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Motivation ¢ Motivation

Convergence Convergence

f AFEM . .. f AFEM
° Most convergence results for adaptive finite elements rely on °

K. G. Siebert K. G. Siebert

Convergence and optimality of adaptive finite elements is observed for

m Energy minimization m A larger class of problems
m symmetric elliptic operators » convection-diffusion
p-Laplacian '

= saddle point problems,

Motivation
O oo

Motivation

u
m obstacle problems
m convex minimization
Can be relaxed to disturbed Galerkin Orthogonality.
m Efficient estimators, where only a continuous lower bound is available.
m Special properties of the estimators
m Discrete local lower bound m Other marking strategies

m Maximum strategy
m Equidistribution Strategy
[ I

m Dorfler marking: Given 6 € (0, 1]
Select M C T : 0ET(T) < Ex (M)

m Minimal refinement.

m Special refinement of selected elements. . . . .
Convergence in a rather general setting by Morin, S., Veeser '08.

Optimality up to now only for symmetric elliptic operators. Optimality in this general setting completely open.



Motivation

Convergence
of AFEM

Setting of the Basic Convergence Result

K. G. Siebert
Formulation of only few and basic assumptions that lead to convergence.
These assumptions should be “necessary” — at least reasonable — and “easy to
verify” for many problems.

Main Focus in this Talk: Discrete Lower Bound

Previous convergence proofs rely on a discrete local lower bound:

Motivation

Discrete lower bounds may be more difficult to obtain than continuous
ones;

For more complex problems estimators may not be efficient, but still we
may want to prove convergence.

Reliability of an estimator should be the key property for convergence.
Overestimation should not forestall convergence:

Overestimation is a problem for efficiently stopping;

Overestimation is a problem for optimal complexity.

Examples

Problem

of AFEM

Variational formulation of a linear, elliptic PDE in a domain @ C R¢:

ueV: Blu, v] = (f, v) Yv eV, (P)

where

Problem

m V is a real Hilbert space with inner product (-, -)y, induced norm || - ||v;

m B:VxV — R is a continuous bilinear form;
mfeV

Theorem (Niremberg, Necas, Babugka, Brezzi)

Problem (P) admits for any f € V* a unique solution, if and only if
B fulfills an inf-sup condition.

m Coercive forms B satisfy the inf-sup condition:

Blv, v] > es||v||F Yv e V.

Examples

Convergence
of AFEM

K. G. Siebert

—Au=f inQ, u=0 ondf.

Variational formulation in V = H{ (Q):

Examples

Blu, v]:/Vu-VUdm:/fvdx.
Q Q

m B is continuous and coercive.

Discretization with continuous Lagrange elements of order p > 1.

Global upper bound for the residual estimator build from

E7(T) = hz|l = AUT — fl3:r + hr|| [Uz] I30700-

m Continuous and discrete local lower bounds.

Example (Poisson Problem in R%)

Convergence
of AFEM

Continous Local Lower Bound

Er(T) S Ut — ullv(w(ry) + oser (w(T))
with osc (T) = hr||f — frll2r.

K. G. Siebert

Examples

Principal idea by Verfiirth: Construct ¢ € V with ||¢r|v =1,
supp ¢ C w(T') such that

Er(T) S (R(U7T), ¢r) := BlUT — u, ¢7] < [|BIl[|Ur — ullv(wiry)

Construction of ¢

Changing to a computable error indicator leads to potential
overestimation.

= Projection to a finite dimensional space; leads to oscillation.

Localization by a suitable continuous cut-off function Ar.
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Convergence
of AFEM

: Convergence
Discrete Local Lower Bound of AFEM

B Let 77 be a refinement of 7 with sufficient refinement around T € 7 «.c seoer Ml Example (H (div; ) Elliptic Operator in R?, d = 2, 3)
< —Ups
£7(1) 5 U7 = Uz vy + oser (w(T) ~Vdivutu=Ff inQ,  u-n=0 ondQ
with oscr (T) = hr||f — frll2r. Variational formulation in V = Hy(div; Q):
Examples Examples

Principal idea by Dérfler and Morin, Nochetto, S.: Construct ®r € V(77)
with ||®7|lv = 1, supp @1 C w(T') such that

Er(T) S (R(Ut), ®r) = BlUr — Uz, 1] < |IB||[Ur — U [lv(wo(1))

Construction of &
B is continuous and coercive;

Blu, v] ::/divudivv—i—u~'ualar::(f7 v) Vv e V.
Q

Projection to a finite dimensional space; leads to oscillation. m Discretization by Raviart-Thomas or Brezzi-Douglas-Marini Elements of
Localization by a suitable discrete cut-off function Ar. any order p;
m Global upper bound for any order;

m Projection is limited by the degree of the FE space and the discrete = Continuous and discrete local lower bound for any order:

cut-off function. m the projection in the discrete lower bound for Raviart-Thomas

m Utilizing a discrete cut-off function is not always possible: A localized Elements of order p > 2 is sub-optimal.

function has to be contructed explicetely.

