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Motivation is both basic and practical

• Drag reduction has been studied since
1948 Toms effect

• Body of literature is huge, important
contributions of the present in this room

The turbulence which occurs in the presence of drag-reducing
additives is different from the turbulence which occurs in the solvent
alone. Indeed, in some cases of very dilute polymer solutions, the
anomalous (i.e. less dissipative) turbulence is probably the only
detectable non-Newtonian effect. McComb 1990
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Not only drag reduction
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Phenomenology of polymer effects
• Fluctuating and complex strain field

is necessary to “turn the effect on”
• Reaction back changes the field of

strain, e.g. resistance to large strain,
suppression of strong events, bursts

• The flow could be considered
intermittently rheological and not
evenly distributed (networks)

• The polymer drag reduction is not
necessarily associated with
suppression of turbulence, but with
qualitative changes of some of its
structure and production. In other
words, there exist turbulent flows
with strongly reduced drag and
consequently dissipation and strain.
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Motivation

• Turbulent flows with polymer solutions - important
example where the Lagrangian approach is unavoidable:

..1 The material elements (Lagrangian objects) are not
passive;

..2 There are no equations reliably describing flows of
polymer solutions (such as NSE for Newtonian fluids).

There is a need for Lagrangian experimentation with such
turbulent flows (and any other active additives), but ....
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• Lagrangian methods alone are limited - there is a necessity of
Eulerian approaches in parallel:

..1 The fluid particle acceleration a ≡ Du/Dt (Lagrangian) and the
Eulerian components.

..2 Evolution of small scales via Lagrangian approaches using strain
and vorticity in Eulerian form.

..3 Dealing with the material elements one needs again quantities such
as strain and vorticity in Eulerian form.

..4 Eulerian approaches are needed for large scale issues as Reynolds
stresses and TKE production.

..5 Direct interaction of small and large scales may be exhibited by
mixed quantities: aL = ω × u

. . . . . .



Representative results

The results presented will cover the following topics:

..1 Accelerations

..2 Velocity derivatives

..3 Material elements

..4 Large scale stuff (RS and TKE)

..5 Direct interaction of SS and LS as may be exhibited by aL = ω × u
and perhaps something else available (ω · u) and (doubtfully) in
the spirit of Brasseur.
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Experimental method
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Experimental principles
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PTV algorithm
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F igure 2-5  PT V processing scheme 

A fter (Willneff, 2003). 

 
F igure 2-6  Stereo-matching 

Stereo-matching is based on epipolar geometry (see 2.62.6 below2.6).  
The important thing is that we measure directly the
full gradient tensor along the particle trajectories:
∂ui/∂xj and its evolution in time.

5.4. Object space based tracking techniques

Image sequences of multi-camera setup, up to

four cameras in the case of systems at ETH

Establishment of particle correspondences with

consequent use of epipolar constraints and determi¬

nation of 3D particle positions, treating each single
time step separately, requires system calibration.

Particle Tracking performed in 3D object space,

one 3D point cloud as input for each time step

Fig. 15: Main processing steps of an object space based tracking method

tage, causing a gap in the particle trajectory, which probably can be closed by interpolation if

concerning just one time step.

An operable system exists at ETH since many years and has been successfully used for various

applications. A sample of publications about the projects of the recent years dealing with 3D

PTV are (Becker et al, 1995), (Dupont et al, 1999), (Lüthi, 2002), (Maas et al, 1997), (Stüer,
1999) and (Virant, 1996).

A similar method was developed at the University of Tokyo at the Department of Mechanical

Engineering. The 3D PTV system originally developed by Nishino and Kasagi (Nishino et al.,

1989), (Nishino/Kasagi, 1989), Kasagi and Sata (Kasagi/Sata, 1992) and Sata and Kasagi
(Sata/Kasagi, 1992) was used for studies in liquid flow measurements and was modified by
Sata et al. (Sata et al., 1994) for airflow measurements. After the reconstruction of the particle
positions of each time step the tracking is performed in object space. Sata and Kasagi evaluated

the 3D particle tracking algorithm over multiple time steps by using a modelled Lagrangian

36
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Quality checks: Lagrange vs Euler

Lagrangian acceleration, the material derivative of velocity vector, a,

a ≡Du
Dt

=
∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u

is studied in conjunction with its physically important Eulerian
decompositions:

a = al + ac = a∥ + a⊥ = aL + aB

where al = ∂u/∂t is the local acceleration, ac = (u · ∇)u is the
convective acceleration, a∥ = (a · u)u is the acceleration component
parallel to the velocity vector, a⊥ = a − a∥ is the acceleration
component normal to the velocity vector, aL = ω × u is the Lamb
vector and aB = ∇(u2/2);

. . . . . .



