Boundary effect in the Euler Limit
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v IS the “*human size " viscosity so it is in fact the inverse of the Reynold

number
UL

Vphysical

R —

| will consider solenoidal solutions of Euler and Navier-Stokes with the
pressure as a Lagrange multiplier ( called “incompressibles”)

Convergence in presence of boundary effects of solutions of Navier-Stokes
or of solutions of the Boltzmann equation to solutions of the Euler equa-
tion?




It is a very open problem.

There is no construction of a sequence of solution that (say in a weak
sense) do not converge to solution of the Euler equation...But there are
good reason to believe that this is the general situation.

e If the air around a wing is a solenoidal with no vorticity solution of the
Euler equation there is no force on the wing and plane or birds cannot fly
the d’Alembert paradoxe.

e The common hypothesis about turbulence is that the high Reynold limit of
the energy dissipation is strictly positive...lt this in the issue of the boundary
effect (production of vorticity at the boundary) that this appears the most
clearly in particular with a theorem of Kato (below).






Therefore it seems interesting to exhibit the similarities between the Navier-
Stokes and the Boltzmann limit.

An issue different from the question of the existence of large time smooth
solutions of the Euler equation.

Dissipative solution is a good tool to underline this difference.



The notion of dissipative solution for the Euler Equation

1
S(w) = E(V’w + (Vw))), 8w+ P(w-Vw) = E(z,t) = E(w)
with P denoting the projection:
P(w-Vw) =w-Vw + Vg

in 2 — Aq = Z@miwag;jw; Ono2? —=w-Vw-n= sz -&Ujﬁi.
]

Assume that « is a smooth solution:
oou+V-(u®u)+Vp=0,Vu=0,u-m=20,
ow—+w-Vw—+Vqg=F

one deduces the formula:

S0 luGe,t) — w(e, )P + [ (ue,t) — wie, ) @w)ul, 1) — wiz, )d
_ /(E(x, £), u(z,t) — w(z,t))dz.



Hence the definition of a dissipative solution as a divergence free tangent
to the boundary vector field which for any test function w as introduced
above satisfies the relation:

t ot
u(az, t) — w(:v,t)|%2(§2) < /o Jo 2|S(w(s))|LOO(Q)dS|u(:B, 0) — w(z, O)|%2(Q)

t
—I—Q/O efstle(w(T))‘LOO(Q)dT(E(:U, s),u(x,s) —w(x,s))dxds, .



Oberve that if u is a dissipative solution and w a smooth solution one has

t ot
|u(x,t)—w(x,t)|i2(§2) < /o efo2|S(w(8))‘Lm(Q)d8|u(w’O)_w(x’o)&z(ﬂ)

Hence the stability of dissipative solutions with respect to smooth solutions
and in particular the fact that whenever exists a smooth solution u(x,t)
any dissipative solution which satisfies w(.,0) = u(.,0) coincides with «
for all time.

However it is important to notice that to obtain this property one needs to
include in the class of test functions w vector field that may have non O
tangent to the boundary component.



Navier-Stokes equation with boundary condition

Oruy + uy - Vuy — vAuy + Vp, = 0 in Q2 (1)
uy -1 = 0,v(0zuy + C(x)uy)r + Aupy = 0 on 92 (2)
AMv,z) > 0! C(x) € C(R" — R") (3)

e A\ = oo < Dirichlet, (C =0,A=0) = uy -7 = 0and (Ozuv)r = 0.

e With S(uy) = %(Vuy + Vtuy) and u, - 7 = 0 other similar conditions:

(S(w) - 7)r = (Brup)r — (Vi - uy)r = v(S(uw) - A)r + Auy =0,
(VAuy) A= (0zup)r + (Vtﬁ cuy)r => v(VAuy) At + duy = 0.



