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1. The Patlak, Keller & Segel model

The Keller & Segel model for chemotaxis consists of two coupled parabolic

equations :

� an advection-di�usion equation for the evolution of cell density n(t, x),

� a reaction-di�usion equation for the evolution of chemical concentration

c(t, x).

Several variants of the following system have been studied{
∂tn +∇ · (−∇n + χn∇c) = 0 t ≥ 0 , x ∈ Ω ⊂ R2

Γ∂tc−∆c = n− αc
.



Particularly the degenerate case under the assumption of high di�usion

of chemical species [Jäger & Luckhaus]{
∂tn +∇ · (−∇n + χn∇c) = 0 t ≥ 0 , x ∈ Ω

−∆c = n−
∫
−n .

The �rst task is to study whether or not solutions of these coupled equations

blow-up (in �nite time).

The main result is the following.

Theorem 1 There exists a constant C∗ such that if χM < C∗ then the

system admits global in time solution.

At least two distinct approaches can be useful in order to prove this theorem.



1.1. A priori estimates

One can derive a priori estimates based on the following computation

d

dt

∫
Φ(n)dx =

∫
−Φ′′(n)|∇n|2dx + χ

∫
nψ(n)dx,

with ψ′(x) = xΦ′′(x)

Φ(x) is a convex function growing faster than x near in�nity, typically

Φ(x) = x lnx.

It is possible to estimate the balance between the two terms, corresponding

respectively to di�usion and aggregation of cells, thanks to a Gagliardo-

Nirenberg-Sobolev inequality∫
n2 ≤ CGNSM

∫
|∇
√
n|2.

If dimension d = 2, the total mass of cells M = ‖n‖L1 appears naturally

from this inequality.



Consequently, the equi-integrability allows controls of the Lpnorms of the

cell density n, by another computation with Φ(x) = (x− k)p+.

d

dt

∫
Ω

(n− k)p+ + C
{

1− C

∫
Ω

(n− k)+

}∫
Ω

|∇(n− k)
p/2
+ |2

≤ Ck

∫
Ω

(n− k)p+ + Ck2
( ∫

Ω

(n− k)p+

)1−1/(p−1)



1.2. The energy of the system in the case of Ω bounded

There is an energy for the previous system{
∂tn = ∇ · {n∇ (lnn− χc)} t ≥ 0 , x ∈ Ω ⊂ R2

−∆c = n−
∫
−n ,

which is of the following type

E(t) =

∫
n lnn− χ

2

∫
nc ,

dE
dt

= −
∫
n|∇(lnn− χc)|2 ≤ 0.

Introducing the stationnary states of the system, it is possible to show that∫
|∇c|2 remains bounded.

As a consequence so does
∫
n lnn.



A Sobolev-type inequality is used in te critical case of the imbedding

H1(Ω) ↪→ LA(Ω)

where LA is the Orlicz space associated to the convex function A(s) =

exp
(
s2

)
.

Lemma 1 (Trudinger & Moser) If u ∈ H1(Ω) and
∫
u = 0 (Neumann

Boundary Conditions ) then∫
eu ≤ C exp

( 1

8π

∫
|∇u|2

)



2. Model for angiogenesis

Another very studied model for cell movement is angiogenesis. In its sim-

plest form, the system is{
∂tn = ∆n−∇ · (nχ(c)∇c) t ≥ 0 , x ∈ R2

∂tc = −nc .

This system also admits an energy, given by

E(t) =

∫
n lnn +

1

2

∫
|∇Φ(c)|2, dE

dt
≤ 0

provided infc≥0

{
cχ′

χ + 1
}
≥ 0 ; where Φ is de�ned by the di�erential equa-

tion

Φ′(c) =

√
χ(c)

c
.

This estimation reveals that the family {n(t) lnn(t)} is equi-integrable.



Nevertheless, in order to control the Lp norms of n as in the previous

section, another strategy has to be stated. For instance, it is possible to

transform the �rst equation into a divergence form

∂t

(
n

φ(c)

)
=

1

φ(c)
∇ ·

{
φ(c)∇

(
n

φ(c)

)}
+

(
n

φ(c)

)2

φ(c)χ(c)c,

where φ(c) is de�ned by another di�erential equation

φ′(c) = φ(c)χ(c).

It is then possible to reproduce and adapt computations of d
dt

∫
f

(
n
φ(c)

)
φ(c)

and to apply similarly the Gagliardo-Nirenberg-Sobolev inequalities in the

case of f (x) = (x− k)p+.



3. The generalized Keller & Segel model

To further studying di�erent chemotactic models, we have chosen a ge-

neralization of the Keller & Segel model.

It has been proposed by Tyson & Murray for the modelisation of spatial

organisation in bacterial population.
∂tn = ∆n−∇ · (nχ∇c) t ≥ 0 , x ∈ R2

−∆c = nf

∂tf = −nf
.

Assumption of an additional chemical species : the stimulant f is necessary

to produce the chemoattractant c.

And f is only consumed by the cells.

It renders an account of short and long range e�ects because of the di�usion

of the chemical c, contrary to the local e�ect of the stimulant f .



Unfortunately, we know no energy structure for this system of three cou-

pled equations, which makes it dramatically di�erent from the previous ones.

We present here a �rst draft to understand the behavior of this system.