Examples )/ Examples

Convergence Convergence
of AFEM of AFEM Example (The Stokes Problem)
K.G. Siebert R R 3 K.G. Siebert
S EO(E e SUTCRS SN Variational formulation in V = Hg(Q;R%) x L&(Q):
curlcurlu +uw = f in §, uAn =0 on 9. B[(u,p), (v,q))] ::/Vu:Vvdm—/pV~vda:—/V-uqdazz(f, v)
Variational formulation in V = Hy(curl; Q): ¢ ¢ ¢
Examples Examples for a” ('U, q) c V

Blu, v] ::/curlucurlv—l—u-vda::(f, v) Yv € V.
@ m B is continuous and fulfills the inf-sup condition.

m Discretization by the Taylor-Hood Elements of order p > 2.

m Global upper bound for
m B is continuous and coercive; ) ) ) ) )
m Discretization by Nedelec Elements of any order p; E7(T) == hr||-AUr+VPr—fllzrthrl [UT] llz6rne+ I divU T |l2;r
m Global upper bound for any order; and

m Continuous local lower bound for any order:

EF(T) == h7|| — AU + VPr — fll5:0 + hr| [UT] 50700

m Discrete local lower bound available only for lowest order, i.e., for the
Whitney Elements. m Continuous local lower bound for both variants.

m Discrete local lower bound available only for the second variant.



Examples /£ | Adaptive Loop and Basic Assumptions

Convergence Convergence
of AFEM of AFEM o o - .o . . .
Starting with an initial, conforming triangulation 7y of €, the standard

adaptive loop SEMR

K. G. Siebert K. G. Siebert

Example (The Biharmonic Equation in R?)

2 SOLVE — ESTIMATE — MARK — REFINE
Ay in Q, u=Vu-n=0 on 0.

Eromls Variational formulation in V = H(Q): PREHIEES &) S IIes
daptve {T, Vi, Uk, {&(T)}rez,, Mr},,
Blu, v] := / AuAvdz = (f, v) Vv e V.
Q where
m 7 is a conforming triangulation produced by refinement of 71, ..., 7o;

m Vi, = V(74) is a finite element space over 7y;
m 3 is continuous and coercive. m Uy € Vj, is the unique Ritz-Galerkin solution:

m Discretization by the Argyris Triangle: piecewise P5s and H? conforming. Us € Vg : B[Ux, V] = (f, V) YV € Vi (Pr)

Global upper bound.

. which requires a discrete inf-sup conditon;
Continuous local lower bound. q P

m No discrete local lower bound available, seems to be tough. = eI B e e flueeairer susosfeties ol e clameni 77 € T

B My C Ty is the set of selected elements for refinement.

Adaptive Loop and Basic Assumptions | | Convergence of Mesh Size Functions

Convergence Convergence

- - Define the local mesh size function hy € L*°(Q2) b
of AFEM Assumptions on Refinement of AFEM r (@) by

K. G. Siebert

Use bisectional refinement and denote by T the set of all possible, conforming by = |T|1/d ~ diam(T) VT € Ty.
refinements of 7.

K. G. Siebert

Lemma (Morin, S. Veeser '08)

m Refinement can be generalized to more general grids and quasi-regular . ; : ~

element subdivisions that generate locally quasi-uniform grids. For any realization of SEMR there exists a unique hoo € L*°(Q2) such that

Adaptive
Loop

Mesh Size
Functions

Jlim [|As = oo loci = 0.

Assumptions on Finite Element Spaces
The finite element spaces have the following properties: ldea of the Proof.

forany 7 € T, V(7) C V is a conforming finite dimensional space; For any z € Q the sequence {hx(z)}« is monotone and bounded from below:
the spaces are nested: if 7' is a refinement of 7 then V(7)) C V(77);

the spaces satisfy a uniform discrete inf-sup condition. hoo(2) := lim hi(z) 20 exists for all z € €2.

k—oo

Convergence in L the follows from
m Nesting of spaces follows from properties of refinement in combination

with appropriate local function spaces. T is refined into 71, Ty = |Ti| = |Ts| = % IT|. 0
m Coercivity of B implies the uniform inf-sup condition.



