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Abstract

We will consider one of the most famous examples of a completely integrable nonlinear
wave equation, the Korteweg–de Vries (KdV) equation. The goal of this thesis is to
investigate the long-time asymptotic behavior of solutions of the KdV equation which
are short-range perturbations of (quasi-)periodic finite-gap KdV solutions.

It is well-known that in the classical case with constant background in the limit
for long times the following picture appears: the perturbed solution splits up into a
number of solitons (solitary waves) generated by the eigenvalues of the Lax operator.
Apart from that there exists a decaying radiation part corresponding to the continuous
spectrum. In other words, the solitons constitute the stable part of the solution.

We will show that, if the constant background is replaced by a (quasi-)periodic one,
in the long-time limit one can observe solitons traveling on a limiting solution, which
is not the background solution. In the remaining regions the perturbed solution also
does not approach the (quasi-)periodic background solution but a modulated solution.

The method we will make use of is to formulate the inverse spectral problem as a
Riemann–Hilbert problem set on the underlying hyperelliptic Riemann surface. We
will then use the method of nonlinear steepest descent/stationary phase. For large
times the original Riemann–Hilbert problem can be reduced to a simpler one, which is
localized at the stationary phase points and can be explicitly solved.
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Zusammenfassung

Wir betrachten eines der bekanntesten Beispiele einer vollständig integrablen nicht-
linearen Wellengleichung, die Korteweg–de Vries (KdV) Gleichung. Das Ziel dieser
Arbeit ist es das Langzeitverhalten von Lösungen der KdV Gleichung zu untersuchen,
die kleine Störungen von (quasi-)periodischen KdV Lösungen darstellen.

Es ist bekannt, dass im klassischen Fall mit konstantem Hintergrund im Langzeit-
limes das Folgende passiert: die gestörte Lösung spaltet auf in eine Reihe von Solitonen
(solitären Wellen), die den Eigenwerten des Laxoperators entsprechen. Darüber hinaus
gibt es einen oszillierenden Anteil, der vom kontinuierlichen Spektrum herrührt. Mit
anderen Worten, die Solitonen bilden den stabilen Anteil der gestörten Lösung.

Wir zeigen, dass, wenn der konstante Hintergrund durch einen (quasi-)periodischen
ersetzt wird, für große Zeiten Solitonen beobachtet werden können, die auf einer Lösung
wandern, die nicht die Hintergrundlösung darstellt. In den übrigen Bereichen nähert
sich die gestörte Lösung nicht der (quasi-)periodischen Hintergrundlösung an, sondern
einer modulierten Lösung.

Die Methode von der wir Gebrauch machen ist das inverse Spektralproblem als
Riemann–Hilbert Problem auf der zugrundeliegenden hyperelliptischen Riemannfläche
umzuschreiben. Dann werden wir die Methode der stationären Phase anwenden. Das
ursprüngliche Riemann–Hilbert Problem kann für große Zeiten auf ein einfacheres,
explizit lösbares reduziert werden, welches nun bei den stationären Phasepunkten lo-
kalisiert ist.
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Fragestellung beschäftigte, war er eine wichtige Ansprechperson um nach Lösungsan-
sätzen und Ideen zu fragen. Am meisten jedoch danke ich ihm für seine Liebe, Geduld
und dafür, dass er immer an meiner Seite ist.

Zu guter Letzt sage ich meinen Eltern Danke dafür, dass sie immer an mich geglaubt
haben und Respekt für meine Arbeit zeigen, obwohl sie wahrscheinlich nie viel davon
verstehen werden.

vii



viii



Contents

1. Introduction 1

2. Hyperelliptic Curves of the KdV-Type 7

3. Algebro-geometric solutions of the KdV-equation 15

3.1. The Baker-Akhiezer function . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Quasi-periodic finite-gap KdV solutions . . . . . . . . . . . . . . . . . . 20

4. Scattering theory and the Riemann–Hilbert problem 27

4.1. The asymptotics of the Jost functions . . . . . . . . . . . . . . . . . . . 27

4.2. The Riemann-Hilbert problem . . . . . . . . . . . . . . . . . . . . . . . . 30

5. Conjugation and Deformation 41

5.1. The stationary phase points . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2. The partial transmission coefficient . . . . . . . . . . . . . . . . . . . . . 45