Trace theorem and energy estimate

li 2 2 5
S5 Jo @ ) Pde v [V Pde+ [ A@) (.0 Pdo
— V/@Q C(ul/)TquO'

/ luy (z, t) |2de < eC”t/ lug(z)|?d

th/ uv (2, t)‘zde“”/ |V“V|2d$+/ A(@)|uy (2, t)[?do

— V/ C(UV)TUVdU — 0.
o



An easy theorem
Given initial data u, (z,0) = ug(x) with:

2dt/ uv (2, t)|2d‘r+”/ |V“V|2dfﬂ+/ A(z) |uw (, ) [Pdo — O

If u,, converges weakly to a function w(x,t) which for 0 < ¢t < T is a
smooth solution of the Euler equation it converges strongly and at the limit
no dissipation of energy!:

T
lim /O(V /Q |Vuy|2dx + /89 A(l/)|u,/(:v,t)|2da)dt =0.

vr—0



Convergence of the solution of Navier Stokes to a Dissipative solution.

atul/ _I_ Uy - Vuy — I/A'U/]/ _I_ Vp:O
w —vAw + w-Vw + Vg = E(w) — vAw

S (@ ) = w(@ )2 gy + IV (u(e, 1) — wie, )20
< |(S(w) : (uy —w) @ (up —w))| + |[(E(w) — vAw,uy — w)|
+(R(v) = v(O7uv — Ozw, uw — W) 12(50))

With no boundary convergence (modulo subsequence is always true). No

hypothesis on the existence of a solution of Euler...Even with very bad (De

Lellis Szekelyhidi ) initial data . With boundary
For Dirichlet R(v) = v(0zuv, ’UJ)LQ(aQ) + o(v)
Otherwise R(v) = —(A(v)uy, ’LL]/)LQ(aQ) + (A(v)uy, 'lU)LQ(@Q) + o(v)

Theorem Sufficient conditions for convergence to a dissipative solution:
Av) — 0



Other cases u, = 0on 92 :or liminf A(v) > 0

Theorem For “Leray solutions of Navier-Stokes with boundary" one has
the following facts:

. .0 o
1 For Dirichlet lim uif = 0 otherwise Iim A(v)uy =0  (4)
v—0 On v—0

in D'(]0, T[x82) implies that this subsequence converge to a “dissipative
" solution.

2 For a subsequence u, the local (near boundary) control of the energy
dissipation:

lim v \Vu,/(ac,t)|2da:dt =0 (5)

T
v—0 /0 /Qm{d(:c,aQ)<u}

implies the relation hence also the convergence to a dissipative solu-
tion.



Moreover if the Euler equation with the same initial, hasforO < ¢t < T, a
smooth solution w(x, t) , then this convergence is equivalent to the follow-
ing facts are equivalent.

(i)  uu(t) — w(t) in L2() uniformly int € [0, T7]
(i3)  uu(t) — w(t) weakly in L2(Q) for each t € [0, T7]

T
(iii)  lim V/O /Q Vauy (z, )| 2dedt = 0

v—0

(iv) lim v Vuy(z,t)|°dzdt = 0.

T
v—0 /O /S'Zﬂ{d(a:,aQ)<V}
e Validity of a Prandlt boundary layer anaylisis=- above criteria

e In general super open problem... The most realistic case where dissipa-
tion of energy may appear!!!!



Extension of these results to the Boltzmann equation:

Issue: Microscopic effects of the boundary generate or do not generate
turbulence ! Similar to macroscopic effects!

Fe(x,v,t) solution in ©2 x R of the (rescaled in time) Boltzmann equation:

1
OF, + v VyF, = B(F..F
Ol +v- Valt Knudsen(e) (Fe, Fe)

with Maxwell Boundary Condition forv -7 < Ointermofv -7 > 0

F (2, v)=(1—a(e)) FF (z, v*)+a(e)M(v)\/—/ v 7| FF (2, v)do

v-n<0
O<a(e) <1l v"=v—-2w-nm)n=R(®w),

M) = —2 7 A(gb):@/ (v - 7)1 $(0) M (v)do.

A(1) = 1(probal) F(z,v) = (1 — ()t (2, R(0)) + a(ACS )



Analysis Theorem
e Existence of the weak solutions of Navier-Stokes

e Existence of Renormalized solutions of the Boltzmann equation (in the
whole space Di Perna Lions, With Maxwell Boundary conditions Mischler
2000.

e Scaling and convergence. Law Mach number configurations are de-
scribed by “incompressible " Navier-Stokes or Euler equation this leads
to the following rescaled Boltzmann equation.

1
cl+q

F (@) = (1= a()FH (@, R(M) + a(OAG)
Fe=GM@w) = (1 4+ ege) M (v)

68‘[;F€+UV$F€ — B(Fe, Fe)



e Forg =0 ,u = %fRﬁ vFedv converges to a Leray solution of Navier-
Stokes with the boundary condition:

w-7=0 and v((Vu+ Viu) -n)r+Au=0

A= 1im X9 Dirichlet o lim )
e—0 € e—0 €

With no boundary: Formal proof B. Golse Levermore (1991), Complete
results with Di Perna Lions solution Golse Saint Raymond (2009).

