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Abstract. GloptLab is a software environment for the rigorous solution of polynomial
constraint satisfaction problems, written in Matlab. All applied methods are rigorous,
hence it is guaranteed that no feasible point is lost. Some emphasis is given to finding a
bounded initial box containing all feasible points, in cases where other complete solvers rely
on non-rigorous heuristics.

The inputs are converted to a quadratic format, which forms the basis of the algorithms
implemented in GloptLab, which are used to reduce the search space: scaling, constraint
propagation, linear relaxations, strictly convex enclosures, conic methods, and branch and
bound. From the method repertoire custom made strategies can be built, with a user friendly
graphical interface.

1 Introduction

GloptLab is a global optimization environment, for the rigorous solution of quadratic

constraint satisfaction problems

F (x) ∈ F, x ∈ x. (1)

Here F : R
n → R

m is a vector valued quadratic function, and F ⊆ R
m, x ⊆ R

n are sets
defined by lower and upper bounds only. The Fi(x) ∈ Fi are quadratic constraints and the
xi ∈ xi are bound constraints. An x ∈ x is called a feasible point or a solution if F (x) ∈ F

is satisfied. The task is to find one or all feasible point; the problem is called infeasible if
there are no feasible points.

Rigorous methods for solving the constraint satisfaction problem (1) which are used to reduce
the sets x and F can be written as Γ : (x,F) → (x̃, F̃) and have the property

{x ∈ x | F (x) ∈ F} ⊆ {x ∈ x̃ | F (x) ∈ F̃}.

This guarantees that no feasible points are lost during the reduction of the sets x and F. All
methods implemented in GloptLab are rigorous, and thus they met the above property.

GloptLab supports rigorous input, however since most of the methods are based on interval
arithmetic these intervals should be narrow, consisting only of uncertainties due to rounding
error in the representations of exact problems.
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GloptLab is implemented in Matlab and is meant to be a testing and development plat-

form.

GloptLab contains a number of methods, jointly developed with Arnold Neumaier. A
brief introduction to them is given in Section 3 while detailed description of these methods
can be found in the references. The problems are converted into an internal polynomial
format analyzed and preprocessed by the problem simplification. Constraint propagation is
a fast and effective method which is also used as a part of other more complicated methods
(see Domes & Neumaier [4]). We use different linear relaxation techniques to get finite
bounds or decrease the size of the search space (see Domes & Neumaier [6]). Strict convex

enclosures compute a nearly optimal interval hull of strictly convex constraints (see Domes
& Neumaier [5]). Conic methods may lead to spectacular reductions of the search domain,
but require a great deal of computation time (see Domes & Neumaier [8]). Branch and

bound divides the search space into smaller subdomains and applies some of the above
methods to reduce their size or even eliminate them when they do not contain feasible
points. The boxes which remain after the branching can be merged to a single or fewer ones
by computing their inteval hull or finding and bounding the clusters of them. Finding and

verifying feasible points are important if we search only for a single solution of the constraint
satisfaction problem. Different scaling algorithms guarantee that the methods which are not
scaling invariant do not run into difficulties due to bad scaling (see Domes & Neumaier
[7]).

Some of the above methods make use of external toolboxes. Since the verification is often
based in interval techniques INTLAB (Rump [23]) is probably the most important toolbox,
and although some methods avoid to use it to speed up the computation, it is always needed
to run GloptLab. Unverified solutions of linear programs are obtained by using LPSolve
(Berkelaar et al. [1]), SeDuMi (Sturm et al. [28]) or SDPT3 (Toh et al. [29]). The latter
two can be also used to optimizing over symmetric cones which make them an essential part
of the rigorous conic methods. In general, the nonrigorous parts are only used for generating
approximations which are needed in subsequent rigorous computation steps. The algorithms
for finding and verifying feasible points make use of local solvers like projected BFGS and
conjugate gradient methods from Kelley [15]. The conversion from the AMPL format to
the internal problem representation of GloptLab is done by AMPL (Fourer et al. [10]) in
connection with the Coconut environment Schichl [25], while the parsing and conversion
from a simplified AMPL format is done by the SMPL parser (Markót [18]).

In Section 4 we discuss the integration of the above methods in the GloptLab environment,
features like the building of user defined solution strategies or the graphical user interface
and the possibilities of extending the method repertoire. In the last section some examples
and test results are given.

