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' Outline of the talk: I

How do cells move?

Modelling chemotaxis
— Macroscopic models : parabolic models, hyperbolic models

— Mesoscopic or kinetic models: an intermediate approach
between micro and macro models.

Kinetic equations to make the link between the different models:
— Cattaneo system for chemotaxis
— Nonlinear hyperbolic model.

Overview of the well-balanced algorithm
Simulation of hyperbolic models

Conclusions and perspectives



How do cells move;.]

Nearly all cells are endowed with devices allowing them to move.
From E. Coli (bacteria)...

Figure 1. A representation of bacterium Escherichia Coli.



' How do cells move;.]

the Dictyostelium Discoideum (amoeboid cells)

N

Figure 2. Motion of Dictyostelium in reaction to a chemoattractant
emitted at a certain point (upper left corner).
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" Introduction I

In the simple situation where we only consider cells and a chemical
substance (thechemo-attractant), a model for the space and time
evolution of thedensityn = n(t, x) of cells and thechemical
concentrationc = c(t, x) attime t and positionz € Q@ C R< has
been introduced byPatlak and Keller & Segeland reads

0
B—?Z —div(Vn — xnVe) = 0,

coupled with the chemoattractant equationfor ¢

oc A ( )
— — Ac = g(n,c).
ot J



‘ Chemotaxis : mathematical theory ford = 2'

(i) for |[nol||r: small enough 87), then there exist weak solutions.
(i) these weak solutions propagatd.? regularity.
(iiiy for ([ |x|? no) is finite, then there is blow-ug time T
(iv) (d = 2) with radial symmetry® n(t) — 8 mdg(x) + R.

(v) (d > 2) various (stable or unstable) radial blow-up profiles.

4Herrero,Medina and Velazquez; Nonlinearity (1997), Dolbeault-Perthame; CRAS (2004)
bNagai; Adv. Math. Appl. Sci. (1995)



' Kinetic framework I

We start from the transport equation for the distribution function
| = f(ta €L, 'U)a

%"‘ —? - Va:f_ _T(Caf)

The density of cellsn is given by

n(t,x) = / f(t,x,v)dv.
\ %
and we assume herein that théurning operator is of the form

T(Ca f) — %(f) + 57’1(@ f)

It is possible to derive rigorously the PKS model large time®.

40thmer, Dunbar & Alt, JMB (1988), A. Stevens SIAM JAM
bHillen & Othmer SIAM JAM (2000); Chaluket al. (Monast.)




' Run and tumble process]

We assume that cells move, stop and suddently change their
directions.

T (c, f) describes this change of direction:

T(c, f) = /VK(U,U',C) f(v") dv’ — /VK(’U',fv,c) dv’ f(v),

where K (v, v’, ¢) is the rate of change of direction.
Now, we consider the following scaling:
of

1
E‘i‘vvmf: ET(Caf)



Assumptions on the turning operatoril

e The turning operators 7, and 7; preserve the local mass

/V%(f)dvzfvtrl(c,ﬂdv:o,

forany ¢ > 0.
e In addition, 7y conserves the population flux, that is,

/V’Zf)(f)vdv = 0.

e Forall n € [0, +00) andu € R<, there exists a unique function
F,. € L*(V; (1 + |v|)dv) such that

To(Fpnu) =0, / Fp «(v) dv = n, / Fp (v)vdv = nu.
1% 1%
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Hydrodynamic limits I

Let f be a solution to thekinetic equation and set
n(t,x) = /V f(t,z,v)dv, n(t,x)u(t,x) = /V f(t,x,v) vdv.
We introduce f; such that

e fi(t,xz,v) = f(t, x,v) — Fipyt,2),u(t,z) (V),

We integrate the KE overv € V and use theconservation of mass

0
3—7; + div(n u) = 0.

Owing to the conservation of momentumby the turning operator 7y

o) 4 iy (/V v ® v Fp () d") B /V Ty (¢, Fnu) vdv+0(e).
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Next, we compute
/V vRU F, ,, dv = /V(v—u)®(v—u) Fp o dv+nu®Qu,= P +nu®u
where the pressure tensor is given by
P(t,x) = /V(v —u(t,z)) @ (v — u(t, x)) Fr,z),uit,z) dv.
Then,

(0
8—? + div(n u) = 0,

d(nu)
\ ot

—|—diV(nu®u—|—P)=/(fv—u)Tl(c,Fn,u)dv,
14

12



Cells are interacting together IocaIIyI

Then, the turning operator 7y is like a BGK operator

To(f) () = A (19( ) (ﬂ"i/;(z)) - 1)).

where

/VF(v)dvzl, /VvF(v)dv:O.