Joint PDF of a and al + ac
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PDFs of acceleration components
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PDFs of acceleration components
(cont.)

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

a, a
Lamb

, a
B

p
(a

),
 p

(a
L

a
m

b
),

 p
(a

B
)

 

 
a
a

Lamb

a
B

10
1

10
2

10
3

10
4

0

1

2

3

4

5
x 10

−3

 

 

a

a
Lamb

a
B

. . . . . .



PDFs of acceleration components
(cont.)
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Ratios of PDFs of polymer to water
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Alignment of al and ac
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Lagrangian information on the
evolution of material elements

Infinitesimal material lines, li evolve according to a purely kinematic
equation :

Dli
Dt

= W l
i

W l
i = ljsij + (1/2)εijk j lk ≡ (s · l)i + (1/2)(ω × l)i

Term 1) Change of magnitude of l, and Term 2) the tilting of l . More
details in Liberzon et al. PoF (2005)

. . . . . .



Stretching related quantities -
Cauchy-Green tensor eigenvalues

of material lines liljsij= l2!i cos2!l ,"i" and its rate liljsij / l2
=!i cos2!l ,"i" depend on both the strain and the orientation
of material lines l relative to the eigenframe "i of the rate of
strain tensor. Therefore the above reduction is expected to
happen due to both reduction of strain as shown before #and
in Fig. 3!b"$ and modification of the orientation of material
lines l with respect to the eigenframe "i or alternatively with
respect to the stretching vector Wi

l,s= ljsij. Both li and Wi
l,s are

quantities evolving with time along fluid particle trajectories
and both are chosen to have the same PDFs initially. They
evolve in such a way that the alignment of material lines l
and the largest stretching eigenvector "1, and also of material
lines l and the stretching vector Wi

l,s= ljsij are weaker at later
times in the polymer solution, compared to the flow of pure
water #Figs. 3!c" and 3!d"$. This effect becomes stronger
when conditioned on large strain. Vorticity makes a consid-
erable contribution to the mutual geometry of material lines
and the eigenframe of the rate of strain due to tilting of the
material lines,15 though this contribution is not changed sub-

stantially in the presence of polymers at polymer concentra-
tion of 20 ppm. Similar observations were made for material
surfaces with the main results that their stretching is reduced
as well. Apart from its dependence on the magnitude of
strain, and the mutual geometry of material lines and the
eigenframe of the rate of strain, the evolution of material
lines is history dependent. This dependence is reflected in the
relation li!t"=Bij!t"lj!0", where the matrix Bij!t" is deter-
mined from integration of the equation dBij /dt
= !!ui /!xk"Bkj along a fluid particle trajectory with the initial
condition Bij!0"=#ij, see, e.g., Ref. 16. Thus the matrix Bij!t"
carries all the information on the history of evolution of ma-
terial lines from some initial moment till some chosen time t,
and its properties are expected to be changed in a turbulent
flow of dilute polymer solution as compared to that of pure
water.

The simplest information is contained in the Cauchy–
Green tensor Wij=BikBkj. The eigenvalues wi of the tensor
Wij reflect the deformation of elementary material volume.

FIG. 4. !a" Time evolution of the mean values of the eigenvalues of the Cauchy–Green tensor, ln!wi", and !b" PDF of the second invariant of the
Cauchy–Green tensor Q!W", for different time moments, for water !solid lines" and polymer solution !dashed lines".

FIG. 3. !a" Time evolution of the mean stretching rate
of material lines liljsij / l2. $% denotes time in the Kol-
mogorov time scale units, estimated as !& /'"1/2. !b"
PDFs of the eigenvalues of the rate-of-strain tensor !i,
the curves are from right to left: 1, 2, 3. !c" PDFs of the
cos!l ,Wl,s", Wi

l,s= ljsij, and !d" PDFs of the cos!l ,"1" for
different time moments, for water !solid lines" and
polymer solution !dashed lines".
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Stretching dynamics of infinitesimal
material lines through a single tensor

