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Problem

The convection-diffusion equation is given by: find v € H}(Q) s.t.
e(Vu,Vv) + (bVu,v) + (cu,v)= (f,v), vve Hi(Q)

Assumptions:
> be WL (Q)9, ce [®(Q)

» There are ¢, ¢, > 0 s.t.
1.
—Eleb%— ¢ > ¢, el < cheo

> k1
Problem:

» The problem is ill-conditioned ~~ non-physical oscillations.



Abstract setting and norms

Let Y =X = H}(Q) and a: X x Y — R be a coercive and
continuous bilinear form. Define the bilinear forms

1
asy(u, V) = 5 (a(ua V)+3(V, U))
1
ag(u,v) = 5 (a(u, v)—a(v, u))
and the norms
115 = as(uv)
1% = 113 + 1A 1

see [Sangalli, 2005] and [Verfiirth, 2005] . Then we have:

_ a(u, v)
a(u, v)S |ullx|v]y 1< inf sup ————

where the constants are independent of ¢ and b.



Auxiliary Problem

» Find v € X such that
a(u, v)+ B{Au, Axv)yr = (f,v) + B(f,Axv)y: Vv e X.

where 3 > 0 is a parameter (similar to [Bertoluzza, Canuto,
Tabacco, 2000] ).

» For a numerical realization we have to evaluate the Y’-scalar
product.

» Compare with the SUPG method: find u € X, C H* such that

h
a(uh, Vh) + Z 1) <Auh, H;ASth)
K

KeT

h
= <fh, Vh> + Z 1) <fh, |l;<|ASth>
K

KeT

for all v, € X, where § > 0 is a parameter.



Equivalence and Mapping properties

Equivalence:

a(u,v) = (f, v), Vv e X
=
a(u,v) + (Au, Av)yr = (f,v) + (f, AsV) yr, Vv € X

Mapping Properties: For u, v € X we have:

a(u, v) + (Au, Axv)y S flullxlvlx
a(“? u)+ <AuaAsku>Y’ Z ”UH%(
(£, ) + (F, Ascdyllxe ~ [l lly

where all constants are independent of ¢ and b.



Eliminating the Y’-scalar product

» By the definition of the Y-norm we have:
<U, V>Y’ = <U7As;/1V>
» Define
X=XxYxY
» Then an equivalent problem without the Y’-scalar product is:
find U=[u,y,w] € Xs.t.
a(uv V) - ﬁask()/7 V) + ﬁask(wv V) = <fa V>
—ﬂa(u,z) + ﬂasy()/7z)

Il
o

ﬁasy(w’ I’) = ﬁ<f> r>

forall V =[v,z,r] € X.
» This problem defines a bounded linear operator

A: XX

which fulfills an inf-sup condition.



Discretization

» Assume we have finite dimensional spaces
Xp = Xp, X Yz/X Y,‘;VCX.

» Galerkin discretization: find up = [up, yp, wp] € Xp s.t.

a(up,vi,) — Bas(Yn,vh,) +  Bas(wWa,vi,) = (f,vh)
—,Ba(Uh,Zh,) + ﬁaSy(yhvzha) =0
5asy()/h7rha) — 6<f7 rh7>

for all vy, = [Vh,Zh, rh] € Xp.
» The operator A is not coercive ~» what do we now about the
quality of the solution?



The inf-sup condition

Assume we have an operator P : Y, — Y} s.t. for v € X}, we have

(1 = P)ST Agevlly < cllST Agevly
IPS™ Agvlly S IS Ay

where the constant ¢ of the first estimate and 3 are sufficiently
small (independent of €). Then we have:

1
2

1
(lull% + 11wl ) ? (lullk + lw — PS~ Ageull¥)
< (Alu,w), [u,w — PS_lAsku])>.

~

Furthermore A : X x Y — X’ x Y’ is an isomorphism with
condition number independent of ¢ and b.



Notations

Let Xo C X; C --- C X be a sequence of finite dimensional
subspaces. Define

En(u)x = sup |lu—¢lx
$EX,

1
00 2
lullasxyx = HUHX+<Z[25nEn(U)X]2>

n=1



Discretization

» Approximate u € X from X, and w € Y from Y,

» Assume:

\\5*1Ask¢>HAS vy S 27157 Axdlly, for all ¢ € X,

1S Asyvllagovayy < Ivllagova)y 0<t<s

» Let m > n+ c with a suitable constant ¢ independent of .

» Then for a usual Galerkin approximation (with given modified
right hand side) we have:

1 —
(lu = unli% + lly = yall¥)* < 27 llull ag(x,)x

» The requirements can be fulfilled for our example on the unit
cube by wavelets when b € X¢.



