
DIFFERENTIABLE ROOTS, EIGENVALUES, AND

EIGENVECTORS

ARMIN RAINER

Abstract. We determine the conditions for the existence of Cp-roots of curves

of monic complex polynomials as well as for the existence of Cp-eigenvalues
and Cp-eigenvectors of curves of normal complex matrices.

1. Introduction

Consider a monic polynomial P whose coefficients are complex valued Cp-
functions, where p ∈ N ∪ {∞}, defined in an open interval I ⊆ R:

P (t)(z) = zn +

n∑
j=1

(−1)jaj(t)z
n−j , aj ∈ Cp(I,C) for all j. (1.1)

We shall say that P is a Cp-curve of polynomials. Furthermore, we shall say that
P is Cq-solvable, if there exists a Cq-parameterization of its roots, i.e., there are
functions λj ∈ Cq(I,C), 1 ≤ j ≤ n, so that

P (t)(z) =

n∏
j=1

(z − λj(t)), t ∈ I.

In general a C∞ or even a real analytic curve of polynomials need not have differen-
tiable roots, for instance P (t)(z) = z2−t. In this example the order of contact of the
roots is too low. On the other hand “low” order of contact of the roots is excluded if
P is hyperbolic (that is all roots are real). However, it is well-known that a general
C∞-curve of hyperbolic polynomials is not C1,α-solvable for any α > 0, see [2]; the
loss of smoothness is caused by oscillation and infinite (i.e. “high”) order of contact
of the roots. On the other hand Cn (resp. C2n)-coefficients guarantee C1 (resp.
twice differentiable) solvability, see [3]. A sufficient condition for C∞-solvability of
hyperbolic polynomials is that no two distinct roots have infinite order of contact,
see [1], another sufficient condition is definability of the coefficients which allows
for infinite contact but excludes oscillation, see [9]. We use the notion definability
always with respect to a fixed arbitrary o-minimal expansion of the real field; cf.
the book [13] or the expository paper [14]. See [8, Table 1] for an overview of the
state of knowledge on the problem of choosing the roots of polynomials in a smooth
way.

E. Bierstone suggested to find the conditions for Cq-solvability, for arbitrary q, in
terms of the differentiability of the coefficients and the (finite) order of contact of the
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2 A. RAINER

roots. We solved this problem in [9] for hyperbolic polynomials P whose coefficients
are definable and for very special “non-definable” hyperbolic polynomials. In this
paper we give a complete solution without assuming hyperbolicity or definability,
see Theorem 5.4.

To this end we associate with any germ at t ∈ I of a Cp-curve of polynomials P
as in (1.1) a labeled rooted tree T (P, t) which reflects the iterated factorization of
P near t, see Algorithm 4.2. In order to avoid pathological situations we restrict
our attention to so-called admissible trees T (P, t), see 4.5. We say that T (P, t)
is good if this algorithm produces a a splitting into linear factors; this is the case
if the order of contact of the roots is sufficiently high at each step, e.g., if P is
hyperbolic. Otherwise T (P, t) is called bad. Some bad rooted trees we call fair if
they have certain properties that are convenient for our goal, see 4.5. Via the trees
T (P, t) we associate with P numbers Γ(P ), Γ̂(P ), γ(P ) ∈ N∪{∞} which encode the
conditions for solvability. More precisely, our main Theorem 5.4 states that under
the assumption that roots do not have infinite order of contact:

• For all p ∈ N ∪ {∞}, P is Cp+γ(P )-solvable, if P is Cp+Γ(P ) and T (P, t) is
good for all t,

• P is Cγ(P )-solvable, if P is CΓ(P ) and T (P, t) is fair for all t,

• P is Cγ(P )-solvable, if P is C1+Γ̂(P ) and T (P, t) is bad for some t.

In Section 9 we give examples which show that the conditions in this statement are
optimal, except perhaps in the third item. As a corollary we recover the results of
[11] on radicals of functions, see Corollary 5.6.

In Section 7 we solve the corresponding problem for curves of normal complex
matrices A(t) = (Aij(t))1≤i,j≤n, t ∈ I, whose eigenvalues have finite order of con-
tact. Here we define a number Θ(A) ∈ N ∪ {∞} that satisfies Θ(A) ≤ γ(PA) ≤
Γ(PA), where PA is the characteristic polynomial of A, and we prove in Theorem 7.8
(under a similar admissibility condition) that:

• For all p ∈ N∪{∞}, the eigenvalues of A can be parameterized by Cp+Θ(P )-
functions, the eigenvectors by Cp-functions, if A is Cp+Θ(P ).

These conditions are optimal, see Example 9.6. We want to stress the fact that
here no loss of smoothness occurs and, loosely speaking, all admissible trees T (A, t)
are good. Similar phenomena have been observed in [6].

In Section 6 and Section 8 we state versions for definable polynomials and defin-
able normal matrices, where admissibility of the associated trees and the assumption
on the finite order of contact of the roots or eigenvalues are not needed. This works
well for the eigenvalues but not for the eigenvectors, which generally do not admit
continuous parameterizations without these assumptions, see Example 9.5.

Let us explain by means of a very simple example the principles behind these
results and its proofs. Consider the polynomial P (t)(z) = z2 − f(t), where f is
a germ at 0 ∈ R of a Cm+2p-function so that f(t) = t2pg(t) and g(0) 6= 0. The

roots of P are given by ±tp
√
g(t). The tree T (P, 0), that consists of the root with

label (2, p) and two leaves with label (1, 0), is good. We have Γ0(P ) = 2p and
γ0(P ) = p. Obviously, g is Cm and, as g(0) 6= 0, so is

√
g. But g is also what we

call a C2p m+2p-function, i.e., a function defined near 0 ∈ R that becomes Cm+2p if
multiplied by the monomial t2p. In particular, g is a Cp m+p-function and thus also√
g, since for any Cp m+p-function g and any Cm+p-germ F at g(0) the composite
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F ◦ g is a Cp m+p-function. So the roots ±tp
√
g(t) are Cm+p. We introduce and

discuss Cp m-functions in Section 3.

Notation and conventions. We use N = N>0 ∪{0}. By convention ∞+Z =∞.
For r ∈ R, we denote by brc (resp. dre) the largest (resp. smallest) p ∈ Z such that
p ≤ r (resp. p ≥ r). By {r} := r − brc we mean the fractional part of r. The
identity matrix of size n is denoted by In.

For a continuous complex valued function f defined near t0 in R, let the multi-
plicity mt0(f) at t0 be the supremum of all integers p such that f(t) = (t− t0)pg(t)
near t0 for a continuous function g. Note that, if f is of class Cn and mt0(f) < n,
then f(t) = (t− t0)mt0 (f)g(t) near t0, where g is Cn−mt0 (f) and g(t0) 6= 0.

