Towards an adaptive scheme for convection-diffusion problems stabilized in a graph norm

Albert Cohen, Wolfgang Dahmen, Gerrit Welper

Adaptive numerical methods for PDE's, January 2008, Vienna

Contents

- ► The abstract framework
- ▶ Stabilization in the graph norm.
- Solving the stabilized system
- Error estimators
- Problems

Problem

The convection-diffusion equation is given by: find $u \in H_0^1(\Omega)$ s.t.

$$\epsilon(\nabla u, \nabla v) + (\mathbf{b}\nabla u, v) + (cu, v) = \langle f, v \rangle, \quad \forall v \in H_0^1(\Omega)$$

Assumptions:

- ▶ $\mathbf{b} \in W^{1,\infty}(\Omega)^d$, $c \in L^{\infty}(\Omega)$
- ▶ There are $c_0, c_b \ge 0$ s.t.

$$-\frac{1}{2}\mathrm{div}b+c\geq c_0, \qquad \qquad \|c\|_{L^\infty}\leq c_bc_0$$

 $ightharpoonup \epsilon \ll 1$

Problem:

► The problem is ill-conditioned \rightsquigarrow non-physical oscillations.

Abstract setting and norms

Let $Y = X = H_0^1(\Omega)$ and $a: X \times Y \to \mathbb{R}$ be a coercive and continuous bilinear form. Define the bilinear forms

$$a_{sy}(u, v) := \frac{1}{2} (a(u, v) + a(v, u))$$

 $a_{sk}(u, v) := \frac{1}{2} (a(u, v) - a(v, u))$

and the norms

$$\begin{aligned} \|\cdot\|_{Y}^{2} &:= a_{sy}(u, u) \\ \|\cdot\|_{X}^{2} &:= \|\cdot\|_{Y}^{2} + \|A_{sk} \cdot\|_{Y'}^{2}. \end{aligned}$$

see [Sangalli, 2005] and [Verfürth, 2005] . Then we have:

$$a(u,v)\lesssim \|u\|_X\|v\|_Y,$$

$$1\lesssim \inf_{u\in X}\sup_{v\in Y}\frac{a(u,v)}{\|u\|_X\|v\|_Y}$$

where the constants are independent of ϵ and b.

Auxiliary Problem

ightharpoonup Find $u \in X$ such that

$$a(u, v) + \beta \langle Au, A_{sk}v \rangle_{\mathbf{Y}'} = \langle f, v \rangle + \beta \langle f, A_{sk}v \rangle_{\mathbf{Y}'} \quad \forall v \in X.$$

where $\beta > 0$ is a parameter (similar to [Bertoluzza, Canuto, Tabacco, 2000]).

- For a numerical realization we have to evaluate the Y'-scalar product.
- ▶ Compare with the SUPG method: find $u \in X_h \subset H^1$ such that

$$\begin{aligned} a(u_h, v_h) + \sum_{K \in \mathcal{T}} \delta \left(A u_h, \frac{h_K}{|b|} A_{\mathsf{sk}} v_h \right)_K \\ = & \langle f_h, v_h \rangle + \sum_{K \in \mathcal{T}} \delta \left(f_h, \frac{h_K}{|b|} A_{\mathsf{sk}} v_h \right)_K \end{aligned}$$

for all $v_h \in X_h$ where $\delta > 0$ is a parameter.

Equivalence and Mapping properties

Equivalence:

$$\begin{aligned} \textit{a}(\textit{u},\textit{v}) &= \langle \textit{f},\textit{v} \rangle, & \forall \textit{v} \in \textit{X} \\ &\Leftrightarrow \\ \textit{a}(\textit{u},\textit{v}) + \langle \textit{A}\textit{u},\textit{A}_{\mathsf{sk}}\textit{v} \rangle_{\textit{Y'}} &= \langle \textit{f},\textit{v} \rangle + \langle \textit{f},\textit{A}_{\mathsf{sk}}\textit{v} \rangle_{\textit{Y'}}, & \forall \textit{v} \in \textit{X} \end{aligned}$$

Mapping Properties: For $u, v \in X$ we have:

$$\begin{aligned} & a(u,v) + \langle Au, A_{\mathsf{sk}}v \rangle_{Y'} & \lesssim & \|u\|_X \|v\|_X \\ & a(u,u) + \langle Au, A_{\mathsf{sk}}u \rangle_{Y'} & \gtrsim & \|u\|_X^2 \\ & \|\langle f, \cdot \rangle + \langle f, A_{\mathsf{sk}} \cdot \rangle_{Y'} \|_{X'} & \sim & \|f\|_{Y'} \end{aligned}$$

where all constants are independent of ϵ and b.