5.3. Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5. The long-time asymptotics inside the soliton region . . . . . . . . . . . . 64

6. The Riemann-Hilbert problem in the oscillatory region 73

6.1. Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2. The long-time asymptotics inside the oscillatory region . . . . . . . . . . 74

7. Analytic Approximation 87

8. Summary 91

A. Singular integral equations 93

A.1. The Cauchy operator and its properties . . . . . . . . . . . . . . . . . . 94

A.2. Singular integral equations and Riemann–Hilbert problems . . . . . . . 96

A.3. An existence and uniqueness result for Riemann–Hilbert problems . . . 98

B. The Riemann-Hilbert problem on a small cross 105

B.1. Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.2. Solving the Riemann–Hilbert problem on a small cross . . . . . . . . . . 111

Bibliography 115

ix



Contents

Index 119

Curriculum vitae 123

x



1. Introduction

In this thesis we will consider one of the most famous examples of a nonlinear wave
equation, namely the so-called Korteweg–de Vries (KdV) equation

Vt(x, t) = 6V (x, t)Vx(x, t) − Vxxx(x, t), (x, t) ∈ R × R, (1.1)

where the subscripts denote differentiation with respect to the corresponding variables.
One can see that the KdV equation consists of two terms, namely a nonlinear term

given by 6V (x, t)Vx(x, t) and a dispersive term Vxxx(x, t). If we consider the linearized
version of the KdV equation, i.e.,

Vt(x, t) = −Vxxx(x, t), (x, t) ∈ R × R,

and an initial condition V (x, 0) = V0(x) ∈ S(R) this equation can be solved by means
of Fourier analysis for linear partial differential equations. Concerning the long-time
behavior of the solutions one sees that an initial wave packet spreads for large times
t, a phenomenon called dispersion. On the other hand, neglecting the linear term one
arrives at the nonlinear version of the KdV equation, i.e.,

Vt(x, t) = 6V (x, t)Vx(x, t), (x, t) ∈ R × R.

This equation is known as Burgers’ equation and can be solved by the method of char-
acteristics. The characteristics V (x, t) = c are straight lines with the slope 6V (x0, 0) =
6c. An initial wave packet will steepen until it breaks, thus there exist no global solu-
tions as in the linearized case.

The KdV equation (1.1) contains both terms, linear and nonlinear. Thus it can
happen that both nonlinearity and dispersion also occur together, which may result in
so-called solitary wave solutions. These are waves that do not change their shape for
all times traveling at a constant speed. The appearance of solitary waves, also known
as “solitons”, as special solutions of the KdV equation explains why this equation has
become so interesting, not only mathematically but also in a practical sense.

The solitary wave, i.e., a spatially localized wave, was first discovered by John Scott
Russell in 1834. He followed a wave in the Edinburgh–Glasgow canal and made the
observation that the wave did not change its shape. He wrote his discovery down in his
“Report on Waves” 1844 reporting on, in his words, “the great wave of translation”.
Later on Russell also performed experiments in his laboratory to study the astonishing
phenomenon he had been observing.

After their discovery solitary waves have been studied theoretically by Stokes, Boussi-
nesq, and Lord Rayleigh in the 1870’s. However, the equation, which provides the
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1. Introduction

mathematical theory to describe solitons was finally named after Korteweg and de
Vries, who derived it in 1895 [Korteweg95].

In 1955 Fermi, Pasta, and Ulam numerically examined a model, which is related to
the discretization of the KdV equation, with the first computers at Los Alamos Science
Laboratories [Fermi55]. More precisely, they studied a lattice of particles coupled by an
anharmonic potential and made the observation that the energy of one mode injected
initially is not equipartitioned among the other modes.

Later in 1965 Zabusky and Kruskal considered the initial value problem for the
KdV equation by numerical simulations [Zabusky65]. They showed that for large
times an imposed periodic initial condition may split up into a number of well-defined
and separated waves. These waves emerging from the initial condition showed to not
change their shapes and velocities. Because of the particle-like behavior of these waves
Zabusky and Kruskal chose the word “soliton”.

