principle
Lemma 5.14. Alternatively, it follows from the fact that Remark 4.10 applies to
the present situation.

(2) This follows from (1), Lemma 3.9, and Theorem 5.16, by arguments similar
to those in the proof of Theorem 3.10(2). □

Appendix A.

Let ω be a weight function and U ⊆ Rd an open set. Then E{ω}(U) is a dif-
ferential ring with respect to multiplication of functions and the partial derivatives
∂i, i = 1, . . . , d; see e.g. [35]. Consequently, E{ω}(U) is stable by division of coordi-
nates: if f ∈ E{ω}(U) and f |{xi=ai} = 0, then f(x) = (xi−ai)g(x) for g ∈ E{ω}(U).
Indeed,

f(x1, . . . , xi, . . . , xd) = (xi − ai)

∫ 1

0

∂if(x1, . . . , ai + t(xi − ai), . . . , xd) dt.

It is not hard to see that multiplication m : E{ω}(U) × E{ω}(U) → E{ω}(U) and
differentiation ∂i : E{ω}(U) → E{ω}(U) are continuous.

If ω is a concave (up to equivalence) weight function, then E{ω} has strong
stability properties. In particular, E{ω} is stable under composition and taking
reciprocals: if f ∈ E{ω}(U) does nowhere vanish, then 1/f ∈ E{ω}(U); see [39].

Let {W [ξ]}ξ>0 be the family of weight sequences associated with ω and write

w
[ξ]
k := W

[ξ]
k /k! (see Section 5.1). If ω is concave, hence subadditive, then it follows

easily from the definition (e.g. [38, Lemma 6.1]) that, for each ξ > 0,

w
[ξ]
j w

[ξ]
k ≤ w

[ξ]
j+k for all j, k. (A.1)

We present a version of [1, Theorem 1.4] adapted to the class E{ω} for robust
weight functions ω.

Theorem A.1. Let ω be a robust weight function. Let φ : U → V be a E{ω}

map between open subsets of Rd. Assume that the Jacobian determinant of φ is
a monomial times a nowhere vanishing factor. Let f ∈ C∞(V ) and assume that
f ◦ φ ∈ E{ω}(U). Then, for each compact K ⊆ U , f |φ(K) ∈ E{ω}(φ(K)).
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This holds in a bounded way: If B is a subset of C∞(V ) and there exist ξ > 0
and C, ρ ≥ 1 such that

sup
f∈B

sup
x∈K

sup
α∈Nd

|∂α(f ◦ φ)(x)|
ρ|α|W

[ξ]
|α|

≤ C,

then there exist A > 0 and σ ≥ 1 such that

sup
f∈B

sup
y∈φ(K)

sup
α∈Nd

|∂αf)(y)|
σ|α|W

[Hξ]
|α|

≤ A,

and where H ≥ 1 is a constant depending only on ω and φ.

Proof. We may assume that K = [−r, r]d, for some r > 0. Let J(x) denote the
Jacobian matrix of φ(x). By assumption, det J(x) = xγu(x), where γ ∈ Nd and
u is nowhere vanishing. Consider T (x) := u(x)−1 adj J(x), where adj J(x) is the
adjugate matrix of J(x). Note that

(∂xi) = J(x) · (∂yj ) and (∂yj ) =
T (x)

xγ
· (∂xi), (A.2)

where (∂xi
) and (∂yj

) are the column vectors of partial derivative operators. By

the assumption φ ∈ E{ω}(U, V ) and the remarks before the theorem, there exist
ξ0 > 0 and C0, ρ0 ≥ 1 such that, for all i, j ∈ {1, . . . , d}, x ∈ K, and α ∈ Nd,

|∂αTji(x)| ≤ C0ρ
|α|
0 W

[ξ0]
|α| , (A.3)

where the Tji denote the components of the matrix T . Since g := f ◦φ ∈ E{ω}(U),
there exist ξ > 0 and C, ρ ≥ 1 such that, for all x ∈ K and α ∈ Nd,

|∂αg(x)| ≤ Cρ|α|W
[ξ]
|α|. (A.4)

