Flexibility of CLT in ergodic theory

Péter Nándori Yeshiva Univeristy

based on joint work with C. Dong, D. Dolgopyat and A. Kanigowski

BudWiSer

September 25, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Flexibility of statistical properties

 T, T^{-1} transformations

Proofs: CLT, zero entropy, $T/\ln^{1/4} T$ normalization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proofs: other cases

Flexibility of statistical properties

T, T^{-1} transformations

Proofs: CLT, zero entropy, $T/\ln^{1/4} T$ normalization

Proofs: other cases

< ロト 4 個 ト 4 差 ト 4 差 ト 差 9 9 9 9</p>

Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

• Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.

Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- **Ergodicity**: Every invariant observable A₀ is trivial.

- Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.
- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- **Ergodicity**: Every invariant observable A₀ is trivial.
- Weak Mixing: For every $A_0, B_0, \frac{1}{N} \sum_{n=1}^{N} |Cov(A_0, B_n)| \to 0$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

- Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.
- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- **Ergodicity**: Every invariant observable A₀ is trivial.
- Weak Mixing: For every $A_0, B_0, \frac{1}{N} \sum_{n=1}^{N} |Cov(A_0, B_n)| \to 0$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

• Mixing: For every $A_0, B_0, \operatorname{Cov}(A_0, B_n) \to 0$

- Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.
- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- **Ergodicity**: Every invariant observable A₀ is trivial.
- Weak Mixing: For every $A_0, B_0, \frac{1}{N} \sum_{n=1}^{N} |Cov(A_0, B_n)| \to 0$

- Mixing: For every $A_0, B_0, \operatorname{Cov}(A_0, B_n) \to 0$
- ► Positive entropy (Kolmogorov-Sinai): There exists A₀ non-trivial so that h(µ, T, A₀) > 0.

- Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.
- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- Ergodicity: Every invariant observable A₀ is trivial.
- Weak Mixing: For every $A_0, B_0, \frac{1}{N} \sum_{n=1}^{N} |Cov(A_0, B_n)| \to 0$

- Mixing: For every $A_0, B_0, \operatorname{Cov}(A_0, B_n) \to 0$
- ► Positive entropy (Kolmogorov-Sinai): There exists A₀ non-trivial so that h(µ, T, A₀) > 0.
- K: For every A_0 non-trivial, $h(\mu, T, A_0) > 0$.

- Setup: (X, µ) a probability space, T : X → X is invertible and preserves µ.
- Observable: Let $A_0 : X \to a$ finite set, $A_n = A_0 \circ T^n$.
- Ergodicity: Every invariant observable A₀ is trivial.
- Weak Mixing: For every $A_0, B_0, \frac{1}{N} \sum_{n=1}^{N} |Cov(A_0, B_n)| \to 0$
- Mixing: For every $A_0, B_0, \operatorname{Cov}(A_0, B_n) \to 0$
- ► Positive entropy (Kolmogorov-Sinai): There exists A₀ non-trivial so that h(µ, T, A₀) > 0.
- K: For every A_0 non-trivial, $h(\mu, T, A_0) > 0$.
- Bernoulli: There exists A₀ (possibly with infinite range) so that A_n are iid and generate the σ-algebra.

Let *F* be a C^r diffeomorphism of a Riemannian manifold *M* that preserves a measure ζ absolutely continuous w.r.t the volume.

Let F be a C^r diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

CLT: F satisfies the CLT if there is a sequence a_n ∈ ℝ so that for any A₀ ∈ C^r₀(M) (i.e. ζ(A₀) = 0),

$$\frac{1}{a_N}\sum_{n=1}^N A_n \Rightarrow \mathcal{N}(0,\sigma^2)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

and $\sigma^2(.)$ is not identically zero on $\mathcal{C}_0^r(M)$.

Let F be a C^r diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

CLT: F satisfies the CLT if there is a sequence a_n ∈ ℝ so that for any A₀ ∈ C^r₀(M) (i.e. ζ(A₀) = 0),

$$\frac{1}{a_N}\sum_{n=1}^N A_n \Rightarrow \mathcal{N}(0,\sigma^2)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

and $\sigma^2(.)$ is not identically zero on $C_0^r(M)$. *F* satisfies the classical CLT if $a_n = \sqrt{n}$.

Let F be a C^r diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

CLT: F satisfies the CLT if there is a sequence a_n ∈ ℝ so that for any A₀ ∈ C^r₀(M) (i.e. ζ(A₀) = 0),

$$\frac{1}{a_N}\sum_{n=1}^N A_n \Rightarrow \mathcal{N}(0,\sigma^2)$$

and $\sigma^2(.)$ is not identically zero on $C_0^r(M)$. *F* satisfies the classical CLT if $a_n = \sqrt{n}$.

