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Overview

B small-scale features of homogeneous isotropic turbulence

B statistical description: closure problem

B closure based on Gaussian random fields

B comparison to DNS data



Small-Scale Structures in Turbulence
vorticity field ω2/2 strain field Tr(S2)
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goal: derive dynamical model to capture essential statistical features
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Velocity Gradient Tensor Statistics

B velocity gradients Aij = ∂ui
∂xj

= Sij +Wij contains rich information on:

B vorticity

B strain

B geometry
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Velocity Gradient Tensor Dynamics

D

Dt
A(x, t) = −A(x, t)2 −H(x, t) + ν∆A(x, t) + F(x, t)

with pressure Hessian:

H = −1

3
Tr
(
A2
)

I︸ ︷︷ ︸
local (isotropic) part.

+ H̃︸︷︷︸
nonlocal part

H̃ij(x, t) = − 1

4π

∫
PV

dx′
[

δij
|x′ − x|3

− 3
(x′ − x)i(x

′ − x)j
|x′ − x|5

]
Tr
(
A(x′, t)2

)
B closure problem/modeling challenge for statistical description:

express H̃ and ν∆A as function of A

[Ohkitani & Kishiba, Phys. Fluids 7, 411 (1995)]

[see also: Meneveau, Annu. Rev. Fluid Mech. 43, 245 (2011)]



Restricted Euler & Linear Diffusion Models

Restricted Euler approximation

H̃ = 0

ν∆A = 0

Linear diffusion model

H̃ = 0

ν∆A = −A

τ0

[Vieillefosse, J. Phys. 43, 837 (1982)]

[Cantwell, Phys. Fluids. A 4, 782 (1992)

[Martin et al., Phys. Fluids 10, 2012 (1998)]

figs. from [Meneveau, Annu. Rev. Fluid Mech. 43, 245 (2011)]

advanced models: [Chertkov et. al., Phys. Fluids 11, 2394 (1999)], [Naso & Pumir, PRE 72, 056318 (2005)], [Chevillard & Meneveau, PRL 97, 174501 (2006)]



Statistical Evolution Equation & Gaussian Random Field Closure

B from PDF equation: exact (but unclosed!) statistical evolution equation:

dA =

[
−
(
A2 − 1

3
Tr(A2)I

)
−
〈
H̃
∣∣A〉+

〈
ν∆A

∣∣A〉]dt+ dF

B nonlocal pressure Hessian:

〈
H̃ij(x1)

∣∣A1

〉
= − 1

4π

∫
PV

dr

[
δij
r3
− 3

ri rj
r5

] 〈
Tr(A2)(x1 + r)

∣∣A1

〉
B viscous term:〈

ν∆x1A(x1, t)
∣∣A1

〉
= lim
r→0

ν∆r

〈
A(x1 + r, t)

∣∣A1

〉
B Closure needs specification of a random field!



Idea: Gaussian Random Field Closure

“replace with ”

Wilczek & Meneveau, J. Fluid Mech. 756, 191 (2014)



Incompressible Gaussian Velocity Fields

B def.: every finite-dimensional density is multivariate Gaussian

B comprehensive statistical description: characteristic functional

φu[λ(x)] =

〈
exp

[
i

∫
dxλi(x)ui(x)

]〉
= exp

[
−1

2

∫
dx

∫
dx′ λi(x)Ru

ij(x,x
′)λj(x

′)

]

B Ru
ij(x,x

′) is the velocity covariance tensor,
specified by longitudinal autocorrelation function fu(r)



Analytical Calculation: Details

1. start from characteristic functional for velocity φu

2. obtain characteristic functional for velocity gradient φA

3. calculate conditional averages:〈
A(x2)

∣∣A1

〉
and

〈
Tr
(
A(x2)

2
) ∣∣A1

〉
4. evaluate conditional pressure Hessian and viscous term:〈

H̃ij(x1)
∣∣A1

〉
and

〈
ν∆x1A(x1, t)

∣∣A1

〉

Wilczek & Meneveau, J. Fluid Mech. 756, 191 (2014)



Gaussian Nonlocal Pressure Hessian Contributions
Gaussian closure:

〈
H̃(x1)

∣∣A1

〉
=α

(
S2
1 −

1

3
Tr
(
S2
1

)
I

)
+ β

(
W2

1 −
1

3
Tr
(
W2

1

)
I

)
+ γ (S1W1 −W1S1)

α = −2

7
≈ −0.29

β = −2

5
= −0.4

γ =
6

25
+

16

75f ′′u (0)2

∫
dr

f ′uf
′′′
u

r
≈ 0.08

B quadratic expression of
velocity gradient

B symmetric

B traceless
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Gaussian Nonlocal Pressure Hessian Contributions
Gaussian closure:

〈
H̃(x1)

∣∣A1

〉
=α

(
S2
1 −

1

3
Tr
(
S2
1

)
I

)
+ β

(
W2

1 −
1

3
Tr
(
W2

1

)
I

)
+ γ (S1W1 −W1S1)

α = −2

7
≈ −0.29

β = −2

5
= −0.4

γ =
6

25
+

16

75f ′′u (0)2

∫
dr

f ′uf
′′′
u

r
≈ 0.08

B quadratic expression of
velocity gradient

B symmetric

B traceless

Gaussian closure blows up!
generalization:

B improve coefficients based on
DNS data

B enhanced Gaussian closure:

α = −0.61

β = −0.65

γ = 0.14



Gaussian Viscous Contribution

〈
ν∆x1A(x1)

∣∣A1

〉
= δA1

δ = ν
7

3

f
(4)
u (0)

f ′′u (0)
= −ν

∫
dk k4E(k)∫
dk k2E(k)

B Reynolds number dependence through autocorrelation function/spectrum

B Gaussian assumption consistent with linear diffusion models

B but additionally: coefficient fixed

B estimate from DNS:

δτη = −0.15



Comparison to DNS Data (a priori)
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Comparison to DNS Data (stochastic ODE model)
DNS closure
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Phenomenological view on the occurrence and decay of extreme events

D

Dt
A = −A2 −H + ν∆A + F

B Restricted Euler nonlinearity produces steep gradients
(structures?)

B nonlocal pressure Hessian builds up “restoring force” ∼
volume-weighted balance between strain and vorticity
(Tr(A2) = Tr(S2) + Tr(W2))

B viscous term damps structures ∼ local curvature



Conclusions

B pressure Hessian and viscous terms evaluated for Gaussian
velocity fields

B Gaussian closure:

B viscous term: linear damping
B nonlocal pressure Hessian: combination of quadratic, traceless

and symmetric velocity gradient expressions

B enhanced Gaussian closure:

B adjusted coefficients to counterbalance restricted Euler
singularity

B enhanced Gaussian closure leads to stable ODE model



Future Work and Open Questions

B How to construct non-Gaussian random fields for better
closures?

B Use simple ODE models to predict structures/extreme events
in turbulent flows?



Thank you!
Questions?