For a tuple a = (a1, . . . , an) of germs at 0 ∈ R of complex valued C0-functions
satisfying m0(ak) ≥ kr for some r ∈ N, we say that a is r-divisible and define a(r)

by setting

a(r)(t) := (t−ra1(t), t−2ra2(t), . . . , t−2nan(t)).

If a(r)(0) 6= 0 we say that a is strictly r-divisible.
A monic polynomial P of degree n will frequently be identified with the tuple

a(P ) = (a1(P ), . . . , an(P )) of its coefficients so that P takes the form (1.1) with
aj = aj(P ).

A rooted tree is a tree with a fixed special vertex, the root. Writing V ≤ W if
V belongs to the path between W and the root defines a natural partial order on
the set of vertices. The successors of a vertex V are all vertices W ≥ V connected
to V by an edge. The maximal elements are called leaves. The height of a vertex
in a rooted tree is the number of edges in the path that connects the vertex to the
root. A rooted tree is called trivial if it consists just of its root.

2. Preliminaries on polynomials

For a monic polynomial with complex coefficients a1, . . . , an and roots λ1, . . . , λn,

P (z) = zn +

n∑
j=1

(−1)jajz
n−j =

n∏
j=1

(z − λj),

we have

ai = σi(λ1, . . . , λn) =
∑

1≤j1<···<ji≤n

λj1 · · ·λji

by Vieta’s formulas, where σ1, . . . , σn are the elementary symmetric functions in n
variables. The Newton polynomials si =

∑n
j=1 λ

i
j , i ∈ N, form a different set of

generators for the algebra of symmetric polynomials on Cn and satisfy

sk − sk−1σ1 + sk−2σ2 − · · ·+ (−1)k−1s1σk−1 + (−1)kkσk = 0, (k ≥ 1).

Consider the so-called Bezoutiant

B :=


s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
. . .

...
sn−1 sn . . . s2n−2

 = (si+j−2)1≤i,j≤n .

If Bk denotes the minor formed by the first k rows and columns of B, then we have

∆k(λ) := detBk(λ) =
∑

i1<···<ik

(λi1 − λi2)2 · · · (λi1 − λik)2 · · · (λik−1
− λik)2 (2.1)



4 A. RAINER

and there exist unique polynomials ∆̃k satisfying ∆k = ∆̃k ◦ (σ1, . . . , σn). The

number of distinct roots of P equals the maximal k such that ∆̃k(P ) 6= 0.

2.2. Lemma (Splitting lemma [1, 3.4]). Let P0 be a monic polynomial satisfying
P0 = P1 · P2, where P1 and P2 are polynomials without common root. Then for P
near P0 we have P = P1(P ) · P2(P ) for analytic mappings of monic polynomials
P 7→ P1(P ) and P 7→ P2(P ), defined for P near P0, with the given initial values.

2.3. Lemma ([5, II Thm. 5.2]). Any C0-curve of polynomials as in (1.1) is C0-
solvable.

2.4. Lemma. Let P (t), t ∈ I, be a C0-curve of polynomials as in (1.1) and let
p ∈ N. If P is locally Cp-solvable, then P is globally Cp-solvable.

Proof. Let λ = (λ1, . . . , λn) : I ) (a, b) → Cn be a maximal Cp-parameterization
of the roots so that b ∈ I. By assumption there is a local Cp-parameterization
µ = (µ1 . . . , µn) of the roots near b. Let t0 be in the common domain of λ and µ
and consider a sequence tk → t−0 . For each k the n-tuples λ(tk) and µ(tk) differ
just by a permutation, and by passing to a subsequence we can assume that this
permutation τ is independent of k, i.e., λ(tk) = τ.µ(tk) for all k. Rolle’s theorem
implies that λ(q)(t0) = τ.µ(q)(t0) for all 0 ≤ q ≤ p, and hence λ has a Cp-extension
beyond b, contradicting its maximality. �

3. Cp m-functions

3.1. Cp m-functions. Let p,m ∈ N with p ≤ m. A continuous complex valued
function f defined near 0 ∈ R is called a Cp m-function if t 7→ tpf(t) belongs to Cm.
A vector or matrix valued function f = (fi)1≤i≤n is called Cp m if each component
fi is Cp m. (We will not use the notation f ∈ Cp m if p > m or f 6∈ C0.)

Let I ⊆ R be an open interval containing 0. Then f : I → C is Cp m if and only
if it has the following properties, cf. [12, 4.1], [10, Satz 3], or [11, Thm. 4]:

• f ∈ Cm−p(I).
• f |I\{0} ∈ Cm(I \ {0}).
• limt→0 t

kf (m−p+k)(t) exists as a finite number for all 0 ≤ k ≤ p.

3.2. Proposition. Let k, l,m, p, q ∈ N. We have:

(1) If f is Cp m, then f is also Cp−k m−k−l for all 0 ≤ k ≤ p, 0 ≤ l ≤ m− p.
(2) If f is Cp m+p+q, then f is also Cp+q m+p+q.
(3) If g = (g1, . . . , gn) is Cp m and F is Cm near g(0) ∈ Cn, then F ◦ g is Cp m.
(4) If g1, . . . , gn are Cp m, then

∑
gi and

∏
gi are Cp m.

(5) If f is Cp m, then t 7→ f(tN ) is Cp m for all N ∈ N>0.

(6) If f is Cp p, then t 7→ f(sgn(t)|t| 1N ) is Cp p for all N ∈ N>0.
(7) If f is Cp p, then t 7→ sgn(t)l|t|εf(t) is Cp p for all 0 < ε < 1 and l = 1, 2.

Proof. (1) and (2) follow from the definition.
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(3) Cf. [11, Thm. 9]. Clearly g and F ◦ g are Cm−p near 0 and Cm off 0. By Faà
di Bruno’s formula [4], for 1 ≤ k ≤ p and t 6= 0,

tk(F ◦ g)(m−p+k)(t)

(m− p+ k)!
=
∑
l≥1

∑
α∈A

tk−|β|

l!
dlF (g(t))

( tβ1g(α1)(t)

α1!
, . . . ,

tβlg(αl)(t)

αl!

)
A := {α ∈ Nl>0 : α1 + · · ·+ αl = m− p+ k}
βi := max{αi −m+ p, 0}, |β| = β1 + · · ·+ βl ≤ k,

(3.3)

whose limit as t→ 0 exists as a finite number by assumption.
(4) is a consequence of (3).

(5) As in (3.3), for 1 ≤ k ≤ p, t 6= 0, and CN,α :=
∏l
i=1

(
N
αi

)
,

tk∂m−p+kt (f(tN ))

(m− p+ k)!
=

k∑
j=−m+p+1

∑
α∈A
αi≤N

l=m−p+j

CN,α
t(N−1)(m−p)+jNf (m−p+j)(tN )

(m− p+ j)!

whose limit as t→ 0 exists as a finite number by assumption.

