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Setup: (X, u) a probability space, T : X — X is invertible and
preserves [i.

Observable: Let Ag : X — a finite set, A, = Ago T".
Ergodicity: Every invariant observable Ag is trivial.

Weak Mixing: For every Ag, By, % SN [Cov(Ao, Ba)| = 0
Mixing: For every Ao, By, Cov(Ao, Bn) — 0

Positive entropy (Kolmogorov-Sinai): There exists Ag
non-trivial so that h(u, T, Ap) > 0.

K: For every Ag non-trivial, h(u, T, Ag) > 0.

Bernoulli: There exists Ap (possibly with infinite range) so
that A, are iid and generate the o-algebra.
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Definitions: smooth ergodic theory

Let F be a C" diffeomorphism of a Riemannian manifold M that
preserves a measure ( absolutely continuous w.r.t the volume.

» CLT: F satisfies the CLT if there is a sequence a, € R so that
for any Ag € Cg(M) (i.e. ((Ao) =0),

1 N
—ZA,, = N(0,0?)
an n=1

and o?(.) is not identically zero on C5(M). F satisfies the
classical CLT if a, = /n.

» PM / EM F mixes polynomially/exponentially (PM/EM) if
for all Ag, By € C{(M) the following holds with a
polynomial/exponential function v (n):

Cov/|(Ao, Bn)| < [|Aollcrl| Bolleri(n).
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Problem: Does property X imply property Y? If so, prove it. If not,
provide counterexample.

Erg | WM/M | PE | K/B | CLT | PM | EM

Erg | & L @@ | @ | @@

WM/M | Y & )] @ | (6) | ()] (5)

PE | (3)| (3) & | (3) | 3| (B)] 0B

K/B Y Y Y & (5) | (5) | (5)

CLT Y (6) (6) & (6) | (6)

PM Y Y 2| (2 (2) * | (2)

EM Y Y 77 77 77 Y &

(1) irrational rotation; (2) horocycle flow; (3) Anosov diffeo x
identity; ; (5) skew products on T2 x T? of the

form (Ax,y + a7(x)) where A is linear Anosov map, « is
Liouvillian and 7 is not a coboundary; (6) Skew product of Anosov
diffeo and Diophantine rotation.
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Problem: Do properties X + CLT imply property Y7 If so, prove it.
If not, provide counterexample.

WM | M [PE[ K | B [PM
WM | &

M & | &

PE | (6) | (6) & |(6)](6) (6)
K | & &S &
B | & & | S & 7

PM | & | & &

Examples (1) - (6) as before. Examples (7) - are new.
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Main results

Theorem (Dong, Dolgopyat, Kanigowski, N. '20)

(i) For each m € N there exists an analytic diffeomorphism Fp,
which is mixing at rate n=™" but is not Bernoulli. Moreover,
F, is K and satisfies the classical CLT.

(i) There exists an analytic flow of zero entropy which satisfies
the CLT with normalization at = T/ Inl/4T. ,

(iii) For each r € N there is a manifold M, and a C" diffeo F, on
M, of zero entropy which satisfies the classical CLT.

(iv) There exists a weakly mixing but not mixing flow, which
satisfies the classical CLT.

(v) There exists a polynomially mixing flow, which is not K and
satisfies the classical CLT.
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Let &,,z € Z9 be bounded iid random variables with finite range.
Let T, be a simple random walk independent from &,'s. RWRS is

N
Sn="> ¢,
n=1

Kesten, Spitzer '79, Bolthausen '89:

> d = 1: Sy/N3/* has a weak limit

» d =2: Sy/v/Nlog N converges weakly to a Gaussian

» d > 3: Sy/v/'N converges weakly to a Gaussian
Heuristics (d = 1): Each site k =< v/N is visited =< v/N times. Thus
Sw= VNSV e N
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T, T~ transformations

Definition
The same as RWRS.
In d =1 case:

> X ={-1,1}%, p =301 +0-1)% f: X — X left shift.
> 7(x) = x(0)
> (Y,g,v)=(X,f,u)
F:XxY =XxY, F(x,y)=(f(x),g"®)(y)) preserves
C=uxv.

