AN ALGORITHM DETECTING DEHN PRESENTATIONS.

G. N. ARZHANTSEVA

ABSTRACT. An algorithm is given detecting whether or not a finite presenta-
tion of a group is a Dehn presentation (i.e. admitting Dehn’s algorithm for the
word problem) with a certain condition.

Because being word hyperbolic is a Markov property of groups there cannot
exist an effective procedure for determining if a finitely presented group admits a
Dehn presentation (see, for example, [9]). However, there may exist an algorithm
to decide whether a finite presentation of a group is a Dehn presentation. In this
article we prove a result in this direction.

Definition 1. Let % < a < 1. We call a presentation (¥ | R) of a group G
an a-Dehn presentation if any non-empty freely reduced word w representing the
identity in (G contains, as a subword, a word u which is also a subword of a cyclic
shift of some r € R*! with |u| > a|r|.

A Dehn presentation in the traditional sense is an a-Dehn presentation with
a = 1/2. Observe also that any a-Dehn presentation is a Dehn presentation.

A Dehn presentation of a group G leads to a known Dehn’s algorithm solving
the word problem for GG. We refer to [5] for an interesting discussion and problems
on other Dehn’s algorithms and different notions of Dehn presentations.

Our main result is the following.

Theorem. There exists an algorithm determining whether or not a finite presen-
tation of a group ts an a-Dehn presentation for some % <a<l.

Note that a group (i given by a finite Dehn presentation is word hyperbolic [6,
2.3], the word problem for (i is solvable in linear time by Dehn’s algorithm [4], and
the hyperbolicity constant for G can be calculated, see for example subsection 1.2.

1. DEHN’S ALGORITHM

Given a group G generated by a finite set X and a word w in the alphabet X'%!

we denote by |w]| the length of w and by |Jw]|| the length of a shortest word in X*!
representing the same element of 5.
Definition 2. Let (X | R) be a presentation of a group. A word w in the alphabet
XE! is said to be Dehn irreducible with respect to this presentation if w has no
subword u such that u is also a subword of a cyclic shift of some r € R*! with
|ul > 5|r].

The following lemma shows that Dehn irreducible words with respect to certain
Dehn presentations are quasigeodesics. Let A > 1 and ¢ > 0. Recall that a word w
in the alphabet X'*! is called (), ¢)-quasigeodesic in G if |u| < A|ul| + ¢ for any
subword u of w. A word w is (k, A, ¢)-local quasigeodesic for k > 0 if any its subword
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of length at most k is (X, ¢)-quasigeodesic. Similarly, a word w is k-local geodesic if
any subword u of w of length |u| < k is geodesic, that is, |u| = [|u]|.

Lemma 1. Let (X | R) be a finite a-Dehn presentation of a group G with % <a<
1. Let M = max,er |r|. Then for any Dehn irreducible word w and any word z
both representing the same element of GG, one has

1
] 2 - Jul
In particular, ||w|| > ﬁ|w|, i.e. Dehn irreducible words are (M, 0)-quasigeodesics.

Proof. Assume that a presentation (X | R) and words w and z satisfy the hypothe-
ses of the lemma. In particular, wz=! =g 1. Without loss of generality we assume
that wz~1 is freely reduced.

We proceed by induction on |w| + |z|.

If |w| = |z] = 0 the statement is trivial. Let |w|+ |z| > 0. By definition of an
a-Dehn presentation, the word wz~! has a subword u which is also a subword of
a cyclis shift of some r € R*! with |u| > 3|r|. Let wz~! = AuB and r = up™"
for some words A, B and v. The word u cannot be a subword of w as w is Dehn
irreducible. So there are two different cases.

Case 1. u is a subword of 271, i.e. 27t = CuD for some words C and D.

Since uv™! =g 1 we have w2zt =¢ 1 with 271 = CvD. But |w|+|2z1| < |w|+]2]
as |u| > |v|. So, using the inductive hypothesis, we get M|z| > M|z1| > |w|.
Case 2. u = ujus where uq is a subword of w and u» is a subword of z71.

There are two subcases. First suppose that |v| < |ug|. Then |B| + |v| < |B| +
|ua| = |z|. Since any subword of a Dehn irreducible word is again Dehn irreducible,
we can use the inductive hypothesis for the words wy = A and z; = vB. Hence,
M(|B|+ |v]) > |A|. Since |v| < |ug| — 1, it follows that M (|B| + |us|) — M > |A].
This implies M (|B| + |uz|) > |A| + M > |A| + |u1| = |w| as desired.