(6) As in (3.3), for 1 ≤ k ≤ p = m, t 6= 0, N > 1, and DN,α :=
∏l
i=1

( 1
N
αi

)
,

tk∂kt (f(sgn(t)|t| 1N ))

k!
=

k∑
l=1

∑
α∈A

DN,α
sgn(t)

l |t| l
N f (l)(sgn(t)|t| 1N )

l!

whose limit as t→ 0 exists as a finite number by assumption.
(7) By the Leibniz rule, we have, for 0 ≤ k ≤ p and t 6= 0,

tk∂kt (sgn(t)l|t|εf(t)) = sgn(t)l|t|ε
k∑
j=0

(
k

j

)(
ε

k − j

)
(k − j)! tjf (j)(t),

which converges to 0 as t→ 0 by assumption. The proof is complete. �

4. A rooted tree associated with P

4.1. Derived polynomials. Let P be a germ at 0 ∈ R of a Cp-curve of polynomi-
als (1.1), where p ∈ N∪{∞}. We shall repeatedly use several derived polynomials:

P =
∏
Pi Lemma 2.2 provides a factorization P = P1 · · ·Pl into germs Pi of

Cp-curves of polynomials such that the roots of each Pi(0) coincide,
but distinct Pi have distinct roots. If l > 1 we say that P splits.

P P (z) := P (z + 1
na1(P )) is a germ of a Cp-curve of polynomials sat-

isfying a1(P ) = 0.
P(r) If a(P ) is r-divisible we define P(r) by setting a(P(r)) := a(P )(r).

Then P(r) is Cp−nr if p ≥ nr. If a(P ) is strictly r-divisible (for
instance if p > nr) and a1(P ) = 0, then P(r) splits. If µi(t) is a
choice of the roots for P(r)(t), then λi(t) = trµi(t) represent the
roots of P (t).

P±,N For N ∈ N>0 we set P±,N (t) := P (±tN ).

4.2. Algorithm (Local factorization of a curve of polynomials). Let P be a germ at
0 ∈ R of a Cp-curve of polynomials as in (1.1), where p ∈ N∪ {∞}. The algorithm
will associate with P a rooted tree T = T (P ) = T (P, 0) whose vertices are labeled
by pairs (d, q) ∈ N×Q. Each vertex in T corresponds uniquely to a (intermediate)
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factor in the factorization produced by the following steps. At the beginning T
consists just of its root which is labeled (deg(P ) = n, q), where q is 0 if P splits or
otherwise q will be determined in (II).

Abusing notation we shall denote by P also an intermediate factor produced
in the course of the algorithm. Let V denote the vertex associated with P and
(d(V ) = deg(P ), q(V )) its label.

(I) If P splits, P =
∏
Pi, add one vertex Vi for each Pi, set d(Vi) := deg(Pi),

and join Vi to V by an edge. Feed each Pi into (II).
(II) If P does not split, i.e., all roots of P (0) coincide, replace P by P . So we can

assume that a1(P ) = 0 and thus all roots of P (0) are equal to 0. Set

m = m(P, 0) := min
k

m0(ak)

k
∈ Q≥0 ∪ {∞}. (4.3)

If p < dnme set q(V ) := 0 and V becomes a leaf of T . Otherwise proceed as
follows.

(IIa) If 0 ≤ m < ∞ then m0(ak) ≥ km for all k and we have equality for some
k. If t−kmak(t)|t=0 = 0 for all k with m0(ak) = km, set q(V ) := 0 and V
becomes a leaf of T . So assume the contrary. Let

N ∈ N>0 be minimal so that r := Nm ∈ N. (4.4)

If N = 1, then a(P ) is strictly r-divisible. Set q(V ) := r, associate V with
P(r), and feed P(r) into (I).

If N > 1 (equivalently r
N 6∈ Z), set q(V ) := r

N and V becomes a leaf of

T . For later use we associate with this leaf the new rooted tree T (P±,N , 0).
Note that a(P±,N ) is strictly r-divisible.

(IIb) If a(P ) = 0 identically, set q(V ) := 0 and add n vertices, each labeled (1, 0)
and each joined to V by an edge.

(IIc) If m =∞ and a(P ) 6= 0, set q(V ) := 0 and add n vertices, each labeled (1, 0)
and each joined to V by an edge. In this case any continuous root λ of P
satisfies m0(λ) = ∞. Indeed, a(P ) is r-divisible for every r ∈ N, and, for
t 6= 0, µ(t) = t−rλ(t) is a root of P(r)(t), thus bounded, and so m0(λ) ≥ r−1.

4.5. Good, bad, and fair rooted trees T (P, t). Modifying the algorithm in the
obvious way we can associate with each Cp-curve of polynomials P (t), t ∈ I, as
in (1.1) and each t ∈ I a rooted tree T (P, t) whose vertices are labeled by pairs
(d, q) ∈ N×Q.

We say that T (P, t) is admissible if the label (d, q) of every leaf of T (P, t) satisfies

• q = 0⇒ d = 1.

That is, in Step (II) of Algorithm 4.2, m satisfies 0 < m ≤ p
n and a(P ), resp.

a(P±,N ), is strictly r-divisible. We say that T (P, t) is good if every leaf of T has
the label (1, 0) (so a good tree is admissible). An admissible tree T (P, t) that is not
good is called bad. Leaves with label other than (1, 0) are called bad. An admissible

tree T (P, t) is called fair if for each bad leaf V in T (P, t) the rooted tree T (P±,NV , t),
where PV is the polynomial corresponding to V (see Step (IIa)), is good and has
height 1.

For P hyperbolic and p sufficiently large, T (P, t) is good for all t, see e.g. [9].

4.6. Associated integers Γ(P ), γ(P ), and Γ̂(P ). Let P (t), t ∈ I, be a Cp-curve
of polynomials as in (1.1). For t ∈ I and each vertex V in T (P, t) we recursively
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define two integers Γt(V ) and γt(V ) by setting

Γt(V ) := dd(V ) · q(V )e
γt(V ) := bq(V )c

if V is a leaf, and otherwise

Γt(V ) := dd(V ) · q(V )e+ max
W

Γt(W ),

γt(V ) := bq(V )c+

{
Γt(V )−maxW

(
Γt(W )− γt(W )

)
if T (P, t) is good

minW γt(W ) if T (P, t) is bad
,

where W ranges over all successors of V , and we set

Γt(P ) := Γt(root of T (P, t)),

γt(P ) := γt(root of T (P, t)).
(4.7)

Furthermore, we set

Γ(P ) := sup
t∈I

Γt(P ), (4.8)

γ(P ) := min
{

inf
t∈I:

T (P,t) good

(
Γ(P )− Γt(P ) + γt(P )

)
, inf

t∈I:
T (P,t) bad

γt(P )
}
. (4.9)

Then Γ(P ), γ(P ) ∈ N ∪ {∞} and γ(P ) ≤ Γ(P ).

