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Motivation is both basic and practical

e Drag reduction has been studied since
1948 Toms effect

o Body of literature is huge, important
contributions of the present in this room

The turbulence which occurs in the presence of drag-reducing
additives is different from the turbulence which occurs in the solvent
alone. Indeed, in some cases of very dilute polymer solutions, the
anomalous (i.e. less dissipative) turbulence is probably the only
detectable non-Newtonian effect. McComb 1990
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Phenomenology of polymer effects

Fluctuating and complex strain field
is necessary to “turn the effect on”

Reaction back changes the field of
strain, e.g. resistance to large strain,
suppression of strong events, bursts

The flow could be considered
intermittently rheological and not
evenly distributed (networks)

The polymer drag reduction is not
necessarily associated with
suppression of turbulence, but with
qualitative changes of some of its
structure and production. In other
words, there exist turbulent flows
with strongly reduced drag and
consequently dissipation and strain.




Motivation

o Turbulent flows with polymer solutions - important
example where the Lagrangian approach is unavoidable:

© The material elements (Lagrangian objects) are not
passive;

® There are no equations reliably describing flows of
polymer solutions (such as NSE for Newtonian fluids).

There is a need for Lagrangian experimentation with such
turbulent flows (and any other active additives), but ....



e Lagrangian methods alone are limited - there is a necessity of
Eulerian approaches in parallel:

© The fluid particle acceleration a = Du/Dt (Lagrangian) and the
Eulerian components.

® Evolution of small scales via Lagrangian approaches using strain
and vorticity in Eulerian form.

@® Dealing with the material elements one needs again quantities such
as strain and vorticity in Eulerian form.

@ Eulerian approaches are needed for large scale issues as Reynolds
stresses and TKE production.

@ Direct interaction of small and large scales may be exhibited by
mixed quantities: a; =w x U



Representative results

The results presented will cover the following topics:

© Accelerations

® Velocity derivatives

® Material elements

@ Large scale stuff (RS and TKE)

@ Direct interaction of SS and LS as may be exhibited by a; = w x u
and perhaps something else available (w - u) and (doubtfully) in
the spirit of Brasseur.
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Experimental method
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PTV algorithm
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The important thing is that we measure directly the
full gradient tensor along the particle trajectories:
du;/0x; and its evolution in time.




Quality checks: Lagrange vs Euler

Lagrangian acceleration, the material derivative of velocity vector, a,
Du odu

a=— = —

Dt ot

is studied in conjunction with its physically important Eulerian
decompositions:

’
+(u-Viu= —;Vp +vV2u

a:a,+ac=a||+aL:aL+aB

where a; = du/0t is the local acceleration, a. = (u - V)u is the
convective acceleration, a; = (a- u)u is the acceleration component
parallel to the velocity vector, a, = a — a| is the acceleration
component normal to the velocity vector, a; = w x u is the Lamb
vector and ag = V(u?/2);



Joint PDF of aand a, + a;
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PDFs of acceleration components
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PDFs of the magnitudes of the acceleration vector (|a|) and of its components
for water ( solid lines) and polymer (dashed lines). (left) dimensional form
(right) dimensionless form, normalized with £3/2,~1/2



PDFs of acceleration components
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PDFs of acceleration components
(cont.)
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Ratios of polymer/water pdfs

Ratios of PDFs of polymer to water
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Lagrangian information on the
evolution of material elements

Infinitesimal material lines, /; evolve according to a purely kinematic
equation :

ot =W

W/ = Iisj+ (1/2)ejijlc = (s )i + (1/2)(w x I);

Term 1) Change of magnitude of I, and Term 2) the tilting of I . More
details in Liberzon et al. PoF (2005)



Stretching related quantities -
Cauchy-Green tensor eigenvalues
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Stretching dynamics of infinitesimal
material lines through a single tensor

Li(t) = Bj(t) £;(0), dBj/dt = (0uj/0xk) By Bjj(0) = 6
f,’ng,'j = /kBij;jfk(O)gm(o) = Tkm(t)fk(O)fm(O)

Tin(1)0(0)(m(0) = (3(0) | Ticos®(£(0). 7)

"
(titjsy) = (Ti) x (cos*(€, 7)) = Z(LO)NT1 + T + Ta)
@ trace tr(7T) is positive on average

® empirically found that one eigenvalue is three orders of magnitude
larger than others

® it was shown to be strongly reduced in dilute polymers flow



Strong reduction of the “stretching
eigenvalue” in polymers
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FIG. 5. PDF of the first eigenvalue Y, of the 7 matrix for water (solid lines)
and polymer solution (dashed lines) for different time moments.



Stretching rates




Stretching rates - time evolution
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Notice the “delay” of polymer stretching rate - could explain the
resistance to strong strain via mis-alignment or tilting.
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Large scale effects, TKE production

10

water
--- polymer

water

——- polymer

0 1
—{uiu;)Sij[m?s ™)

—(uiu;)Si; /(W) (S*) 2 [m?s




PDF of alignment
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Discussion

© Lagrangian information is crucial in the case of dilute polymers
(and probably particles, bubbles, fibers, colloids, etc.)

® Eulerian information is crucial, maybe because our Lagrangian
formulation is very limited and we need dynamics explained by
strain, vorticity, etc.

® Mixing Lagrangian and Eulerian information could help to get
some new ideas.
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