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Introduction

Plasma: gas of charged particles (as in stars or lightnings)
Applications: controlled fusion, Plane/flame interaction...
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Models for plasma simulation

F(t, x, v)

Microscopic model  N body problem in 6D phase space
Kinetic models: statistical approach, replace particles
{xi (t), vi (t)}i≤N by a distribution density f (t, x , v)

binary collisions  Bolztmann equation
mean-field approximation  Vlasov equation

∂t f (t, x , v) + v ∂x f (t, x , v) + F (t, x , v) ∂v f (t, x , v) = 0

Fluid models: assume f is maxwellian and compute only first
moments: density n(t, x) :=

∫
f dv , momentum

u(t, x) := n−1 ∫
vf dv and pressure p :=

∫
f (v − u)2 dv .
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Vlasov equation as a "smooth" transport equation

Existence of smooth solutions (cf. Iordanskii, Ukai-Okabe,
Horst, Wollman, Bardos-Degond, Raviart...)
density f is constant along characteristic curves,

(x, v)
(X, V)(t; x, v)

Characteristic flow is a measure preserving diffeomorphism

F(t) : (x , v) → (X , V )(t; x , v)

B(t) : (X , V )(t; x , v) → (x , v)
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Numerical methods for the Vlasov equation

{(xi(t), vi(t)) : i ≤ N}

{fi(t) : i ≤ N}

Particle-In-Cell (PIC) methods ([Harlow 1955])
Hockney-Eastwood 1988, Birdsall-Langdon 1991 (physics)
Neunzert-Wick 1979, Cottet-Raviart 1984, Victory-Allen 1991,
Cohen-Perthame 2000 (mathematical analysis)

Eulerian (grid-based) methods
Forward semi-Lagrangian [Denavit 1972]
Backward semi-Lagrangian [Cheng-Knorr 1976,
Sonnendrücker-Roche-Bertrand-Ghizzo 1998]
Conservative flux based methods [Boris-Book 1976, Fijalkow
1999, Filbet-Sonnendrücker-Bertrand 2001]
Energy conserving FD Method: [Filbet-Sonnendrücker 2003]
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the Particle-In-Cell method

{(xi(t), vi(t)) : i ≤ N}

Principle: approach the density distribution f by transporting
sampled "macro-particles"

initialization: deterministic approximation of f0
 macro-particles {xi (0), vi (0)}i≤N
knowing the charge and current density, solve the Maxwell
system
knowing the EM field, transport the macro-particles along
characteristics

Benefits: intuitive, good for large & high dimensional domains
Drawback: sampling in general performed by Monte Carlo
 poor accuracy
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the (backward) semi-Lagrangian method

{fi(t) : i ≤ N}

Principle: use a transport-interpolation scheme
initialization: projection of f0 on a given FE space
knowing f , compute the charge and current densities and solve
the Maxwell system
Knowing the EM field, transport and interpolate the density
along the flow.

Benefits: good accuracy, high order interpolations are possible
Drawback: needs huge resources in 2 or 3D
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Comparison

Initializations of a semi-gaussian beam in 1+1 d

Solution: use an adaptive semi-Lagrangian scheme !
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Adaptive semi-Lagrangian scheme: notations

Knowing fn ≈ f (tn := n∆t ), approach the backward flow

B(tn) : (x , v) → (X , V )(tn; tn+1, x , v)

by a diffeomorphism Bn = B[fn]
transport the numerical solution with T : fn → fn ◦ Bn

then interpolate on the new mesh Mn+1:

fn+1 := PMn+1T fn
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Prior schemes

Gutnic, Haefele, Paun, Sonnendrücker Comput. Phys. Comm. 2004

Use interpolets on multilevel octrees
Hierarchical grid is transported by advecting the nodes forward
in time and creating cells of same level in new grid
Related work on adaptive Lagrange-Galerkin methods for
unsteady convection-diffusion problems

Houston, Süli Technical report 1995, Math. Comp. 2001
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A second approach

CP, Mehrenberger Proceedings of Cemracs 2003

hierarchical conforming P1 FE spaces build on quad meshes

the corresponding interpolation PM satisfies

‖(I − PM)f ‖L∞ . sup
α∈M

|f |W 2,1(α)

for given f , construct M := Aε(f ) by adaptive splittings
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Analysis of the uniform scheme

Besse SINUM 2004

Error: decompose en+1 := ‖f (tn+1)− fn+1‖L∞ into

en+1 ≤ ‖f (tn+1)−T f (tn)‖L∞+‖T f (tn)−T fn‖L∞+‖(I−PK)T fn‖L∞ ,

and using a 2nd order time splitting scheme for T , show

en+1 ≤ (1 + C (T )∆t )en + C (T )(∆t 3 + h2), n∆t ≤ T

as long as f0 ∈ W 2,∞(R2). Hence en ≤ C (T )(∆t 2 + h2/∆t ).