For later reference we also present an equivalent definition of Γt(P ) and γt(P )
under the assumption that T (P, t) is admissible:

• If P =
∏
Pi splits near t,

Γt(P ) := max
i

Γt(Pi), (4.10)

γt(P ) :=

{
Γt(P )−maxi

(
Γt(Pi)− γt(Pi)

)
if T (P, t) is good

mini γt(Pi) if T (P, t) is bad
. (4.11)

• If P does not split near t,

Γt(P ) := Γt(P ), (4.12)

γt(P ) := γt(P ). (4.13)

Let m be as defined in (4.3); as T (P, t) is admissible m 6= 0.
– If m <∞ consider the integers N and r from (4.4).

∗ If N = 1,

Γt(P ) := Γt(P(r)) + deg(P )r, (4.14)

γt(P ) := γt(P(r)) + r. (4.15)

∗ If N > 1,

Γt(P ) :=
⌈deg(P )r

N

⌉
, (4.16)

γt(P ) :=
⌊ r
N

⌋
. (4.17)

– If m =∞,

Γt(P ) := 0, (4.18)

γt(P ) := 0. (4.19)
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Still assuming that T (P, t) is admissible, we define Γ̂t(P ), resp. Γ̂(P ), by replac-

ing Γ by Γ̂ in (4.8), (4.10), (4.12), (4.14), (4.18) and by substituting

Γ̂t(P ) := Γ̂t(P
±,N ). (4.20)

for (4.16). Clearly Γt(P ) ≤ Γ̂t(P ) and Γ(P ) ≤ Γ̂(P ).

4.21. Remark. We have:

(1) If T (P, t) is admissible, then P is CΓt(P ) near t.
(2) If P is CΓt(P )+1 near t, then T (P, t) is admissible.

4.22. The set E(∞)(P ). Let P (t), t ∈ I, be a C0-curve of polynomials as in (1.1).
We denote by E(∞)(P ) the set of all t ∈ I which satisfy the following condition:

• If s = s(t, P ) is the maximal integer so that the germ at t of ∆̃s ◦ P is not

0, then mt(∆̃s ◦ P ) =∞.

Let Λt denote the set of germs at t of C0-parameterizations λ = (λ1, . . . , λn) of the
roots of P which is non-empty by Lemma 2.3. If t 6∈ E(∞)(P ) then mt(λi−λj) =∞
implies λi = λj for all λ ∈ Λt, by (2.1), and Step (IIc) in Algorithm 4.2 is empty.

5. Differentiable roots of complex polynomials

In this section we prove the main result, Theorem 5.4. First we state two lemmas.

5.1. Lemma ([6, 2.6]). Let P (t), t ∈ I, be a C0-curve of polynomials as in (1.1)
such that E(∞)(P ) = ∅. Two C∞-parameterizations of the roots of P differ by a
constant permutation.

The following lemma is needed for polynomials with fair rooted tree.

5.2. Lemma. Let s,N ∈ N>0 be such that q := s
N 6∈ Z and let r ∈ N. Let P be a

germ at 0 of a Cnr dnqe+nr-curve of polynomials as in (1.1) such that

• a1(P ) = 0
• m0(ak(P )) ≥ kq for all k (thus a(P±,N ) is s-divisible)
• all roots of (P±,N )(s)(0) are distinct.

Let µ±,Nj be continuous function germs representing the roots of (P±,N )(s) and set

λ±,Nj (t) := tsµ±,Nj (t). Then each Λ±j (t) := λ±,Nj (sgn(t)|t| 1N ) is Cr bqc+r.

Proof. Write ak = ak(P ). Clearly m0(ak) ≥ dkqe and thus ak(t) = tdkqebk(t) for
Cdnqe+nr dnqe+nr-functions bk, by 3.2(2). By 3.2(5), t 7→ bk(±tN ) is Cdnqe+nr dnqe+nr

as well. It follows that a((P±,N )(s)) is Cdnqe+nr dnqe+nr, since

ak((P±,N )(s))(t) = (±1)dkqetNdkqe−ksbk(±tN ), Ndkqe − ks ∈ N.
By Lemma 2.2 there exist real analytic functions Φj , 1 ≤ j ≤ n, defined in a

neighborhood of a((P±,N )(s))(0) ∈ Cn such that µ±,Nj = Φj ◦ a((P±,N )(s)). Hence

each t 7→ µ±,Nj (sgn(t)|t| 1N ) is Cdnqe+nr dnqe+nr, by 3.2(3) and 3.2(6). Now

Λ±j (t) = sgn(t)s+bqc|t|{q}tbqcµ±,Nj (sgn(t)|t| 1N ) (5.3)

is Cr bqc+r, by 3.2(1) and 3.2(7), since {q} 6= 0. �

Now we are ready to prove the main theorem.

5.4. Theorem. Let P (t), t ∈ I, be a Cp+Γ(P )-curve, p ∈ N ∪ {∞}, of polynomials
as in (1.1) such that E(∞)(P ) = ∅. Then we have:
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(1) If T (P, t) is good for all t, then P is Cp+γ(P )-solvable.
(2) If T (P, t) is fair for all t, then P is Cγ(P )-solvable.

(3) If T (P, t) is bad for some t and P is C1+Γ̂(P ), then P is Cγ(P )-solvable.

Note that T (P, t) is admissible for all t; in (1) and (2) by definition and in (3)
by Remark 4.21.

Proof. It suffices to prove the local assertions in the following claim. This is a
consequence of Lemma 2.4 and Lemma 5.1. Let t be fixed.

Claim (Local assertions). Assume P is Cp+Γ(P ).

(1′) If T (P, t) is good, then P is Cp+γ(P )-solvable near t.
(2′) If T (P, t) is fair, then P is Cγ(P )-solvable near t.

(3′) If T (P, t) is bad and P is C1+Γ̂(P ), then P is Cγ(P )-solvable near t.

In fact it suffices to show the following.

Claim. Assume that P is Cp+Γt(P ).

(1′′) If T (P, t) is good, then P is Cp+γt(P )-solvable near t.
(2′′) If T (P, t) is fair, then P is Cγt(P )-solvable near t.

(3′′) If T (P, t) is bad and P is C1+Γ̂t(P ), then P is Cγt(P )-solvable near t.

Indeed, if P is Cp+Γ(P ) and we assume (1′′), then P is Cp+Γ(P )−Γt(P )+γt(P )-
solvable near t, and, by (4.9), p+ Γ(P )−Γt(P ) + γt(P ) ≥ p+ γ(P ), thus (1′). The
implications (2′′) ⇒ (2′) and (3′′) ⇒ (3′) follow from γt(P ) ≥ γ(P ), by (4.9).

Without loss of generality assume that 0 ∈ I and t = 0. We obtain (1′′), (2′′),
and (3′′) if we set r = 0 and P[0] = P in the following claim.

