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The Keller & Segel model for chemotaxis consists of two coupled parabolic
equations :
— an advection-diffusion equation for the evolution of cell density n(t, x),
— a reaction-diffusion equation for the evolution of chemical concentration
c(t, x).
Several variants of the following system have been studied

Omn+V-(=Vn+xnVe)=0 t>0, z€QCR?
['0c — Ac=n— ac '



Particularly the degenerate case under the assumption of high diffusion
of chemical species |Jdger & Luckhaus|

om+V-(=Vn+xnVe)=0 t>0, z €
—Ac=n—fn '

The first task is to study whether or not solutions of these coupled equations
blow-up (in finite time).
The main result is the following.

Theorem 1 There exists a constant C* such that if xM < C* then the
system admits global in time solution.

At least two distinct approaches can be useful in order to prove this theorem.



One can derive a priori estimates based on the following computation

—/ n)de = /—@"(n)\Vn\de+X/n¢(n)dx

with ' (z) = x®"(x

d(x) is a convex functlon growing faster than z near infinity, typically
O(x)=znw.

It is possible to estimate the balance between the two terms, corresponding
respectively to diffusion and aggregation of cells, thanks to a Gagliardo-
Nirenberg-Sobolev inequality

/TL2 SCQNSM/’V\/EF

If dimension d = 2, the total mass of cells M = ||n||;1 appears naturally
from this inequality.



Consequently, the equi-integrability allows controls of the L’norms of the
cell density n, by another computation with ®(z) = (z — k)"..

’ A p/22

< Ok/Q(n — k)+ + C/f?(/Q(n B k)ﬁ)l—l/(p—l)



There is an energy for the previous system

oOn = V-{nV(nn—yxc)} t>0,z€QCR?
—Ac = n—Fn ’

which is of the following type

5(t):/nlnn—§/nc, %——/n!V(lnn—Xc)PgO.

Introducing the stationnary states of the system, it is possible to show that
[ |Ve¢|? remains bounded.

As a consequence so does [nlnn.



A Sobolev-type inequality is used in te critical case of the imbedding
HY(Q) — L(Q)

where L4 is the Orlicz space associated to the convex function A(s) =
exp (s?).

Lemma 1 (Trudinger & Moser) If u € H(Q) and [u = 0 (Neumann
Boundary Conditions ) then

/e“ < Cexp (8%/|Vu]2)



Another very studied model for cell movement is angiogenesis. In its sim-
plest form, the system is

{&n = An—V - (nx(c)Ve) t>0, x € R?

oic = —nc

This system also admits an energy, given by

1 2
— _ <
5(t)—/nlnn+2/‘5@(c)| : — 0

provided inf.> {%‘/ + 1} > 0; where @ is defined by the differential equa-
tion
x(©)
o'(c) = 1/ 2.
(0= /X
This estimation reveals that the family {n(¢)Inn(t)} is equi-integrable.



Nevertheless, in order to control the LP norms of n as in the previous
section, another strategy has to be stated. For instance, it is possible to
transform the first equation into a divergence form

ey e e

where ¢(c) is defined by another differential equation

[t is then possible to reproduce and adapt computations of % [f (%) o(c)
and to apply similarly the Gagliardo-Nirenberg-Sobolev inequalities in the
case of f(z) = (v — k)t
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To further studying different chemotactic models, we have chosen a ge-
neralization of the Keller & Segel model.
It has been proposed by Tyson & Murray for the modelisation of spatial
organisation in bacterial population.

on = An—V-(nxVe) t>0, x € R?
—Ac = nf
of = —nf

Assumption of an additional chemical species : the stimulant f is necessary
to produce the chemoattractant c.

And f is only consumed by the cells.

It renders an account of short and long range effects because of the diffusion
of the chemical ¢, contrary to the local effect of the stimulant f.



Unfortunately, we know no energy structure for this system of three cou-
pled equations, which makes it dramatically different from the previous ones.

