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Introduction

@ Plasma: gas of charged particles (as in stars or lightnings)

e Applications: controlled fusion, Plane/flame interaction...
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Models for plasma simulation

~° e
F(t,x,v) ~

@ Microscopic model ~» N body problem in 6D phase space
@ Kinetic models: statistical approach, replace particles
{xi(t), vi(t)}i<n by a distribution density f(t,x, v)
e binary collisions ~~ Bolztmann equation
o mean-field approximation ~» Vlasov equation

O (t,x,v) + v Ouf(t, x,v) + F(t,x,v) O,f(t,x,v) =0

@ Fluid models: assume f is maxwellian and compute only first
moments: density n(t,x) := [ fdv, momentum
u(t,x) :=nt [vfdv and pressure p := [ f(v — u)?dv.
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Vlasov equation as a "smooth" transport equation

e Existence of smooth solutions (cf. lordanskii, Ukai-Okabe,
Horst, Wollman, Bardos-Degond, Raviart...)

@ density f is constant along characteristic curves,

o Characteristic flow is a measure preserving diffeomorphism
F(t) : (x,v) — (X, V)(t; x,v)

B(t) : (X, V)(t;x,v) — (x,v)
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Numerical methods for the Vlasov equation

. 7 | {a(t),vi(t) :i < N} \,
o, o. : ) éwé
° e {fi(t) :i <N}

e Particle-In-Cell (PIC) methods ([Harlow 1955])
e Hockney-Eastwood 1988, Birdsall-Langdon 1991 (physics)
o Neunzert-Wick 1979, Cottet-Raviart 1984, Victory-Allen 1991,
Cohen-Perthame 2000 (mathematical analysis)
e Eulerian (grid-based) methods
o Forward semi-Lagrangian [Denavit 1972]
o Backward semi-Lagrangian [Cheng-Knorr 1976,
Sonnendriicker-Roche-Bertrand-Ghizzo 1998]
o Conservative flux based methods [Boris-Book 1976, Fijalkow
1999, Filbet-Sonnendriicker-Bertrand 2001]
o Energy conserving FD Method: [Filbet-Sonnendriicker 2003]
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the Particle-In-Cell method

. ™ | {(xi(t),vi(t)) 1 i < N}

@ Principle: approach the density distribution f by transporting
sampled "macro-particles"

o initialization: deterministic approximation of f
~» macro-particles {x;(0), vi(0)}i<n

o knowing the charge and current density, solve the Maxwell
system

e knowing the EM field, transport the macro-particles along
characteristics

@ Benefits: intuitive, good for large & high dimensional domains

e Drawback: sampling in general performed by Monte Carlo
~~ poor accuracy
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the (backward) semi-Lagrangian method

{fi(t) : i <N}

@ Principle: use a transport-interpolation scheme
e initialization: projection of fy on a given FE space
e knowing f, compute the charge and current densities and solve
the Maxwell system
o Knowing the EM field, transport and interpolate the density
along the flow.

@ Benefits: good accuracy, high order interpolations are possible

@ Drawback: needs huge resources in 2 or 3D
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Comparison

@ Initializations of a semi-gaussian beam in 1+1 d

PIC code non linear approximation

@ Solution: use an adaptive semi-Lagrangian scheme !
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Adaptive semi-Lagrangian scheme: notations

e Knowing f, ~ f(t, := n/AAt), approach the backward flow
B(tn) : (x,v) — (X, V)(tn; tht1, X, v)

by a diffeomorphism 5, = B[f,]
@ transport the numerical solution with 7 : f, — £, 0 BB,

e then interpolate on the new mesh M"*1:

f,—,+1 = P,wn+1Tfn

M™ = Mn+1
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Prior schemes

@ Gutnic, Haefele, Paun, Sonnendriicker Comput. Phys. Comm. 2004

N

@ Use interpolets on multilevel octrees

@ Hierarchical grid is transported by advecting the nodes forward
in time and creating cells of same level in new grid

@ Related work on adaptive Lagrange-Galerkin methods for
unsteady convection-diffusion problems

@ Houston, Siili Technical report 1995, Math. Comp. 2001
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A second approach

@ CP, Mehrenberger Proceedings of Cemracs 2003

o hierarchical conforming P! FE spaces build on quad meshes

[

@ the corresponding interpolation Py, satisfies
(I = Pm)fll < sup [flwza(a)
aeM

e for given f , construct M := A_(f) by adaptive splittings
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Analysis of the uniform scheme

8 Besse SINUM 2004

@ Error: decompose ept1 := ||f(tp+1) — fot1|1oe into
enir < IF(tnen) =T F(t0) [ 1o+ TF ()~ T ol (1= P T 1o
and using a 2nd order time splitting scheme for 7, show
eni1 < (1+ C(T)At)e, + C(T)(At3+h?), nAt <T
as long as fy € W?°°(R?). Hence e, < C(T)(At?+ h?/At).