— 0.

With boundary effect Aoki, Inamuro, Onishi (1979) Stationary solution lin-
earized regime and Hilbert expansion; Masmoudi Saint Raymond for Mis-
chler solutions towards Leray solutions. General formal proof B. Golse
Paillard.

Natural hypothesis to ensure the convergence to Euler

im A() = 0 < lim 44 —

v—0 ce—0 €

0.




The Euler limit

Theorem (In a periodic box T3 Saint-Raymond (2003)) Let F. be a family
of renormalized solutions in Q2R? of the Boltzmann equation:

1
EatFe _I_ UV@FE — _qB(Fe, Fe) 3 q > 1
€

with initial data

1 Je—e™? i

g€ 2, V-u"(x) =0.
(2m)2

Then the family (£ [ vFedv) is relatively compact in w—L>®(R4; L*(T3))

and each of its limit points is a dissipative solution of the 3d Euler equation.

Fe(aj, U, O) — Ml,E’U,?:n,]. =



Theorem 2 x Rg’ . e a family of renormalized solutions BE+4BC:

eatFe —I_ vaer — B(Fe, Fe) 3 q > O

el+tq
1 _|v—euin|2
FE(ZIZ,’U, O) — Ml,euin,1:—3€ 2 ’
(2m)2
Ve -u"™(z) =0, u" -7 =00n9oR
F
F7 (z,v,t) = (1 — a(e))FF (2, Ro, t) + oz(E)M(’v)/\(M(E >)
(

and the local conservation of moments (for simplicity, could be removed)

0
ea /IR,?; vFe(x,v,t)dv 4+ Vg /IRig v @ vFe(x,v,t)dv =10
then under the hypothesis lim._,g O‘(:) = 0 the family (% [vFedv) is rela-
tively compact in w — L® (R ; L1(£2)) . Any limit point a dissipative solu-
tion of the Euler equation in €2 x IR{?' :




The proof of Laure uses equation (or inequation ) for the moment of the
conserved quantities plus the dissipation of entropy.

Here we focus on the terms coming from the boundary.



Entropies and entropies estimates

The following functions (and their Legendre transforms) are used below
(and where also present in the e independent results):

h(z) =(14+2)log(14+2) — =
with h*(p) = Slgp(zp —h(z)) =€l —p—1
[(z) = h(z + 2z0) — h(20) — h'(20)=
with  I"(p) = sup(zp — I(2)) = (1 + 20)(e" —p — 1)

H(F|G) = /Q /Rg h(F|G)dzdo



The local entropy dissipation:

2
v
| 2| Fe)dv

b /Rn(Fe log F. — F. + M +
° 2

v

|2| Fe)dv

+vx/an<FelogFe—Fe+M+

v

—/B(FG,FG) l0g(F.)dv = 0.

For renormalized solutions:

1d
5 H(F(D)|M) + q+3/ / DE(Fe)dvdvlda—l— | _DG<0

DE(F)(v,v1,0) = Z(F F| — FF)) 1og(F'F| — FF)b(Jv — v1],0)

DG(F) = /R3v RH(Fe|M)dody

v



The Darrozes-Guiraud local entropy

V27DG = /R311 AH(F.|M)dody =
\/Z/Rgv H(M (1 + ege)|M)dv = \/%/R%fv M (v)h(1 4 €ge)dv

= \/%/IR3(U 7)1 M (v)h(ege(v))dv — m/IR3(U 7)1 M (v)h(ege(Rv))d
= A(h(ege)) — A(h[(1 — ale))ege + ale)A(ege)])

A(h(ege(v))) — h(A(ege(v))))

> ae) >0

Hence the final entropy estimate:

1 d 1
S HEDIM) + 1 /Q/R3 DE(Fe)dvdv do
T 12a(€> 1 [A(h(ege(v))) — h(A(ege(v))))]do < O.