It is no restriction to assume that ξ ≥ ξ0, C ≥ C0, and ρ ≥ ρ0.
Since ω is robust, we may assume that ω is subadditive and consequently (A.1)

holds.
Let D > dρ be such that

∑
α∈Nd(

dρ
D )|α| =: B < ∞. We claim that, for all x ∈ K

and α, β ∈ Nd,

|∂α((∂βf) ◦ φ)(x)| ≤ (BCd)|β|+1D(|γ|+1)|β|+|α| w
[ξ]
(|γ|+1)|β|+|α| Γ(α, β), (A.5)

where

Γ(α, β) := α!

|β|∏
j=1

max
1≤i≤d

(αi + j(γi + 1)).

Let us proceed by induction on |β|. The case β = 0 follows from (A.4). Fix β̃ ∈ Nd

with |β̃| > 0. Then β̃ = β + ej for some β ∈ Nd and some j ∈ {1, . . . , d}. Then, by
(A.2),

((∂ej∂βf) ◦ φ)(x) =
d∑

i=1

Tji(x)

xγ
∂ei(∂βf ◦ φ)(x)

=

∫
[0,1]|γ|

d∑
i=1

∂γ
(
Tji · ∂ei(∂βf ◦ φ)

)
(x̃)Q0(t) dt,

by the fundamental theorem of calculus (applied |γ| times), where

t = (t11, . . . , t1γ1
, t21, . . . , t2γ2

, . . . , td1, . . . , tdγd
),
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x̃ = (
∏γk

ℓ=1 tkℓxk)
d
k=1, and Q0(t) =

∏d
k=1

∏γk

ℓ=1 t
γk−ℓ
kℓ . Consequently,

|∂α((∂β̃f) ◦ φ)(x)| ≤
∫
[0,1]|γ|

d∑
i=1

∣∣∣∂γ+α
(
Tji · ∂ei(∂βf ◦ φ)

)
(x̃)

∣∣∣Qα(t) dt,

where Qα(t) =
∏d

k=1

∏γk

ℓ=1 t
γk+αk−ℓ
kℓ . Now∣∣∣∂γ+α

(
Tji · ∂ei((∂βf) ◦ φ)

)
(x̃)

∣∣∣
≤

∑
κ+λ=α+γ

(α+ γ)!

κ!λ!
|∂κTji(x̃)||∂λ+ei((∂βf) ◦ φ)(x̃)|

and, by (A.3) and the induction hypothesis,

|∂κTji(x̃)||∂λ+ei((∂βf) ◦ φ)(x̃)|

≤ C(dρ)|κ|κ!w
[ξ]
|κ|(BCd)|β|+1D(|γ|+1)|β|+|λ|+1w

[ξ]
(|γ|+1)|β|+|λ|+1Γ(λ+ ei, β)

≤ C(BCd)|β|+1D(|γ|+1)|β̃|+|α|κ!w
[ξ]

(|γ|+1)|β̃|+|α|

(dρ
D

)|κ|
max
1≤i≤d

Γ(λ+ ei, β),

using (A.1) in the last step. Since
∫
[0,1]|γ| Qα(t) dt =

α!
(α+γ)! , we conclude

|∂α((∂β̃f) ◦ φ)(x)| ≤ B|β̃|C |β̃|+1d|β̃|+1D(|γ|+1)|β̃|+|α|w
[ξ]

(|γ|+1)|β̃|+|α|

·
∑

κ+λ=α+γ

α!

λ!

(dρ
D

)|κ|
max
1≤i≤d

Γ(λ+ ei, β).

We have (see [1, pp. 1970–1971])

α!

λ!
max
1≤i≤d

Γ(λ+ ei, β) ≤ Γ(α, β̃).

