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Many physical systems consist of nonlinearly interacting
oscillations or waves

Nonlinear circuits in electrical
power systems

High-intensity lasers

Nonlinear photonics

Gravity water waves in oceans

Rossby-Haurwitz planetary
waves in the atmosphere

Drift waves in fusion plasmas,
etc.

These systems are characterised
by:

Extreme events, localised in
space and time

Strong nonlinear energy
exchanges

Out-of-equilibrium dynamics:
chaos & turbulence
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According to “folk” tradition: (totally wrong!)
Strong turbulence =⇒ Large amplitudes
Wave turbulence theory =⇒ Weakly nonlinear amplitudes

Instead, our research 1 establishes the following:

Turbulence is stronger at intermediate amplitudes

Wave turbulence theory can be developed at intermediate amplitudes

A new turbulence-generating mechanism is revealed:
Precession resonance =⇒ strong energy transfers across scales

We provide abundant evidence of this in a nonlinear PDE:
Charney-Hasegawa-Mima equation

1Miguel D. Bustamante, Brenda Quinn, and Dan Lucas, Robust energy transfer
mechanism via precession resonance in nonlinear turbulent wave systems, Phys. Rev.
Lett. 113 (2014), 084502
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Classical Wave Turbulence Theory is one of the few
consistent theories that deal with nonlinear exchanges

Widely used in numerical prediction of ocean waves 2

Produces mainly statistical predictions

Makes ad-hoc hypotheses on correlations of the evolving quantities

Requires weakly nonlinear amplitudes

Requires infinitely extended spatial domains

In real-life systems, hypotheses of classical wave turbulence do not hold:

Amplitudes of the carrying fields are not infinitesimally small

Spatial domains have a finite size

Linear wave timescales are comparable with nonlinear oscillations’
timescales

2Gerbrand J Komen, Luigi Cavaleri, Mark Donelan, Klaus Hasselmann,
S Hasselmann, and PAEM Janssen, Dynamics and modelling of ocean waves, Cambridge
University Press, 1996
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Discrete and Mesoscopic Wave Turbulence:
A theory in development 3 4 5

Applications in nonlinear PDEs: Classical fluids – Quantum fluids –
Nonlinear optics – Magneto-hydrodynamics – etc.

We focus on the Charney-Hasegawa-Mima (CHM) equation, a PDE
governing Rossby waves (atmosphere) and drift waves (plasmas):

(∇2 − F )
∂ψ

∂t
+ β

∂ψ

∂x
+
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0.

In the plasma case ψ(x, t)(∈ R) is the electrostatic potential
F−1/2 is the ion Larmor radius at the electron temperature
β is a constant proportional to the mean plasma density gradient
Periodic boundary conditions: x ∈ [0, 2π)2

3V. S. L’Vov and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave
turbulence, Phys. Rev. E 82 (2010), 056322–1

4V. E. Zakharov, Korotkevich A. O., A. N. Pushkarev, and Dyachenko A. I.,
Mesoscopic wave turbulence, JETP Letters 82 (2005), 487–491

5S. V. Nazarenko, Sandpile behavior in discrete water-wave turbulence, J. Stat.
Mech. Theor. Exp. (2006), L02002
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CHM equation in Fourier representation leads to triad
interactions

ψ(x, t) =
∑

k∈Z2 Ak(t)eik·x+ c. c. Wavevector: k = (kx , ky )

Components Ak(t) , k ∈ Z2 satisfy the evolution equation

Ȧk + i ωk Ak =
1

2

∑
k1,k2∈Z2

Z k
k1k2

δk1+k2−k Ak1 Ak2 (1)

ωk = −βkx
|k|2+F

(linear frequencies)

Z k
k1k2

= (k1xk2y − k1yk2x) |k1|2−|k2|2
|k|2+F

(interaction coefficients)

δ is the Kronecker symbol

The modes Ak interact in triads

Triad’s linear frequency
mismatch:
ωk3

k1k2
≡ ωk1 + ωk2 − ωk3
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A Key Observation (controversial if you work on wave
turbulence)

Ȧk + i ωk Ak =
1

2

∑
k1,k2∈Z2

Z k
k1k2

δk1+k2−k Ak1 Ak2 .

