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Definitions: abstract ergodic theory

I Setup: (X , µ) a probability space, T : X → X is invertible and
preserves µ.

I Observable: Let A0 : X → a finite set, An = A0 ◦ T n.

I Ergodicity: Every invariant observable A0 is trivial.

I Weak Mixing: For every A0,B0, 1
N

∑N
n=1 |Cov(A0,Bn)| → 0

I Mixing: For every A0,B0, Cov(A0,Bn)→ 0

I Positive entropy (Kolmogorov-Sinai): There exists A0

non-trivial so that h(µ,T ,A0) > 0.

I K: For every A0 non-trivial, h(µ,T ,A0) > 0.

I Bernoulli: There exists A0 (possibly with infinite range) so
that An are iid and generate the σ-algebra.

http://www.scholarpedia.org/article/Kolmogorov-Sinai_entropy
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Definitions: smooth ergodic theory

Let F be a Cr diffeomorphism of a Riemannian manifold M that
preserves a measure ζ absolutely continuous w.r.t the volume.

I CLT: F satisfies the CLT if there is a sequence an ∈ R so that
for any A0 ∈ Cr0(M) (i.e. ζ(A0) = 0),

1

aN

N∑
n=1

An ⇒ N (0, σ2)

and σ2(.) is not identically zero on Cr0(M). F satisfies the
classical CLT if an =

√
n.

I PM / EM F mixes polynomially/exponentially (PM/EM) if
for all A0,B0 ∈ Cr0(M) the following holds with a
polynomial/exponential function ψ(n):

Cov|(A0,Bn)| ≤ ‖A0‖Cr ‖B0‖Crψ(n).
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Flexibility of Statistical properties: a review

Problem: Does property X imply property Y? If so, prove it. If not,
provide counterexample.

Erg WM/M PE K/B CLT PM EM
Erg ♣ (1) (1) (1) (1) (1) (1)

WM/M Y ♣ (2) (2) (5) (5) (5)
PE (3) (3) ♣ (3) (3) (3) (3)

K/B Y Y Y ♣ (5) (5) (5)
CLT Y (6) (4) (6) ♣ (6) (6)
PM Y Y (2) (2) (2) ♣ (2)
EM Y Y ?? ?? ?? Y ♣

(1) irrational rotation; (2) horocycle flow; (3) Anosov diffeo ×
identity; (4): new, see later; (5) skew products on T2 × T2 of the
form (Ax , y + ατ(x)) where A is linear Anosov map, α is
Liouvillian and τ is not a coboundary; (6) Skew product of Anosov
diffeo and Diophantine rotation.
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Flexibility of the CLT

Problem: Do properties X + CLT imply property Y? If so, prove it.
If not, provide counterexample.

WM M PE K B PM
WM ♣ (8) (9) (9) (9) (10)

M ♣ ♣ (9) (9) (9) (10)
PE (6) (6) ♣ (6) (6) (6)
K ♣ ♣ ♣ ♣ (7) ??
B ♣ ♣ ♣ ♣ ♣ ??

PM ♣ ♣ (9) (9) (9) ♣

Examples (1) - (6) as before. Examples (7) - (10) are new.
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Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. ’20)

(i) For each m ∈ N there exists an analytic diffeomorphism Fm
which is mixing at rate n−m but is not Bernoulli. Moreover,
Fm is K and satisfies the classical CLT. (7)

(ii) There exists an analytic flow of zero entropy which satisfies
the CLT with normalization aT = T/ ln1/4 T . (10), (4)

(iii) For each r ∈ N there is a manifold Mr and a C r diffeo Fr on
Mr of zero entropy which satisfies the classical CLT. (4)

(iv) There exists a weakly mixing but not mixing flow, which
satisfies the classical CLT. (8)

(v) There exists a polynomially mixing flow, which is not K and
satisfies the classical CLT. (9)
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Flexibility of statistical properties

T ,T−1 transformations

Proofs: CLT, zero entropy, T/ ln1/4 T normalization

Proofs: other cases



Random walks in random scenery (RWRS)