PM / EM F mixes polynomially/exponentially (PM/EM) if for all A₀, B₀ ∈ C^r₀(M) the following holds with a polynomial/exponential function ψ(n):

$$\operatorname{Cov}|(A_0, B_n)| \leq \|A_0\|_{\mathcal{C}^r} \|B_0\|_{\mathcal{C}^r} \psi(n).$$

Flexibility of Statistical properties: a review

Problem: Does property **X** imply property **Y**? If so, prove it. If not, provide counterexample.

Flexibility of Statistical properties: a review

Problem: Does property **X** imply property **Y**? If so, prove it. If not, provide counterexample.

	Erg	WM/M	PE	K/B	CLT	PM	EM
Erg	÷	(1)	(1)	(1)	(1)	(1)	(1)
WM/M	Y	÷	(2)	(2)	(5)	(5)	(5)
PE	(3)	(3)	÷	(3)	(3)	(3)	(3)
K/B	Y	Y	Y	÷	(5)	(5)	(5)
CLT	Y	(6)	(4)	(6)	÷	(6)	(6)
PM	Y	Y	(2)	(2)	(2)	"	(2)
EM	Y	Y	??	??	??	Y	÷

(1) irrational rotation; (2) horocycle flow; (3) Anosov diffeo × identity; (4): new, see later; (5) skew products on $\mathbb{T}^2 \times \mathbb{T}^2$ of the form $(Ax, y + \alpha \tau(x))$ where A is linear Anosov map, α is Liouvillian and τ is not a coboundary; (6) Skew product of Anosov diffeo and Diophantine rotation.

Flexibility of the CLT

Problem: Do properties $\mathbf{X} + \mathbf{CLT}$ imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Flexibility of the CLT

Problem: Do properties $\mathbf{X} + \mathbf{CLT}$ imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

	WM	Μ	PE	K	В	PM
WΜ	"	(8)	(9)	(9)	(9)	(10)
М	÷	*	(9)	(9)	(9)	(10)
PE	(6)	(6)	"	(6)	(6)	(6)
ĸ	÷	÷	"	"	(7)	??
В	÷	.	"	"	"	??
РМ	÷	÷	(9)	(9)	(9)	"

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Examples (1) - (6) as before. Examples (7) - (10) are new.

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

(i) For each m ∈ N there exists an analytic diffeomorphism F_m which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_m is K and satisfies the classical CLT. (7)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

- (i) For each m ∈ N there exists an analytic diffeomorphism F_m which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_m is K and satisfies the classical CLT. (7)
- (ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_T = T/\ln^{1/4} T$. (10), (4)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

- (i) For each m ∈ N there exists an analytic diffeomorphism F_m which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_m is K and satisfies the classical CLT. (7)
- (ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_T = T/\ln^{1/4} T$. (10), (4)
- (iii) For each $r \in \mathbb{N}$ there is a manifold M_r and a C^r diffeo F_r on M_r of zero entropy which satisfies the classical CLT. (4)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

- (i) For each m ∈ N there exists an analytic diffeomorphism F_m which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_m is K and satisfies the classical CLT. (7)
- (ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_T = T / \ln^{1/4} T$. (10), (4)
- (iii) For each $r \in \mathbb{N}$ there is a manifold M_r and a C^r diffeo F_r on M_r of zero entropy which satisfies the classical CLT. (4)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへつ

(iv) There exists a weakly mixing but not mixing flow, which satisfies the classical CLT. (8)

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

- (i) For each m ∈ N there exists an analytic diffeomorphism F_m which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_m is K and satisfies the classical CLT. (7)
- (ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_T = T / \ln^{1/4} T$. (10), (4)
- (iii) For each $r \in \mathbb{N}$ there is a manifold M_r and a C^r diffeo F_r on M_r of zero entropy which satisfies the classical CLT. (4)
- (iv) There exists a weakly mixing but not mixing flow, which satisfies the classical CLT. (8)
- (v) There exists a polynomially mixing flow, which is not K and satisfies the classical CLT. (9)

Flexibility of statistical properties

T, T^{-1} transformations

Proofs: CLT, zero entropy, $T/\ln^{1/4} T$ normalization

Proofs: other cases

・ロト・雪ト・ヨト・ヨー シック

Random walks in random scenery (RWRS)

Let $\xi_z, z \in \mathbb{Z}^d$ be bounded iid random variables with finite range. Let T_n be a simple random walk independent from ξ_z 's. RWRS is

$$S_N = \sum_{n=1}^N \xi_{T_n}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Random walks in random scenery (RWRS)

