

Ion Discrimination by Nanoscale Design

water tower: www.pbase.com/mescaleroman/images/57217408

Susan Rempe Sandia National Labs, Albuquerque, NM

Natural protein channels: Not just simple holes!

lons in water (Varma & Rempe, 2007)

 lons are 'happy' coordinated with water ligands in liquid water

- K⁺/Na⁺ exquisite discrimination:
 - same charge
 - same size at kT
 - larger ion transported, fast!

Natural protein channels: Not just simple holes!

Natural channel proteins: Small dimensions, large biological impact

Channels are fundamental to life: severe Health consequences if disrupted.

Nobel Prizes underscore Health significance of Channels....

Time and Nobel Prize Field	Laureates	Specific Research	
<u>1963 Nobel Prize in Medicine</u>	<u>Alan L. Hodgkin, Andrew F.</u> <u>Huxley</u>	lon mechanisms of nerve impulse	
1985 Nobel Prize in Medicine	Michael S. Brown, Joseph L. Goldstein	Regulation of cholesterol metabolism	
1988 Nobel Prize in Chemistry	Johann Deisenhofer, Robert Huber, Hartmut Michel	Structure of photosynthetic reaction center	
1991 Nobel Prize in Medicine	Erwin Neher, Bert Sakmann	Function of single ion channels	
1997 Nobel Prize in Chemistry	Jens C. Skou	Membrane-bound turnover of ATP	
1999 Nobel Prize in Medicine	Günter Blobel	Principles of protein compartmentalization	
2003 Nobel Prize in Chemistry	Roderick MacKinnon, Peter Agre	Molecular structural analysis of membrane channels, existence of water channels	
2004 Nobel Prize in Medicine	Richard Axel, Linda B. Buck	Odorant receptors	

Global Problem: Desalination

Clean water: a global precious commodity

- water is recyclable
- but RO is expensive, produces sterile water

Salinity Levels:

Seawater: ~35 g/l (0.6 M) Brackish: ~1-5 g/l (0.08 M) Potable: <0.5 g/l (0.008 M)

Efficient membranes: critical challenge

- fast (barrierless) water transport
- select ion exclusion (mineral water)

"Water promises to be to the 21st century what oil was to the 20th century: the precious commodity that determines the wealth of nations."

Fortune Magazine, May 15, 2000

Efficient Membranes:

Understand, design, engineer nano-channels for desalination

What parameters do we give our engineers?

Critical Channel Design Issues:

What's significant about (1) Mouth?

(2) Narrow filter?

(3) Chemistry, architecture?

Subtle, challenging questions demand molecular precision:

Molecular Modeling + Molecular Synthesis

Platforms for Experiments & Modeling

• Multiscale modeling <u>essential</u> to understand combined effects of pore size, structure, chemistry and charge.

Classical (large, long times)

• Quantum (accuracy)

- Thermodynamics (work)
- Dynamics (transport)

Fig. 1a

• Experimental platform allows successive <u>modification</u> (pore size, and surface chemistry), <u>imaging</u> and <u>transport</u> measurements on identical sample.

Modeling Approach: Molecular + quantum accuracy

- Quantum (ab initio) interactions:
 - expensive; describe complex interactions

(ex. ion-ligand chemical bonds)

- Classical molecular interactions: •
 - inexpensive; simplified, parameterized

• Example 2 Classical nanotubes Exclude ions??

Quantum tubes Admit ions!!

Na+ : -210 kJ/mol Hummer & co PNAS (2003) Leung, Marsman JCP (2007))

• Example 3

<10% change in classical parameters: Water fills/empties?

Leung, Rempe, Lorenz PRL (2006) channel construction

Cruz-Chu et al JPCB (2006)

Predictions:

Ion transfer thermodynamics using liquid state theory

- Calculate work to transfer ions (water \rightarrow channels), efficiently & accurately
 - 'quasi-chemical' theory¹

Apply to Bio/Inorganic channels for Nanoscale Design Parameters^{3,4,5}

- ¹Pratt & Rempe (1999); Sabo, Rempe, *et al JPCB* (2008)
- ²JACS (2004), PCCP (2004), FPE(2001), JACS (2000)
- ³Varma & Rempe *Biophys J* (2007)
- ⁴Varma, Sabo, Rempe *J Molec Bio* (2008)
- ⁵Leung, Rempe, Lorenz *PRL* (2006)