Complexity: balance with ∆t 2 ∼ h2/∆t , so that

en ≤ C (T )h4/3 ≤ C (T )N−2/3
h (Nh ∼ h−2)
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Analysis of the adaptive scheme

Decompose again en+1 := ‖f (tn+1)− fn+1‖L∞ into

en+1 ≤ ‖f (tn+1)−T f (tn)‖L∞+‖T f (tn)−T fn‖L∞+‖(I−PMn+1)T fn‖L∞ ,

and estimate

en+1 ≤ (1 + C (T )∆t )en + C (T )∆t 3 + ‖(I − PMn+1)T fn‖L∞

as long as f0 ∈ W 1,∞(R2).
 goal: predict Mn+1 such that it is ε-adapted to T fn, ie

sup
α∈Mn+1

|T fn|W 2,1(α) ≤ ε
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Adaptive mesh prediction, I

Goal: given Mn and fn, build Mn+1 in such a way that

sup
α∈Mn+1

|T fn|W 2,1(α) ≤ ε

Idea: use adaptive splitting.
 Questions:

Q1: which cells should be refined in Mn+1 ?

Q2: how big can |T fn|W 2,1(α) = |fn ◦ Bn|W 2,1(α) be ?

Q3: is T stable with respect to the curvature, ie

|T fn|W 2,1(α) ≤ C |fn|W 2,1(Bn(α)) ?
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Adaptive mesh prediction, II

Q3: is T stable with respect to the curvature

|T fn|W 2,1(α) ≤ C |fn|W 2,1(Bn(α)) ?

Answer to Q3 is no. . .
. . . but up to introducing a discrete curvature | · |? for the
piecewise affine fonctions, and provided that the numerical E
field is bounded in L∞t (W 2,∞

x ), T is stable with respect to

E(fn, α) := |fn|?(α) + ∆t Vol(α)|fn|W 1,∞ .

 for simplicity, assume that the answer to Q3 is yes.
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Adaptive mesh prediction, II

Q2: how big can |T fn|W 2,1(α) = |fn ◦ Bn|W 2,1(α) be ?
Answer:

|T fn|W 2,1(α) ≤ C |fn|W 2,1(Bn(α)) ≤ C
∑

β∈I(α)

|fn|W 2,1(β),

where I(α) contains the cells of Mn that intersect Bn(α)

Bn
α
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Adaptive mesh prediction, II

Q2: how big can |T fn|W 2,1(α) = |fn ◦ Bn|W 2,1(α) be ?
Answer:

|T fn|W 2,1(α) ≤ C |fn|W 2,1(Bn(α)) ≤ C
∑

β∈I(α)

|fn|W 2,1(β),

where I(α) contains the cells of Mn that intersect Bn(α)

Bn

cα

α

∣∣Bn(cα)− Bn(x, v)
∣∣ ≤ C|cα − (x, v)|

≤ C2−`(α)
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Adaptive mesh prediction, III

Q1: which cells should be refined in Mn+1 ?
Answer: refine α when `(β) > `(α).
If ∆t ≤ C (f0, T ), the resulting M̃n+1 := T[Bn]Mn satisfies:

sup
α∈M̃n+1

#
(
I(α)

)
≤ C

therefore

|T fn|W 2,1(α) ≤ C
∑

β∈I(α)

|fn|W 2,1(β) ≤ C sup
β∈Mn

|fn|W 2,1(β).

Theorem (CP, Mehrenberger 2005)

Mn is ε-adapted to fn =⇒ T[Bn]Mn is Cε-adapted to T fn



Mathematical modeling of charged particles The adaptive semi-Lagrangian approach

the prediction-correction scheme

C P, Mehrenberger Numer. Math. 2007

given (Mn, fn):
� predict a first mesh M̃n+1 := T[Bn]Mn

� perform semi-Lagrangian scheme f̃n+1 := PM̃n+1T fn
� then correct the mesh Mn+1 := Aε(f̃n+1)

� and project again fn+1 := PMn+1 f̃n+1

Theorem (CP, Mehrenberger 2005)

‖f (tn)− fn‖L∞ . ∆t 2 + ε/∆t ∼ ε2/3

In addition,
#

(
M̃n+1) . #(Mn)
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Convergence rates

p = 1 = s/d = 2/2

L∞

Lp measure

smoothness W 2,∞ ≈ A2(L∞)

2

W 1,∞

W 2,1 ≈ Ã2(L∞)

uniform SL scheme: N := #(Mh) ∼ h−2

f (t) ∈ W 2,∞ =⇒ ‖f (tn)−fn‖L∞ . ∆t2+h2/∆t ∼ h4/3 ∼ N−2/3

multi-level adaptive SL scheme

f (t) ∈ W 1,∞∩W 2,1 =⇒ ‖f (tn)−fn‖L∞ . ∆t2+ε/∆t ∼ ε2/3

Estimating Ñ := #(Mn): still open, but conjecture

Ñ . ε−1 therefore ‖f (tn)− fn‖L∞ . Ñ−2/3
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Error vs. time step (top) and complexity (bottom)

L∞ error vs. ∆t ∼ ε1/3 in log-log scale (slopes are around 2.5)

L∞ error vs. N (left) and cpu time (right) in log-log scale
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Optimality of the adaptive meshes
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Work in progress

parallel versions in higher orders (and up to 4D) have been
implemented by M. Mehrenberger, M. Haefele, E. Violard and
O. Hoenen
compare with PIC codes coupled to high order Maxwell solvers
design anisotropic schemes (using locally refined sparse grids)
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