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Motivation
Problem:

In the convective boundary layer, 
vertically pointing clear-air Doppler radars and sodars 
measure mean vertical velocities that are often biased
by several tens of cm/s.

Radars: downward biases. 
Sodars: upward biases.

Hypothesis:

These biases are the result of “intermittency fluxes”, that is,
vertical fluxes of the local clear-air reflectivity.
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Basic theory of Doppler-velocity biases

For vertically pointing clear-air Doppler radars/sodars:

vD =
M1

M0
=

⟨ηw⟩
⟨η⟩

, (1)

η = ⟨η⟩ + η′, w = ⟨w⟩ + w′, (2)

where
vD = Doppler velocity for given radar/sodar space-time sampling volume,
w(x, t) = local and instantaneous vertical wind velocity,
η(x, t) = local and instantaneous volume reflectivity (different for radar vs. sodar),
⟨·⟩ = average over radar’s/sodar’s space-time sampling volume.

That is,
Doppler velocities are reflectivity-weighted radial velocities of the scatterers.
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Therefore,

vD =
⟨η⟩⟨w⟩ + ⟨η′w′⟩

⟨η⟩
= ⟨w⟩ +∆w, (3)

where

∆w =
⟨η′w′⟩
⟨η⟩

(4)

is the bias of the vertical Doppler velocity.

Note that ⟨η′w′⟩ may be interpreted as a turbulent clear-air reflectivity flux.

It is known that η is proportional to the refractive-index structure parameter,

C2
n(x) =

⟨
[n(x + r/2)− n(x− r/2)]2

⟩
r2/3

, (5)

where n is the refractive index:

η(x, t) = 0.38C2
n(x, t)λ

−1/3, (6)

(Tatarskii 1961), where λ is the EM or sound wavelength.

Note that the reflectivity flux ⟨η′w′⟩ is a third-order turbulence statistic.
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Microwave clear-air refractive index fluctuations:

n′ = a1T
′ + bq′, (7)

where a1 = a1(T, q, p) and b = b(T, q, p) are known functions of the mean values of
temperature T , specific humidity q and pressure p.

Microwave refractive-index structure parameter:

C2
n = a21C

2
T + a1bCTq + b2C2

q . (8)

For acoustic propagation:

n′ = a2T
′, (9)

where a2 = a2(T, p) is another known function.

Therefore, the acoustic refractive-index structure parameter is

C2
n = a22C

2
T . (10)

3



Now, let the structure parameters C2
T , CTq and C2

q be random variables in space and
time: C2

T =
⟨
C2

T

⟩
+
(
C2

T

)′, C2
qT =

⟨
C2

qT

⟩
+
(
C2

qT

)′, and C2
q =

⟨
C2

q

⟩
+
(
C2

q

)′.
Clear-air radar bias of vertical Doppler velocity (long dwell times):

∆w = a21

⟨(
C2

T

)′
w′
⟩

⟨C2
T ⟩

+ a1b

⟨
(CqT )

′w′⟩
⟨CqT ⟩

+ b2

⟨(
C2

q

)′
w′
⟩

⟨
C2

q

⟩ . (11)

In the troposphere, often |bq′| ≫ |a1T ′|, such that the third term dominates:

∆w = ∆wq = b2

⟨(
C2

q

)′
w′
⟩

⟨
C2

q

⟩ . (12)

Clear-air sodar bias of vertical Doppler velocity (long dwell times):

∆w = ∆wT = a22

⟨(
C2

T

)′
w′
⟩

⟨C2
T ⟩

. (13)
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Mixed layerMixed layer
(BAO Aug 2007)(BAO Aug 2007)



Local CT2 (time series)Local CT2 (time series)
r = 4 m, z = 100 m AGL, T = 3 hr = 4 m, z = 100 m AGL, T = 3 h



Local CT2 (histogram)Local CT2 (histogram)
r = 4 m, z = 100 m AGL, T = 3 hr = 4 m, z = 100 m AGL, T = 3 h



Local CT2 vs. w (Local CT2 vs. w (scatterplotscatterplot))
r = 4 m, z = 100 m AGL, T = 3 hr = 4 m, z = 100 m AGL, T = 3 h



Upward w bias (due to CT2 intermittency flux)Upward w bias (due to CT2 intermittency flux)
r = 4 m, z = 100 m AGL, T = 3 h, 10r = 4 m, z = 100 m AGL, T = 3 h, 10--min averagesmin averages
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Summary and Conclusions

The in-situ turbulence data (sonics) confirm the hypothesized
correlation between CT2 and w.

The LES data confirm the hypothesized correlation (1) between 
(1) CT2 and w and (2) between Cq2 and w.

In-situ observations and LES data confirm the hypothesis that
Doppler velocity biases can be qualitatively and quantitatively
explained by reflectivity fluxes (or “intermittency fluxes”).



Conclusions

For more than 10 years, researchers have reported upward biases
in Doppler sodar w observations and downward biases 
in clear-air Doppler radar w observations (magnitude tens of cm/s).

These observations can be explained by
(1) surface-driven upward fluxes of CT2
(2) entrainment-driven downward fluxes of Cq2.

In the future, measurements of the “biases” could be used
to measure additional CBL statistics.
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