Now suppose that |v]| > |ua|. Then |us| < % as |v| < %. But |ui| > 2|r|—|us| >

%. This contradicts the assumption that w is Dehn irreducible word. O
1.1. Word hyperbolic groups. Let F' = F(X) be a group freely generated by X

and
(1) G=(X|R)

be a finitely presented group. For any word w in the generators X*! representing
the identity in GG, there is an expression

N
(2) w=p Hzir?:lzi_l,
i=1

where r; € R, z; € F for i = {1,...,N}. The minimal possible N in (2) for
a given w is called the area of w and denoted by Area(w). A finitely presented
group defined by (1) is said to be word hyperbolic if there is a constant C' > 0 such
that Area (w) < Clw| for any w representing the identity in G. In other words, G
satisfies a linear 1soperimetric inequality.

Proceeding by induction on the number of terms in the expression (2), it is not
hard to see that Dehn’s algorithm implies a linear isoperimetric inequality (with
multiplicative constant 1). The converse is also true. The proof uses a more delicate
analysis of local quasigeodesics in the Caley graph of a word hyperbolic group and
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shows essentially that to find a Dehn presentation (with a parameter) it suffices
to take all long enough relations in the group as the defining relations [2], [11, Th
2.12], [8], and [1, Ch. III. T, Th. 2.6].

Proposition 1. ([6, 2.3], [8], [11, Th 2.12]) The following conditions on a finitely
generated group G are equivalent:

(a) G is word hyperbolic;

(b) G has a Dehn presentation;

(¢) G has an a-Dehn presentation for any «, % <a<l.

The following reformulation of the word hyperbolicity condition is equivalent to
the definition given above. A finitely generated group is d-hyperbolic if there is a
constant 6 > 0 such that any geodesic triangle in the Cayley graph of the group
with respect to some (and therefore to any) generating set is §-slim. A geodesic
triangle is §-slim if each of its side is contained in the d-neighbourhood of the union
of the other two sides [6, 6.3], [7, Ch.2, §3], and [3, Ch.1, §3].

It is known that for & > 8§ any k-local geodesic word in the generators of a
d-hyperbolic group is quasigeodesic [6, 7.2.B], [1, Ch.I1L.H, Th.1.13]. In particular,
there are no nontrivial k-local geodesic words representing the identity in a word
hyperbolic group. We will need a similar result for k-local quasigeodesics words
defined in a natural way.

Lemma 2. ([6, 7.2.D], [3, Ch.3, Th.1.4]} Let G be a §-hyperbolic group and M >0
be a constant. There exists a constant A = A(6, M) > 0 such that if for any subword
y of a word w in the generators of G of length |y| < A we have ||y|| > ﬁ|y| then
w ;ﬁG 1.

We notice that the constant A = A(J, M) can be effectively calculated in terms
of the complexity of a group presentation for (G, see Section 1.2.

The next result is due to Gromov [6, 2.3.F]. He used it to give a partial algorithm
which, given a finite presentation of a group, stops if and only if the group is word
hyperbolic. We mention that Gromov gave an analytical idea how to prove the
lemma. The combinatorial proof was given by Papasoglu in [10].

Recall that given a finite presentation (X | R) of a group G one can use Tietze’s
transformations to obtain a triangular presentation, i.e. the presentation of the
same group with all defining relations of length at most 3. Namely, suppose that
r € R has length greater than 3, that is, r = ryrs for some words r; and rs
of length greater than 1. One introduces a new generator ¢ and observes that
(XUt} | (R\{r}) U {trT! trs}) is also a presentation of G. Repeating this step
finitely many times one gets a triangular presentation of G.

Lemma 3. ([10]) Let G be a group given by a finite triangular presentation. As-
sume that for some integer K > 0 every word w representing the identity in G with
area

K2 »
- < Area(w) < 240K

satisfies Area(w) < ﬁ|w|2. Then for any word w representing the identity in G
we have Area (w) < K?|w|. In particular, G is word hyperbolic and the hyperbolicily
constant & can be effectively calculated.

