Flexibility of CLT in ergodic theory

Péter Nándori
Yeshiva Univeristy
based on joint work with C. Dong, D. Dolgopyat and A.
Kanigowski

BudWiSer

September 25, 2020

Flexibility of statistical properties
T, T^{-1} transformations

Proofs: CLT, zero entropy, $T / \ln ^{1 / 4} T$ normalization

Proofs: other cases

Flexibility of statistical properties

T, T^{-1} transformations

Proofs: CLT, zero entropy, $T / \ln ^{1 / 4} T$ normalization

Proofs: other cases

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.
- Weak Mixing: For every $A_{0}, B_{0}, \frac{1}{N} \sum_{n=1}^{N}\left|\operatorname{Cov}\left(A_{0}, B_{n}\right)\right| \rightarrow 0$

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.
- Weak Mixing: For every $A_{0}, B_{0}, \frac{1}{N} \sum_{n=1}^{N}\left|\operatorname{Cov}\left(A_{0}, B_{n}\right)\right| \rightarrow 0$
- Mixing: For every $A_{0}, B_{0}, \operatorname{Cov}\left(A_{0}, B_{n}\right) \rightarrow 0$

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.
- Weak Mixing: For every $A_{0}, B_{0}, \frac{1}{N} \sum_{n=1}^{N}\left|\operatorname{Cov}\left(A_{0}, B_{n}\right)\right| \rightarrow 0$
- Mixing: For every $A_{0}, B_{0}, \operatorname{Cov}\left(A_{0}, B_{n}\right) \rightarrow 0$
- Positive entropy (Kolmogorov-Sinai): There exists A_{0} non-trivial so that $h\left(\mu, T, A_{0}\right)>0$.

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.
- Weak Mixing: For every $A_{0}, B_{0}, \frac{1}{N} \sum_{n=1}^{N}\left|\operatorname{Cov}\left(A_{0}, B_{n}\right)\right| \rightarrow 0$
- Mixing: For every $A_{0}, B_{0}, \operatorname{Cov}\left(A_{0}, B_{n}\right) \rightarrow 0$
- Positive entropy (Kolmogorov-Sinai): There exists A_{0} non-trivial so that $h\left(\mu, T, A_{0}\right)>0$.
- K: For every A_{0} non-trivial, $h\left(\mu, T, A_{0}\right)>0$.

Definitions: abstract ergodic theory

- Setup: (X, μ) a probability space, $T: X \rightarrow X$ is invertible and preserves μ.
- Observable: Let $A_{0}: X \rightarrow$ a finite set, $A_{n}=A_{0} \circ T^{n}$.
- Ergodicity: Every invariant observable A_{0} is trivial.
- Weak Mixing: For every $A_{0}, B_{0}, \frac{1}{N} \sum_{n=1}^{N}\left|\operatorname{Cov}\left(A_{0}, B_{n}\right)\right| \rightarrow 0$
- Mixing: For every $A_{0}, B_{0}, \operatorname{Cov}\left(A_{0}, B_{n}\right) \rightarrow 0$
- Positive entropy (Kolmogorov-Sinai): There exists A_{0} non-trivial so that $h\left(\mu, T, A_{0}\right)>0$.
- K: For every A_{0} non-trivial, $h\left(\mu, T, A_{0}\right)>0$.
- Bernoulli: There exists A_{0} (possibly with infinite range) so that A_{n} are iid and generate the σ-algebra.

Definitions: smooth ergodic theory

Let F be a \mathcal{C}^{r} diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

Definitions: smooth ergodic theory

Let F be a \mathcal{C}^{r} diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

- CLT: F satisfies the CLT if there is a sequence $a_{n} \in \mathbb{R}$ so that for any $A_{0} \in \mathcal{C}_{0}^{r}(M)$ (i.e. $\zeta\left(A_{0}\right)=0$),

$$
\frac{1}{a_{N}} \sum_{n=1}^{N} A_{n} \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

and $\sigma^{2}($.$) is not identically zero on \mathcal{C}_{0}^{r}(M)$.