Let $\xi_z, z \in \mathbb{Z}^d$ be bounded iid random variables with finite range. Let T_n be a simple random walk independent from ξ_z 's. RWRS is

$$S_N = \sum_{n=1}^N \xi_{T_n}$$

Kesten, Spitzer '79, Bolthausen '89:

•
$$d = 1$$
: $S_N/N^{3/4}$ has a weak limit

- d = 2: $S_N / \sqrt{N \log N}$ converges weakly to a Gaussian
- $d \ge 3$: S_N/\sqrt{N} converges weakly to a Gaussian

Random walks in random scenery (RWRS)

Let $\xi_z, z \in \mathbb{Z}^d$ be bounded iid random variables with finite range. Let T_n be a simple random walk independent from ξ_z 's. RWRS is

$$S_N = \sum_{n=1}^N \xi_{T_n}$$

Kesten, Spitzer '79, Bolthausen '89:

►
$$d = 1$$
: $S_N/N^{3/4}$ has a weak limit

• d = 2: $S_N / \sqrt{N \log N}$ converges weakly to a Gaussian

• $d \ge 3$: S_N/\sqrt{N} converges weakly to a Gaussian

Heuristics (d = 1): Each site $k \asymp \sqrt{N}$ is visited $\asymp \sqrt{N}$ times. Thus $S_N \asymp \sqrt{N} \sum_{k=-\sqrt{N}}^{\sqrt{N}} \xi_k \asymp N^{3/4}$.

T, T^{-1} transformations

Definition The same as RWRS.

T, T^{-1} transformations

Definition

The same as RWRS.

In d = 1 case:

►
$$X = \{-1, 1\}^{\mathbb{Z}}, \ \mu = \frac{1}{2}(\delta_1 + \delta_{-1})^{\mathbb{Z}}, \ f : X \to X \text{ left shift.}$$

► $\tau(x) = x(0)$
► $(Y, g, \nu) = (X, f, \mu)$
F : $X \times Y \to X \times Y, \ F(x, y) = (f(x), g^{\tau(x)}(y)) \text{ preserves}$
 $\zeta = \mu \times \nu.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

T, T^{-1} transformations

Definition

The same as RWRS.

In d = 1 case:

►
$$X = \{-1, 1\}^{\mathbb{Z}}, \ \mu = \frac{1}{2}(\delta_1 + \delta_{-1})^{\mathbb{Z}}, \ f : X \to X \text{ left shift.}$$

► $\tau(x) = x(0)$
► $(Y, g, \nu) = (X, f, \mu)$
F : $X \times Y \to X \times Y, \ F(x, y) = (f(x), g^{\tau(x)}(y)) \text{ preserves}$
 $\zeta = \mu \times \nu.$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

K/Bernoulli properties

Kalikow '82: d = 1: F is K but not Bernoulli. den Hollander, Steif '97: F is Bernoulli iff $d \ge 3$.

• X compact manifold, $f : X \to X$ smooth map preserving μ

▶ X compact manifold, $f : X \to X$ smooth map preserving μ

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Y compact manifold, G_t : Y → Y is a *d*-parameter flow preserving ν.

• X compact manifold, $f: X \rightarrow X$ smooth map preserving μ

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Y compact manifold, G_t : Y → Y is a d-parameter flow preserving ν.

• $\tau: X \to \mathbb{R}^d$ a smooth map.

- X compact manifold, $f: X \to X$ smooth map preserving μ
- Y compact manifold, G_t : Y → Y is a d-parameter flow preserving ν.

• $\tau: X \to \mathbb{R}^d$ a smooth map.

The map $F: X \times Y \to X \times Y$

$$F(x,y) = (f(x), G_{\tau(x)}(y))$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

is a smooth T, T^{-1} transformation. It preserves $\zeta = \mu \times \nu$.

- X compact manifold, $f: X \to X$ smooth map preserving μ
- Y compact manifold, G_t : Y → Y is a d-parameter flow preserving ν.

• $\tau: X \to \mathbb{R}^d$ a smooth map.

The map $F: X \times Y \to X \times Y$

$$F(x,y) = (f(x), G_{\tau(x)}(y))$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

is a smooth T, T^{-1} transformation. It preserves $\zeta = \mu \times \nu$. Symbolic example: RWRS

- X compact manifold, $f: X \to X$ smooth map preserving μ
- Y compact manifold, G_t : Y → Y is a d-parameter flow preserving ν.

• $\tau: X \to \mathbb{R}^d$ a smooth map.