1.2. Remarks on the calculations. Now we recall some estimates on different
constants from the above given definitions of a word hyperbolic group.
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Let G = (X | R) be a word hyperbolic group. Hence for some C' > 0 the linear

isoperimetric inequality Area (w) < C|w| holds for any w representing the identity
in G.
Remark 1. Suppose that (X' | R’) is any other finite presentation of G. We are
going to estimate multiplicative constant C’ in the linear isoperimetric inequality
with respect to this presentation. For each generator =’ € X’ we fix some its
expression S(z’) as a word in the alphabet A'. Similarly we define a word 5’ (z) for
each generator € X. For a word w' in the alphabet X’ we denote by S(w’) the
word that we obtain replacing any generator «’ € X' in w’ by S(2'). In the same
way we define 5’ (w) for a word w in the alphabet X'. Let us set

(3) hh = max S(2’)] and Iy = max Area’ (5'(r)),

where Area’ denotes the area with respect to the presentation (X’ | R’). Then
Area’ (w') < lyArea (S(w')) < Cly|S(w')| < Clyla|w'|.

Thus we can take C' = Clyl,.

Remark 2. Given C as above and M = max,¢r |r|, we can find the hyperbolicity
constant & = §(C, M) as well as the hyperbolicity constant §’ with respect to
(X" | R, see [11, Th.2.5], [8].

Remark 3. To get an estimate on A = A(J, M) in Lemma 2, we first find § using
the previous remark. Then we choose A satisfying the inequality

A= A(6, M) > max(Ay,8eM? + 16 M)

where ¢ = 4M (16 log, (128 M? + 16 M) + 2) + 32M§ and A; > 2¢, see [3, Thl.2,
Th.1.4].

THE ALGORITHM

Here we describe our algorithm. We use the previous remarks.

Step 1. Given a finite presentation 7 = (X | R) of a group G, we triangulate 7
getting a finite presentation n’ = (X’ | R’) whose any defining relation is of length
at most 3.

Step 2. Using Remark 1 we find /; and l5 for the presentations 7 and 7. Let
T=14l.

Step 3. Take K > 2-10?T. We check whether or not Area’ (w) < 5o |w|?
for all words w in the generators of 7’/ representing the identity in G whenever
KTz < Area’ (w) < 240K2.

If the answer is "no” then m is not a Dehn presentation. Indeed, assume that 7
is a Dehn presentation. Then Area (w) < |w| for any w representing the identity
in G. By the choice of T', 7’ is a presentation of a word hyperbolic group with
Area (w) < T'|w|. Hence we have Area’ (w) < 54sr|w|? for K > 2- 10?7 and there

is a word w such that KTQ < Area’ (w) < 240K?. But this contradicts the assumed
negative answer. In this case, the algorithm stops.

If the answer is ”yes”, by Lemma 3 (& is word hyperbolic and the hyperbolicity
constant ¢’ with respect to 7/ can be effectively calculated from K, see Remark 2.
Using also Remark 1, we calculate the hyperbolicity constant § with respect to
m. We can effectively find a new presentation 7 = (X | R”) for G which is a
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a-Dehn presentation with % < a < 1 (see for example [8]). We also calculate the
hyperbolicity constant " with respect to 7"/ using Remarks 1 and 2.

Step 4. Let m be the presentation of GG obtained from 7" by removing one
defining relation which is a consequence of the others. To complete the algorithm
we have to give a way to determine whether or not 71 remains a Dehn presentation.

Let §; be the hyperbolicity constant with respect to 1. We know that §; depends
linearly on already calculated §”, Remarks 1 and 2. We denote by M; the maximum
of lengths of the defining relations of ;. Using Lemma 2 and Remark 3, we calculate
the constant A = A(d;, M;y). Next we consider all Dehn irreducible words with
respect to m of length at most A. We check for these words whether they satisfy
the inequality from Lemma 1 with the constant M;. If the answer is "no” then,
by Lemma 1, we conclude that 71 (and hence 7) is not an a-Dehn presentation for
% < a < 1, and the algorithm stops. Otherwise, in view of the definition of a-Dehn
presentation and Lemma 2, we see that m is a Dehn presentation. If w1 coincides
with 7 then 7 is a Dehn presentation with a parameter and the algorithm stops.
Otherwise, we go to the next step.

Step 5. We consider a new presentation 7y of G obtained from m; by removing
one defining relation which is a consequence of the others. We repeat everything
for 75 as in the previous step.

We repeat this final step as long as there are redundant relations. It is clear that
proceeding in this way we determine whether or not 7 is a Dehn presentation with
a parameter.

1.3. Question. The restriction % < a < 1 were used the only time in the final part
of the proof of Lemma 1. Everything else is true also in case when % < a< 1. So,
to prove our theorem in more general setting we need to show that Dehn irreducible
words are quasigeodesic with respect to any Dehn’s presentation with a parameter
% < a < 1. (It could give also another hyperbolicity condition.)
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