o Complexity: balance with At? ~ h?/At, so that

en < C(T)W*3 < C(T)N,**| (N~ h72)
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Analysis of the adaptive scheme

@ Decompose again e,11 := ||f(th+1) — fot1|lLoe into

€1 < [1F(tns1) =T F(tn) | oo+ TF(tn)~T Foll oo +1|(/— Pagnsa )T ol 1<,
and estimate
ent1 < (14 C(T)At)en + C(T)AL3 + ||(I — Pppnsr)T fy| oo

as long as fy € W1H>°(IR?),
o ~ goal: predict M™1 such that it is e-adapted to T, ie

sup [T fylwai(a) <€
acMnt+l
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Adaptive mesh prediction, |

o Goal: given M" and f,, build M™1 in such a way that

sup [T fylwai(a) <€
acMn+1

o |dea: use adaptive splitting.
@ ~~ Questions:

o Q1: which cells should be refined in M1 ?
] Q2: how blg can |Tfn|W211(a) = ‘fn o Bn‘WZ,l(a) be ?
o Q3: is 7 stable with respect to the curvature, ie

1T folw21(a) < Clfalw2i(s,a)) ?
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Adaptive mesh prediction, Il

@ Q3: is 7 stable with respect to the curvature
T falw2a(a) < Clfalw2i(B,(a))

@ Answer to Q3 is no...

@ ...but up to introducing a discrete curvature | - |, for the
piecewise affine fonctions, and provided that the numerical £
field is bounded in L3°(W2™), T is stable with respect to

E(f, @) == |folo(a) + ALVOI(Q)|f] e

~ for simplicity, assume that the answer to Q3 is yes.
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Adaptive mesh prediction, Il

*] QQZ hOW big can ‘Tﬁ7‘w2.1((\) = ‘fn @) Bn‘W2.1(”) be 7
@ Answer:
T falwza(a)y < Clfalwza(s, ) < C Z ol w2.1()
BeI(w

where Z(a) contains the cells of M" that intersect ,(«)

4 L

y «
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Adaptive mesh prediction, Il

*] QQZ hOW big can ‘Tﬁ7‘w2.1((\) = ‘fn @) Bn‘W2.1(”) be 7
@ Answer:
T falwza(a)y < Clfalwza(s, ) < C Z ol w2.1()
BeI(w

where Z(a) contains the cells of M" that intersect ,(«)

___________
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: >> | |Bn(ca) — Bn(x,v)’ < Clea = (z,v)]
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Adaptive mesh prediction, IlI

@ Qi: which cells should be refined in M"+1 7
@ Answer: refine a when 4(3) > {(«).
o If At < C(fy, T), the resulting M1 := T[B,]M" satisfies:

sup #(Z(a)) < C

aeMn+1

therefore

Thalwei) < C Y Ifalwaags) < C sup [falweas).
BET(a) pemr

Theorem (CP, Mehrenberger 2005)

M?" s e-adapted to f, = T[B,|M" is Ce-adapted to T f,
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the prediction-correction scheme

8 C P, Mehrenberger Numer. Math. 2007
e given (M" f,):
o predict a first mesh M1 .= T[B,]M"
© perform semi-Lagrangian scheme ?,,+1 = Pipnnn T 1,
o then correct the mesh M"+1 .= Ae(?,,ﬂ)

© and project again f,11 := Pynt1 ?,,H

Theorem (CP, Mehrenberger 2005)

1F(tn) = fillie < At2+ /At ~ 203

In addition, y
#(MML) S #(M")
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Convergence rates

smoothness

2 w2l ~ A2(L>)

Lo

>
T p=1=s/d=2/2 L? measure

o uniform SL scheme: N := #(M}) ~ h™2

f(t) e W2 — ||f(ty)—Follie S A24R2/AL ~ h*3 ~ N72/3
@ multi-level adaptive SL scheme

f(t) e WhenW2l — ||f(t))—follie < AtP4e/At ~ 23
e Estimating N := #(M™): still open, but conjecture

N <e™l  therefore  [|f(t) — follie < N72/3



The adaptive semi-Lagrangian approach
®00

Error vs. time step (top) and complexity (bottom)
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Optimality of the adaptive meshes
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Work in progress

o parallel versions in higher orders (and up to 4D) have been
implemented by M. Mehrenberger, M. Haefele, E. Violard and
0. Hoenen

@ compare with PIC codes coupled to high order Maxwell solvers

@ design anisotropic schemes (using locally refined sparse grids)
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