Claim. Let P[r] be any Cnr p+Γ0(P[r])+nr-curve, r ∈ N, of polynomials as in (1.1)

such that 0 6∈ E(∞)(P[r]).

(1′′′) If T (P[r], 0) is good, then P[r] is Cr p+γ0(P[r])+r-solvable.

(2′′′) If T (P[r], 0) is fair, then P[r] is Cr γ0(P[r])+r-solvable.

(3′′′) If T (P[r], 0) is bad and P[r] is Cnr 1+Γ̂0(P[r])+nr, then P[r] is Cr γ0(P[r])+r-
solvable.

Here P[r] should not be confused with P(r); however, if P ; P(r) as in Step (IIa)
of Algorithm 4.2, then P(r) satisfies the assumptions of the claim.

We first prove (1′′′) and (2′′′) by induction on the degree n; afterwards we indicate
the modifications which provide a proof of (3′′′). We follow Algorithm 4.2.

Proof of (1′′′) and (2′′′). If all roots of P[r](0) coincide, we may assume that

a1(P[r]) = 0, by replacing P[r] by P[r] which preserves the class Cnr p+Γ0(P[r])+nr,
by 3.2(4). Then all roots of P[r](0) are equal to 0, and a(P[r])(0) = 0.

If a(P[r]) = 0 identically, we are done. Otherwise consider m = m(P[r], 0) ∈ Q>0

as in (4.3) and let N ∈ N>0 be minimal such that s := Nm ∈ N>0; note that
0 < m < ∞ since T (P[r], 0) is admissible and 0 6∈ E(∞)(P[r]). We treat the cases
N = 1 and N > 1 separately.

Case N = 1. Admissibility of T (P[r], 0) implies that a(P[r]) is strictly s-divisible.

The polynomial P(r+s) := (P[r])(s) is Cn(r+s) p+Γ0(P[r])+nr, by 3.2(2), and it splits.
Note that T (P[r], 0) = T (P(r+s), 0), Γ0(P[r]) = Γ0(P(r+s))+ns, by (4.14), γ0(P[r]) =
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γ0(P(r+s)) + s, by (4.15), 0 6∈ E(∞)(P(r+s)), and the roots of P[r] differ from those
of P(r+s) by multiplication with ts. Replace P[r] by P(r+s).

So after these initial steps we may assume that a1(P[r]) = 0 and that P[r] splits:
P[r] =

∏
P[r],j , where P[r],j := (P[r])j and a(P[r],j) = Φj ◦ a(P[r]) for real analytic

mappings Φj defined near a(P[r])(0) ∈ Cn, by Lemma 2.2. Each P[r],j forms a

Cnr p+Γ0(P[r])+nr-curve of polynomials, by 3.2(3). Setting

p[r],j := p+ Γ0(P[r])− Γ0(P[r],j),

we may conclude that P[r],j is Cnjr p[r],j+Γ0(P[r],j)+njr, where nj = deg(P[r],j), by
3.2(1). If T (P[r], 0) is good (resp. fair), then each T (P[r],j , 0) is good (resp. fair).

If T (P[r], 0) is bad, then some T (P[r],j , 0) is bad. Clearly 0 6∈ E(∞)(P[r],j) for all j.
Hence each P[r],j satisfies the assumptions of the claim and thus is

(1′′′) Cr p[r],j+γ0(P[r],j)+r-solvable,
(2′′′) Cr γ0(P[r],j)+r-solvable,

by induction. By (4.10) and (4.11), we have p[r],j + γ0(P[r],j) ≥ p+ γ0(P[r]) (resp.
γ0(P[r],j) ≥ γ0(P[r])) if T (P[r], 0) is good (resp. bad). Hence we have shown (1′′′)
and (2′′′) in case N = 1.

Case N > 1. Here T (P[r], 0) is trivial, the label of the only vertex is (n, q) where

q = s
N . Admissibility of T (P[r], 0) implies that a((P[r])

±,N ) is strictly s-divisible.

By Lemma 2.3, P±,N(r+s) := ((P[r])
±,N )(s) admits a continuous parameterization µ±,Nj

of its roots satisfying µ+,N
j (0) = µ−,Nj (0), and λ±,Nj (t) := tsµ±,Nj (t) represent the

roots of (P[r])
±,N . As T (P[r], 0) is fair, µ±,Ni (0) 6= µ±,Nj (0) for i 6= j, and thus

each Λ±j (t) := λ±,Nj (sgn(t)|t| 1N ) is Cr bqc+r, by Lemma 5.2. So, if N is odd, then

λj := Λ+
j forms a Cr bqc+r-parameterization of the roots of P[r]. If N is even, set

λj(t) :=

{
Λ+
j (t) if t ≥ 0

Λ−j (t) if t < 0
.

The functions λj parameterize the roots of P[r] and are Cr bqc+r. Indeed, using the

formula (5.3) for Λ±j and applying the Leibniz rule, we find ∂mt (trΛ±j (t))|t=0 = 0

for all 0 ≤ m ≤ bqc+ r, since {q} 6= 0. By (4.17), we are done. The proof of (1′′′)
and (2′′′) is complete.

Proof of (3′′′). The first part of the proof of (2′′′) works for (3′′′) as well; just

exchange Γ̂0 for Γ0 and set p = 1. The case N > 1 must be modified:

If T (P[r], 0) is not fair, the roots µ±,Nj of P±,N(r+s) are not necessarily pair-

wise distinct at 0 and we cannot apply Lemma 5.2. However we may proceed

as follows. By 3.2(5), (P[r])
±,N is Cnr 1+Γ̂0(P[r])+nr, and 0 6∈ E(∞)((P[r])

±,N ).

Since Γ̂0(P[r]) = Γ̂0((P[r])
±,N ), by (4.20), and since a((P[r])

±,N ) is strictly s-
divisible, we may conclude by induction and the first part of the proof that the

roots of (P[r])
±,N can be parameterized by Cr γ0((P[r])

±,N )+r-functions λ±,Nj . Since

λ±,Nj (t) = tsµ±,Nj (t) and by (4.15) and 3.2(1), we find that µ±,Nj is Cr+s r+s.

By 3.2(6), 3.2(1), and 3.2(7), we may conclude that Λ±j (t) = λ±,Nj (sgn(t)|t| 1N ) is

Cr bqc+r (cf. the end of the proof of Lemma 5.2). We finish the proof as for (2′′′).

The proof is complete. �
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5.5. Remarks. (1) If T (P, t) is admissible, then so is the tree associated with any
of the derived polynomials of P , except possibly for P±,N (cf. 4.1). The condition

that P is C1+Γ̂(P ) in 5.4(3) guarantees admissibility of the associated trees of P
at any t and of all iterated derivations including (·)±,N which appear in the course
of Algorithm 4.2, see Remark 4.21. If admissibility of all these trees is taken for

granted, then the condition that P is CΓ̂(P ) is sufficient for the conclusion of 5.4(3).