Convergence of Mesh Size Functions | Convergence of Galerkin Solutions

Convergence Convergence

of AFEM In general, hoo Z 0 in Q. If hoo(x) > 0, then there is an element 7' > x and of AFEM

K.G. Siebert K = K(;E) such that K. G. Siebert . X .
TeTh VE > K. For any realization of SEMR there exists a unique u € V such that

Splitting of 7

Set of elements that are not refined anymore

Lemma (Morin, S. Veeser '08)

lim ||Uk — uoo||V =0.
k—oo

Proof for coercive B.

e T = {T €T |T €T V2 k) The space
Galerkin Il-llv
Set of elements that are refined at least once Solutions Voo = Uk Vi
70 .= T \7? is a closed subsp:jlce of V. .The Lax-Milgram theorem then implies the
existence of a unique solution u to
Uoo € Vo : Bluss, v] = (f, v) Vv € Vo

Corollary (Morin, S. Veeser '08)
The mesh size functions vanish uniformly in Q2 = Q(TL) = \{T: T € T2}: Convergence follows from the quasi-best approximation property

_ < el 5 _
i [ — 0 [0~ weelly < e 18] gain [V = lly =0 as & = oo
k—oo ok

by construction of V. O

Convergence of Galerkin Solutions | | Density

Convergence
of AFEM

Convergence N " .
Consequences for a Convergence Proof of AFEM Local Approximation Property of the Finite Element Spaces
K. G. Siebert K. G. Siebert

It suffices to show uss = u since convergence Let W C V be dense, ¢ > 0. Assume that for any 7 € T there exists an
interpolation operator I7: W — V(7)) such that for all w € W

lim Ui — oo inV
k—oo

lw — Irwlvr) S BT lloosrllwllwer) VT € T.

is established for any adaptive iteration SEMR.

The residual R(uoo) and ueo = u

Galerkin Using the residual R(w) € V* defined by

Solutions
Density

R(w) := Blw — u, v] = Blw, v] — (f, v) Yo, w € V.
heo # 0: Then 'Z;:r # for k > K which implies V ¢ V.

) . h = 0: Use density of finite element spaces: for v € V and w € W
Uoo = U <~ R(usw) =0 inV estimate

we reformulate

v = Irwllve) < llv = wllv) + lw — Iewllve)

In case Voo =V definition of ues implies R(us) = 0.
In case Voo # V properties of ESTIMATE and MARK have to yield
R(uso) = 0. by first choosing w close to v and then k large.

!
S o —wlivie) + Ihelleosellwliwe) < &
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Density

Convergence
of AFEM
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Prior
Results

Density

Convergence
of AFEM

G. Siebert

For hoo # 0 we still obtain for any v € V and w € W K
flv— Ikw”wﬂg) <|v- wHV(Qg) + flw — Ikw“w(ng)
S v = wllve) + 1helloo lwliwe) < €
by first choosing w close to v and then k large, thanks to

as k — oo. Prior

Results

This local density property we are going to use explicitely in the
convergence proof. It replaces a (discrete) local lower bound.

= Needs a way to build in local features via the upper bound!

The local density property is already implicitely used in all other
convergence proofs.

Prior Results

Convergence

Convergence proof without lower bound for symmetric elliptic problems: prstesn

K. G. Siebert

Blv, w] := / Vol AVw 4 cvw dx v,w eV := Hy(R)
Q

with the residual estimator
E3(T) := |hr(~ div(AVUr + cUr — f)|3r + [|hy* [AVU7] 307
and Dorfler marking with 0 < 6 <1

Choose M C T : 0ET(T) < Er(M).

ESTIMATE
& MARK

Theorem (Cascon, Kreuzer, Nochetto, S. '08)

SEMR is a contraction, i.e., there exists 0 < a < 1 and 3 > 0 such that
Uk = ullg, + BE(Tx) < a(Uk-1 — ullg + BEk—1(Ti-1))-

If, in addition, 0 is sufficiently small and M}, minimal, then SEMR is
quasi-optimal in terms of DOFs.

m Optimality proof utilizes the global continuous lower bound.

Prior Results

Directly Related Convergence Results

Babugka, Vogelius '86: u” = f in 1d, convergence

Dorfler '96: Poisson problem in 2d, convergence into tolerance
m Morin, Nochetto, S. '00, '02: constant coefficient matrix, convergence

Veeser '02: p-Laplacian

S. Veeser '06: obstacle problem

S. Veeser '06: convergence for the equidistribution strategy

m Morin, S. Veeser '08: general convergence with discrete lower bound

Convergence and Optimality Results

m Binev, Dahmen, DeVore '02: MNS with coarsening

m Stevenson '06: Modification of Dorfler
m Cascon, Kreuzer, Nochetto, S. '08: Plain SEMR

m Chen, Holst, Xu '08: Mixed formulation of Poisson problem

Error Estimation and Marking

Assumptions on the Estimator

We assume an upper bound with the following build-in localization: For
any subset S C 7 holds:

(R(Ur), v)| S Ex(S)vllas) +Er(T\S)lvllams)  VveV.