Eliminating the Y'-scalar product

▶ By the definition of the *Y*-norm we have:

$$\langle u, v \rangle_{Y'} = \langle u, A_{sy}^{-1} v \rangle$$

Define

$$\mathbb{X} := X \times Y \times Y$$

▶ Then an equivalent problem without the Y'-scalar product is: find $\mathbf{U} = [u, y, w] \in \mathbb{X}$ s.t.

for all $\mathbf{V} = [v, z, r] \in \mathbb{X}$.

This problem defines a bounded linear operator

$$A: \mathbb{X} \to \mathbb{X}'$$

which fulfills an inf-sup condition.

Discretization

- Assume we have finite dimensional spaces $\mathbb{X}_h = X_h \times Y_h^y \times Y_h^w \subset \mathbb{X}$.
- ▶ Galerkin discretization: find $\mathbf{u}_h = [u_h, y_h, w_h] \in \mathbb{X}_h$ s.t.

$$\begin{array}{rcl}
a(u_h, v_h,) & - & \beta a_{sk}(y_h, v_h,) & + & \beta a_{sk}(w_h, v_h,) & = & \langle f, v_h, \rangle \\
-\beta a(u_h, z_h,) & + & \beta a_{sy}(y_h, z_h,) & = & 0 \\
& & \beta a_{sy}(y_h, r_h,) & = & \beta \langle f, r_h, \rangle
\end{array}$$

for all
$$\mathbf{v}_h = [v_h, z_h, r_h] \in \mathbb{X}_h$$
.

► The operator **A** is not coercive \leadsto what do we now about the quality of the solution?

The inf-sup condition

Assume we have an operator $P: Y_h \to Y_h$ s.t. for $v \in X_h$ we have

where the constant c of the first estimate and β are sufficiently small (independent of ϵ). Then we have:

$$(\|u\|_{X}^{2} + \|w\|_{Y}^{2})^{\frac{1}{2}} (\|u\|_{X}^{2} + \|w - PS^{-1}A_{sk}u\|_{Y}^{2})^{\frac{1}{2}}$$

$$\lesssim \langle \mathbf{A}[u, w], [u, w - PS^{-1}A_{sk}u] \rangle.$$

Furthermore $A: X \times Y \to X' \times Y'$ is an isomorphism with condition number independent of ϵ and b.

Notations

Let $X_0 \subset X_1 \subset \cdots \subset X$ be a sequence of finite dimensional subspaces. Define

$$E_{n}(u)_{X} := \sup_{\phi \in X_{n}} \|u - \phi\|_{X}$$

$$\|u\|_{\mathcal{A}_{2}^{s}(X_{n})_{X}} := \|u\|_{X} + \left(\sum_{n=1}^{\infty} \left[2^{sn} E_{n}(u)_{X}\right]^{2}\right)^{\frac{1}{2}}$$

Discretization

- ▶ Approximate $u \in X$ from X_n and $w \in Y$ from Y_m
- Assume:

$$\begin{split} \|S^{-1}A_{\rm sk}\phi\|_{\mathcal{A}_{2}^{s}(Y_{n})_{Y}} &\lesssim 2^{sn}\|S^{-1}A_{\rm sk}\phi\|_{Y}, \qquad \text{for all } \phi \in X_{n} \\ \|S^{-1}A_{\rm sy}v\|_{\mathcal{A}_{2}^{t}(Y_{n})_{Y}} &\lesssim \|v\|_{\mathcal{A}_{2}^{t}(Y_{n})_{Y}}, \qquad 0 < t < s \end{split}$$

- ▶ Let $m \ge n + c$ with a suitable constant c independent of ϵ .
- ► Then for a usual Galerkin approximation (with given modified right hand side) we have:

$$(\|u-u_h\|_X^2 + \|y-y_h\|_Y^2)^{\frac{1}{2}} \lesssim 2^{-tn} \|u\|_{\mathcal{A}_2^t(X_n)_X}$$

▶ The requirements can be fulfilled for our example on the unit cube by wavelets when $b \in X_n^d$.