(2) A priori Γ(P ), Γ̂(P ), and γ(P ) might be infinite. Theorem 5.4 remains true
in this case; note that γ(P ) is finite if T (P, t) is bad for some t. The integers Γt(P ),

Γ̂t(P ), and γt(P ) are non-zero only at points t, where the multiplicity of the roots
of P changes, and these points form a discrete set if E(∞)(P ) = ∅ and P is C∞. So

ΓJ(P ), Γ̂J(P ), and γJ(P ), where the supremum, resp. infimum, in the definition
(4.8) and (4.9) is taken over a relatively compact subinterval J ⊆ I, are finite if
E(∞)(P ) = ∅ and P is C∞.

5.6. Corollary. Let p ∈ N∪{∞} and let f be a germ at 0 ∈ R of a complex valued
Cp+m0(f)-function with m0(f) <∞ and so that t−m0(f)f(t)|t=0 6= 0. Then:

(1) If m0(f)
n ∈ Z, then there is a Cp+

m0(f)
n -germ g such that gn = f .

(2) If m0(f)
n 6∈ Z, then there is a Cb

m0(f)
n c-germ g such that gn = f .

Proof. Consider P (t)(z) = zn−f(t). Then r
N = m0(f)

n and Γ0(P ) = m0(f). Thus,
(1) is a special case of 5.4(1′′), and (2) of 5.4(2′′). �

This result is essentially due to Reichard [11]. Note that there are minor dif-
ferences between Corollary 5.6 and [11, Cor. 15], since Reichard considers the nth

root f
1
n of a (non-negative if n is even) function f while we study functions g such

that gn = f .

6. Differentiable roots of definable complex polynomials

For definable curves of polynomials Theorem 5.4 (and its proof) simplifies. Ad-
missibility of the associated trees as well as the assumption E(∞)(P ) = ∅ are not
necessary. The main reason is the following lemma.

6.1. Lemma ([9, 2.5]). Let f be a germ at 0 ∈ R of a definable complex valued
function and let m ∈ N. If f is Cm, then f is Cp m+p for every p ∈ N. In
particular, if f is C0 and m0(f) ≥ p, then f is Cp.

Let P (t), t ∈ I, be a definable C0-curve of polynomials as in (1.1). Then any
continuous parameterization of the roots of P is definable (cf. [9, 7.2]). We slightly
modify Algorithm 4.2:

(II) If p < dnme proceed in (IIa).
(IIa) If t−kmak(t)|t=0 = 0 for all k with m0(ak) = km, consider N, r as in (4.4),

set q(V ) := r
N , and V becomes a leaf of T . In this case a(P ), resp. a(P±,N ),

is r-divisible, but not strictly.

Define Γt(P ) and γt(P ) by (4.7); it does not require admissibility of T (P, t). De-
finability implies that the set of t ∈ I such that Γt(P ) > 0 or γt(P ) > 0 is finite
and hence Γ(P ) and γ(P ) are integers.

6.2. Theorem. Let P (t), t ∈ I, be a definable Cp+Γ(P )-curve, p ∈ N ∪ {∞}, of
polynomials as in (1.1). Then:
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(1) If T (P, t) is good for all t, then P is Cp+γ(P )-solvable.
(2) If T (P, t) is bad for some t, then P is Cγ(P )-solvable.

Proof. Here Step (IIc) of Algorithm 4.2 might not be empty. Suppose that 0 ∈ I
and m0(ak) =∞ for all k, where ak = ak(P ). Then m0(λj) =∞ for any choice of
continuous roots λj of P . By Lemma 6.1, for each q there is a neighborhood Iq of
0 such that each λj is Cq on Iq. Since the coefficients aj (and hence the functions

∆̃k(P )) are definable, the multiplicity of the λj(t) is constant for small t 6= 0. So
off 0 all λj have the regularity of P , by Lemma 2.2, and hence also near 0.

This observation together with 5.4(1) implies the case p =∞, since by Lemma 5.1
the local C∞-parameterizations are unique up to flat contact in the following sense:
If λj and µj are two different C∞-parameterizations of the roots near 0, then
{λ1, . . . , λn}/∼ = {µ1, . . . , µn}/∼, where λi ∼ λj if and only if m0(λi − λj) =∞.

The rest of the proof is similar to the proof of Theorem 5.4 but much simpler
via Lemma 6.1; here we automatically “gain q derivatives back by multiplying with
tq”, in particular, we do not need “strict divisibility”. It is obvious how to make
the necessary modifications. �

For the sake of completeness we state the following result.

6.3. Theorem. Let P (t), t ∈ I, be a definable Cn-curve of polynomials of de-
gree n as in (1.1). Then P is C1-solvable if and only if there is a continuous
parameterization of the roots with order of contact ≥ 1 (i.e. if λi(t) = λj(t) then
mt(λi − λj) ≥ 1).

Proof. The statement follows from Lemma 2.4, Lemma 6.1, and [7, 4.3]. �

7. Differentiable eigenvalues and eigenvectors of normal matrices

We say that A(t) = (Aij(t))1≤i,j≤n, t ∈ I, is a Cp-curve of normal matrices, p ∈
N∪{∞}, if all Aij ∈ Cp(I,C) and A(t)A∗(t) = A∗(t)A(t) for all t. We associate with

A its characteristic polynomial PA(z) := det(zIn −A), i.e., ak(PA) = Trace(
∧k

A),
and set E(∞)(A) := E(∞)(PA).

7.1. Algorithm (Local spectral decomposition of a curve of normal matrices). Let
A = (Aij)1≤i,j≤n be a germ at 0 ∈ R of a Cp-curve of normal matrices, where
p ∈ N∪{∞}. In analogy with Algorithm 4.2, this algorithm will associate with A a
rooted tree T = T (A) = T (A, 0) whose vertices are labeled by pairs (d, q) ∈ N×Q.
At the beginning T consists just of its root which is labeled (n, q), where q is 0 if
we start in (I) or otherwise q will be determined in (II).

Let V denote the vertex associated with A and (d(V ), q(V )) its label.

(I) If A(0) has distinct eigenvalues ν1, . . . , νl with respective multiplicities
n1, . . . , nl, choose pairwise disjoint simple closed C1-curves γi in the resol-
vent set of A(0) such that γi encloses only νi among all eigenvalues of A(0).
By continuity, no eigenvalue of A(t) lies on

⋃
i γi, for t near 0. Now,

t 7→ − 1

2πi

∫
γi

(A(t)− z)−1 dz =: Πi(t)

is a Cp-curve of projections with constant rank onto the direct sum of all
eigenspaces corresponding to eigenvalues of A(t) in the interior of γi. The
family of ni-dimensional complex vector spaces t 7→ Πi(t)(Cn) ⊆ Cn forms a
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Cp Hermitian vector subbundle of the trivial bundle R×Cn → R: For given
t, choose v1, . . . vni ∈ Cn such that the Πi(t)(vi) are linearly independent and
thus span Π(t)(Cn). This remains true locally in t. We use the Gram Schmidt
orthonormalization procedure (which is Cω) for the Πi(t)(vi) to obtain a local
orthonormal Cp-frame of the bundle. Now A(t) maps Πi(t)(Cn) to itself and
in a local Cp-frame it is given by a normal ni × ni matrix Ai parameterized
in a Cp-way by t. Add one vertex Vi for each Ai, join Vi to V by an edge,
and set d(Vi) := ni. Feed each Ai into (II).

