Advanced Complex Analysis,
Winter term 2022/23
Place and Time
Type: | Time: | Place: | Start: |
Lecture (VO) 3 hrs. | Wed 8:00-9:45 Thu 9:45-10:30 |
HS11 HS13 (OMP1) |
5.10. |
Tutorials (PS) 1 hr. | Tue 17:15-18:00 | SR10 (OMP1) | X.10. |
Content
We covered the following from [Schlag]: Chapter 2, Chapter 3, Chapter 4 (excluding 4.5,4.7-4.8)
Proseminar
The following problems should be prepared:
- Problem Set 1 (due 11.10): 1,2,3
- Problem Set 2 (due 18.10): 2,4,5
- Problem Set 3 (due 25.10): 6,7,8
- Problem Set 4 (due 08.11): 9,10,11
- Problem Set 5 (due 15.11): 12,13,14
- Problem Set 6 (due 22.11): 15,16,17
- Problem Set 7 (due 29.11): 18,19,20
- Problem Set 8 (due 06.12): 21,22,23
- Problem Set 9 (due 13.12): 24,25,26
- Problem Set 10 (due 10.01): 27,28,29
- Problem Set 11 (due 17.01): 30,31,32
- Problem Set 12 (due 24.01): 32,33,34
Target audience
Module "Advanced Complex Analysis" in the Master's programme in Mathematics.
Assessment
The course assessment for the lecture (VO) will be via an oral examination at the end of
the course. The course assessment for the tutorials (PS) will be via
participation (solving/presenting assigned problems) during the seminar.
Literatur
Some textbooks:
Looking forward to seeing you, Gerald Teschl
- M. Ablowitz und A. Fokas, Complex Analysis, 2. Aufl, Cambridge UP, Cambridge, 2003.
- R. E. Greene und S. G. Krantz, Function Theory of One Complex Variable, 3rd ed., AMS, Providence, 2006.
- A. Rainer, Advanced Complex Analysis, Lecture notes, 2017.
- E. M. Stein und R. Shakarchi, Complex Analysis, Princeton UP, Princeton, 2003.
- W. Schlag, A Course in Complex Analysis and Riemann Surfaces, AMS, Providence, 2014.