Perturbed coercivity
» Assume that

1y (un) = yally + W = wally < cllyn —wally (1)

for a sufficiently small constant ¢ > 0. Then we have:

lu = unllx ~ [lyn = wally

and
_ < inf llu—
o= unllx S nf flu = 6llx

» The terms on the left hand side of (1) can be estimated by
known a posteriori error estimators e.g. by Verfiirth.

» The terms on the right hand side of (1) can easily be
computed.

» ~~ We can test a-posteriori if it makes sense to refine the grid

of the variable u or the grids of the auxiliary variables y and
w.



A-posteriori error estimates 1

In the following slides we construct an a-posteriori error estimator
analogous to the ones of Verfiirth for convection diffusion
problems.

Let T be a cell and x be an edge of the triangulation. Define:
[Ouy,
RT,u = (f + eAup — Aseup — cuh)]T J(uh)ﬁ =€ | =

0
Ry = (eA(yh — ) + Asctin + c(un — yo)) |7 J(up)w = € y”}

0
RT.w = (f + eAwp, — cup)|T J(up)k =€ Wh]



A-posteriori error estimates 2

Define:
asg = min{e*1/2h5,co_1/2}, Se{T,kr}, hs:=diam$

and

1 _
mmo = o lRr ol + 5 2 ¢ ol (Ol
KEDT

where O € {u,y, w}.



A-posteriori error estimates 3

Now we can define the following error estimator:

2 . 2 2
Ry = Z Nr,u+ lyn — wally
TeT,

+ D Ny

TeT,

+ ) 07,

TeTy



A-posteriori error estimates 4

With the given definitions we get the following estimates:
|U — Upllx < RZ + data errors

and
R2 < ||U — Up|x + data errors



A-posteriori error estimates 4

With the given definitions we get the following estimates:
|U — Upllx < RZ + data errors

and
R2 < ||U — Up|x + data errors



Outline of a solution method

One might find a solution Uy = [up, yp, wp| of the auxiliary system
with accuracy ||U — Up||x < 0 by the following algorithm:

while R, > ¢ do

compute error estimators of uy

refine up

solve the discrete system

while not (1) do
compute error estimators of y, and wy,
refine y, and wy,
solve the discrete system

}
}



Goal

» Adaptive finite element schemes are usually of the form
estimate — mark — refine — solve
» Let uy, up be two consecutive solutions in such a scheme.

» A typical result of the convergence analysis is the error
reduction
lu— up| < 0llu — up]]

with 6§ < 1.



Example
» We treat the problem
—107°%" +d +u=1

with zero boundary conditions on uniform grids.

» Here for our proposed schemes the Y’-scalar product and the
error the X-norm are computed exactly.

#eells  |lu—upllx |lu—upllx/llu—unlx

4 0.959861
8 0.957969  0.998029
16 0.957373  0.999378

32 0.956982  0.999592
64 0.956269  0.999255
128 0.954335  0.997978
256 0.949497  0.994931
512 0.939050  0.988997

~> we cannot expect an error reduction
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Possible Problems

» The error estimator contains the term ||y, — w,||y which
possibly cannot be treated with standard arguments

» The proof of the lower bounds of the error estimator contains
anisotropic bubble functions ~~ problems with the error
reduction.

» A reason for the shifts might be the following heuristically
argument:

(u—up,1) = (A(u-— uh),A;11>
(Ax(u = up), AL = ¢)
lu — unllxIAL — ¢llx

where ¢ € Xj,. But ||A;11 — ¢||x will be large.

IN



Stabilization in the Y-norm

» Solve the normal equations in the Y-norm: find u € Y s.t.
<AU,AV>X/ = <f,AV>X/

forall veYy.

» Define
Y=YxXxY

> we get the equivalent problem: find U = [u,y, w] € Y s.t.

ay(u,v) —  av,y) =0
ay(y,z) — awx(w,z) = (f,r)
— ax(y,r) + ag(w,r) = 0

forall V=[v,z,r] €Y.



Example

lu=unly 1501 =103 teells — 8.16,32
|u— Ppully

0.6]

0.45

0.2;

n'l alk IUIQI S IUI.4I o IUIEI o IUISI tT 1
_0.2;
E— :_hu



Example
» We treat the problem
10"+ +u=1

with zero boundary conditions on uniform grids.

» Error reduction for the best approximation in the Y-norm on
uniform grids.

#eells  |lu—upllx |lu— unllx/llv — unllx
4 0.478322

8 0.462815 0.967580

16 0.454909 0.982918

32 0.450869 0.991119

64 0.448741 0.995280

128 0.447464 0.997154

256 0.446381 0.997580

~> we cannot expect an error reduction
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