The map $F: X \times Y \to X \times Y$

$$F(x,y) = (f(x), G_{\tau(x)}(y))$$

is a smooth T, T^{-1} transformation. It preserves $\zeta = \mu \times \nu$. Symbolic example: RWRS continuous T, T^{-1} transformations:

$$F_T(x,y) = (h_T(x), G_{\tau_T(x)}(y)) \quad \tau_T(x) = \int_0^T \tau(h_t(x)) dt$$

Flexibility of statistical properties

T, T^{-1} transformations

Proofs: CLT, zero entropy, $T/\ln^{1/4} T$ normalization

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proofs: other cases

- ► *d* = 1
- h_T : horocycle flow on a hyperbolic octagon

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

- ► *d* = 1
- h_T : horocycle flow on a hyperbolic octagon

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

 G_t: any flow that mixes exponentially of all orders (e.g. Anosov flow)

- ► *d* = 1
- h_T : horocycle flow on a hyperbolic octagon

- G_t: any flow that mixes exponentially of all orders (e.g. Anosov flow)
- τ_T(x): winding number: how many times the horocyle winds around X in a given homology class (mean zero!).

- ► *d* = 1
- h_T : horocycle flow on a hyperbolic octagon

- G_t: any flow that mixes exponentially of all orders (e.g. Anosov flow)
- τ_T(x): winding number: how many times the horocyle winds around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

$$\zeta(H_T^2) = \mu(\nu(H_T^2)) = \dots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

$$\zeta(H_T^2) = \mu(\nu(H_T^2)) = \dots$$

(assuming $\int H(x_1, y) H(x_2, G_n y) d\nu(y) = 0$ for all $n \neq 0$)

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

$$\zeta(H_T^2) = \mu(\nu(H_T^2)) = \dots$$

(assuming $\int H(x_1, y) H(x_2, G_n y) d\nu(y) = 0$ for all $n \neq 0$)

$$= \int \int_0^T \int_0^T \sum_k \mathbf{1}_{\tau_{t_1} x = \tau_{t_2} x = k} \int H(h_{t_1} x, y) H(h_{t_2} x, y) d\nu(y) dt_1 dt_2 d\mu(x)$$

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

$$\zeta(H_T^2) = \mu(\nu(H_T^2)) = \dots$$

(assuming $\int H(x_1, y)H(x_2, G_n y)d\nu(y) = 0$ for all $n \neq 0$)

$$= \int \int_0^T \int_0^T \sum_k \mathbf{1}_{\tau_{t_1} x = \tau_{t_2} x = k} \int H(h_{t_1} x, y) H(h_{t_2} x, y) d\nu(y) dt_1 dt_2 d\mu(x)$$

Mixing local limit theorem for the geodesic flow: $\int_0^T \mathbf{1}_{\tau_t x = k} \mathbf{1}_{h_t \in A} dt \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k - s_T(x)}{\sqrt{\ln T}}\right) \mu(A)$

(ロ)、<</p>

 $H: X \times Y \to \mathbb{R}$ smooth, mean zero and $H_T = \int_0^T H \circ F_t dt$. Let us explain why $\zeta(H_T^2) \simeq T^2/\sqrt{\ln T}$.

$$\zeta(H_T^2) = \mu(\nu(H_T^2)) = \dots$$

(assuming $\int H(x_1, y)H(x_2, G_n y)d\nu(y) = 0$ for all $n \neq 0$)

$$= \int \int_0^T \int_0^T \sum_k \mathbf{1}_{\tau_{t_1} x = \tau_{t_2} x = k} \int H(h_{t_1} x, y) H(h_{t_2} x, y) d\nu(y) dt_1 dt_2 d\mu(x)$$

Mixing local limit theorem for the geodesic flow: $\int_0^T \mathbf{1}_{\tau_t x = k} \mathbf{1}_{h_t \in A} dt \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k - \overline{s_T}(x)}{\sqrt{\ln T}}\right) \mu(A)$

$$\approx C_H \sum_{\ell=-10^6}^{10^6} \frac{T^2}{\ln T} \varphi^2 \left(\frac{\ell}{\sqrt{\ln T}}\right) \asymp C_H \frac{T^2}{\sqrt{\ln T}} \int_{\mathbb{R}} \varphi^2(z) dz.$$

Mixing local limit theorem for the geodesic flow

Mixing local limit theorem for the geodesic flow

• General observable H: write $H(x, y) = \hat{H}(x) + \tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d\nu(y) = 0$ for all x. Then $\hat{H}_T = O(T^{<1})$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- General observable H: write $H(x, y) = \hat{H}(x) + \tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d\nu(y) = 0$ for all x. Then $\hat{H}_T = O(T^{<1})$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.
- Convergence of higher moment: as 2nd moment...
 Björklund, Gorodnik '20 CLT for exponentially mixing systems

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

- General observable H: write $H(x, y) = \hat{H}(x) + \tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d\nu(y) = 0$ for all x. Then $\hat{H}_T = O(T^{<1})$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.
- Convergence of higher moment: as 2nd moment...
 Björklund, Gorodnik '20 CLT for exponentially mixing systems

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Remark: F_T cannot mix polynomially by the following lemma.