Triad interactions: wavevectors satisfy k1 + k2 = k3

Frequency mismatch: ωk3
k1k2
≡ ωk1 + ωk2 − ωk3

Classical wave turbulence theory requires |Ak| “small” (weak
nonlinearity)
So triad interactions with non-zero frequency mismatch are eliminated
via a quasi-identity transformation

Key Observation:
At finite nonlinearity these interactions cannot be eliminated a priori
because they take part in triad precession resonances

We consider inertial-range dynamics, i.e. no forcing and no dissipation:
enstrophy cascades to small scales respect enstrophy conservation.
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Truly Dynamical Degrees of Freedom 1/2

CHM equation, Galerkin-truncated to N wavevectors: “Cluster” CN :

Ȧk + i ωk Ak =
1

2

∑
k1,k2∈CN

Z k
k1k2

δk1+k2−k Ak1 Ak2 , k ∈ CN

Amplitude-phase representation: Ak =
√

nk exp(i φk)

nk: Wave Spectrum

Exact conservation in time of E =
∑

k∈Z2

(|k|2 + F )nk (energy) and

E =
∑

k∈Z2

|k|2(|k|2 + F )nk (enstrophy)

The truly dynamical degrees of freedom are any N − 2 linearly
independent triad phases ϕk3

k1k2
≡ φk1 + φk2 − φk3 and the N wave

spectrum variables nk

These 2N − 2 degrees of freedom form a closed system

Individual phases φk are “slave”: obtained by quadrature
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spectrum variables nk

These 2N − 2 degrees of freedom form a closed system

Individual phases φk are “slave”: obtained by quadrature
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Truly Dynamical Degrees of Freedom 2/2

Closed system for the 2N − 2 truly dynamical variables:

ṅk =
∑
k1,k2

Z k
k1k2

δk−k1−k2(nk nk1 nk2)
1
2 cosϕk

k1k2
, (2)

ϕ̇k3
k1k2

= sinϕk3
k1k2

(nk3nk1nk2)
1
2

[
Z k1

k2k3

nk1

+
Z k2

k3k1

nk2

−
Z k3

k1k2

nk3

]
− ωk3

k1k2
+ NNTTk3

k1k2
, (3)

where the second equation applies to any triad (k1 + k2 = k3).

NNTTk3
k1k2

: “nearest-neighbouring-triad terms”; these are nonlinear
terms similar to the first line in Eq. (3)

Any dynamical process in the original system results from the
dynamics of equations (2)–(3)
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Precession Resonance 1/3

ṅk =
∑
k1,k2

Z k
k1k2

δk−k1−k2(nk nk1 nk2)
1
2 cosϕk

k1k2
,

ϕ̇k3
k1k2

= sinϕk3
k1k2

(nk3nk1nk2)
1
2

[
Z

k1
k2k3
nk1

+
Z

k2
k3k1
nk2
−

Z
k3
k1k2
nk3

]
− ωk3

k1k2
+ NNTTk3

k1k2
.

Triad phases ϕk3
k1k2

versus spectrum variables nk:

Wave spectra nk contribute directly to the energy of the system

ϕk3
k1k2

have a contribution that is more subtle

The RHS of ϕ̇k3
k1k2

–equation admits, under plausible hypotheses, a

zero-mode (in time): Ωk3
k1k2
≡ lim

T→∞

1

T

∫ T

0
ϕ̇k3

k1k2
(t ′)dt ′

This is by definition the precession frequency of the triad phase

Typically it does not perturb the energy dynamics, except when . . .
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Precession Resonance 2/3

ṅk =
∑
k1,k2

Z k
k1k2

δk−k1−k2(nk nk1 nk2)
1
2 cosϕk

k1k2
,

ϕ̇k3
k1k2

= sinϕk3
k1k2

(nk3nk1nk2)
1
2

[
Z

k1
k2k3
nk1

+
Z

k2
k3k1
nk2
−

Z
k3
k1k2
nk3

]
− ωk3

k1k2
+ NNTTk3

k1k2
.