€ € V2w JOQ



Eidiﬂ(pe( HIM) + q+3// DE(F.)dvdvydo

1ale) 1

57 7 o [ IA(eac())) — h(A(ege(v))))]dor < O

1 1 | >
SHEO)|M) =~ [ [uin(2)|Pde

Theorem (simple) If 1 [p5 vFe(z, v, t)dv converges weakly to function u(z, t)

which is for (for 0 < ¢ < T) a C'! solution of the Euler equation the entropy
dissipation and the Darrozes Guiraud entropy converge to O :

. r o1
!1%/ (73 /Q/Rg DE(F.)dvdvdo

55 | IAGege0))) — (ACege(0)))dor )it = O

_I__




Returning to %E) — 0

1 1
G_QH(M(laeuoal)lM(l,ew,l)) — 5 /Q |uzn — w(:lj, O)|2dg;

1 1
G_QH(FelM(l,ew,l))(t) — E_QH(FHM) (t)

’LU2 v
_I'//(? - Ew)Fe(t,a?, v)dzdv

2€2dt/ /FE(t v v)(e — 2ev - w)dxdv

— / /8tw (w — —U)Fe(t,a:,v)da:dv

‘|‘/ ( 8t/Fe(t x,v)dv — — /8,5}7’6(15 X v)vdv)



For O [ Fe(t,z,v)dv and O [ Fe(t, z,v)vdv use the local conservation
laws : For the first term:
1 1

1
/Q §w28t/F€(t7$7’U)dx — _z Qawzvx ) /’UFE(t,aZ‘,’U)’Ud”UdiU

1
— —/S?/(’U . wa) . er(t,x,’U)d’UdCU
€

1 1
—— da—wQ/’U -Fe(t, x,v)dv =
€ JoQ2 2

1
— /Q/—(fu - Vzw) - wFe(t, x,v)dvdz .
€



For the second term:

w w
_/Q?'/atFE(ta$av>vdU:/Q/R:SE_Q'/VQZFE(t)m)U)U@UdU:

—6% /Q /(v - Vz)w - vFe(t, z,v)dvdz + /852 e% / Fe(t,z,v)(w-v) (7 - v)duc

Since w is tangent to the boundary one has for x € 0€2:

E%/Fe(t,m,v)(w-v)(ﬁ-v) -

(){6(26) /Fe(t, z,v)(w-v)(A-v)pdv =

1 a(e)
N N(ege(x,v,t)(w-v)).




Therefore one obtains:
1d
_2£H(F€|M(l,ew,1))(t) +

€

1 1 «a(e)
DE(F.

€314 ( 6)_l_\/27r e3 JoQ

< /Q /(8tw + w - Vw)(w — E)Fe(t, x,v)drdv —

/ /(w - B)va:w(’w — E)Fe(t, x,v)dxdv
Q € €

1 «a(e)

o1 €2 Joa

A(h(ege(v))) — h(A(ege(v)))) | do

_|_

NA(ege(x,v,t)(w-v))do .



The exotic terms coming from the boundary are

1 ae)
Good N A(h(ege(v))) — h(A(ege(v)))) | do
1 a(e)
Bad N 8Q/\(ege(x,fu,t)(w-fu))da.

The bad has to be balanced by the good.



Proposition
vn >0
1
[ Alege(tz,v))(w - v))do < (- +
02 n

+Con /89 /R3 Fe(v - fig)?dvdo

nC(w)

) . A(h(ege) — h(eNge)do

With n = 2e¢
a(e)
€2 JoQ

< (1 +2:a(CEN G [ Alh(eg) — h(eAg)do

6) - \2
F; . dvd
€ /699/]1%3 (v fiz)"dvdo

N(ege(t, z,v))(w - v)))do

(87

+C>




With M 0

1 jH(F€|M(1 ew 1))(75) < / /(c%w + w - Vw)(w — —)Fe(t x,v)drdv

—/ /(w — —)Vg;w(w — —)Fe(t, x,v)dzdv + o(e)
Q € €
Then (cf. Saint Raymond) for

1
u=lim — vFe(x,v,t)dv
e—0 € JR3

%815 /Q lu(z,t) — w(w,t)|2 + /(u(wﬂf) —w(z,t)S(w)u(z,t) —w(z,t))dz
< /(E(ac, 1), uz, t) — w(z, t))ds.