So, by the choice of D,

|∂α((∂β̃f) ◦ φ)(x)| ≤ (BCd)|β̃|+1D(|γ|+1)|β̃|+|α|w
[ξ]

(|γ|+1)|β̃|+|α|Γ(α, β̃)

and the claim (A.5) is proved.
Taking α = 0 in (A.5) and using (5.3), we find, for all y ∈ φ(K) and all β ∈ Nd,

|∂βf(y)| ≤ (BCd)|β|+1D(|γ|+1)|β|w
[ξ]
(|γ|+1)|β|Γ(0, β)

≤ (BCd)|β|+1(|γ|+ 1)|β|D(|γ|+1)|β||β|!w[ξ]
(|γ|+1)|β|

≤ eG/ξ(BCd)|β|+1(|γ|+ 1)|β|D(|γ|+1)|β|W
[Hξ]
|β|

= Aσ|β|W
[Hξ]
|β| ,

where A = BCdeG/ξ and σ = BCd(|γ| + 1)D|γ|+1 and G,H > 1 are constants
depending only on ω and γ.

A careful re-reading of the proof confirms that supplementary assertion on the
boundedness. (Note that it is no restriction to assume ξ ≥ 1 so that eG/ξ ≤ eG.) □

Lemma A.2. Let K ⊆ Rd be a compact fat subanalytic set. Let ω be a weight
function with associated family {W [ξ]}ξ>0. For each ρ > 0 there exists σ > ρ such
that the inclusion Eω

ρ (K) → Eω
σ (K) is compact. Recall that Eω

ρ (K) = {f ∈ C∞(K) :
∥f∥ωK,ρ < ∞}, see Section 5.2.
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Proof. We adapt the arguments of [19, Proposition 2.2]. We may assume that K
is connected. Then there exist an integer m ≥ 1 and a constant C > 0 such that
any two points x, y ∈ K can be joined by a rectifiable path γ in K with length ℓ(γ)
satisfying ℓ(γ) ≤ C|x− y|1/m (see e.g. [3, Theorem 6.10]).

Let B be the unit ball in Eω
ρ (K) and ϵ > 0. By Lemma 5.1(4), there exist

H,C > 1 such that 2kW
[ρ]
k ≤ CW

[Hρ]
k for all k ∈ N. Setting σ := Hρ, we have

2kW
[ρ]
k ≤ CW

[σ]
k for all k ∈ N. (A.6)

Choose n ∈ N such that
1

2n
≤ ϵ

2C
. (A.7)

Let f ∈ B, x, y ∈ K, and γ a rectifiable path joining x and y with the listed
properties. For α ∈ Nd with |α| ≤ n, we have

|∂αf(x)− ∂αf(y)| ≤
√
d ℓ(γ) sup

z∈γ,1≤i≤d
|∂α+eif(z)|

≤ C
√
d |x− y|1/m∥f∥ωK,ρ exp(

1
ρφ

∗(ρ(|α|+ 1)))

≤ C1 |x− y|1/m.

Thus {∂αf : f ∈ B} is equicontinuous and pointwise bounded. By the theorem
of Arzelà–Ascoli, {∂αf : f ∈ B} is relatively compact in C(K). So there exist
f1, . . . , fk ∈ B such that for each f ∈ B there is i ∈ {1, . . . , k} such that

sup
x∈K

|∂αf(x)− ∂αfi(x)| ≤ ϵ · exp( 1σφ
∗(σ|α|))

for all |α| ≤ n. For |α| > n, we have

sup
x∈K

|∂αf(x)− ∂αfi(x)| ≤ (∥f∥ωK,ρ + ∥fi∥ωK,ρ) exp(
1
ρφ

∗(ρ|α|))

(A.7)

≤ 2 · 2
nϵ

2C
·W [ρ]

|α|

(A.6)

≤ ϵ ·W [σ]
|α| = ϵ · exp( 1σφ

∗(σ|α|)).

Thus {f1, . . . , fk} is an ϵ-net for B in Eω
σ (K). □
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[20] A. Kriegl, Die richtigen Räume für Analysis im Unendlich-Dimensionalen, Monatsh. Math.