. . . when the triad precession frequency
(

Ωk3
k1k2

= 〈ϕ̇k3
k1k2
〉
)

matches one of

the typical nonlinear frequencies of the triad variables, then:

The RHS of ṅk–equation will develop a zero-mode (in time)
=⇒ sustained growth of energy in nk, for some wavevector(s) k

We call this a triad precession/nonlinear frequency resonance

When several triads are involved in precession resonance:
Strong fluxes of enstrophy through the network of interconnected triads,
coherent collective oscillations, and cascades towards small scales.
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Precession Resonance 3/3

ṅk =
∑
k1,k2

Z k
k1k2

δk−k1−k2(nk nk1 nk2)
1
2 cosϕk

k1k2
,

ϕ̇k3
k1k2

= sinϕk3
k1k2

(nk3nk1nk2)
1
2

[
Z

k1
k2k3
nk1

+
Z

k2
k3k1
nk2
−

Z
k3
k1k2
nk3

]
− ωk3

k1k2
+ NNTTk3

k1k2
.

Resonance is accessible via initial-condition manipulation

Simple overall re-scaling of initial spectrum: nk → α nk for all k

Linear frequency mismatch ωk3
k1k2

must be nonzero for some triad

Dimensional analysis explanation:

ṅk ∝ (nk)3/2 =⇒ nonlinear frequency: Γ ∝ α
1
2

ϕ̇k3
k1k2

equation =⇒ triad precession: Ωk3
k1k2
∼ C α

1
2 − ωk3

k1k2

Therefore, provided ωk3
k1k2
6= 0, Ωk3

k1k2
= Γ for some value of α
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RESULTS
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Triggering the mechanism starting from a single triad 1/3

Ȧk + i ωk Ak =
1

2

∑
k1,k2∈Z2

Z k
k1k2

δk1+k2−k Ak1 Ak2 .

Full PDE model is difficult to draw (∼ 12 million triads in resolution 1282)
Pseudospectral, 2/3-rd dealiased
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Triggering the mechanism starting from a single triad 2/3

Parameters
F = 1, β = 10

Single triad:
k1 = (1,−4),
k2 = (1, 2),
k3 = k1 + k2 = (2,−2)

Initial conditions:
ϕk3

k1k2
(0) = π/2,

nk1(0) = 5.96× 10−5α,
nk2(0) = 1.49× 10−3α,
nk3 = 1.29× 10−3α,
where α is a re-scaling
parameter

Initially nka(0) = 0
for all other modes

How to quantify a strong transfer?
Use enstrophy conservation
Define transfer efficiency to mode nka :

Effa = max
t∈[0,T ]

Ea(t)

E

Example: below, Eff4 ∼ 20%
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Triggering the mechanism starting from a single triad 3/3

Family of models: Deform the original equations using two positive
numbers ε1, ε2 ∈ [0, 1] which multiply the interaction coeffs. Z kc

kakb
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Results for two-triad case (ε1 6= 0, ε2 = 0) 1/3

Two connected triads: k1 + k2 = k3 and k2 + k3 = k4,
with k4 = (3, 0) and ωk4

k2k3
= −8

9 (freq. mismatch)

dof = 6

Energy & enstrophy invariants: dof = 4 (not necessarily integrable)

Analytical solution in the limit ε1 → 0 leads to resonant condition:

Ωk4
k2k3

= pΓ , p ∈ Z .

−0.202α1/2 +
8

9
= p × 0.273α1/2 .