• General observable H: write $H(x, y) = \hat{H}(x) + \hat{H}(x, y)$, where $\int \tilde{H}(x, y) d\nu(y) = 0$ for all x. Then $\hat{H}_T = O(T^{<1})$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.

Convergence of higher moment: as 2nd moment...
 Björklund, Gorodnik '20 CLT for exponentially mixing systems

Remark: F_T cannot mix polynomially by the following lemma. **Lemma**: Let $X_1, ..., X_n$ be a stationary sequence of random variables with $|E(X_iX_j)| \le C|i-j|^{-\beta}$. and $S_N = \sum_{n=1}^N X_n$. Then $S_N/n^{\alpha+\varepsilon} \to 0$ almost surely, where

$$\alpha = \begin{cases} 1/2 & \text{if } \beta \ge 1\\ 1 - \beta/2 & \text{if } \beta < 1 \end{cases}$$

Flexibility of statistical properties

 T, T^{-1} transformations

Proofs: CLT, zero entropy, $T/\ln^{1/4} T$ normalization

Proofs: other cases

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへ⊙

We always assume that G_t is mixing of all orders. Canonical examples for $d \ge 2$:

- 1. \mathbb{Z}^d action Cartan actions: ergodic actions of \mathbb{Z}^d on \mathbb{T}^{d+1} by hyperbolic automorphisms.
- 2. \mathbb{R}^d action Weyl chamber flows: Action of the diagonal group by left translations on $SL(d+1,\mathbb{R})/\Gamma$, where Γ is a co-compact lattice in $SL(d+1,\mathbb{R})$.

Theorem (iii): C^r diffeo with zero entropy and classical CLT

Proposition

Suppose that $f : X \rightarrow X$ satsifies:

D1 Ergodic sums of all zero mean smooth observables on X grow slower than $N^{1/2}$.

D2

$$\mu(\|\sum_{n=1}^N \tau_n\| < \log^{1+\varepsilon} N) < \frac{C}{N^5}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Then F satisfies the classical CLT.

Theorem (iii): C^r diffeo with zero entropy and classical CLT

Proposition

Suppose that $f : X \rightarrow X$ satsifies:

D1 Ergodic sums of all zero mean smooth observables on X grow slower than $N^{1/2}$.

D2

$$\mu(\|\sum_{n=1}^N \tau_n\| < \log^{1+\varepsilon} N) < \frac{C}{N^5}$$

Then F satisfies the classical CLT.

Proposition

Fix κ , r, **m** with $\kappa/2 < r < \mathbf{m}$. Then there is a $d \ge 0$ so that the following holds. Let $X = \mathbb{T}^{\mathbf{m}}$, $f(x) = x + \alpha$ where α is Diophantine (i.e. $|\langle k, \alpha \rangle| \ge D|k|^{-\kappa}$). Then D1 holds for all $A_0 \in \mathcal{C}^r(\mathbb{T}^{\mathbf{m}}, \mathbb{R})$ and D2 holds for some $\tau \in \mathcal{C}^r(\mathbb{T}^{\mathbf{m}}, \mathbb{R}^d)$.

Theorem (i): Anosov base, $d \ge 3$. Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (i): Anosov base, $d \ge 3$. Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif) Theorem (iv): Base: suspension over irrational rotation with logarithmic singularities (smooth flows on surfaces of genus ≥ 2 : weakly mixing but not mixing).

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Theorem (i): Anosov base, $d \ge 3$. Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif) Theorem (iv): Base: suspension over irrational rotation with logarithmic singularities (smooth flows on surfaces of genus ≥ 2 : weakly mixing but not mixing). Theorem (v): Base: suspension over irrational rotation with

polynomial singularities.

References:

 D. Dolgopyat, C. Dong, A. Kanigowski, P.N., Flexibility of statistical properties for smooth systems satisfying the central limit theorem https://arxiv.org/abs/2006.02191

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

2. D. Dolgopyat, C. Dong, A. Kanigowski, P.N., Mixing properties of generalized T, T^{-1} transformations https://arxiv.org/abs/2004.07298