There are a number of software packages for solving constraint satisfaction problems. The
Numerica software by Hentenryck et al. [11] uses branch and prune methods and interval
constraint programming to solve constraint satisfaction problems. The ICOS solver by
Lebbah [16] is a software package for the rigorous solution of nonlinear and continuous
constraints, based on constraint programming and interval analysis techniques. The PaLM
system by Jussien & Barichard [13] uses explanation-based constraint programming,
and propagates the constraints of the problem, learning from failure and from the solver.
The price winning solver Baron by Sahinidis & Tawarmalani [24] can also solve solving
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constraint satisfaction problems. Initiated by the development of interval analysis on directed
acyclic graphs by Schichl & Neumaier [26], COCONUT Environment [9, 25] has been
developed as a global optimization software platform.

Typically, the solvers quoted require finite and not too large two-sided bound constraints,
in order that the interval techniques used are efficient. Formally, unbounded problems are
often (e.g., by Baron) by adding artificial bound constraints, with the resulting danger
of excluding feasible points. Many solvers use unverified methods and return unverified
results. The reason is that verifying the results or error control is often considered as an
unnecessary extra effort. However there are a number of cases where serious safety problems
can arise from unverified results. This motivated future research in robotics (e.g., Merlet
[19]) and more general in safe computation techniques (Jansson [12], Keil [14], Lebbah
et al. [17]). Uncertainties in the input data are even more often ignored. In general the
modeling languages (e.g., AMPL by Fourer et al. [10] or GAMS by Brooke et al. [2])
do not support an exact treatment of rational or interval constraint coefficients.

A public version of GloptLab is expected to be available end of July 2008.

2 Problem specification

We represent simple bounds as box constraint x ∈ x. A box (or interval vector) is a Cartesian
product

x = [x, x] := (x1, . . . ,xn)T

of (bounded or unbounded) closed, real intervals xi := [xi, xi]. Thus the condition x ∈ x is
equivalent to the collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted componentwise, to the two-sided
vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes with xi = [a, a]
variables xi fixed at a particular value xi = a, with xi = [a,∞] lower bounds xi ≥ a, with
xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞] free variables.

We also consider a quadratic expression p(x) in x = (x1, . . . , xn)T such that the evaluation
at any x ∈ x is a real number. If

p(x) ∈ p(x) holds for all x ∈ x

then any mapping p : IR
n → IR satisfying

p(x) ∈ p(x), for all x ∈ x. (2)

is called an interval enclosure of p(x) in the box x. There are a number of methods for defining
p(x), for example interval evaluation or centered forms (for details, see, e.g., Neumaier [21]).
If for all y ∈ p(x) an x ∈ x exists such that p(x) = y, then p(x) is the range. If this only
holds for y = inf p(x) and y = sup p(x) then p(x) is the interval hull ⊓⊔{p(x) | x ∈ x}. To
get rigorous results when using floating point arithmetic, one needs an implementation of
interval arithmetic with outward rounding.
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Another – and somewhat trickier – alternative is is to compute the upper and the lower
bound of the range separately, without the use of interval arithmetic, by using monotonicity
properties of the operations. To get rigorous results when using floating point arithmetic, one
needs here directed rounding. For an expression p, we denote by ∇{p} the result obtained
when first the rounding mode is set to downward rounding, then p is evaluated, and by
∆{p} the result obtained when first the rounding mode is set to upward rounding, then
p is evaluated. We assume that negating an expression is dome without error; thus, e.g.,
∆{−(x− y)} = −∆{x− y}. Careful arrangement allows in many cases to replace downward
rounded expressions by equivalent upward rounded expressions. For example, ∇{x − y} =
∆{−(y−x)}). If this is possible, one can achieve correct results using only upward rounding
(thus saving rounding mode switches), while in interval arithmetic, the rounding mode is
often switched at the cost of computation time. However, not all expressions can be bounded
from below or above using directed rounding only; and detailed considerations are needed
in each particular case.

The constraint satisfaction problems in GloptLab consist of simple bounds, linear con-
straint, and quadratic constraints. We represent simple bounds as box constraint x ∈ x.
The linear and quadratic constraints are represented in a sparse matrix notation. The lin-
ear, quadratic, and bilinear monomials occurring in at least one of the constraint (but not
the constant term) are collected into an nq-dimensional column vector q(x). There we choose

q(x) = (x1, . . . , xn, x2
1, . . . , x1xn, . . . xnx1, . . . , x

2
n)T

The coefficients of the ith constraint in the resulting monomial basis are collected in the
ith row of a (generally sparse) matrix A, and any constant term (if present) is moved to
the right hand side. Thus the linear and quadratic constraints take the form Ai:q(x) ∈ Fi

(i = 1 . . . m), where Fi is a closed interval, and Aj: denotes the jth row of A.

