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Central problem in approximation theory

- X normed space.

- (ΣN )N≥0 ⊂ X approximation subspaces (g ∈ ΣN described by N

or O(N) parameters).

- Best approximation error σN (f) := infg∈ΣN
‖f − g‖X .

Problem 1: characterise those functions in f ∈ X having a certain

rate of approximation

f ∈ Xr ⇔ σN (f) <∼ N−r

Here A <∼ B means that A ≤ CB, where the constant C is

independant of the parameters defining A and B.
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Examples

Linear approximation: ΣN space of dimension O(N)

- ΣN := ΠN polynomials of degree N in dimension 1

- ΣN := {f ∈ Cr([0, 1]) ; f|[ k
N
, k+1

N
] ∈ Πm, k = 0, · · · , N − 1} with

0 ≤ r ≤ m fixed, splines with uniform knots.

- ΣN := Vect(e1, · · · , eN ) with (ek)k>0 a functional basis.

Nonlinear approximation: ΣN + ΣN 6= ΣN

- ΣN := {pq , p, q ∈ ΠN} rational fractions

- ΣN := {f ∈ Cr([0, 1]) ; f|[xk,xk+1] ∈ Πm, 0 = x0 < · · · < xN = 1}
with 0 ≤ r ≤ m fixed, free knots splines.

- ΣN := {∑λ∈E dλψλ ; #(E) ≤ N} set of all N -terms combination

of a basis (ψλ).
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Central problem in computational approximation

Problem 2: practical realization of f 7→ fN ∈ ΣN such that

‖f − fN‖X <∼ σN (f).

If ΣN are linear spaces and PN : X → ΣN are uniformly bounded

projectors ‖PN‖X→X ≤ C, then fN := PNf is a good choice, since

for all g ∈ ΣN ,

‖f − fN‖X ≤ ‖f − g‖X + ‖g − fN‖X
= ‖f − g‖X + ‖PN (g − f))‖X
≤ (1 + C)‖g − f‖X ,

and therefore ‖f − fN‖X ≤ (1 + C)σN (f).

What about nonlinear spaces ?
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Application 1: signal and image compression

Less information is needed in the homogeneous regions, more

information is needed near the edges.

State of the art techniques: combine adaptive discretizations based

on wavelets and appropriate encoding strategies.
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Application 2: statistical learning theory

Given a set of data (xi, yi), i = 1, 2, · · · ,m, drawn independently

according to a probability law, build a function f such that

|f(x) − y| is small in the average (E(|f(x) − y|2) as small as

possible).

Difficulty: build the adaptive grid from uncertain data, update it as

more and more samples are received.

Application 3: adaptive numerical simulation of PDE’s

Computing on a non-uniform grid is justified for solutions which

displays isolated singularities (shocks).

Difficulty: the solution f is unknown. Build the grid which is best

adapted to the solution. Use a-posteriori information, gained

throughout the numerical computation.
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A basic example

Approximation of f ∈ C([0, 1]) by piecewise constant functions on a

partition I1, · · · , IN , defining

fN (x) = ak := |Ik|−1

∫

Ik

f, if x ∈ Ik.

Local error: ‖f − ak‖L∞(Ik) ≤ maxx,y∈Ik
|f(x) − f(y)|

Linear case: Ik = [ kN ,
k+1
N ] uniform partition.

f ′ ∈ L∞ ⇔ ‖f − fN‖L∞ ≤ CN−1 (C = sup |f ′|).
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Nonlinear case: Ik free partition. If f ′ ∈ L1, choose the partition

such that equilibrates the total variation
∫

Ik
|f ′| = N−1

∫ 1

0
|f ′|.

f ′ ∈ L1 ⇔ ‖f − fN‖L∞ ≤ CN−1 (C =

∫ 1

0

|f ′|).
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Approximation rate governed by differents smoothness spaces !