Indeed, if we simply reproduce the �rst method presented above, based on

the a priori estimation

d

dt

∫
n lnn = −4

∫
|∇
√
n|2 + χ‖f‖∞

∫
n2,

we can't hope gaining anything but the condition χ‖f‖∞M < C∗.
This condition is not satisfying : it doesn't bring anything new by compari-

son to the classical Keller & Segel model ; and it doesn't capture the feature

of the additional equation ∂tf = −nf .



Another approach consists of �nding a combinaison of the following type

W(t) =

∫
n lnn + β

∫
nf γ + α

1

2

∫
|∇f δ|2,

which is decreasing for well-chosen values of α and β, and under some condi-

tions involving χ‖f‖∞ and M . We �rst compute d
dtW

d

dt

∫
n lnn = −4

∫
|∇
√
n|2 + χ

∫
n2f,

β
d

dt

∫
nf γ = −β

∫
∇n · ∇f γ + χβ

∫
n∇c · ∇f γ − γβ

∫
n2f γ,

α
d

dt

1

2

∫
|∇f δ|2 = −δ

2
α

∫
∇n · ∇f 2δ − δα

∫
n|∇f δ|2.



In order to eliminate the bad contribution of the no-sign terms and the

positive one, we'll associate them with negative ones in two ways. The �rst

group includes

−4

∫
|∇
√
n|2 −

{
β

∫
∇n · ∇f γ

−δ
2α

∫
∇n · ∇f 2δ

}
− δα

∫
n|∇f δ|2,

and the second one includes

χ

∫
n2f − γβ

∫
n2f γ.

The unfriendly term χβ
∫
n∇c · ∇f γ plays an ambivalent role in this des-

cription.



3.1. The �rst association

We force a remarkable square to appear thanks to the extrem terms. One

can easily be convinced that we have to set δ ≤ γ.

Under this assumption, we are able to dominate

−4

∫
|∇
√
n|2 + 2β

γ

δ
‖f‖γ−δ∞

∫
|∇
√
n| · |

√
n∇f δ| − δα

∫
n|∇f δ|2.

A �rst condition appears for the homogeneity of α and β, for this expression

to be non-positive. (
β‖f‖γ−δ∞

γ

δ

)2

≡ αδ.

The same computation arises for the other term of the same type−δ
2α

∫
∇n·

∇f 2δ and we get another homogeneity condition

δα‖f‖2δ
∞ ≡ 1.



3.2. What about
∫
n∇c · ∇fγ ?

We can combine this no-sign term in a general way∫
n|∇c · ∇f γ| =

γ

γ − ξ

∫
nf ξ|∇c · ∇f γ−ξ|

≤
(

γ

γ − ξ

)2
K

2

∫
n|∇f γ−ξ|2 +

1

2K

∫
nf 2ξ|∇c|2,

with a homogeneity constant K which has to be determined.

We associate the �rst r.h.s term with −δα
∫
n|∇f δ|2. We set δ ≤ γ − ξ for

this purpose.

It follows

χ
K

2
β

(γ
δ

)2

‖f‖2(γ−ξ−δ)
∞

∫
n|∇f δ|2 − αδ

∫
n|∇f δ|2,

and we get an additional homogeneity condition for K

χβ‖f‖2(γ−ξ−δ)
∞

(γ
δ

)2

K ≡ αδ.



The second r.h.s term will be eliminated thanks to a combination of

Sobolev and Gagliardo-Nirenberg-Sobolev inequalities

‖∇c‖4
4 ≤ CS‖nf‖4

4/3,(∫
n4/3

)3

≤ CGNSM 3

∫
|∇
√
n|2.

So that ∫
nf 2ξ|∇c|2 ≤ L

2

∫
n2fω +

1

2L

∫
f θ|∇c|4,

with the relation ω + θ = 4ξ, and also∫
f θ|∇c|4 ≤ C∗‖f‖4+θ

∞ M 3

∫
|∇
√
n|2.

Finally we have to deal with the last remaining terms, namely
∫
n2fω and∫

n2f .



3.3. The second association

In order to eliminate those two terms, we of course associate them with∫
n2f γ. Only the case γ ≥ max(1, ω) is able to keep the homogeneity of the

computations.

We use the following majoration which makes the distinction between high

and low values of f

Xω ≤ κ−ωcν + κγ−ωXγ , ων = γ,

with the constant Eν = cν−1
ν = (ν−1)(ν−1)

νν .

For each term
∫
n2fω and

∫
n2f we get two new terms involving

∫
n2

and
∫
n2f γ.

We can use the �rst cited G.N.S. inequality to estimate
∫
n2 : we have

determinated all the homogeneity constants introduced

χβK−1L−1‖f‖θ+4
∞ M 3 ≡ 1,

χ (cγχM)γ−1 ≡ γβ,

χβK−1L
(
χβK−1LcνM

)ν−1 ≡ γβ.



3.4. Consequences of the homogeneity relations and conclusion

Using these six homogeneity conditions, we can eliminate all the inter-

mediate parameters, and �nally we get two di�erent consequences of these

relations

Eγχ
γ‖f‖γ∞Mγ−1 ≡ δ,

and

Eνχ
4ν‖f‖4ν

∞M
4ν−1 ≡ δ.

Consequently we assume γ = 4ν to unify these two relations, which forces

γ ≥ 4 and δ ≤ γ − ξ ≤ γ − 1
4(ω + θ) ≤ γ − 1.
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