As in the case of simple bounds, this includes equality constraints and one-sided constraints
by choosing for the corresponding Fi degenerate or unbounded intervals. In compact vector
notation, the constraints take the form Aq(x) ∈ F.

While traditionally the coefficients in a constraint are taken to be exactly known, we allow
them to vary in (narrow) intervals, to be able to rigorously account for uncertainties due to
measurements of limited accuracy, conversion errors from an original representation to our
normal form, and rounding errors when creating new constraints by relaxation techniques.
Thus the coefficient matrix A is allowed to vary arbitrarily within some interval matrix A.
The m×n interval matrix A with closed and bounded interval components Aik = [Aik, Aik],
is interpreted as the set of all A ∈ R

m×n such that A ≤ A ≤ A, where A and A are the
matrices containing the lower and upper bounds of the components of A.

We therefore pose the quadratic constraint satisfaction problem in the form

Aq(x) ∈ F, x ∈ x, A ∈ A. (3)

If we introduce additional ns slack variables xs then quadratic constraint satisfaction problem
in the equality form is given by

Aq(x) = 0, x ∈ x, A ∈ A. (4)
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where no is the number of the original variables xo, x = (xo xs)T , n = no + ns and

q(x) = (1, x1, . . . , xn, x2
1, . . . , x1xn, . . . xnx1, . . . , x

2
n)T ∈ R

nq+1.

Although currently not used, the GloptLab format supports a more general representation
which allows the user to define non-quadratic optimization problems. Quadratic constraint
satisfaction problems are the special case where the objective function is constant and no
univariate functions occur. Since GloptLab is user extensible, this more general represen-
tation may already be useful to some users. The definition

xj := φk(xi) with j ∈ J, k ∈ {1, . . . , nu}, i ∈ I (5)

assigns the univariate function φk depending on the variable xi to the variable xj. For
example, if (i, j, k) = (3, 4, 2) and φ2(z) = sin(z + π/3) then x4 := φ2(x3) = sin(x3 + π/3)
is an additional univariate non-quadratic constraint definition. The term xJ := φ(xI) in (6)
represents all nu univariate function definitions, whereby the index sets I, J ⊆ {1, . . . , n}.
For future development purposes we also define an objective function, of which we can search
for a local or a global minimum, inside the feasible domain.

The non-linear optimization problem

min Ai:q(x)

s.t. Aq(x) ∈ F for someA ∈ A,

x ∈ x, xJ := φ(xI).

(6)

with
x ∈ R

n, q(x) ∈ R
nq , A ∈ R

m×nq , i ≤ n, |I| = |J | = nu

and univariate φ : R
nu → R

nu . is called the internal inequality representation of GloptLab.

Since the above representation is often obtained from converting non-quadratic problems,
by introducing additional intermediate variables, we differentiate between the no original
variables xo, ni intermediate variables xi and the ns slack variables xs by writing x =
(xo xi xs)T with n = no + ni + ns. There are no slack variables in the internal inequality
representation (6) but may occur in the internal equality representation

min Ai:q(x), i ∈ {1, . . . , n}
s.t. Aq(x) = 0 for someA ∈ A,

x ∈ x, xJ := φ(xI).

(7)

with
x ∈ R

n, q(x) ∈ R
nq+1, A ∈ R

m×(nq+1), |I| = |J | = nu,

and univariate φ : R
nu → R

nu

The conversion from the AMPL format to the internal problem representation of GloptLab
is done by AMPL (Fourer et al. [10]) in connection with the Coconut environment [9],
while the parsing and conversion from a simplified AMPL format is done by the SMPL
parser (Markót [18]). Converting the GloptLab problem representation (.def, .glb
files) to AMPL or SMPL formats is also possible. More information about the conversion
possibilities can be found in Figure 2 (Subsection 4.5).
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3 The implemented methods

There are a number of different rigorous methods developed and integrated in GloptLab.
In this chapter we give a brief description of the most important methods in this constantly
expanding repertoire.