Example: f(t) = tα with 0 < α < 1, then f ′(t) = αtα−1 is in L1,

not in L∞. Nonlinear approximation rate N−1 outperforms linear

approximation rate N−α.
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Towards an algorithm: equilibrating the error

Fix a tolerance ε > 0 and build a partition I1, · · · , IN such that

ε/2 ≤ ‖f − ak‖L∞(Ik) ≤ ε.

Thus ‖f − fN‖L∞ ≤ ε. If in addition f ′ ∈ L1, then

∫

|f ′| ≥
N

∑

k=1

∫

Ik

|f ′| ≥
N

∑

k=1

‖f − ak‖L∞(Ik) ≥ Nε/2,

and therefore

‖f − fN‖L∞ ≤ ε ≤ 2CN−1,

with C =
∫ 1

0
|f ′|.

Can we achieve this in practice by a simple algorithm ?
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Adaptive greedy splitting

Split intervals I into two equal parts as long as ‖f − aI‖L∞(I) > ε,

the final adaptive partition is built when ‖f − aI‖L∞(I) ≤ ε holds

for all intervals (leaves of the decision tree).
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Limitation to dyadic intervals. In turn f ′ ∈ L1 is not sufficient to

ensure that ‖f − fN‖L∞ <∼ N−1, but it can be shown that a slightly

stronger condition (f ′ ∈ L(logL) or Lp for any p > 1) suffices.
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Multiscale decompositions into wavelet bases: the Haar system

. . . . = Σ   f ψ
λ λ λ >λ

λ

+ < f , e > e

+ < f , e > e

ψf  := < f ,

 = < f , e > ef e
0 0 0

1 1

2 2 33
+ < f , e > e

e
1

0 1

1

0

-1

1

0 1

0 1

0 1

ψλ(x) := 2j/2ψ(2jx− k), λ = (j, k), j ≥ 0, k ∈ ZZ, |λ| = j = j(λ).

More general wavelets are constructed from similar multiscale

approximation processes, using smoother functions such as splines,

finite elements... In d dimension ψλ(x) := 2dj/2ψ(2jx− k), k ∈ ZZd.
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Approximating functions by wavelet bases

- Linear (uniform) approximation at resolution level j by taking the

truncated sum f 7→ Pjf :=
∑

|λ|<j fλψλ.

- Nonlinear (adaptive) approximation obtained by thresholding

f 7→ TΛf :=
∑

λ∈Λ

fλψλ, Λ = Λ(η) = {λ s.t. |fλ| ≥ η}.
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Wavelet thresholding applied to an image

Decomposition and reconstruction with 4096 largest coefficients.

Sparse representations (significant coefficients concentrated near

the edges) ⇒ adaptive approximation by thresholding. Results in

important applications in image processing (compression,

denoising).
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Wavelet analysis of local smoothness

- If f is bounded on Sλ := Supp(ψλ), an obvious estimate is

|fλ| = |〈f, ψλ〉| ≤ sup
t∈Sλ

|f(t)|
∫

|ψλ| = 2−|λ|/2 sup
t∈Sλ

|f(t)|.

- If f is C1 on Sλ, a finer estimate is

|fλ| = infc∈IR |〈f − c, ψλ〉|
≤ infc∈IR ‖f − c‖L∞(Sλ)‖ψλ‖L1

≤ 2−3|λ|/2 supt∈Sλ
|f ′(t)|.

- If f is Hölder continuous of exponent α on Sλ, i.e.

|f(x) − f(y)| ≤ C|x− y|α, for some α ∈ (0, 1], we have the

intermediate estimate |fλ| ≤ C2−|λ|(α+1/2).

Decay of wavelet coefficients influenced by local smoothness.
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Fourier analysis of global smoothness

Decomposition of a (1-periodic) function in Fourier series

f(t) =
∑

n=∈ZZ cn(f)ei2πnt, with cn(f) :=
∫ 1

0
f(t)e−i2πntdt.

If f, f ′, · · · , f (m) are continuous over IR, we can apply n times the

integration by part to obtain

|cn(f)| = |(i2πn)−1cn(f
′)|

= · · · |(i2πn)−mcn(f
(m))|

≤ |i2πn|−m
∫ 1

0
|f (m)| <∼ n−m.