We assume stability of the indicators: there exists D € L?(f2) such that

Er(T) S WWUrllvery + 1Dllzr VT €T

The continuous inf-sup condition and the upper bound for S = 7 imply

U7 —ullv S IRUT)|lv« = sup [(R(UT), v)| S E7(T).

llollv=1

Boundedness of {Uj}« and stability of the indicators yield

supy £x(Th) S 1.



Error Estimation and Marking

Convergence of the Error

Convergence
of AFEM

Assumption on Marking

of AFEM

Lo We assume the existence of g € C°(R};R{) with g(0) = 0 such that the set Lo

of marked elements M satisfies

Er(T) < g(max{&r(T) | T e M}) VT €T\ M.

Additional Assumption on Refinement

All marked elements are refined at least once.
ESTIMATE
& MARK

G

The assumption on marking includes standard marking strategies like
Maximum, Equidistribution and Minimal Déorfler marking with g(s) = s.

Assumption on refinement implies M C T.

Convergence of the Galerkin Solutions, stability of the indicators, and
assumption on marking and refinement yield

as k — oo.

max{&(T) | T € T} — 0

Convergence of the Error

Convergence

Theorem (S. '08)

Assume that the above assumptions on refinement, finite element spaces,
estimator, and marking are satisfied. Then SEMR convergece, i.e.,

klim HUk — UHV =0.

Since Ur — U in V, it remains to show
(R(uso), v) =0 Yo eV = (R(uso), w)y =0 Yw e W,
by density of W in V. Using continuity of R: V — V* this reduces to

lim (R(Ux), w) =0 Vw e W, ||lw|lw = 1.

k—oo

The sets ’T,j are nested, which grants for k > ¢

TP CcTfcT and Q) =Q(T) =T\ T,H).

Convergence of the Estimator

Convergence

of AFEM Proof (continued) of AFEM
K. G. Siebert K. G. Siebert
Use the upper bound with S = 7; \ 7, for w € W, |Jw|jw = 1
(R(Uk), w)| = (R(Uk), w — Irw)|
SE(T\T)|w - Trwllyag) + E (T, |lw — Lewllyay)
!
< Mkl + Ex(TH) < <
Choose /¢ sufficiently large such that
Conv. of
rror &
¢ [Bkllociag < IPellsong < 5- o o

Estimator

Then choose k& > ¢ such that
€ _
E(T) < S(HT)7?

which implies

Convergence

The theorem does not imply convergence of the estimator, since it includes
non-efficient estimators and allows for strong overestimation!

Continuous Lower Bound

Let the indicators satisfy

E1(T) S Ut — ullv(w(r)) + oscr (w(T)),
where oscillation can be estimated by
oser (T) S Iz llooir (1UT lviw(r)) + [ Dll2swcr))
for some 7 > 0 and D € L*(Q).

Corollary (S. '08)

If, in addition, the estimator satisfies the continuous local lower bound, then
SEMR yields

Jlim £,(Ti) = 0.



Convergence of the Estimator &Z/2  Remarks

e
100 of AFEM General convergence proof for adaptive finite elements with mild

Convergence
of AFEM

K. G. Siebert

DSOS As in the previous proof we split for & > ¢ assumptions on the ingredients, most easy to verify.

Convergence does not need the lower bound, “practical’ convergence

Ex(Tx) < Ex (T \TZO) +& (T;) S Uk~ UHV(Q?) + OSCk(Q?) + 5’“(77)' *) and convergence into tolerance need efficient estimators:

m Includes strategies, where the given tolerance enters the selection,
like the equidistribution strategy:

M={T €T |E(T)>0TOL#T) '/?},

The error is controlled by the previous theorem:
Uk — ullyag) < IUx —ully =0 as k — co.

For efficient estimators, the assumption on marking can be generalized

Oscillation can be estimated in QY by assumption in an a priori way: A )
such that it is essentially necessary:

Extimata 05k () S 1helloose (1Ukllv + DIl 2 (0)

Estimator
S [1he

Remarks

if klim max{E(T) |T € My} =0

loo:0 — 0 as £ — 0.
¢ then VI eT': lim &(T)=0,

The remaining part of the estimator can be handeled as before: hoo

where

E(T,H) =0 for £ fixed and k — oc. Tt = U ﬂ T

Summarizing: The right hand side of (*) can be made arbitrarily small by first k20 £2k

choosing £ large and then k > ¢ even larger. O is the set of elements that are not refined.
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