We present here a first draft to understand the behavior of this system.

Indeed, if we simply reproduce the first method presented above, based on
the a prior: estimation

d
& [nmn=—1 [ 9P+ [ 2

we can’t hope gaining anything but the condition /|| f|lccM < C*.

This condition is not satisfying : it doesn’t bring anything new by compari-
son to the classical Keller & Segel model ; and it doesn’t capture the feature
of the additional equation 0,f = —nf.



Another approach consists of finding a combinaison of the following type

W(t):/nlnn+ﬁ/nfv+a%/‘vf5’27

which is decreasing for well-chosen values of o and 3, and under some condi-
tions involving x|| f|le and M. We first compute LW

d
pr nlnn = —4/]V\/ﬁ|2+x/n2f,

85 [n57 = =8 [ V-V x5 [uve-vr -8 [wr,

4
— [ |V} = —2 Vn V20— Jp:
adtQ/’f 204/ n-Vf 5a/an].



In order to eliminate the bad contribution of the no-sign terms and the
positive one, we'll associate them with negative ones in two ways. The first
group includes

Vn-Vi§7
—4/ IVv/nl? - { _g&ff vn-vff% } — 5a/n|Vf5|2,
9
and the second one includes

X [nif =8 [nir

The unfriendly term x(3 [ nVe - V f7 plays an ambivalent role in this des-
cription.



We force a remarkable square to appear thanks to the extrem terms. One
can easily be convinced that we have to set 0 < 7.
Under this assumption, we are able to dominate

—1 [1vvap+ 2620717 [ 19Vl [Vav s - da [ v s

A first condition appears for the homogeneity of o and (3, for this expression
to be non-positive.

(8141572 = as.

The same computation arises for the other term of the same type —goz [ Vn
V £ and we get another homogeneity condition

Sal| fll% = 1.



We can combine this no-sign term in a general way

/nyvc-vm — ﬁ/nfﬂVc-Vf”fl

v \'K 1
< - — v—E€|2 - 2¢ 2
_(v—é) 2/ IV f y+2K/nf Vel

with a homogeneity constant K which has to be determined.

We associate the first r.h.s term with —da [n|V f°|?. We set 6 <y — ¢ for
this purpose.

It follows

LPYEAS 2(7—5—&/ 52 _ / 512
x5 8 (%) IFI% n VP —as [nlV P,

and we get an additional homogeneity condition for K

2
WBIFIZD (2) K = ao.



The second r.h.s term will be eliminated thanks to a combination of
Sobolev and Gagliardo-Nirenberg-Sobolev inequalities

IVells < Cslinf s,

3
(/n4/3> SCQNSMgf‘V\/ﬁIQ

L 1
26|12 < 2 2 pw 01 |4
with the relation w + 6 = 4¢, and also

[ r1vet < i [ ovap

Finally we have to deal with the last remaining terms, namely [ n?f“ and

fn2f.

So that



In order to eliminate those two terms, we of course associate them with
1l n? f7. Only the case v > max(1,w) is able to keep the homogeneity of the
computations.
We use the following majoration which makes the distinction between high
and low values of f

XY <k Y, +rkTX7, wrv=1,
(V—l)(V_l)

VY

with the constant B, = ¢/~ =

For each term [n?f“ and [n?f we get two new terms involving [ n?
and [ n?f7.
We can use the first cited G.N.S. inequality to estimate [n* : we have
determinated all the homogeneity constants introduced

XBK_lL_leHgg%M?’ =1,

X (e x M)~ = 48,
XBE 'L (xBK 'Le,M)" ™ = ~8.



Using these six homogeneity conditions, we can eliminate all the inter-
mediate parameters, and finally we get two different consequences of these
relations

Byl M =5,
and
B Fa = 6

Consequently we assume v = 4v to unify these two relations, which forces
v>4and <y —E<y—i(w+0) <y-1
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