⇒ Fast decay if f is smooth.

However, if f is smooth everywhere except at some discontinuity

point x ∈ [0, 1], we cannot hope better than |cn(f)| <∼ n−1

Decay of Fourier coefficients influenced by global smoothness.

Wavelet representations are thus more appropriate for piecewise

smooth functions.
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Summary

- Adaptive methods relate to nonlinear approximation

- Adaptive partitions requires less smoothness than uniform

partitions for a given convergence rate

- Adaptive splitting algorithm: aims to equilibrate the local error

- Wavelet thresholding builds an adaptive partition

- Thresholding might not be effective in other bases
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A general framework for wavelet bases

Mallat and Meyer (1986): a multiresolution approximation (MRA)

is a sequence of nested spaces Vj ⊂ Vj+1 ⊂ · · · of L2(IRd), such

that:

- ∪Vj = L2, i.e. limj→+∞ ‖f − Pjf‖L2 = 0 for all f ∈ L2 where Pj
is the L2-orthogonal projector.

- There exists a scaling function ϕ ∈ V0 such that

ϕj,k(t) = 2j/2ϕ(2jt− k), k ∈ ZZd,

constitute a Riesz basis of Vj (Riesz basis in Hilbert spaces: basis

(en) such that ‖(xn)‖ℓ2 ∼ ‖∑

xnen‖H).

For piecewise constant functions we had ϕ = χ[0,1]. In this case

‖f − Pjf‖Lp ≤ 2−j‖f ′‖Lp ,

but no better rate such as 2−mj‖f (m)‖p (first order accuracy).
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Raising the accuracy: Vj should contain higher order polynomials.

Example : B-spline of degree N

ϕ(x) = χ[0,1] ∗ · · · ∗χ[0,1] = (∗)N+1χ[0,1],

Remark: except for N = 0, the functions ϕj,k are not orthogonal.

In turn the orthogonal projector Pj is not local. New difficulties:

- Define numerically simple projectors Pj onto Vj .

- Construct wavelet bases (ψλ) which characterize the difference

between two successive levels of projection so that

f = P0f +
∑

j≥0

Qjf, Qjf := Pj+1f − Pjf =
∑

|λ|=j

fλψλ

Recall that ψλ(x) = 2dj/2ψ(2jx− k) and |λ| := j when λ = (j, k).

Several approaches: orthogonal wavelets, biorthogonal wavelets,

finite element wavelets...
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Wavelet characterizations of functions spaces

Let f =
∑

fλψλ, fλ = 〈f, ψ̃λ〉.
- L2 characterized by ‖f‖2

L2 ∼ ‖P0f‖2
L2 +

∑

j≥0 ‖Qjf‖2
L2 ∼

∑

|fλ|2.
- Sobolev space Ht = W t,2 characterized by

‖f‖2
Ht ∼ ‖P0f‖2

L2+
∑

j≥0

22tj‖Qjf‖2
L2 ∼

∑

22t|λ||fλ|2 ∼
∑

‖fλψλ‖2
Ht .

Hints: (i) ψ
(t)
λ (x) = 2t|λ|(ψ(t))λ(x), (ii) ‖f‖2

Ht ∼
∫

(1 + |ω|2t)|f̂(ω)|2

- Besov-Sobolev space Btp,p characterized by

‖f‖pBt
p,p

∼ ‖P0f‖pLp +
∑

j≥0 2ptj‖Qjf‖pLp ∼ ∑

2pt|λ|‖fλψλ‖pLp

∼ ∑

2pt|λ|2pd(1/2−1/p)|λ||fλ|p ∼
∑ ‖fλψλ‖pBt

p,p
.

Remark: Btp,p = W t,p if t /∈ IN or p = 2 and Bt∞,∞ = Ct if t /∈ IN.