Perturbed coercivity

Assume that

$$||y(u_h) - y_n||_Y + ||w - w_n||_Y \le c||y_n - w_n||_Y$$
 (1)

for a sufficiently small constant c > 0. Then we have:

$$||u - u_n||_X \sim ||y_n - w_n||_Y$$

and

$$||u-u_n||_X \lesssim \inf_{\phi \in X_n} ||u-\phi||_X$$

- ► The terms on the left hand side of (1) can be estimated by known a posteriori error estimators e.g. by Verfürth.
- ▶ The terms on the right hand side of (1) can easily be computed.
- ► ~> We can test a-posteriori if it makes sense to refine the grid of the variable u or the grids of the auxiliary variables y and w.

In the following slides we construct an a-posteriori error estimator analogous to the ones of Verfürth for convection diffusion problems.

Let T be a cell and κ be an edge of the triangulation. Define:

$$R_{T,u} := (f + \epsilon \Delta u_h - A_{sk} u_h - c u_h)|_{T} \qquad J(u_h)_{\kappa} := \epsilon \left[\frac{\partial u_h}{\partial n}\right]_{\kappa}$$

$$R_{T,y} := (\epsilon \Delta (y_h - u_h) + A_{sk} u_h + c(u_h - y_n))|_{T} \qquad J(u_h)_{\kappa} := \epsilon \left[\frac{\partial y_h}{\partial n}\right]_{\kappa}$$

$$R_{T,w} := (f + \epsilon \Delta w_h - c u_h)|_{T} \qquad J(u_h)_{\kappa} := \epsilon \left[\frac{\partial w_h}{\partial n}\right]_{\kappa}$$

Define:

$$\alpha_S := \min\{\epsilon^{-1/2}h_S, c_0^{-1/2}\}, \quad S \in \{T, \kappa\}, \quad h_S := \text{diam } S$$

and

$$\eta_{\mathcal{T},\square} := \alpha_{\mathcal{T}}^2 \|R_{\mathcal{T},\square}\|_{L_2(\mathcal{T})}^2 + \frac{1}{2} \sum_{\kappa \in \partial \mathcal{T}} \epsilon^{-1/2} \alpha_{\kappa} \|J_{\kappa}(\square_h)\|_{L_2(\kappa)}^2$$

where $\square \in \{u, y, w\}$.

Now we can define the following error estimator:

$$\begin{split} R_h^2 &:= & \sum_{T \in \mathcal{T}_u} \eta_{T,u}^2 + \|y_h - w_h\|_Y^2 \\ &+ \sum_{T \in \mathcal{T}_y} \eta_{T,y}^2 \\ &+ \sum_{T \in \mathcal{T}_w} \eta_{T,w}^2 \end{split}$$

With the given definitions we get the following estimates:

$$\|U-U_h\|_{\mathbb{X}}\lesssim R_h^2+\mathsf{data}$$
 errors

and

$$R_h^2 \lesssim \|U-U_h\|_{\mathbb{X}} + \mathsf{data}$$
 errors

With the given definitions we get the following estimates:

$$\|U-U_h\|_{\mathbb{X}}\lesssim R_h^2+\mathsf{data}$$
 errors

and

$$R_h^2 \lesssim \|U-U_h\|_{\mathbb{X}} + \mathsf{data}$$
 errors

Outline of a solution method

One might find a solution $\mathbf{U}_h = [u_h, y_h, w_h]$ of the auxiliary system with accuracy $\|\mathbf{U} - \mathbf{U}_h\|_{\mathbb{X}} \lesssim \delta$ by the following algorithm:

```
while R_h > \delta do
  compute error estimators of u_h
  refine uh
  solve the discrete system
  while not (1) do
     compute error estimators of y_h and w_h
     refine y_h and w_h
     solve the discrete system
```