:>P:n/v(v—u)®(v—u)F<1;i/;(:/))dvznﬂ(n) P;

Moreover, let 77 be such that

Ti(e, f) = /V K (v, v/, V) £(v) dv/— /V K1 (v/,v, Ve) dv’ ().

13



' Nonlinear Hyperbolic Model I

From these assumptions or¥;, we get the followingnonlinear model

(9" | div(nu) = 0
8t nu)—u,

d(nu)
. Ot
coupled with the concentration equation fore.

+div(nu @ u 4+ nd(n)p) = —ocnu+ nd9*?%(n) x'Ve,

e already obtained by Serini & al*:

aSerini et al. EMBO J. (2003)
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What about entropy inequality? I

For the PKS model &2 + div G’ < 0, where

~

n = n(logn—1-—c) + % + %,
G = (nVe—Vn)(logn —c) — (n — ¢+ Ac) Ve,

For the hyperbolic model whenx(c) = ¢

%, dc\?
8—Z—I—diVG= —onu? — (—c) <0,

ot
1, 1( ., [(0c\?
n = n(logn—l)—l—EnU —nc—|—2<c —I—(aw)>,
G = nu(logn—l——uz)—nuc—%ﬁ.
2 Ot Ox

15



Cells are not interacting: Cattaneo mode'

Since cells are not interacting, the turning operator is linear
To(f)(t, z,v) = / (To (v, ") f(t, z,v") — To(v',v) f(t, z,v)) dv’.
1%

with V = S§?
To(v,v") = (1 4+ Cov - v')

The steady state is a linear combinatiorof 1,v1,...;v4

d
Fpu(v) = (n + Cin Z v; uz> .

=1

16



(9™ | div(nu) =0
ot neI="
\
d(nu)
+Vn=—0onu+nVec
\ ot

e another model Hillen and Othmer#?) can be also obtained using a
similar technique.

e linear with respectto (n,n u)

a40thmer-Dunbar Alt IMB (1988); Hillen M3AS (2002))

17



' Numerical Methods'

Write the discrete version of the system in the following form
d
AiBian(t) + Fip1/2 — Fi_1/2 = Ax; S; (1)

where Ax; denotes the mesh sizAx; = x;11/2 — x;_1/2, and the
cell-average vector of discrete unknowns is

n;(t)

U;(t) =
( ) nz(t) u,,,(t)

and S; is a “smart” approximation of the source.

18



' A first order well-balanced schemﬂ

For a first order scheme, we get

Fi+1/2 = f(Ui(t)a Ui-l—l(t))a

and you want to preservelog(n;) — x(c;) = ¢*¢, wu; = 0. Then
replace® F; 1/ by

Fiy1/2 = j:(Ui:Ll/zv Ui—l——l—l/Z)’
The source term is discretized asq4¢ = 0.)

1 0
—AiL‘i

S; .

n;,_1/2

Tii1/2 —
This ansatz is motivated by the balancing requirement. Indeed, when
steady state holdsVn = n x/(c) Ve = n e X(©) Vv (ex(9),

4Audusse et al. SISC (2004), Bouchut Birkauser (2004), Gosse CNR report (2000)
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A first order well-balanced Schemﬂ

To ensure steady state conservation (with zero population flux), we

must choose

_I_

ni_+1/2 —n

From this observation, we take

- — . qu-|-1/2—X(Ci)
N 12 = T4 €

and

+ — . Xi+1/2—X(Cit1)
Nii1/2 = Mit1€ .

Here we could choose for instance

Xi+1/2 — mMax (X(Cz’)a X(Cz‘+1)) .