Let ξz , z ∈ Zd be bounded iid random variables with finite range.
Let Tn be a simple random walk independent from ξz ’s. RWRS is

SN =
N∑

n=1

ξTn

Kesten, Spitzer ’79, Bolthausen ’89:

I d = 1: SN/N
3/4 has a weak limit

I d = 2: SN/
√
N logN converges weakly to a Gaussian

I d ≥ 3: SN/
√
N converges weakly to a Gaussian

Heuristics (d = 1): Each site k �
√
N is visited �

√
N times. Thus

SN �
√
N
∑√N

k=−
√
N
ξk � N3/4.
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T ,T−1 transformations

Definition
The same as RWRS.

In d = 1 case:

I X = {−1, 1}Z, µ = 1
2(δ1 + δ−1)Z, f : X → X left shift.

I τ(x) = x(0)

I (Y , g , ν) = (X , f , µ)

F : X × Y → X × Y , F (x , y) = (f (x), g τ(x)(y)) preserves
ζ = µ× ν.

K/Bernoulli properties
Kalikow ’82: d = 1: F is K but not Bernoulli.
den Hollander, Steif ’97: F is Bernoulli iff d ≥ 3.



T ,T−1 transformations

Definition
The same as RWRS.
In d = 1 case:

I X = {−1, 1}Z, µ = 1
2(δ1 + δ−1)Z, f : X → X left shift.

I τ(x) = x(0)

I (Y , g , ν) = (X , f , µ)

F : X × Y → X × Y , F (x , y) = (f (x), g τ(x)(y)) preserves
ζ = µ× ν.

K/Bernoulli properties
Kalikow ’82: d = 1: F is K but not Bernoulli.
den Hollander, Steif ’97: F is Bernoulli iff d ≥ 3.



T ,T−1 transformations

Definition
The same as RWRS.
In d = 1 case:

I X = {−1, 1}Z, µ = 1
2(δ1 + δ−1)Z, f : X → X left shift.

I τ(x) = x(0)

I (Y , g , ν) = (X , f , µ)

F : X × Y → X × Y , F (x , y) = (f (x), g τ(x)(y)) preserves
ζ = µ× ν.

K/Bernoulli properties
Kalikow ’82: d = 1: F is K but not Bernoulli.
den Hollander, Steif ’97: F is Bernoulli iff d ≥ 3.



Definition: smooth T ,T−1 transformations

I X compact manifold, f : X → X smooth map preserving µ

I Y compact manifold, Gt : Y → Y is a d-parameter flow
preserving ν.

I τ : X → Rd a smooth map.

The map F : X × Y → X × Y

F (x , y) = (f (x),Gτ(x)(y))

is a smooth T ,T−1 transformation. It preserves ζ = µ× ν.
Symbolic example: RWRS
continuous T ,T−1 transformations:

FT (x , y) = (hT (x),GτT (x)(y)) τT (x) =

∫ T

0
τ(ht(x))dt
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Flexibility of statistical properties

T ,T−1 transformations

Proofs: CLT, zero entropy, T/ ln1/4 T normalization

Proofs: other cases



Theorem (ii): defining of the example (10)

I d = 1

I hT : horocycle flow on a hyperbolic octagon

I Gt : any flow that mixes exponentially of all orders (e.g.
Anosov flow)

I τT (x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.



Theorem (ii): defining of the example (10)

I d = 1

I hT : horocycle flow on a hyperbolic octagon

I Gt : any flow that mixes exponentially of all orders (e.g.
Anosov flow)

I τT (x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.



Theorem (ii): defining of the example (10)

I d = 1

I hT : horocycle flow on a hyperbolic octagon

I Gt : any flow that mixes exponentially of all orders (e.g.
Anosov flow)

I τT (x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.



Theorem (ii): defining of the example (10)

I d = 1

I hT : horocycle flow on a hyperbolic octagon

I Gt : any flow that mixes exponentially of all orders (e.g.
Anosov flow)

I τT (x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.