94 (1982), no. 2, 109–124.
[21] , Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen

lokalkonvexen Vektorräumen, Monatsh. Math. 95 (1983), no. 4, 287–309.
[22] , Remarks on germs in infinite dimensions, Acta Math. Univ. Comenian. (N.S.) 66

(1997), no. 1, 117–134.

[23] A. Kriegl and P. W. Michor, The convenient setting for real analytic mappings, Acta Math.
165 (1990), no. 1-2, 105–159.

[24] , The convenient setting of global analysis, Mathematical Surveys and Monographs,

vol. 53, American Mathematical Society, Providence, RI, 1997, http://www.ams.org/online_
bks/surv53/.

[25] A. Kriegl, P. W. Michor, and A. Rainer, The convenient setting for non-quasianalytic

Denjoy–Carleman differentiable mappings, J. Funct. Anal. 256 (2009), 3510–3544.
[26] , The convenient setting for quasianalytic Denjoy–Carleman differentiable mappings,

J. Funct. Anal. 261 (2011), 1799–1834.

[27] , The convenient setting for Denjoy–Carleman differentiable mappings of Beurling

and Roumieu type, Rev. Mat. Complut. 28 (2015), no. 3, 549–597.

[28] R. Meise and B. A. Taylor, Whitney’s extension theorem for ultradifferentiable functions of
Beurling type, Ark. Mat. 26 (1988), no. 2, 265–287.

[29] D. N. Nenning, A. Rainer, and G. Schindl, Nonlinear conditions for ultradifferentiability, J.

Geom. Anal. 31 (2021), 12264–12287.
[30] , Nonlinear conditions for ultradifferentiability: a uniform approach, J. Geom. Anal.

32 (2022), Article number: 171.
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(2024). https://doi.org/10.1007/s11854-024-0337-0

[37] , On real analytic functions on closed subanalytic domains, Arch. Math. (Basel) 122
(2024), no. 6, 639–650.

http://www.ams.org/online_bks/surv53/
http://www.ams.org/online_bks/surv53/


26 ARMIN RAINER

[38] A. Rainer and G. Schindl, Composition in ultradifferentiable classes, Studia Math. 224

(2014), no. 2, 97–131.

[39] , Equivalence of stability properties for ultradifferentiable function classes, Rev. R.
Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. 110 (2016), no. 1, 17–32.

[40] G. Schindl, The convenient setting for ultradifferentiable mappings of Beurling- and

Roumieu-type defined by a weight matrix, Bull. Belg. Math. Soc. Simon Stevin 22 (2015),
no. 3, 471–510.

[41] J. Siciak, A characterization of analytic functions of n real variables, Studia Math. 35 (1970),

293–297.
[42] V. Thilliez, Functions with ultradifferentiable powers, Results Math. 75 (2020), Article num-

ber: 79.

Institute for Statistics and Mathematical Methods in Economics, E105-04, TU Wien,
Wiedner Hauptstraße 8, 1040 Vienna, Austria

Email address: armin.rainer@tuwien.ac.at


	1. Introduction
	Notation

	2. Preliminaries
	2.1. Convenient vector spaces and c-topology
	2.2. Uniform boundedness principle
	2.3. Hölder sets
	2.4. Subanalytic sets

	3. Smooth maps
	3.1. Arc-smooth functions
	3.2. The space C(X)
	3.3. Arc-smooth functions have smooth extensions
	3.4. The vector valued case
	3.5. Exponential laws

	4. Real analytic maps
	4.1. The space AC(X)
	4.2. The space C(X)
	4.3. The spaces AC(X) and C(X) coincide
	4.4. The vector valued case
	4.5. Exponential laws
	4.6. Real analyticity on 2-dimensional plots
	4.7. Remarks on holomorphic maps

	5. Ultradifferentiable maps
	5.1. Weight functions
	5.2. The ultradifferentiable classes E{}(X)
	5.3. Weight sequences
	5.4. The space AE{}(X)
	5.5. AE{}(X) and E{}(X) coincide for robust  and suitable X
	5.6. The vector valued case
	5.7. Exponential laws

	Appendix A. 
	References