Definitions: smooth ergodic theory

Let F be a \mathcal{C}^{r} diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

- CLT: F satisfies the CLT if there is a sequence $a_{n} \in \mathbb{R}$ so that for any $A_{0} \in \mathcal{C}_{0}^{r}(M)$ (i.e. $\zeta\left(A_{0}\right)=0$),

$$
\frac{1}{a_{N}} \sum_{n=1}^{N} A_{n} \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

and $\sigma^{2}($.$) is not identically zero on \mathcal{C}_{0}^{r}(M)$. F satisfies the classical CLT if $a_{n}=\sqrt{n}$.

Definitions: smooth ergodic theory

Let F be a \mathcal{C}^{r} diffeomorphism of a Riemannian manifold M that preserves a measure ζ absolutely continuous w.r.t the volume.

- CLT: F satisfies the CLT if there is a sequence $a_{n} \in \mathbb{R}$ so that for any $A_{0} \in \mathcal{C}_{0}^{r}(M)$ (i.e. $\zeta\left(A_{0}\right)=0$),

$$
\frac{1}{a_{N}} \sum_{n=1}^{N} A_{n} \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

and $\sigma^{2}($.$) is not identically zero on \mathcal{C}_{0}^{r}(M)$. F satisfies the classical CLT if $a_{n}=\sqrt{n}$.

- PM / EM F mixes polynomially/exponentially (PM/EM) if for all $A_{0}, B_{0} \in \mathcal{C}_{0}^{r}(M)$ the following holds with a polynomial/exponential function $\psi(n)$:

$$
\operatorname{Cov}\left|\left(A_{0}, B_{n}\right)\right| \leq\left\|A_{0}\right\|_{\mathcal{C}^{r}}\left\|B_{0}\right\|_{\mathcal{C}^{r}} \psi(n) .
$$

Flexibility of Statistical properties: a review

Problem: Does property \mathbf{X} imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

Flexibility of Statistical properties: a review
Problem: Does property \mathbf{X} imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

	Erg	WM/M	PE	K/B	CLT	PM	EM
Erg	$\mathbf{\&}$	(1)	(1)	(1)	(1)	(1)	(1)
$\mathbf{W M} / \mathbf{M}$	Y	$\mathbf{\&}$	(2)	(2)	(5)	(5)	(5)
$\mathbf{P E}$	(3)	(3)	$\mathbf{\&}$	(3)	(3)	(3)	(3)
K/B	Y	Y	Y	$\mathbf{\&}$	(5)	(5)	(5)
$\mathbf{C L T}$	Y	(6)	(4)	(6)	\mathbf{Q}	(6)	(6)
$\mathbf{P M}$	Y	Y	(2)	(2)	(2)	\mathbf{Q}	(2)
$\mathbf{E M}$	Y	Y	$? ?$	$? ?$	$? ?$	Y	\mathbf{Q}

(1) irrational rotation; (2) horocycle flow; (3) Anosov diffeo \times identity; (4): new, see later; (5) skew products on $\mathbb{T}^{2} \times \mathbb{T}^{2}$ of the form $(A x, y+\alpha \tau(x))$ where A is linear Anosov map, α is Liouvillian and τ is not a coboundary; (6) Skew product of Anosov diffeo and Diophantine rotation.

Flexibility of the CLT

Problem: Do properties $\mathbf{X}+\mathbf{C L T}$ imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

Flexibility of the CLT

Problem: Do properties $\mathbf{X}+\mathbf{C L T}$ imply property \mathbf{Y} ? If so, prove it. If not, provide counterexample.