ℓi(t) = Bij(t) ℓj(0), dBij/dt = (∂ui/∂xk )Bkj Bij(0) = δij

ℓiℓjsij = BikBjmsijℓk (0)ℓm(0) ≡ Tkm(t)ℓk (0)ℓm(0)

Tkm(t)ℓ(0)ℓm(0) = ℓ2(0)
[
Ti cos2(ℓ(0), τi)

]
⟨ℓiℓjsij⟩ = ⟨Ti⟩ × ⟨cos2(ℓ0, τi)⟩ =

1
3
⟨ℓ2(0)⟩⟨T1 + T2 + T3⟩

..1 trace tr(T ) is positive on average

..2 empirically found that one eigenvalue is three orders of magnitude
larger than others

..3 it was shown to be strongly reduced in dilute polymers flow
. . . . . .



Strong reduction of the “stretching
eigenvalue” in polymers

As expected, the material volumes in polymer solutions re-
sist deformation, Fig. 4!a". This effect is seen more clearly
#Fig. 4!b"$ in the behavior of the second invariant of the Wij
tensor, which is directly related to the surface of material
volume.

It is of special interest to express the rate of stretching of
material lines liljsij in terms of the B matrix. The result is that
li!t"lj!t"sij!t"= Bik!t"Bjm!t"sij!t"lk!0"lm!0" % Tkm!t"lk!0"lm!0",
with Tkm!t"=Bik!t"Bjm!t"sij!t". In addition, Tkm!t"lk!0"lm!0" is
decomposed as a sum l2!0"#!i cos2(l!0" ,"i)$, where !i and "i
are the eigenvalues and eigenvectors of the matrix Tkm!t",
respectively. Following the arguments by Cocke17 !see also
Ref. 16, p. 579" and using the statistical independence of the
eigenvalues from l!0" it follows that &li!t"lj!t"sij!t"'= &!i'
#&cos2!l0 ,"i"'. In isotropic turbulent flow &cos2!l0 ,"i"'=

1
3 , so

that &li!t"lj!t"sij!t"'=
1
3 &l2!0"'&!1+!2+!3'. Finally, since

&li!t"lj!t"sij!t"'$0, the mean of the trace of matrix Tkm!t"
should be positive. We calculated this trace from our experi-
mental data along with the mean values of &cos2!l0 ,"i"'. The
latter appeared to be equal to 1

3 within few percent and the
mean trace appeared to be an essentially positive quantity as
it should be. Two interesting points are that !i" the trace is
dominated by the first eigenvalue !1, which is two orders of
magnitude larger than the second eigenvalue !2 and three
orders of magnitude larger than the third one !3 and !ii" the
eigenvalue !1 is substantially reduced in the turbulent flow
of dilute polymer solutions as compared to that of pure wa-
ter, see Fig. 5. This is consistent with the reduction of
stretching of material lines, reported above. It reflects also
the fact that the addition of polymer modified the ability of
the field of velocity derivatives to act on material elements.

Summarizing we employed a version of particle tracking
velocimetry which allowed us to obtain direct experimental
evidence on the reduction of the field of velocity derivatives,
i.e., strain and vorticity in a turbulent flow of dilute polymer
solution. We were also able to observe concomitant changes
in the evolution of material elements in turbulent flow of
dilute polymer solution and reduction of their stretching
rates.

Our results were obtained at a rather small value of the

Reynolds number mainly due to technical limitations result-
ing from the necessity of obtaining the tensor of velocity
derivatives !!ui /!xk" along fluid particle trajectories. Our be-
lief is that, at least qualitatively the obtained results should
be true at larger values of the Reynolds number. The reported
results are the first ones out of a broader ongoing research
and we believe that the described approach is promising in
further elucidating at least of some of the basic issues of
turbulent flows of dilute polymer solution until it will be-
come possible to handle both larger Reynolds number flows
and direct access to polymer molecules and/or aggregates
conformation.

This research was supported by ETH research fund, un-
der Grant No. TH-18/02-4.
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Stretching rates
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Stretching rates - time evolution

Notice the “delay” of polymer stretching rate - could explain the
resistance to strong strain via mis-alignment or tilting.
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Large scale effects, TKE production
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Discussion

..1 Lagrangian information is crucial in the case of dilute polymers
(and probably particles, bubbles, fibers, colloids, etc.)

..2 Eulerian information is crucial, maybe because our Lagrangian
formulation is very limited and we need dynamics explained by
strain, vorticity, etc.

..3 Mixing Lagrangian and Eulerian information could help to get
some new ideas.
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