(II) If all eigenvalues of A(0) coincide, replace A by A− 1
n Trace(A)In. Then all

eigenvalues of A(0) are equal to 0, and A(0) = 0. Set

r := min
i,j

m0(Aij). (7.2)

If r = ∞ set q(V ) := 0 and add n vertices, each joined to V by an edge
and each labeled (1, 0). If A = 0 all eigenvalues of A are identically 0 and
the eigenvectors can be chosen constant. If A 6= 0 (which may occur if
0 ∈ E(∞)(A)) then any continuous eigenvalue λ of A satisfies m0(λ) = ∞,
cf. 4.2(IIc).

If r <∞ consider

A(r)(t) := t−rA(t).

If p < r or A(r)(0) = 0, set q(V ) := 0 and V becomes a leaf of T . Otherwise

A(r) is Cp−r, and if µi is a choice of the eigenvalues for A(r), then λi(t) =
trµi(t) represent the eigenvalues of t 7→ A(t). Eigenvectors of A(r) are also
eigenvectors of A (and vice versa). Set q(V ) := r, associate V with A(r), and
feed A(r) into (I).

We say that T (A, 0) is admissible if the label (d, q) of every leaf of T satisfies

• q = 0⇒ d = 1,

i.e.,in Step (2) we have p ≥ r and A(r)(0) 6= 0. Evidently, admissibility is preserved

by any of the reductions A; Ai, A; A− 1
n Trace(A)In, and A; A(r).

Similarly we may consider T (A, t) for any t.

7.3. Associated integer Θ(A). Let A(t), t ∈ I, be a Cp-curve of normal matrices,
p ∈ N∪{∞}. For each t and each vertex V in T (A, t) we recursively define an integer
Θt(V ) by setting

Θt(V ) :=

{
q(V ) if V is a leaf

q(V ) + maxW Θt(W ) otherwise
,

where W ranges over all successors of V , and we set

Θt(A) := Θt(root of T (A, t)) (7.4)

Furthermore, we set

Θ(A) := sup
t∈I

Θt(A) ∈ N ∪ {∞}. (7.5)

It is easy to see that

Θ(A) ≤ γ(PA) ≤ Γ(PA).

For later reference we also present an equivalent definition of Θt(A) under the
assumption that T (A, t) is admissible:
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• If A(t) has distinct eigenvalues and Ai, 1 ≤ i ≤ l, denote the respective
normal matrices introduced in Algorithm 7.1(I),

Θt(A) := max
i

Θt(Ai). (7.6)

• If all eigenvalues of A(t) coincide, replace A by A− 1
n Trace(A)In (without

changing Θt(A)). Consider r as in (7.2).
– If r =∞ set Θt(A) := 0.
– If r <∞ set

Θt(A) := Θt(A(r)) + r. (7.7)

Remark. We have:

(1) If A is admissible at t, then A is CΘt(A) near t.
(2) If A is C1+Θt(A) near t, then A is admissible near t.

7.8. Theorem. Let A(t), t ∈ I, be a Cp+Θ(A)-curve, p ∈ N ∪ {∞}, of normal
matrices such that T (A, t) is admissible at any t and E(∞)(A) = ∅. Then the
eigenvalues of A can be parameterized by Cp+Θ(A)-functions, the eigenvectors locally
by Cp-functions and even globally if p ≥ 1.

Proof. We show the local assertions. Then the global statement for the eigenvalues
follows from Lemma 2.4 and Lemma 5.1. For the eigenvectors we may argue as in
[1, 7.6] or in [6, 5.11]; here we need p ≥ 1 for the construction of the transformation
function which involves linear ODEs. Let t be fixed.

Claim (Local assertions). If A is Cp+Θ(A), then the eigenvalues can be parameter-
ized by Cp+Θ(A)-functions, the eigenvectors by Cp-functions, locally near t.

By (7.5) it suffices to show the following claim.

Claim (1). If A is Cp+Θt(A), then the eigenvalues can be parameterized by
Cp+Θt(A)-functions, the eigenvectors by Cp-functions, locally near t.

Without loss of generality assume that 0 ∈ I and t = 0. We obtain Claim (1) if
we set r = 0 and A[0] = A in the following claim.

Claim (2). Let A[r] be a Cr p+Θ0(A[r])+r-curve, r ∈ N, of normal matrices so that

T (A[r], 0) is admissible and 0 6∈ E(∞)(A[r]). The eigenvalues of A[r] can be param-

eterized by Cr p+Θ0(A[r])+r-functions, the eigenvectors by Cp-functions.

Here A[r] should not be confused with A(r); however, if A; A(r) as in Step (IIa)
of Algorithm 7.1, then A(r) satisfies the assumptions of the claim.

We prove Claim (2) by induction on the size of the matrix.
If all eigenvalues of A[r](0) coincide, replace A[r] by A[r] − 1

n Trace(A[r])In. By

3.2(4), this preserves the class Cr p+Θ0(A[r])+r. Then all eigenvalues of A[r](0) are
equal to 0, and A[r](0) = 0. If A[r] = 0, then all eigenvalues vanish identically,
the eigenvectors can be chosen constant, and we are done. If A[r] 6= 0, we have

A[r](t) = tsA(r+s)(t) for s ∈ N>0, and A(r+s) is Cr+s p+Θ0(A[r])+r with A(r+s)(0) 6=
0, since T (A[r], 0) is admissible. Note that T (A[r], 0) = T (A(r+s), 0), Θ0(A[r]) =

Θ0(A(r+s))+s, by (7.7), 0 6∈ E(∞)(A(r+s)), the eigenvalues of A[r] differ from those
of A(r+s) by multiplication with ts, and eigenvectors of A(r+s) are eigenvectors of
A[r] (and vice versa). Replace A[r] by A(r+s).
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So after these initial steps we may assume that A[r](0) 6= 0 and Trace(A[r]) = 0,
thus not all eigenvalues of A[r](0) coincide. By Step (I) of Algorithm 7.1 and by

3.2(3), the problem is reduced to Cr p+Θ0(A[r])+r-curves of normal matrices A[r],j

of strictly smaller size, since there exist real analytic mappings Φj defined near

A[r](0) ∈ Cn2

such that A[r],j = Φj ◦ A[r]. Each A[r],j satisfies the assumptions of

Claim (2), and, by induction and (7.6), there exist Cr p+Θ0(A[r])+r-functions which
parameterize the eigenvalues and Cp-functions which parameterize the eigenvectors
of each A[r],j , respectively. This completes the proof of Claim (2) and hence of the
theorem. �

8. Definable normal matrices

We give a version of Theorem 7.8 for the eigenvalues of definable curves of
normal matrices; admissibility of the associated trees as well as the assumption
E(∞)(A) = ∅ are not necessary. The eigenvectors, however, may not admit contin-
uous parameterizations in this situation, see Example 9.5.