	WM	M	PE	K	B	PM
WM	Q	(8)	(9)	(9)	(9)	(10)
M	9	9	(9)	(9)	(9)	(10)
PE	(6)	(6)	9	(6)	(6)	(6)
K	4	$\%$	4	$\%$	(7)	??
B	4	9	9	\&	\&	??
PM	9	$\%$	(9)	(9)	(9)	9

Examples (1) - (6) as before. Examples (7) - (10) are new.

Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)
(i) For each $m \in \mathbb{N}$ there exists an analytic diffeomorphism F_{m} which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_{m} is K and satisfies the classical CLT. (7)

Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)
(i) For each $m \in \mathbb{N}$ there exists an analytic diffeomorphism F_{m} which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_{m} is K and satisfies the classical CLT. (7)
(ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_{T}=T / \ln ^{1 / 4} T$. (10), (4)

Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)
(i) For each $m \in \mathbb{N}$ there exists an analytic diffeomorphism F_{m} which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_{m} is K and satisfies the classical CLT. (7)
(ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_{T}=T / \ln ^{1 / 4} T$. (10), (4)
(iii) For each $r \in \mathbb{N}$ there is a manifold M_{r} and a C^{r} diffeo F_{r} on M_{r} of zero entropy which satisfies the classical CLT. (4)

Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)
(i) For each $m \in \mathbb{N}$ there exists an analytic diffeomorphism F_{m} which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_{m} is K and satisfies the classical CLT. (7)
(ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_{T}=T / \ln ^{1 / 4} T$. (10), (4)
(iii) For each $r \in \mathbb{N}$ there is a manifold M_{r} and a C^{r} diffeo F_{r} on M_{r} of zero entropy which satisfies the classical CLT. (4)
(iv) There exists a weakly mixing but not mixing flow, which satisfies the classical CLT. (8)

Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)
(i) For each $m \in \mathbb{N}$ there exists an analytic diffeomorphism F_{m} which is mixing at rate n^{-m} but is not Bernoulli. Moreover, F_{m} is K and satisfies the classical CLT. (7)
(ii) There exists an analytic flow of zero entropy which satisfies the CLT with normalization $a_{T}=T / \ln ^{1 / 4} T$. (10), (4)
(iii) For each $r \in \mathbb{N}$ there is a manifold M_{r} and a C^{r} diffeo F_{r} on M_{r} of zero entropy which satisfies the classical CLT. (4)
(iv) There exists a weakly mixing but not mixing flow, which satisfies the classical CLT. (8)
(v) There exists a polynomially mixing flow, which is not K and satisfies the classical CLT. (9)

Flexibility of statistical properties
T, T^{-1} transformations

Proofs: CLT, zero entropy, $T / \ln ^{1 / 4} T$ normalization

Proofs: other cases

Random walks in random scenery (RWRS)

Let $\xi_{z}, z \in \mathbb{Z}^{d}$ be bounded iid random variables with finite range. Let T_{n} be a simple random walk independent from ξ_{z} 's. RWRS is

$$
S_{N}=\sum_{n=1}^{N} \xi_{T_{n}}
$$

Random walks in random scenery (RWRS)

Let $\xi_{z}, z \in \mathbb{Z}^{d}$ be bounded iid random variables with finite range. Let T_{n} be a simple random walk independent from ξ_{z} 's. RWRS is

$$
S_{N}=\sum_{n=1}^{N} \xi_{T_{n}}
$$

Kesten, Spitzer '79, Bolthausen '89:

- $d=1: S_{N} / N^{3 / 4}$ has a weak limit
- $d=2: S_{N} / \sqrt{N \log N}$ converges weakly to a Gaussian
- $d \geq 3: S_{N} / \sqrt{N}$ converges weakly to a Gaussian

Random walks in random scenery (RWRS)

Let $\xi_{z}, z \in \mathbb{Z}^{d}$ be bounded iid random variables with finite range. Let T_{n} be a simple random walk independent from ξ_{z} 's. RWRS is

$$
S_{N}=\sum_{n=1}^{N} \xi_{T_{n}}
$$

Kesten, Spitzer '79, Bolthausen '89:

- $d=1: S_{N} / N^{3 / 4}$ has a weak limit
- $d=2: S_{N} / \sqrt{N \log N}$ converges weakly to a Gaussian
- $d \geq 3: S_{N} / \sqrt{N}$ converges weakly to a Gaussian

Heuristics $(d=1)$: Each site $k \asymp \sqrt{N}$ is visited $\asymp \sqrt{N}$ times. Thus $S_{N} \asymp \sqrt{N} \sum_{k=-\sqrt{N}}^{\sqrt{N}} \xi_{k} \asymp N^{3 / 4}$.

T, T^{-1} transformations

Definition
The same as RWRS.

Definition
The same as RWRS.
In $d=1$ case:

- $X=\{-1,1\}^{\mathbb{Z}}, \mu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)^{\mathbb{Z}}, f: X \rightarrow X$ left shift.
- $\tau(x)=x(0)$
- $(Y, g, \nu)=(X, f, \mu)$
$F: X \times Y \rightarrow X \times Y, F(x, y)=\left(f(x), g^{\tau(x)}(y)\right)$ preserves
$\zeta=\mu \times \nu$.

Definition
The same as RWRS.
In $d=1$ case:

- $X=\{-1,1\}^{\mathbb{Z}}, \mu=\frac{1}{2}\left(\delta_{1}+\delta_{-1}\right)^{\mathbb{Z}}, f: X \rightarrow X$ left shift.
- $\tau(x)=x(0)$
- $(Y, g, \nu)=(X, f, \mu)$
$F: X \times Y \rightarrow X \times Y, F(x, y)=\left(f(x), g^{\tau(x)}(y)\right)$ preserves
$\zeta=\mu \times \nu$.
K/Bernoulli properties
Kalikow '82: $d=1$: F is K but not Bernoulli.
den Hollander, Steif '97: F is Bernoulli iff $d \geq 3$.

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ
- Y compact manifold, $G_{t}: Y \rightarrow Y$ is a d-parameter flow preserving ν.

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ
- Y compact manifold, $G_{t}: Y \rightarrow Y$ is a d-parameter flow preserving ν.
- $\tau: X \rightarrow \mathbb{R}^{d}$ a smooth map.

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ
- Y compact manifold, $G_{t}: Y \rightarrow Y$ is a d-parameter flow preserving ν.
- $\tau: X \rightarrow \mathbb{R}^{d}$ a smooth map.

The map $F: X \times Y \rightarrow X \times Y$

$$
F(x, y)=\left(f(x), G_{\tau(x)}(y)\right)
$$

is a smooth T, T^{-1} transformation. It preserves $\zeta=\mu \times \nu$.

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ
- Y compact manifold, $G_{t}: Y \rightarrow Y$ is a d-parameter flow preserving ν.
- $\tau: X \rightarrow \mathbb{R}^{d}$ a smooth map.

The map $F: X \times Y \rightarrow X \times Y$

$$
F(x, y)=\left(f(x), G_{\tau(x)}(y)\right)
$$

is a smooth T, T^{-1} transformation. It preserves $\zeta=\mu \times \nu$. Symbolic example: RWRS

Definition: smooth T, T^{-1} transformations

- X compact manifold, $f: X \rightarrow X$ smooth map preserving μ
- Y compact manifold, $G_{t}: Y \rightarrow Y$ is a d-parameter flow preserving ν.
- $\tau: X \rightarrow \mathbb{R}^{d}$ a smooth map.