All this holds provided that ψλ has enough smoothness
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Linear multiscale approximation

From the characterization of Ht, we get ‖Qjf‖L2 <∼ 2−jt‖f‖Ht and

therefore

f ∈ Ht ⇒ ‖f − Pjf‖L2 ≤
∑

l≥j

‖Qlf‖L2 <∼ 2−tj .

and in a similar manner

f ∈W t,p ⇒ ‖f − Pjf‖Lp <∼ 2−tj .

We actually have a finer result

f ∈ Btp,q ⇔ (2tj‖f − Pjf‖Lp)j≥0 ∈ ℓq.

Besov spaces are thus characterized from the rate of linear

multiscale approximation.

These results are very similar to (uniform) finite element

approximation since Vj ∼ Vh with h ∼ 2−j .
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Finite element approximation results

- Vh: finite element space based on a uniform discretization of a

domain Ω ⊂ IRd with mesh size h.

- N := dim(Vh) ∼ vol(Ω)h−d

- W s,p := {f ∈ Lp(Ω) s.t. Dαf ∈ Lp(Ω), |α| ≤ s}
Classical finite element approximation theory (Bramble-Hilbert,

Ciarlet-Raviart, Deny-Lions, Strang-Fix): provides with the

classical estimate

f ∈W s+t,p ⇒ inf
g∈Vh

‖f − g‖W s,p ≤ Cht ∼ CN−t/d,

assuming that Vh has enough polynomial reproduction and is

contained in W s,p.
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Measuring sparsity in a representation f =
∑

fλψλ

Intuition: the number of coefficients above a threshold η should not

grow too fast as η → 0.

Weak spaces: (fλ) ∈ wℓp if and only if

Card{λ s.t. |fλ| > η} ≤ Cη−p,

or equivalently, the decreasing rearrangement (f∗n)n>0 of (|fλ|)
satisfies

f∗n ≤ Cn−1/p.

The representation is sparser as p→ 0. If p < 2 and (ψλ) is an

orthonormal basis, an equivalent statement is in terms of best

N -term approximation: if fN :=
∑

N largest |fλ|
fλψλ, then

‖f − fN‖L2 = [
∑

n≥N

|f∗n|2]1/2 <∼ N−s, 1/p = s+ 1/2.
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Nonlinear wavelet approximation in L2

Recall that Btp,p is characterized by

‖f‖pBt
p,p

∼
∑

2pt|λ|2pd(1/2−1/p)|λ||fλ|p

Assume that f ∈ Btp,p with 1/p = 1/2 + t/d. In this case

‖f‖Bt
p,p

∼ ‖(fλ)‖ℓp ,

and therefore (fλ) ∈ wℓp. If fN :=
∑

N largest |fλ|
fλψλ, we have

‖f − fN‖L2 <∼ N−t/d.

For linear approximation, the same rate is achieved under the

stronger condition f ∈ Ht.
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Nonlinear approximation results

N -terms approximations: ΣN := {∑λ∈Λ dλψλ ; #(Λ) ≤ N}.
- Rate of decay governed by weaker smoothness conditions

(DeVore): with 1/q = 1/p+ t/d

f ∈W s+t,q ⇒ inf
g∈ΣN

‖f − g‖W s,p ≤ CN−t/d,

- For most error norm X (e.g. Lp, W s,p, Bsp,q), a near optimal

approximation is obtained by thresholding: if f =
∑

λ fλψλ, and

fN :=
∑

N largest ‖fλψλ‖X
fλψλ, we then have

‖f − fN‖X ≤ C inf
g∈ΣN

‖f − g‖X

with C independent of f and N .

- Remark: similar theory for adaptive finite element on N triangles

with isotropy constraints (minimal angle condition).
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Pictorial interpretation of approximation results

1/p 1/q=1/p+t/d

s

s+t O(NO(N -t/d

Linear Nonlinear

(Slope d)

p L  spaces

X : measurement of the error
p

(s derivatives in L  )

s
C   spaces

Embedding

in X

No embedding 

in X

  )   )-t/d
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Greedy bases

Let (ψλ) be a basis in a Banach space X with ‖ψλ‖X = 1 for all λ.