K/Bernoulli properties
Kalikow '82: d = 1: F is K but not Bernoulli.
den Hollander, Steif '97: F is Bernoulli iff d > 3.
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Definition: smooth T, T~! transformations

» X compact manifold, f : X — X smooth map preserving u

» Y compact manifold, G; : Y — Y is a d-parameter flow
preserving v.

» 7: X — R? a smooth map.
Themap F: X XY > XxY

F(X7y) = (f(X)7 GT(X)(y))

is a smooth T, T—! transformation. It preserves ( = uu x v.
Symbolic example: RWRS
continuous T, T~ ! transformations:

-
Fr(x,y) = (h7(x), Grr(x(¥)) TT(X)Z/O 7(he(x))dt
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Theorem (ii): defining of the example

» d=1
» ht: horocycle flow on a hyperbolic octagon

» G;: any flow that mixes exponentially of all orders (e.g.

Anosov flow)
» 77(x): winding number: how many times the horocyle winds
around X in a given homology class (mean zero!).

Zero entropy follows from Abramov-Rokhlin formula.
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Mixing local limit theorem for the geodesic flow

T T k — st(x)
1TtX: 1 +€ dt ~ L A
/0 klh.ca <P< \/ﬁ ) p(A)

VinT

Figure: Temporal limit theorem for horocycle flow ~ central limit
theorem for the geodesic flow (Dolgopyat, Sarig'17)
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Figure: Temporal limit theorem for horocycle flow ~ central limit
theorem for the geodesic flow (Dolgopyat, Sarig'17)
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Finishing the proof

> General observable H: write H(x, y) = H(x) + H(x,y), where
J H(x,y)dv(y) = 0 for all x. Then Hr = O(T<") by
Flaminio, Forni '03. For H use exponential mixing of G.

» Convergence of higher moment: as 2nd moment...
Bjorklund, Gorodnik '20 CLT for exponentially mixing systems

Remark: Fr cannot mix polynomially by the following lemma.
Lemma: Let Xy, ..., X, be a stationary sequence of random
variables with |E(X;X;)| < C|i — j|7%. and Sy = ZnN:1 Xn. Then
SN/nO‘+5 — 0 almost surely, where

{1/2 if 3> 1

1-8/2 fB<1
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Further choices

We always assume that G; is mixing of all orders.
Canonical examples for d > 2:

1. Z9 action Cartan actions: ergodic actions of Z¢ on T9*! by
hyperbolic automorphisms.

2. RY action Weyl chamber flows: Action of the diagonal group
by left translations on SL(d + 1,RR)/I, where I is a
co-compact lattice in SL(d + 1, R).



Theorem (iii): C" diffeo with zero entropy and classical CLT

Proposition
Suppose that f : X — X satsifies:

D1 Ergodic sums of all zero mean smooth observables on X grow
slower than N/2.

D2
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Then F satisfies the classical CLT.
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Proposition

Suppose that f : X — X satsifies:

D1 Ergodic sums of all zero mean smooth observables on X grow
slower than N/2.

D2
N C
1+
p(|l ;TnH <log"™ N) < N5

Then F satisfies the classical CLT.

Proposition

Fix k,r,m with /2 < r < m. Then there is a d > 0 so that the
following holds. Let X = T™, f(x) = x + a where « is Diophantine
(i.e. |[{k, )| > D|k|=*). Then D1 holds for all Ag € C"(T™,R) and
D2 holds for some T € C"(T™, R9).
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Theorem (i): Anosov base, d > 3.

Difficult part: F is not Bernoulli (cf. symbolic actions, den
Hollander - Steif)

Theorem (iv): Base: suspension over irrational rotation with
logarithmic singularities (smooth flows on surfaces of genus > 2:
weakly mixing but not mixing).

Theorem (v): Base: suspension over irrational rotation with
polynomial singularities.
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