The map $F: X \times Y \rightarrow X \times Y$

$$
F(x, y)=\left(f(x), G_{\tau(x)}(y)\right)
$$

is a smooth T, T^{-1} transformation. It preserves $\zeta=\mu \times \nu$.
Symbolic example: RWRS
continuous T, T^{-1} transformations:

$$
F_{T}(x, y)=\left(h_{T}(x), G_{\tau_{T}(x)}(y)\right) \quad \tau_{T}(x)=\int_{0}^{T} \tau\left(h_{t}(x)\right) d t
$$

Flexibility of statistical properties

T, T^{-1} transformations

Proofs: CLT, zero entropy, $T / \ln ^{1 / 4} T$ normalization

Proofs: other cases

Theorem (ii): defining of the example (10)

- $d=1$

Theorem (ii): defining of the example (10)

- $d=1$
- h_{T} : horocycle flow on a hyperbolic octagon

Theorem (ii): defining of the example (10)

- $d=1$
- h_{T} : horocycle flow on a hyperbolic octagon

- G_{t} : any flow that mixes exponentially of all orders (e.g. Anosov flow)

Theorem (ii): defining of the example (10)

- $d=1$
- h_{T} : horocycle flow on a hyperbolic octagon

- G_{t} : any flow that mixes exponentially of all orders (e.g. Anosov flow)
- $\tau_{T}(x)$: winding number: how many times the horocyle winds around X in a given homology class (mean zero!).

Theorem (ii): defining of the example (10)

- $d=1$
- h_{T} : horocycle flow on a hyperbolic octagon

- G_{t} : any flow that mixes exponentially of all orders (e.g. Anosov flow)
- $\tau_{T}(x)$: winding number: how many times the horocyle winds around X in a given homology class (mean zero!).
Zero entropy follows from Abramov-Rokhlin formula.

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

$$
\zeta\left(H_{T}^{2}\right)=\mu\left(\nu\left(H_{T}^{2}\right)\right)=\ldots
$$

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

$$
\zeta\left(H_{T}^{2}\right)=\mu\left(\nu\left(H_{T}^{2}\right)\right)=\ldots
$$

$$
\text { (assuming } \int H\left(x_{1}, y\right) H\left(x_{2}, G_{n} y\right) d \nu(y)=0 \text { for all } n \neq 0 \text {) }
$$

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

$$
\zeta\left(H_{T}^{2}\right)=\mu\left(\nu\left(H_{T}^{2}\right)\right)=\ldots
$$

$$
\begin{gathered}
\left.\quad \text { (assuming } \int H\left(x_{1}, y\right) H\left(x_{2}, G_{n} y\right) d \nu(y)=0 \text { for all } n \neq 0\right) \\
=\iint_{0}^{T} \int_{0}^{T} \sum_{k} 1_{\tau_{t_{1}} x=\tau_{t_{2}} x=k} \int H\left(h_{t_{1}} x, y\right) H\left(h_{t_{2}} x, y\right) d \nu(y) d t_{1} d t_{2} d \mu(x)
\end{gathered}
$$

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

$$
\zeta\left(H_{T}^{2}\right)=\mu\left(\nu\left(H_{T}^{2}\right)\right)=\ldots
$$

$$
\begin{gathered}
\left.\quad \text { (assuming } \int H\left(x_{1}, y\right) H\left(x_{2}, G_{n} y\right) d \nu(y)=0 \text { for all } n \neq 0\right) \\
=\iint_{0}^{T} \int_{0}^{T} \sum_{k} 1_{\tau_{t_{1}} x=\tau_{t_{2}} x=k} \int H\left(h_{t_{1}} x, y\right) H\left(h_{t_{2}} x, y\right) d \nu(y) d t_{1} d t_{2} d \mu(x)
\end{gathered}
$$

Mixing local limit theorem for the geodesic flow:

$$
\int_{0}^{T} 1_{\tau_{t} x=k} 1_{h_{t} \in A} d t \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k-s_{T}(x)}{\sqrt{\ln T}}\right) \mu(A)
$$

Convergence of second moment

$H: X \times Y \rightarrow \mathbb{R}$ smooth, mean zero and $H_{T}=\int_{0}^{T} H \circ F_{t} d t$. Let us explain why $\zeta\left(H_{T}^{2}\right) \asymp T^{2} / \sqrt{\ln T}$.