K⁺/Na⁺ Ion Discrimination Problem:

How do K-selective channels work? Prevailing Views

- 1. <u>Mimic K⁺ ion hydration structures</u> for fast K⁺ transfer^{1,2,3}
- 2. <u>Specific cavity size</u> fits $K^{+1,2}$ vs Liquid-like <u>flexibility</u>³

¹Bezanilla & Armstrong (1972), ²Zhou *et al.* (2001), ³Noskov *et al* (2004)

K⁺/Na⁺ Ion Discrimination Problem:

How do K-selective channels work? New View #1

¹Rempe et al PCCP (2004), ²Varma & Rempe Biophys Chem (2006), ³Varma & Rempe J Molec Bio (2008)

Special Channel Environment:

No local competitors for O-ligands stabilizes high ion coordinations

Special Channel Environment:

No local competitors for O-ligands stabilizes high ion coordinations

Special Channel Environment:

Structural transitions in ion coordination driven by changes in competition for ligand binding

K⁺/Na⁺ Ion Discrimination Problem:

How do K-selective channels work? New View #2

- 1. Cavity size important
- 2. Flexibility important

K⁺/Na⁺ Ion Discrimination Problem:

How do K-selective channels work? New View #2

- 1. Cavity size important, but specific size not necessary
- 2. Flexibility important, but can reduce ligands & eliminate selectivity

==> Rigidity¹⁻⁵ important to maintain Over-Coordinated¹⁻⁴ ions (>6 ligands)

¹Varma & Rempe *Biophys J* (2007); ²Varma, Sabo, Rempe *J Molec Bio* (2008); ³Bostick & Brooks *PNAS* (2007); ⁴Thomas *et al. Biophys J* (2007); ⁵Asthagiri *et al. JCP* (2006)

Fast K⁺/Na⁺ discrimination: Mechanism & Translation Strategy #1

Natural Channels¹

Nanoscale design parameters (natural channel):

"The caress of the surroundings,² the crowding of the ligands"

¹Varma & Rempe *Biophys J* (2007); ²Jordan *Biophys J* (2007); ³Jiang, Brinker, *et al. JACS* (2006)

Fast K⁺/Na⁺ discrimination:

Mechanism & Translation Strategy #1

Nanoscale design parameters (natural channel):

"The caress of the surroundings,² the crowding of the ligands"

¹Varma & Rempe *Biophys J* (2007); ²Jordan *Biophys J* (2007); ³Jiang, Brinker, *et al. JACS* (2006,2007)

Natural K-selective Molecule

• 6 C=O ligands, not >6?

¹Varma, Sabo, Rempe *J Molec Biol* (2008)

• 6 C=O ligands, not >6? 6-fold 8-fold

$$[K^+.Val](\varepsilon) + n.H_2O(aq.) \xrightarrow{\Delta\Delta g_n(\varepsilon)} [K^+.Val.(H_2O)_n](\varepsilon)$$

 $\Delta\Delta$ gn(ϵ): change in complexation energy for 2 values of ϵ , which represent dielectric constant lipid membranes. 6-fold coordination is also more stable for higher values of ϵ , such as ϵ =80. RMSD_n reflects change in backbone structure of K⁺-bound valinomycin due to complexation by *n* water molecules.

Natural K-selective Molecule

¹Varma, Sabo, Rempe J Molec Biol (2008)

Natural K-selective Molecule

• Special C=O chemistry?

Table 1. Computed (DFT/B3LYP) structural and thermochemical properties of 6-fold ion-oxygen clusters in gas phase

Ligand	Chemistry	$\Delta\Delta G_{Na+ \rightarrow K+}$ (ϵ =1) (kcal/mol)	Na ⁺ -O	K⁺-O
Valinomycin	Carbonyl	12.3	2.64	2.79
Formamide ²⁰	Carbonyl	20.6	2.42	2.80
Glycine Dipeptide ²⁰	Carbonyl	20.8	2.43	2.76
Water ²⁰	Hydroxyl	18.8	2.42	2.84
Methanol	Hydroxyl	18.5	2.44	2.84

Ion–oxygen distances Na⁺-O and K⁺-O are in ångström units and $\Delta\Delta G_{Na^{+}\rightarrow K^{+}}$ ($\varepsilon = 1$) are the free energy differences between the Na⁺ and K⁺ complexes in gas phase.

Optimized structures (DFT/B3LP).