3.1 Problem simplification and scaling

This is usually the first step after reading a problem. In the problem simplification phase
several preprocessing steps are done: We first identify and remove bound constraints from
the general constraints, and store their bounds in the box x. Unbounded constraints –
where the corresponding interval Fi in 6 is unbounded – are removed. Possibly redundant

constraints are identified and can be optionally removed. The problem can transformed

into the equality representation (4) by introducing additional slack variables. Additional

structural characteristics like sparsity pattern are also derived.

The polynomial scaling problem consists in finding a constraint scaling vector r ∈ R
m
+ and

a variable scaling vector c ∈ R
n
+ such that the scaled problem

x ∈ x, Asq(x) ∈ Fs with As
ik := ri|Aik|q(c)k, Fs

i := riFi (8)

is well-scaled in an appropriate sense. Which properties constitute a well-scaled problem
is a somewhat ill-defined matter, because it highly depends on the applications and is not
easily quantifiable. Intuitively, a scaling algorithm should somehow decrease large variations
between appropriately weighted sums of logarithms of the coefficients of the matrix A; the
weights should reflect the expected size of the values of the monomials. In GloptLab we
can choose between the Hompack (Watson & Terry [30]) algorithm, Morgan’s algorithm
(Morgan [20, Chapter 5]), and the methods LP and ScaleIT described in Domes &
Neumaier [7]. The computed scaling vectors are then stored and later used by different
methods.

3.2 Constraint propagation

Filtering techniques which tighten a box are called constraint propagation if they are based
on single constraints only. Forward propagation uses the bound constraints to improve the
bounds on the general constraints; backward propagation uses the bounds on the general
constraints to improve the bounds on the variables.

Since (3) only consists of quadratic expression, we can write each constraint without loss of
generality in the form

∑

k

(akx
2
k + bkxk) +

∑

j,k

j>k

bjkxjxk ≥ c, x ∈ x, (9)

where the akx
2
k are the quadratic, the bkxk the linear and the bjkxjxk the bilinear terms.
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We first separate the constraint by approximating or bounding the bilinear terms, then
we apply the forward propagation step: we compute the enclosure pk of each univariate
quadratic term pk(xk) := akx

2
k + bkxk where the uncertainties ak and bk of the constraint

coefficients are also taken into account. Then we use the pk to verify that the constraint is
feasible, to get a new bound on each pk(xk) and to find a new lower bound for the constraint.
If the constraint has been found feasible, can apply the backward propagation step and find
the set of all xk with akx

2
k + bkxk ∈ pk. Finally, if we cut the bounds found with the original

bound on the variables, we may obtain tighter bound constraints.

The method is cheap, rigorous, and does not require interval arithmetic since only directed
rounding is used. It is often used in other methods for verifying approximate solutions. In
general, if used as a stand alone technique more than one step of constraint propagation is
done successively, until no further significant reduction takes place.

A more detailed description of our constraint propagation can be found in Domes & Neu-
maier [4].

3.3 Linear relaxations

Linear constraints of the form
Ex ≥ b, x ∈ x. (10)

may be obtained by relaxing the constraints of (3). Every feasible point of the constraint
satisfaction problem (3) satisfies (10) iff for all x ∈ x and A ∈ A the inequalities

Aq(x) + b − F ≤ Ex ≤ Aq(x) + b − F

hold. In this case linear system (10) is called a linear relaxation of (3) (proof can be found
in Domes & Neumaier [6]). The relaxation (10) is found by computing interval enclosures
(2), by using constraint propagation from Subsection 3.2 and by finding linear under and
overestimators: the function u(x) is called a linear underestimator of p(x) in the box x, if
for all x ∈ x, u(x) ≤ p(x) holds. Similarly, the function v(x) is called a linear overestimator
of p(x) in the box x, if for all x ∈ x, p(x) ≤ v(x) holds.

After linearizing the constraints we apply different methods to improve the bound constraints
x ∈ x. These methods are explained in detail in Domes & Neumaier [6].

If some bounds in x are infinite and the feasible domain is bounded, the linear bounding

method is used to get finite bound constraints. This requires the approximate solution of
a single linear program and a single constraint propagation step to generate new finite and
rigorous bounds. The only purpose of this method is to bound the feasible domain, and
leads to no further improvements if applied more than one time.

In linear contraction we first compute new bounds on the constraints, cut them with the
original ones. Afterward a modified Gauss-Jordan elimination is used to precondition the
system, then either a direct interval evaluation or a single constraint propagation step is
used to get new bounds on some or all of the variables.