$$
\zeta\left(H_{T}^{2}\right)=\mu\left(\nu\left(H_{T}^{2}\right)\right)=\ldots
$$

$$
\begin{gathered}
\text { (assuming } \left.\int H\left(x_{1}, y\right) H\left(x_{2}, G_{n} y\right) d \nu(y)=0 \text { for all } n \neq 0\right) \\
=\iint_{0}^{T} \int_{0}^{T} \sum_{k} 1_{\tau_{t_{1}} x=\tau_{t_{2}} x=k} \int H\left(h_{t_{1}} x, y\right) H\left(h_{t_{2}} x, y\right) d \nu(y) d t_{1} d t_{2} d \mu(x)
\end{gathered}
$$

Mixing local limit theorem for the geodesic flow:

$$
\begin{aligned}
& \int_{0}^{T} 1_{\tau_{t} x=k} 1_{h_{t} \in A} d t \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k-s_{T}(x)}{\sqrt{\ln T}}\right) \mu(A) \\
& \approx C_{H} \sum_{\ell=-10^{6}}^{10^{6}} \frac{T^{2}}{\ln T} \varphi^{2}\left(\frac{\ell}{\sqrt{\ln T}}\right) \asymp C_{H} \frac{T^{2}}{\sqrt{\ln T}} \int_{\mathbb{R}} \varphi^{2}(z) d z .
\end{aligned}
$$

Mixing local limit theorem for the geodesic flow

$$
\int_{0}^{T} 1_{\tau_{t} x=k} 1_{h_{t} \in A} d t \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k-s_{T}(x)}{\sqrt{\ln T}}\right) \mu(A)
$$

Figure: Temporal limit theorem for horocycle flow \approx central limit theorem for the geodesic flow (Dolgopyat, Sarig'17)

Mixing local limit theorem for the geodesic flow

$$
\int_{0}^{T} 1_{\tau_{t} x=k 1_{h_{t} \in A} d t} \sim \frac{T}{\sqrt{\ln T}} \varphi\left(\frac{k-s_{T}(x)}{\sqrt{\ln T}}\right) \mu(A)
$$

Figure: Temporal limit theorem for horocycle flow \approx central limit theorem for the geodesic flow (Dolgopyat, Sarig'17)

Finishing the proof

- General observable H : write $H(x, y)=\hat{H}(x)+\tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d \nu(y)=0$ for all x. Then $\hat{H}_{T}=O\left(T^{<1}\right)$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.

Finishing the proof

- General observable H : write $H(x, y)=\hat{H}(x)+\tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d \nu(y)=0$ for all x. Then $\hat{H}_{T}=O\left(T^{<1}\right)$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.
- Convergence of higher moment: as 2nd moment... Björklund, Gorodnik '20 CLT for exponentially mixing systems

Finishing the proof

- General observable H : write $H(x, y)=\hat{H}(x)+\tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d \nu(y)=0$ for all x. Then $\hat{H}_{T}=O\left(T^{<1}\right)$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.
- Convergence of higher moment: as 2nd moment... Björklund, Gorodnik '20 CLT for exponentially mixing systems
Remark: F_{T} cannot mix polynomially by the following lemma.

Finishing the proof

- General observable H : write $H(x, y)=\hat{H}(x)+\tilde{H}(x, y)$, where $\int \tilde{H}(x, y) d \nu(y)=0$ for all x. Then $\hat{H}_{T}=O\left(T^{<1}\right)$ by Flaminio, Forni '03. For \tilde{H} use exponential mixing of G.
- Convergence of higher moment: as 2nd moment... Björklund, Gorodnik '20 CLT for exponentially mixing systems
Remark: F_{T} cannot mix polynomially by the following lemma.
Lemma: Let X_{1}, \ldots, X_{n} be a stationary sequence of random
variables with $\left|E\left(X_{i} X_{j}\right)\right| \leq C|i-j|^{-\beta}$. and $S_{N}=\sum_{n=1}^{N} X_{n}$. Then $S_{N} / n^{\alpha+\varepsilon} \rightarrow 0$ almost surely, where

$$
\alpha= \begin{cases}1 / 2 & \text { if } \beta \geq 1 \\ 1-\beta / 2 & \text { if } \beta<1\end{cases}
$$