The basis is greedy if and only if for all f ∈ X and N > 0,

‖f −
∑

N largest |fλ|

fλψλ‖X ≤ C inf
g∈ΣN

‖f − g‖X .

The basis is unconditional if and only there exists C > 0 such that

|xλ| ≤ |yλ| for all λ⇒ ‖
∑

xλψλ‖X ≤ C‖
∑

yλψλ‖X .

The basis is democratic if and only if there exists C > 0 such that

#(E) = #(F ) ⇒ ‖
∑

λ∈E

ψλ‖X ≤ C‖
∑

λ∈F

ψλ‖X .

Two results due to Temlyakov:

1. Greedy ⇔ unconditional and democratic.

2. Wavelet are democratic in Lp and Wm,p when 1 < p < +∞.
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General program for PDE’s

- Theoretical: revisit regularity theory for PDE’s. Solutions of

certain PDE’s might have substantially higher regularity in the

scale governing nonlinear approximation than in the scale

governing linear approximation. Examples : hyperbolic

conservation laws (DeVore and Lucier 1987), elliptic problems on

corner domains (Dahlke and DeVore, 1997).

- Numerical: develop for the unknown u of the PDE F(u) = 0

appropriate adaptive resolution strategies which perform essentially

as well as thresholding : produce ũN with N terms such that

‖u− ũN‖ has the same rate of decay N−s as ‖u− uN‖ in some

prescribed norm, if possible in O(N) computation.

Remark: similar goals can be formulated for adaptive finite

elements with N being the number of elements.
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Adaptive finite element approximation theory

In all the following we will work with the error metric

X = Lp(Ω).

For simplicity we take

Ω = [0, 1]2,

and we only work with piecewise affine finite elements.

We want to discuss the differences in approximation capabilities

between :

(i) Uniform and isotropic (shape regular) triangulations

(ii) Adaptive and isotropic triangulations

(iii) Adaptive and anisotropic triangulations
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Uniform and isotropic triangulations

If (Th)h>0 is a family of uniform and isotropic triangulations, and

Vh the corresponding piecewise affine finite element space, then

f ∈W s,p ⇒ inf
fh∈Vh

‖f − fh‖Lp ≤ Chmin{s,2}|f |W s,p .

Since N = #(Th) ∼ h−2, this gives the convergence rate N−
min{s,2}

2 .

In particular

f ∈W 2,p ⇒ ‖f − fN‖Lp ≤ CN−1|f |W 2,p ,

and

f ∈ C2 ⇒ ‖f − fN‖L∞ ≤ CN−1|f |C2 .

Remark : almost an “if and only if” result (one needs Bsp,∞ in

place of W s,p)

30



'

&

$

%

Adaptive and isotropic triangulations

Consider here X = L∞. If R is a reference triangle and IR the

interpolation operator, we have by Sobolev imbedding,

‖f − IRf‖L∞(R) <∼ ‖f − IRf‖W 2,1(R),

and this by Bramble-Hilbert lemma

‖f − IRf‖L∞(R) <∼ |f |W 2,1(R).

The constant in this estimate is invariant by isotropic scaling : for

any isotropic triangle T

‖f − IT f‖L∞(T ) ≤ C|f |W 2,1(T ).
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Given f ∈ C(Ω), assume that for any prescribed ε > 0, we can find

a triangulation TN , with N = #(TN ) = N(ε) such that the local

error is equidistributed in the sense that

ε/2 ≤ ‖f − IT f‖L∞(T ) ≤ ε, T ∈ TN .

Then obviously ‖f − fN‖L∞ ≤ ε. Moreover if f ∈W 2,1, we have

Nε/2 ≤
∑

T∈TN

‖f − IT f‖L∞(T ) ≤ C
∑

T∈TN

|f |W 2,1(T ) = C|f |W 2,1 ,

and therefore

f ∈W 2,1 ⇒ ‖f − fN‖L∞ ≤ CN−1|f |W 2,1 .

The rate of smoothness N−1 is governed by weaker smoothness

condition than for uniform partition.