Among the methods based on linear relaxations, the LP contraction is the method which
requires the most computational time since in each step we solve more than one linear
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programs. We find the d most promising directions (usually d = 3) and minimize the upper
and lower bound from this directions. This requires the approximate solution of 2d linear
programs, of which the dual solutions are used to generate new constraints. Propagating the
new constraints may improve the bound of the selected variables.

3.4 Strictly convex enclosures

A quadratic inequality constraint with a strictly convex Hessian matrix defines an ellipsoid
whose interval hull is easy to compute analytically. However, to cope efficiently with rounding
errors is nontrivial.

For a real, symmetric matrix A a nonsingular triangular matrix R we compute a directed

Cholesky factor such that the error matrix A−RT R of the factorization is tiny and guaran-
teed to be positive semidefinite. Clearly, this implies that A is positive definite; conversely
(in the absence of overflow), any sufficiently positive definite symmetric matrix has such a
factorization with R representable in floating point arithmetic. In Domes & Neumaier
[5] we find such a representation which makes the error small as feasible and works even for
nearly singular matrices.

We use the directed Cholesky factorization to transform a strictly convex quadratic constraint
of the constraint satisfaction problem (3) into an an ellipsoid defined by a Euclidean norm
constraint

||Rx‖2
2 + 2aT x ≤ α. (11)

There is also need of scaling when factoring ill-conditioned matrices before applying the
factorization. Therfore the scaling computed in the simplification is used before the directed
Cholesky factorization is applied.

We derive the optimal box enclosure of this ellipsoid; we find constants β, γ, ∆ and a vector
d > 0 such that if ∆ ≥ 0 then (11) implies

‖R(x − x̃)‖2 ≤ δ := γ +
√

∆, |x − x̃|2 ≤
δ

β
d. (12)

If ∆ < 0 then (11) has no solution x ∈ R. For suitable chosen x̃ the bounds in (12) are
optimal (for details and proof see Domes & Neumaier [5, Section 6,7]).

By the second inequality of (12) we get rigorous bounds

u :=
[

(δ/β)d − x̃, (δ/β)d + x̃
]

on the variables x. If we do this for each strictly convex quadratic constraint of the constraint
satisfaction problem (3) and cut the resulting bounds with the original ones we may get
tighter bound constraints.

By this method we get rigorous bounds on all n variables, obtainable with O(n3) operations.
This should be used only once per problem since successive application gives no further
improvement of the bounds.
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3.5 Conic methods

Conic methods approximate the general constraints by hyperplanes, balls or hyperellipsoids,
using semidefinite or conic programming in order to find sharp bounds on the feasible set
of a quadratic constraint satisfaction problem. The conic methods use the internal equality
form (4) and are based on the following proposition; improved by the techniques of Schichl
& Neumaier [27]:

3.1 Proposition. If G is positive semidefinite and Z ≤ 0, than for any x ∈ x with Eq(x) =
0, we have

0 ≤
(

1

x

)T

G

(

1

x

)

−







1

x − x

x − x







T

Z







1

x − x

x − x






− zT Aq(x). (13)

Proof. Since by (4) the equality Aq(x) = 0 holds for all x ∈ x and by the definition of
positive definiteness all terms on the right hand side of (13) are greater or equal to zero. ⊓⊔

Now if G is positive semidefinite and Z ≤ 0 the equation

(

1

x

)T

G

(

1

x

)

≤







1

x − x

x − x







T

Z







1

x − x

x − x






+ zT Eq(x) + p(x)

implies that 0 ≤ p(x). To find the positive semidefinite matrix G, the matrix Z, the vector
z and free parameters in p(x) we solve the conic program

min cT y

s.t. yi ≥ 0

‖r(y)‖ ≤ yk

1
2
‖s(y)‖2 ≤ yjyk

G symmetric and positive semidefinite.