Goal

- ► Adaptive finite element schemes are usually of the form estimate → mark → refine → solve
- ▶ Let u_H , u_h be two consecutive solutions in such a scheme.
- A typical result of the convergence analysis is the error reduction

$$||u - u_h|| \le \theta ||u - u_H||$$

with $\theta < 1$.

Example

▶ We treat the problem

$$-10^{-5}u'' + u' + u = 1$$

with zero boundary conditions on uniform grids.

▶ Here for our proposed schemes the Y'-scalar product and the error the X-norm are computed exactly.

#cells	$ u-u_h _X$	$ u - u_h _X / u - u_H _X$
4	0.959861	
8	0.957969	0.998029
16	0.957373	0.999378
32	0.956982	0.999592
64	0.956269	0.999255
128	0.954335	0.997978
256	0.949497	0.994931
512	0.939050	0.988997

Example

$$-10^{-3}u'' + u' + u = 1, u(0) = u(1) = 0$$

Possible Problems

- ▶ The error estimator contains the term $||y_n w_n||_Y$ which possibly cannot be treated with standard arguments
- ► The proof of the lower bounds of the error estimator contains anisotropic bubble functions ~> problems with the error reduction.
- ▶ A reason for the shifts might be the following heuristically argument:

$$\langle u - u_h, 1 \rangle = \langle A_x(u - u_h), A_x^{-1} 1 \rangle$$

= $\langle A_x(u - u_h), A_x^{-1} 1 - \phi \rangle$
 $\leq \|u - u_h\|_X \|A_x^{-1} 1 - \phi\|_X$

where $\phi \in X_h$. But $||A_x^{-1}1 - \phi||_X$ will be large.

Stabilization in the Y-norm

▶ Solve the normal equations in the *Y*-norm: find $u \in Y$ s.t.

$$\langle Au, Av \rangle_{X'} = \langle f, Av \rangle_{X'}$$

for all $v \in Y$.

Define

$$\mathbb{Y} := Y \times X \times Y$$

• we get the equivalent problem: find $\mathbf{U} = [u, y, w] \in \mathbb{Y}$ s.t.

$$a_{sy}(u, v) - a(v, y) = 0$$

 $a_{sy}(y, z) - a_{sk}(w, z) = \langle f, r \rangle$
 $- a_{sk}(y, r) + a_{sy}(w, r) = 0$

for all $\mathbf{V} = [v, z, r] \in \mathbb{Y}$.

Example

$$\frac{\|u - u_h\|_Y}{\|u - P_h u\|_Y} = 1.1501 \qquad \epsilon = 10^{-3} \qquad \sharp cells = 8, 16, 32$$

Example

We treat the problem

$$-10^{-5}u'' + u' + u = 1$$

with zero boundary conditions on uniform grids.

► Error reduction for the best approximation in the *Y*-norm on uniform grids.

#cells	$ u-u_h _X$	$ u - u_h _X / u - u_H _X$
4	0.478322	
8	0.462815	0.967580
16	0.454909	0.982918
32	0.450869	0.991119
64	0.448741	0.995280
128	0.447464	0.997154
256	0.446381	0.997580

Further reading

Bertoluzza, S., Canuto, C., and Tabacco, A. (2000). Negative norm stabilization of convection-diffusion problems. *Appl. Math. Lett.*, 13(4):121–127.

Cohen, A., Dahmen, W., and Welper, G. A-posteriori bounds for stable formulations of convection-diffusion problems. to appear.

Sangalli, G. (2005).

A uniform analysis of non-symmetric and coercive linear operators.

SIAM J. Math. Anal., 36:641-661.

Verfürth, R. (2005).

Robust a posteriori error estimates for stationary convection-diffusion equations.

SIAM J. Math. Anal., 43(4):1766-1782.