Flexibility of statistical properties
T, T^{-1} transformations

Proofs: CLT, zero entropy, $T / \ln ^{1 / 4} T$ normalization

Proofs: other cases

Further choices

We always assume that G_{t} is mixing of all orders.
Canonical examples for $d \geq 2$:

1. \mathbb{Z}^{d} action Cartan actions: ergodic actions of \mathbb{Z}^{d} on \mathbb{T}^{d+1} by hyperbolic automorphisms.
2. \mathbb{R}^{d} action Weyl chamber flows: Action of the diagonal group by left translations on $S L(d+1, \mathbb{R}) / \Gamma$, where Γ is a co-compact lattice in $S L(d+1, \mathbb{R})$.

Theorem (iii): \mathcal{C}^{r} diffeo with zero entropy and classical CLT

Proposition
Suppose that $f: X \rightarrow X$ satsifies:
D1 Ergodic sums of all zero mean smooth observables on X grow slower than $N^{1 / 2}$.

D2

$$
\mu\left(\left\|\sum_{n=1}^{N} \tau_{n}\right\|<\log ^{1+\varepsilon} N\right)<\frac{C}{N^{5}}
$$

Then F satisfies the classical CLT.

Theorem (iii): \mathcal{C}^{r} diffeo with zero entropy and classical CLT

Proposition

Suppose that $f: X \rightarrow X$ satsifies:
D1 Ergodic sums of all zero mean smooth observables on X grow slower than $N^{1 / 2}$.

D2

$$
\mu\left(\left\|\sum_{n=1}^{N} \tau_{n}\right\|<\log ^{1+\varepsilon} N\right)<\frac{C}{N^{5}}
$$

Then F satisfies the classical CLT.
Proposition
Fix κ, r, \mathbf{m} with $\kappa / 2<r<\mathbf{m}$. Then there is a $d \geq 0$ so that the following holds. Let $X=\mathbb{T}^{\mathbf{m}}, f(x)=x+\alpha$ where α is Diophantine (i.e. $|\langle k, \alpha\rangle| \geq D|k|^{-\kappa}$). Then $D 1$ holds for all $A_{0} \in \mathcal{C}^{r}\left(\mathbb{T}^{\mathbf{m}}, \mathbb{R}\right)$ and D2 holds for some $\tau \in \mathcal{C}^{r}\left(\mathbb{T}^{m}, \mathbb{R}^{d}\right)$.

Theorem (i): Anosov base, $d \geq 3$.
Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif)

Theorem (i): Anosov base, $d \geq 3$.
Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif)
Theorem (iv): Base: suspension over irrational rotation with logarithmic singularities (smooth flows on surfaces of genus ≥ 2 : weakly mixing but not mixing).

Theorem (i): Anosov base, $d \geq 3$.
Difficult part: F is not Bernoulli (cf. symbolic actions, den Hollander - Steif)
Theorem (iv): Base: suspension over irrational rotation with logarithmic singularities (smooth flows on surfaces of genus ≥ 2 : weakly mixing but not mixing).
Theorem (v): Base: suspension over irrational rotation with polynomial singularities.

References:

1. D. Dolgopyat, C. Dong, A. Kanigowski, P.N., Flexibility of statistical properties for smooth systems satisfying the central limit theorem
https://arxiv.org/abs/2006.02191
2. D. Dolgopyat, C. Dong, A. Kanigowski, P.N., Mixing properties of generalized T, T^{-1} transformations https://arxiv.org/abs/2004.07298