(14)

with suitably chosen objective, non-negativity constraints yi ≥ 0, norm constraints ‖r(y)‖ ≤
yk, rotated conic constraints 1

2
‖s(y)‖2 ≤ yjyk and the semidefiniteness constraint for the

matrix G. Choosing one of the quadratic expressions

• p(x) = ±xi + ζ and minimizing ζ,

• p(x) = −
∑n

i=1 x2
i + ζ and minimizing ζ,

• p(x) = −1 and minimizing 0,

• p(x) = −‖ω ◦ x‖2 + 2ξT (ω ◦ x) + δ with ‖ξ‖ ≤ ζ and minimizing ζ + δ,
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results in interesting enclosures of the feasible domain. Since the conic program (14) is
solved by an approximate solver we get the approximate solutions Ĝ, Ẑ and ẑ, and we need
to verify the results by computing

p̂(x) :=

(

1

x

)T

Ĝ

(

1

x

)

−







1

x − x

x − x







T

Ẑ







1

x − x

x − x






− ẑT Eq(x),

using interval arithmetic. Since p̂(x) is a rigorous enclosure of the the feasible domain and
a quadratic expression with tiny interval coefficients, we can use constraint propagation on
it and may obtain tighter bound constraints.

Since the solution of the conic programs is rather costly, the maximal dimension of problems
solved by this methods is limited, and the number of iterative steps should be rather low.
For details on the conic methods used in GloptLab see Domes & Neumaier [5].

3.6 Branch and bound

Using branch and bound on the constraint satisfaction problem (3) means that we partition
the bound constraints x into s smaller subboxes, xk (k = 1, . . . , s) such that x = x1∪ . . .∪xs

and use rigorous methods Γi(x
k,F) on each xk separately. The methods applied to a subbox

may reduce its width and even eliminate it if it contains no feasible points. There are different
branching strategies; but in general they can be classified by the amount of memory they
need. Recursive splitting selects a variable and splits the original box in this variable into two
new boxes. To the first one the rigorous methods are applied while the second one is stored
on a stack. If the first box is reduced but not eliminated by the methods, it is split again,
whereby the second part is again stored on the stack. This is done until the actual box is
empty, a minimal with of the current box is reached, or the maximal number of elements on
allowed the stack is exceeded. Then the last box is popped from the stack, reduced and split
by using the same procedure. Since the maximal memory needed by this splitting strategy is
low it is the branching method which is currently implemented in GloptLab. The variable
xi in which the a box is split is either the one where xi has maximal width or the one where
the constraints have maximal range

∑

k wid(Ak:q(xi)). Different variables selection methods
and splitting strategies may be included in the future.

Recursive splitting results in a finite cover of the feasible domain by nonempty subboxes
of a given maximum size. We can either return all boxes found or create the interval hull

of them. Connected components of the union of the subboxes define clusters, which can
be separately bounded by their interval hull. Since returning all boxes found often result
in an unnecessary large number of output and computing a single interval hull for distinct
connected components is a crude approximation, therefore in most cases computing interval
hull of clusters is the method of selection.
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4 Integration of methods

The methods presented in the previous section are integrated as part of the GloptLab
environment.

4.1 Solution strategies

A solution strategy is a list of methods used to solve a problem. There are different additional
features like loops and pauses to ensure that the user can generate many different strategies.
Here we only give a sample solution strategy:

01: Read Problem - maxvars=15, cdeb, cprt, box, prt

02: Simplify - scal=LP, obj=use refpoint, prt

03: Linear (bound) - eqsolver=fast, lsolver=SDPT3, prt

04: Linear (solve) - eqsolver=standard, lsolver=SDPT3, prt

05: Ehull - scal, prt

06: Feasibility (find point) - mindist=1e-005, delta=1e-005, ...

07: Begin While - mingain=0.2, maxiter=21, prt, small=0.5

08: Begin While - mingain=0.2, maxiter=3, prt, small=0.5

09: Conic (ellipsoid) - Zset=auto, csolver=SDPT3, ...

10: Propagate (separable) - full, prt

11: Conic (bound) - Zset=auto, csolver=SDPT3, ...

12: Propagate (separable) - full, prt

13: Begin While - mingain=0.2, maxiter=5, prt, small=0.5

14: Propagate (separable) - full, prt

15: Linear (contract) - eqsolver=standard, ...

16: End While

17: Feasibility (find point) - mindist=1e-005, ...

18: End While

19: Feasibility (find point) - mindist=1e-005, delta=1e-005, ...

20: Begin Split (maxvariation) - mindist=0.0001, ...

21: Feasibility (find point) - mindist=1e-005, ...

22: Begin While - mingain=0.2, maxiter=5, prt, small=0.5

23: Linear (contract) - eqsolver=standard, ...

24: Propagate (separable) - full, prt

25: End While

26: End Split

27: Merge (cluster) - drop, prt

28: End While

29: Pause

30: End

As one can see, each method can have several input constants. These constants can vary in
different ranges, and their value has to be set when building a strategy. For example for the
while loop which starts with Begin While and ends with End While the minimal gain
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percentage mingain, the maximum number of iteration maxiter and the width of a small
box small has to be decided. The special parameters prt and deb can be set for every
method and they determine the level of the text output generated by them.