H-bonds turned off by replacing proton acceptor atoms =O with = CH_2 groups. QC optimization results in small K+ complex changes, but large changes in Na+ complex. Absence of H-bonds also increases free energy difference between Na⁺ & K⁺ complexes from 12.3 to 17.8 kcal/mol, thus reducing K⁺/Na⁺ selectivity relative to liquid water.

Fast K⁺/Na⁺ discrimination:

Mechanism & Translation Strategy #2

- Avoid block?
- Fast water transport + ion selectivity?

¹Varma, Sabo, Rempe *J Molec Biol* (2008)

Fast size discrimination:

Translated (Fabricated) by Atomic Layer Deposition

- ¹biomimetic pores (**0.3 nm diameter**) via new ALD & molecular templating
 - high flux + high size-selectivity (He/N₂)
- template-based approach for uniform molecular-sized pores established
- mimic biological K⁺/Na⁺ selectivity?

Fig. 1 a) TEM: micropore membrane self-assembled on mesopore support; b) UV/ozone removes C₂ bridging ligands (pore templates), from dense hybrid film; c)gas permeance vs ALD cycle; after 200 cycles, N₂ excluded/He transports; thus pore size ~0.3 nm.

¹Jiang, Brinker, et al JACS, 2007

Summary: Nanoscale Channel Structures for Big Problems

Bio mechanisms

Engineering solutions

Natural Water Channel

(Tajkhorshid & co)

- Channels: molecular structures & subtle, important functions
- Solve problems:
 - Health (medicine + biodefense)
 - Nanomedicine (smart dialysis)
 - Water-Energy (mineral water, efficiently)

Biology ↔ inorganic nanostructures Quantum Modeling ↔ experiments

Inorganic Water Channel

(Desal Team, Sandia)

Acknowledgements

• Funding

- 1. DOE: Sandia's Water Desalination Program
- 2. DOE: Sandia's LDRD program (BST, ERN)
- 3. NIH: National Nanomedicine Center
- Compute time (~ 300,000 hours cpu)
 - 1. Sandia Computing: Thunderbird
 - 2. National Center of Supercomputing Applications (NCSA), UIUC

Collaborative Science, Engineering, Technology Teams

Desalination Team at Sandia

PI: Susan Rempe

- Jeff Brinker
- Kevin Leung
- Steve Plimpton
- Dubravko Sabo (postdoc)
- Seema Singh
- Sameer Varma (postdoc)
- Ying-Bing Jiang (postdoc)
- Tom Mayer (project manager)

NIH Center for Design of Biomimetic Nanoconductors (http://www.nanoconductor.org) *PI: Eric Jakobsson, UIUC* Senior Scientists

- Narayan Aluru (UIUC) Atul Parikh (UC Davis)
- Hagan Baylay (U Oxford) Umberto Ravioli (UIUC)
- Jeff Brinker (SNL)
- Millicent Firestone (ANL) •
- David LaVan (Yale)
- Kevin Leung (SNL)
- Steve Plimpton (SNL)

- Susan Rempe (SNL PI) Benoit Roux (U Chicago)
- Marco Saraniti (IIT)
- Larry Scott (IIT)

Ion Discrimination by Nanoscale Design

Susan Rempe, Sameer Varma, Dubravko Sabo, Kevin Leung, Ying-bing Jiang, Jeff Brinker

Sandia National Labs

K⁺ transfer from Water into fully flexible K-channel binding sites

- Build molecular models and predict:
- Optimized complexes; overlay X-ray structure
- K⁺ transfer thermodynamics
- lon selectivity
- Achieve a model that represents known data:
 - reproduces measured ion channel properties
 - reveals new determinants of selectivity: environment & coordination

K⁺/Na⁺ Ion Discrimination Problem:

How do K-selective channels work?

Traditional Mechanism

- Ion coordination assumed **fixed**, **mimicked**
- Specific cavity size fits permeant K⁺, not Na⁺

Over-coordination Mechanism

- Ion coordination linked to environment
- Specific (C=O) ligand number 'fits' K⁺, not Na⁺
- "The caress of the surroundings, the crowding of the ligands." Jordan (2007), New & Notable *BJ*

Impact

- New explanation of K-channel selectivity
- Engineering parameters
- Health, Water, Nanoengineering

Varma & Rempe (2007). *Biophys J* Varma & Rempe (2006), *Biophys Chem* Varma, Sabo, Rempe (2008), *J Molec. Bio*