Let A(t), t ∈ I, be a definable Cp-curve of normal matrices. We slightly modify
Algorithm 7.1:

(II) By Lemma 6.1 we always have p ≥ r. If A(r)(0) = 0, set q(V ) := r and V

becomes a leaf of T . The eigenvalues of A(r) admit a C0-parameterization
by Lemma 2.3.

The integer Θt(A) is defined by (7.4). Definability implies that the set of t ∈ I
such that Θt(A) > 0 is finite and hence Θ(A) is an integer.

8.1. Theorem. Let A(t), t ∈ I, be a definable Cp+Θ(A)-curve of normal matrices,
p ∈ N∪{∞}. Then the eigenvalues of A can be parameterized by Cp+Θ(A)-functions.

Under these assumptions the eigenvectors of A generally do not admit continuous
parameterizations, see Example 9.5.

Proof. This follows by applying the arguments used in the proof of Theorem 6.2
to the proof of Theorem 7.8. �

9. Examples

The examples in this sections show that the statements of Theorem 5.4, 6.2, 7.8,
8.1, and Corollary 5.6, except perhaps 5.4(3), are optimal in the following sense:

• The condition E(∞)(P ) = ∅ is necessary unless P is definable. Without that
condition a C∞-curve of hyperbolic polynomials need not be C1,α-solvable
for any α > 0, see [2].

• Admissibility of the associated trees T (P, t) is necessary unless P is defin-
able, see Example 9.1.

• A (definable) Cp+Γt(P )-curve of polynomials, where T (P, t) is good (resp.
bad) is in general not Cp+γt(P )+1 (resp. Cγt(P )+1) solvable, see Example 9.2
and Example 9.4.
• The eigenvectors do not admit continuous parameterizations near t if
T (A, t) is non-admissible or if t ∈ E(∞)(A), even if A is definable, see
Example 9.5.
• The eigenvectors of a (definable) Cp+Θt(A)-curve of normal matrices do in

general not admit Cp+1-parameterizations near t, see Example 9.6.
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For p ∈ N consider the function fp defined by

fp(t) :=

{
tp+1 if t ≥ 0
0 if t < 0

which belongs to Cp(R) \Cp+1(R) and is definable. We shall make repeated use of
fp in the following examples.

9.1. Example. The function f defined by

f(t) =

{
t5(sin2 log t+ 1) t > 0

0 t ≤ 0

belongs to C4(R) \C5(R). Consider P (t)(z) = z2− f(t). We have m0(f) = 4, that
is m = r = 2, but T (P, 0) is non-admissible, since t−4f(t)|t=0 = 0. In fact there is
no C2-function g so that g2 = f , although P(2) is C0-solvable. Indeed the roots

λ±(t) =

{
±t2

√
t(sin2 log t+ 1) t > 0

0 t ≤ 0

are real analytic for t 6= 0. An easy computation shows that for tk = exp(2πk),
k ∈ Z, we obtain

λ′′±(tk)→ ±1 as k → −∞,
and thus λ± cannot be C2 at t = 0.

9.2. Example. Consider f(t) := tm(1 + fp(t)). Then m0(f) = m and f belongs
to Cp+m \ Cp+m+1. If m

n ∈ N, then there is a Cp+
m
n -function g such that gn = f ,

but g cannot be in Cp+
m
n +1. If m

n 6∈ N, then g can be chosen in Cb
m
n c, but not

in Cb
m
n c+1. The following diagram illustrates T (P, 0) and T (P±,h, 0) for the case

N 63 m
n = k

h , where h and k are coprime.

(n, kh ) (n, k)

(1, 0) (1, 0) · · · (1, 0)

(9.3)

9.4. Example. Let p, l ∈ N, m = (n − 1)l + s > 0 with 0 ≤ s < n − 1, and
p > n(l + 1). Consider the Cp-curve of polynomials

Pp(t)(z) = zn − tmz + fp(t)

n∑
j=1

(−1)jzn−j .

Suppose s = 0. Then T (Pp, 0) is good, Γ0(Pp) = nl, and γ0(Pp) = l. By The-

orem 6.2(1), Pp admits Cp−(n−1)l-roots. Suppose, for contradiction, that Pp has

Cp−(n−1)l+1-roots λj . Since m0(λj) ≥ l, we have λj(t) = tlµj(t) for Cp−nl+1-
functions µj . But then fp(t) = tnlµ1(t) · · ·µn(t) is Cp+1, by Lemma 6.1, a contra-
diction.

(n, l)

(1, 0) (1, 0) · · · (1, 0)
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Suppose s 6= 0. Then T (Pp, 0) is bad, Γ0(Pp) = dn(l + s
n−1 )e ≤ n(l + 1), and

γ0(Pp) = l. By Theorem 6.2(2), Pp admits Cl-roots. Suppose, for contradiction,
that Pp has Cl+1-roots λj . Then λj(t) = tlµj(t) for C1-functions µj which represent
the roots of (Pp)(l). As µj(0) = 0 since s > 0 (cf. Theorem 6.3), the coefficient of
z in Pp must have multiplicity ≥ (n− 1)(l + 1), a contradiction. The trees T (P, 0)

and T (P±,h, 0) are given by diagram (9.3) if we write m
n−1 = k

h , where h and k are
coprime.

9.5. Example. Consider the Cp-curve of symmetric matrices

A(t) = tp+1B(t) where B(t) =


I2 t ≥ 0(

1 1

1 −1

)
t < 0

.

The tree T (A, 0) is not admissible, since A(p)(0) = 0, and A does not admit a
continuous parameterization of its eigenvectors. The latter is true also for the

definable C∞-curve of symmetric matrices e−
1
t2B(t).

9.6. Example. Consider the Cp+1-curve of symmetric matrices

A(t) =

(
2fp+1(t) t

t 0

)
, t ∈ R.

Its eigenvalues fp+1(t)± t
√

1 + f2p+1(t) are Cp+1 in accordance with Theorem 7.8,

as Θ0(A) = 1. If
(
u
v

)
denotes any Cp-eigenvector (which exists by Theorem 7.8),

then

u = (fp ±
√

1 + f2p+1)v.

It follows that u cannot be Cp+1 at 0. Indeed, the Leibniz rule shows that the
(p + 1)st right handed derivative of fpv is non-zero because v(0) 6= 0, whereas
(fpv)|t≤0 = 0.
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