4.2 Graphical user interface

Although the strategies can be modified manually, it is better to use the graphical user

interface of GloptLab to edit them (see Figure 1). Building a strategy in the graphical user
interface is done by inserting, editing or removing tasks (marked 1 in Figure 1). There is also
syntax check included, which prevents the creation of incorrect strategies. In the graphical
user interface not only the strategies can be edited but a singe problem or a problem list

(marked 2 in Figure 1) can be solved by executing a strategy using the execute button.
The text output of the solution procedure can be found in the text output window (marked
3 in Figure 1), while the graphical output for problems in two variables in the graphical
output window (marked 4 in Figure 1). Important informations of the currently selected
problem (name, number of variables and constraints etc.) can be viewed in the right lower
part (marked 5 in Figure 1). Creating new problems or converting existing ones in the
GloptLab format is also possible with the conversion tools an the internal GloptLab
editor. They can be accessed from the panel marked with 6 in Figure 1. In the central long
panel (marked 7 in Figure 1) the parameters for the graphical output, the statistic database,
the automatically generated proofs, the profiler and the general configuration can be accessed
and modified. The GloptLab configuration consists of several global parameters like the
path of the external solvers or the width of a box which is assumed as tiny, and all the default
values of the parameters used in the different task. There can be different configurations
files, and the parameters contained can be edited by the user.

4.3 Batch solution

Although GloptLab can be completely controlled by using the graphical user interface, the
latter is only an additional layer built on the GloptLab core and not essential for using the
software. Alternatively, it is possible to solve one or more problems with a selected strategy
by using the Unix GloptSolve or the Matlab GloptSolve.m scripts.

GloptLab can generate autosave files (.sav), solution files in the GloptLab format (.gsl)
and .res files as well. The latter is needed for the TestEnvironmet Neumaier et al.
[22] which allows one to compare the results and the performance of GloptLab with other
solvers.

4.4 User defined methods

The different methods are integrated in GloptLab in an uniform way such that the method
repertoire can be easily extended. New functions can be easily written for each category
presented in this section (constraint propagation, linear methods, conic methods, branch
and bound) without an in depth knowledge of GloptLab itself. If someone creates a

12



Figure 1: Gloptlab GUI; for explanations see text.

new method and places it into the Gloptlab/ Source/UserDefined/ directory as an
m-file called gllinear test.m it is automatically recognized by GloptLab as a linear
method and can be used similarly as the predefined ones. Samples for user defined methods
can be found in the Gloptlab/Source/UserDefined/ directory. Each method gets
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5 Example

We following two dimensional example demonstrates the advantage when using GloptLab.
The quadratic constraint satisfaction problem

−3x2
1 + x2x1 + x2

2 = −2

x2
1 + 3x1x2 − 3x2

2 = 10
(15)

has no solution. The graph of (15) generated by the graphical user interface of GloptLab
can be found in Figure 3.

Figure 3: Two dimensional example conisting two equality constraints.

We tested some state of the art solvers by using the NEOS Server (see. Czyzyk et al.
[3]) and obtained following results:

• The global solver Baron, found the problem infeasible after completing 41 iteration
steps in approximately 0.3 seconds. However the message

User did not provide appropriate variable bounds.

We may not be able to guarantee globality.

is hidden in the log file returned by the solver. Thus, we tried to set artificial bounds,
and when we used −104 ≤ x1, x2 ≤ 104 this message disappeared, showing that Baron
cannot cope with unbounded bound constraints.

• The local solver Knitro returned after 35 major iterations and 178 function evalua-
tions the message:

EXIT: Convergence to an infeasible point.

Problem appears to be locally infeasible.

If problem is believed to be feasible, try multistart to search

for feasible points.
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• The rigorous global solver ICOS modified by adding the the artificially set bounds
of −108 ≤ x1, x2 ≤ 108. This happened without additional warning. It found the
modified problem infeasible after 145 splits. The execution time was 4.38 seconds.

• We used GloptLab with the solution strategy in Subsection 4.1, and verified infea-
siblity in 0.860 seconds. GloptLab did not set any artficial bounds on the variables,
and needed no branching since the conic ellipsoid enclosure verified that the problem
is infeasible.
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