Therefore, initial conditions satisfying

αp =
10.6272

(0.740382 + p)2
, p = 0, 1, . . .

should show strong transfers towards nk4 .
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Results for two-triad case (ε1 6= 0, ε2 = 0) 2/3
Integrate numerically evolution equations,
from time t = 0 to t = 2000/

√
E .

Timescale of strong transfer: t ∼ 20/
√
E

Plots of Triad Precession and Efficiency versus α :
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Results for two-triad case (ε1 6= 0, ε2 = 0) 3/3

Why the peaks of efficiency? Unstable manifolds! (e.g., periodic orbits)

M D Bustamante (UCD) Arkady’s Workshop WPI May 5th 2015 19 / 28



Results for two-triad case (ε1 6= 0, ε2 = 0) 3/3

Why the peaks of efficiency? Unstable manifolds! (e.g., periodic orbits)

M D Bustamante (UCD) Arkady’s Workshop WPI May 5th 2015 19 / 28



Results for family-model case (ε1 6= 0, ε2 6= 0) 1/2

Role of invariant manifolds is very important: 6

They are persistent in
parameter space (ε1, ε2)

We can “trace” the invariant
manifolds along the parameter
space

New precession resonances
involving new modes

6N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana
Univ. Math J. 21 (1971), 193–226
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Results for family-model case (ε1 6= 0, ε2 6= 0) 2/2
Triad initial condition. “Tracing” method until ε1 = ε2 = 0.1
Pseudospectral method, 1282 resolution (3500 modes) =⇒ look at “bins”
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Results for Full-PDE case (ε1 = ε2 = 1) 1/2

General large-scale initial condition:
nk = α× 0.0321|k|−2 exp (−|k|/5) for |k| ≤ 8

Total enstrophy: E = 0.156α

Initial phases φk are uniformly distributed on [0, 2π)

DNS: pseudospectral method with resolution 1282 from t = 0 to
t = 800/

√
E

Cascades: Partition the k-space in shell bins defined as follows:
Bin1 : 0 < |k| ≤ 8, and Binj : 2j+1 < |k| ≤ 2j+2 j = 2, 3, . . .

Nonlinear interactions lead to successive transfers
Bin1 → Bin2 → Bin3 → Bin4
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Results for Full-PDE case (ε1 = ε2 = 1) 2/2

Efficiencies of enstrophy
transfers from Bin1 to
Bin3 and Bin4 have
broad peaks

These correspond to
collective
synchronisation of
precession resonances

Strong synchronisation is
signalled by minima of
the dimensionless
precession standard
deviation
σ =

√
〈Ω2〉 − 〈Ω〉2/

√
E

averaged over the whole
set of triad precessions
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Enstrophy fluxes, equipartition and resolution study
(Full-PDE case)

Time averages (T = 800/
√
E)

of dimensionless enstrophy
spectra Ek/E , compensated for
enstrophy equipartition

In all cases the system reaches
small-scale equipartition
(Bin2–Bin4) quite soon:
Teq ≈ 80/

√
E

The flux of enstrophy from large scales (Bin1) to small scales (Bin4)
is 50% greater in the resonant case (α = 625) than in the limit of
very large amplitudes (α = 106)

At double the resolution (2562), the enstrophy cascade goes further
to Bin5 and all above analyses are verified, with Bin4 replaced by Bin5
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Click here to visualise our Numerical Simulations
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http://mathsci.ucd.ie/~dan/precession.html


Rogue Waves? Precession resonance in water waves
(experiments to be carried out by Marc Perlin –
U. Michigan)

Precession PDF (over time signal)
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In conclusion, precession resonance is ubiquitous

Multiple resonances
(including 2D Euler) Hyperlink to Jupiter moons’

precession resonance
and Transneptunian objects

Future work: precession
resonance mechanism in
magneto-hydrodynamics

Quartet and higher-order
systems (Kelvin waves in
superfluids, nonlinear optics)

Including forcing and dissipation

THANK YOU!!!
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