20



‘ Theorem: consistency and WeII-baIancin]

Consider a numerical flux F for the homogeneous problem, which
preserves nonnegativity ofn;(t). Then, the scheme with periodic
boundary conditions satisfies the following

(i) preserves thenonnegativity of n;(t)
(i) preserves the steady statéog(n;) — x(c;) = c*©
(ii)) is consistentwith the Hyperbolic system with a source term.

(iv) there is a discrete entropy property.

21



Flux Splitting Scheme'

To approximate the flux function, we use a flux splitting scheme
F(U,U,) = F*(U) + F (U,), andF(U,U) = F(U)
In most applications the simple Lax-Friedrichs flux splitting
1
Fip(U) = J(FU) £al),  a=max|An(0)],

Local characteristic Lax-Friedrichs flux splitting and get a k-th
order approximation of the flux 13‘7;+1/2 via a WENO reconstruction.

- s n
Fit1/2 = F’i,—|—1/2 + F’i—|—1/2’
where

Fi—:-l/Z = Rit1/2 (Rq:_-|-11/2 (F(U) + O‘U))

2,7

22



Steady state preserving schezf

We perform a well-balanced reconstruction not of the densityn but

. et
of the numerical quxesF,,:Jrl/2

Ft o pt (eX()i11/2 e (eX4)iq1/2
+1/2 = T i41/2 (GX(C))i i ’ i+1/2 7 T i+1/2 (eX(c))i+1l ’
with
(BX(C))z‘+1/2 — max ((eX(C))i,ra (QX(C))H—l,l)

and (ex(¢)); .. is a right hand side k-th order approximation of ex(¢)
on the interval (z;_1 /2, Ti+1/2).
The source term is approximated as

1

S; = A n; e x(ci) ((BX(C))i+1/2 _ (ex(C))i_1/2) .

23



WENO reconstruction properties'

. The scheme is proven to beniformly fifth order accurate
Including at smooth extrema, and this is verified numerically.

. Near discontinuities the scheméehaves very similarly to an
ENO schemeg namely the solution has a sharp and
non-oscillatory discontinuity transition.

. The numerical flux has the same smoothness dependency on its
arguments as that of the physical fluxE'(U). This helps in a
convergence analysis for smooth solutions and in steady state
convergence.

. The approximation is self similar. That is, when fully discrete
with Runge-Kutta methods, the schemaes invariant when the
spatial and time variables are scaled by the same factor

24



‘ What about for high order schemes;.]

THEOREM. Consider the Lax-Friedrich flux splitting scheme F
coupled with the k-th order ENO or WENO reconstruction for the

homogeneous problem. Then, this scheme with periodic boundary
conditions

() preserves the steady state for the ENO reconstruction :
log(n;) — x(ci) = c*°,

whereas it preserves steady state up tetfor the WENO
reconstruction.

(i) is k-th order accurate with the system Hyperbolic system with
source term.

25



' Numerical simulations.

¢ Justification of the Well Balanced Algorithm in 1d.
e lllustration of chemosensitive movement.

e Network formation of Endothelial cells and early stage of blood
vessel formation.

26



' Tests 1: one dimensional modg

Number of Finite Volume Well-balanced Finite Volume
points L error | order | L error order
50 1.21E-04 7.90E-05
100 5.86E-06| 4.37 | 3.69E-06 4.42
200 4.00E-07| 3.87 | 2.22E-07 4.05
400 2.00E-08| 4.32 | 1.27E-08 4.13

27
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Figure 3: Accuracy test for well-balanced steady state resolution: cell
density n(t, =) (left) and population flux n(t, ) w(t, ) (right) at
time T' = 20. Solid lines: WENO scheme with the well-balanced
reconstruction; dotted lines: WENO schemes with a centered approx-
Imation of the source term.
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Simulation of the PKS model
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Simulation of the PKS model'
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Simulation of the hyperbolic model'
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Simulation of the hyperbolic model
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Simulation of the hyperbolic model
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Simulation of the hyperbolic model'
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Network formation: early blood vessel formation
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Network formation: early blood vessel formation'
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' Conclusion and Discussio:'

nonlinear hyperbolic model arises when we consider interactions
between cells.

Blow-up of solution to the hyperbolic system: there is blow-up
for Euler-Poisson.

Play with the pressure to prevent blow-up= play with the
diffusion on PKS

the kinetic model does not blow-up!!

Construct kinetic models describing cell interactions.
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