For X = Lp : equidistributing the local Lp error yields

f ∈W 2,q ⇒ ‖f − fN‖Lp ≤ CN−1|f |W 2,q , 1/q = 1/p+ 1.
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A greedy approach to error equidistribution

1) Given f ∈ Lp and some prescribed ε > 0, we start from an initial

coarse triangulation T2 (split Ω into two triangles).

2) Given Tk we consider the triangle T where the error

‖f − fk‖Lp(T ) is maximal. If it is larger than ε, then split T into

four sub-triangles of similar shape using the three midpoints. This

gives a new (generally non-conforming) triangulation Tk+3.

3) Stop when all triangles have local error less than ε.

This does not exactly equidistributes the error, but one has for

X = Lp and any q such that 1/q > 1/p+ 1

f ∈W 2,q ⇒ ‖f − fN‖Lp ≤ CN−1|f |W 2,q .

Remark : the triangulation can be made conforming without

changing the convergence rate.
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When do we need anisotropy ?

Sharp gradients or jump discontinuities on curved edges : f = χΩ,

with ∂Ω smooth.

fN = piecewise affine function

on N optimally selected squares

⇒ ‖f − fN‖L2 ∼ N−1/2

fN = piecewise affine function

on N optimaly selected triangles

⇒ ‖f − fN‖L2 ∼ N−1
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Cn − Cm models

The function f is Cn − Cm if it is piecewise Cn with jump

discontinuities on piecewise Cm curves.

If f ∈ Cn −Cm, then there exists triangulations (TN )N>0 such that

‖f − fN‖Lp <∼ N−min{n,2}
2 +N−m/p.

In particular if f ∈ C2 − C2, the rate is N−1 in Lp for p ≤ 2.

Drawbacks of this model:

- lacks a rigourous quantitative definition

- does not describe smooth yet sharp transitions.

- does not lead to a natural algorithm

More quantitative models based on the regularity of level sets

(DeVore, Petrova, Wojtaszczyk)
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Hessian based models

A very heuristic computation:

A “good” triangle around x has aspect ratio of the ellipsoid

E(x) := {〈H(x)v, v〉 ≤ 1}

where H(x) = |D2f(x)|, i.e. it is an isotropic triangle with respect

to the distorted metric induced H.

For such a triangle T , if (λ1, λ2) are the eigenvalues of H and

(h1, h2) the heights of T in the corresponding directions, we have

h1/h2 ≈
√

λ2/λ1. Therefore and if D2f does not vary too much on

T one has

‖f − IT f‖L∞(T ) ≤ λ1h
2
1 + λ2h

2
2

≈ h1h2

√
λ1λ2

≈ |T |(det(H(x)))1/2 ≈
∫

T

√

det(H(x)).
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Now, assuming that

E(f) :=

∫

Ω

√

det(H(x)) < +∞

and that TN is designed such that each triangle has the optimal

aspect ratio and
∫

T

√

det(H(x)) ≈ N−1E(f), we obtain

‖f − fN‖L∞ ≤ CN−1E(f).

By similar heuristics for X = Lp, we can obtain adaptive

anisotropic triangulations with error estimates of the type

‖f − fN‖Lp ≤ CN−1‖
√

det(H)‖Lq , 1/q = 1/p+ 1.

Non-linear quantities : E(f + g) not controlled by E(f) +E(g).
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Making it more rigourous (Shen-Sun-Xu, Babenko)

- E(f) = 0 for a degenerate Hessian (univariate f), yet error is

non-zero : replace H by a majorant of the type H + εI.

- Requires enough smoothness on f so that the triangulation TN
can indeed be constructed for N > N0(f, ε)

Two drawbacks:

- The construction of the triangulation is based on the Hessian :

not robust to noise, does not apply to arbitrary Lp functions.

- The construction is non-hierarchical.

A greedy alternative (Dyn, Hecht, Mirebeau, A.C.): Coarse

triangulation ⇒ select triangle with largest local Lp error ⇒ choose

the mid-point bisection that best reduces this error

⇒ split ⇒ iterate.... until prescribed accuracy or number of

triangles is met.
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