Theorem (ii): defining of the example (10)

I d = 1

I hT : horocycle flow on a hyperbolic octagon

I Gt : any flow that mixes exponentially of all orders (e.g.
Anosov flow)

I τT (x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Convergence of second moment
H : X ×Y → R smooth, mean zero and HT =

∫ T
0 H ◦ Ftdt. Let us

explain why ζ(H2
T ) � T 2/

√
lnT .

ζ(H2
T ) = µ(ν(H2

T )) = ...

(assuming

∫
H(x1, y)H(x2,Gny)dν(y) = 0 for all n 6= 0)

=

∫ ∫ T

0

∫ T

0

∑
k

1τt1x=τt2x=k

∫
H(ht1x , y)H(ht2x , y)dν(y)dt1dt2dµ(x)

Mixing local limit theorem for the geodesic flow:∫ T
0 1τtx=k1ht∈Adt ∼ T√

lnT
ϕ
(
k−sT (x)√

lnT

)
µ(A)

≈ CH

106∑
`=−106

T 2

lnT
ϕ2

(
`√

lnT

)
� CH

T 2

√
lnT

∫
R
ϕ2(z)dz .



Mixing local limit theorem for the geodesic flow∫ T

0
1τtx=k1ht∈Adt ∼

T√
lnT

ϕ

(
k − sT (x)√

lnT

)
µ(A)

x

T

1

ln T

Figure: Temporal limit theorem for horocycle flow ≈ central limit
theorem for the geodesic flow (Dolgopyat, Sarig’17)
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Finishing the proof

I General observable H: write H(x , y) = Ĥ(x) + H̃(x , y), where∫
H̃(x , y)dν(y) = 0 for all x . Then ĤT = O(T<1) by

Flaminio, Forni ’03. For H̃ use exponential mixing of G .

I Convergence of higher moment: as 2nd moment...
Björklund, Gorodnik ’20 CLT for exponentially mixing systems

Remark: FT cannot mix polynomially by the following lemma.
Lemma: Let X1, ...,Xn be a stationary sequence of random
variables with |E (XiXj)| ≤ C |i − j |−β. and SN =

∑N
n=1 Xn. Then

SN/n
α+ε → 0 almost surely, where

α =

{
1/2 if β ≥ 1

1− β/2 if β < 1
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H̃(x , y)dν(y) = 0 for all x . Then ĤT = O(T<1) by
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H̃(x , y)dν(y) = 0 for all x . Then ĤT = O(T<1) by
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Flexibility of statistical properties

T ,T−1 transformations

Proofs: CLT, zero entropy, T/ ln1/4 T normalization

Proofs: other cases



Further choices

We always assume that Gt is mixing of all orders.
Canonical examples for d ≥ 2:

1. Zd action Cartan actions: ergodic actions of Zd on Td+1 by
hyperbolic automorphisms.

2. Rd action Weyl chamber flows: Action of the diagonal group
by left translations on SL(d + 1,R)/Γ, where Γ is a
co-compact lattice in SL(d + 1,R).



Theorem (iii): Cr diffeo with zero entropy and classical CLT

Proposition

Suppose that f : X → X satsifies:

D1 Ergodic sums of all zero mean smooth observables on X grow
slower than N1/2.

D2

µ(‖
N∑

n=1

τn‖ < log1+εN) <
C

N5

Then F satisfies the classical CLT.

Proposition

Fix κ, r ,m with κ/2 < r < m. Then there is a d ≥ 0 so that the
following holds. Let X = Tm, f (x) = x +α where α is Diophantine
(i.e. |〈k , α〉| ≥ D|k|−κ). Then D1 holds for all A0 ∈ Cr (Tm,R) and
D2 holds for some τ ∈ Cr (Tm,Rd).
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Theorem (i): Anosov base, d ≥ 3.
Difficult part: F is not Bernoulli (cf. symbolic actions, den
Hollander - Steif)

Theorem (iv): Base: suspension over irrational rotation with
logarithmic singularities (smooth flows on surfaces of genus ≥ 2:
weakly mixing but not mixing).
Theorem (v): Base: suspension over irrational rotation with
polynomial singularities.
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