Proof of the Proposition 2 steps

e Symmetry: A(A(ge)(w - v)) = 0 and Legendre duality between

[(ege — N(ege))) = h((ege — A(ege)) 4 NA(ege)) — h(A(ege))
—h' (A(ege)) (ge — Nege))

*(p) = (1 + A(ege))(eP —p—1)



(ege(t, z,v) — A(ege))(w - v)) = %(ege(t, z,v) — N(ege)) (nw - v))

< ;(h((ege — A(ege)) + A(ege)) — h(A(ege)) — h'(A(ege)) (ge — /\(ege)))

(eIl — o] — 1)

‘|‘(1 + /\(ege)) "
AR (A(ege)) (ge — /\(ege)l)) =0 Proba!
NA(ege(t, z,v))(w - v))) < ;(/\(h(ﬁ(]e))_h((/\(€9€))‘|‘770(w)(1‘|‘/\(€ge))



o Step 2
1+ A(ege)d
aQ( + A(ege)do
<C//\h€—h/\e //€.~2
<C1 (h(ege) — h(eAge)do + Co . R3F(v M) dvdo
Proof With Ge = Fe/M and ¢ = [(v - 7)3 A 1Mdv
[ (1 + Alege)do = /m A(Ge) /(v )% A LdvM (v)doy
=11+ 1>
—\ 2
/aQ /Rg MGG NG -11>p(v - )F A TM(v)dozdy

_|_
/89 /]12{3 MG /G -1)<p(v- )% A 1M (v)dozdu



h(z) = (z+1)log(z+1) —z,h(z) > h(|z]) and his increasing on R

1 o
I < @/asz /Rg/\(GE)hQGE/A(GE) _ 1|) (v- )3 A 1M (v)dogdy
1 3
< Wﬁ)/ag2 /R3/\(Ge)h(ae//\(ae) - 1) (v - )4 M (v)dopdv

=~ h(ﬁ) /<9§2/R3 ( elo g(/\(Ge)) _GE_I_/\(GE)) (v - n)—|—M(U)d0'acd"U
1

~ h(B) Joo

A(h(ege) — h(eN(ge))do



For Io with B < 1

|Ge/N(Ge) — 1] < 8= (A(Ge)) < —6G€

Hence

_ —\ 2
I = /m /RE;/\(GE)HG NG —11<p - )2 A LM (v)doado

| N

—5/852 /]R{3 Ge(v - n)_|_ A 1M (v)dozdu

/89 /]12{3 Fe(v - n)_|_d03;dv

l/\
l—*l

Use trace theorems introduced by Mischler!!!



Boltzmann version of Kato Theorem

o lfue=1 Jrn vFedv converges weakly to a C'* solution with :

1d 1

5 H(F(B)IM) + /Q /R , DE(Fdvdvrdo

1ale) 1
A(h(ege — h(A(ege do < 0.

#5202 [ IAGege02)) — B(ACege(0)))dor <
One has:

1 B

im /Q/Rg DE(F.)dvdvide =0 and

| 11

jim L9 A(h(ege(v))) — h(A(ege(v))))]do = O

€ €2 V21 JOQ2



Conversely

Proposition With @ — A < oo the convergence to zero of the Darrozes
Guiraud entropy implies the convergence to a dissipative solution.

Proof Just show that in this case the term

a(e)

€2 0<2

NA(ege(t, z,v))(w - v)))do

goes to zero.



Starting from

nC

Vn >0
1, nCw)
Joo Mgt 0)) (w0 < €472 | A(h(ege) — h(eAgodo

+Con /55?{2 /]R3 Fe(v - ﬁx)zdvda

With
oz€3€) - A(h(ege) — h(eNge)do = d(e) — 0 n =¢€eD(e), g((ee)) .0
Oé(E) d(é)
€2 /69 N(ege(t, z,v))(w - v)))do < (D(e) + C(w)ed(e)D(€))
+ czaee)D(e) /aQ /1&3 Fe(v - ity)2dvdo .

And the conclusion follows.



Remarks

e Formally with g, converging to u - v and u tangent to boundary one has:

o) a(e)

1.
3 Joe, A(h(ege)—h(eNge)do ~ 5 lim

and therefore the macroscopic equivalent condition is

1
lue|?do , ue = —/ vFe(x,v,t)d
02 € JRD

A(v) . luy|?dz — 0
which is (for 0 < A(v) < oo) a sufficient condition for the convergence.
e More generally what has been underlined are the striking similarities be-

tween convergence (or non convergence) between the Boltzmann and the
Navier-Stokes limit.



e One thing that remain to do is to prove that a local (near the boundary)
decay of dissipative entropy would be (as it is the case for the dissipation
of energy) to ensure the convergence.

e In some sense this program validates the boundary conditions both at
the level of Boltzmann and Navier-Stokes through their coherence.