Solitons have been and still are an interesting and active research topic, not only
for mathematicians but also for physicists. From the mathematical point of view
this may be because of the remarkable properties of integrable systems. From the
viewpoint of physicists the major interest in solitons is due to the fact that they
describe a wide range of various physical phenomena. Phenomena like the propagation
of hydrodynamic waves, propagation of signals in optical fibers, localized waves in
astrophysical plasmas, as well as localized modes in magnetic crystals, to name just a
few. This explains also the practical and technical interest in soliton theory. However,
one has to be aware of the fact that the mathematical theory of solitons is only able
to provide a model and thus to describe such physical systems approximately. In
[Dauxois06] a wide range of applications of solitons in physics is discussed.

Apart from the KdV equation there are also many other soliton equations, which are
of physical importance, such as the nonlinear Schrödinger (NLS) equation, the sine-
Gordon equation, the Toda lattice, the Boussinesq equation, and the Camassa–Holm
equation.

Concerning the existence and uniqueness of solutions of the KdV equation Gardner,
Greene, Kruskal, and Miura [Gardner74] have developed the so-called inverse scattering
transform in 1974, which provides a systematic method to obtain the solutions of an
integrable system, i.e., a system with infinitely many conservation laws. The inverse
scattering method can be used to study the evolution of a rapidly decaying initial
condition of the KdV equation. Further it can be used to construct so-called N -soliton
solutions corresponding to reflectionless potentials and N bound states. Moreover, the
inverse scattering transform ensures that the KdV equation corresponds to a completely
integrable system.

The beauty of this approach is that the solution of a nonlinear equation can be
established via a number of linear steps. The inverse scattering method can be viewed
as a nonlinear analogue of the Fourier transform which is used to solve linear partial
differential equations. Like the Fourier modes appearing from the study of a linear
equation, solitons arise from nonlinear equations and hence play the role of ‘nonlinear
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normal modes’ [Ablowitz74].
Another decisive step towards understanding integrable wave equations was taken

by Lax [Lax68]. The idea of the Lax method is to find a Lax pair, i.e., a pair of two
matrices or operators L(t), P (t) defined on a Hilbert space such that the Lax equation

Lt = [P,L],

is equivalent to the original nonlinear differential equation. Here the bracket denotes
the commutator of the operators, i.e., [P,L] = PL − LP . Moreover, the Lax method
can be used to derive a full hierarchy of equations.

One generalization scheme which goes beyond the Lax method has been made in
1972 to solve the NLS equation [Zakharov72]. In 1974 Ablowitz, Kaup, Newell, and
Segur [Ablowitz74] proposed a scheme, the so-called AKNS method, which provides
the ability to solve many completely integrable systems, such as the KdV, sine-Gordon,
the NLS equation, etc. by an inverse scattering transform.

For a detailed study and description of the inverse scattering, Lax, and AKNS
method we refer to [Drazin90], which in general can be considered a very good in-
troductory literature to the theory of solitons.

Concerning the long-time asymptotic behavior of solutions of the KdV equation it is
well-known that an arbitrary short-range solution of the KdV equation may split into a
number of solitons traveling on the constant background and a decaying radiation part,
cf. Figure 1.1, which is taken from [Grunert09]. Numerical evidence for this separation
into solitons was first found by Zabusky and Kruskal [Zabusky65], as already mentioned
above.

-100 -50 50 100

-6

-4

-2

Figure 1.1.: Solution of the KdV equation V (x, t) at time t = 5 with initial condition
V (x, 0) = sech(x+ 3) − 5sech(x− 1) computed numerically. The solution
is seen to split up into a number of solitons traveling to the right and a
decaying radiation tail on the left. [Grunert09]

First mathematical results were given by Ablowitz and Newell [Ablowitz73], Man-
akov [Manakov74], and Šabat [Šabat73]. Rigorous results for the KdV equation were
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1. Introduction

proved by Šabat [Šabat73] and Tanaka [Tanaka75]. A detailed study of the radia-
tion part concerning its asymptotic behavior were derived by Zakharov and Manakov
[Zakharov76], by Ablowitz and Segur [Ablowitz77, Segur81], by Buslaev [Buslaev81,
Budylin96], and later on justified and extended to all orders by Buslaev and Sukhanov
[Buslaev86].

A detailed rigorous proof using the method of nonlinear steepest descent for oscilla-
tory Riemann–Hilbert problems (RHP) was given by Deift and Zhou [Deift93] based on
earlier work of Manakov [Manakov74] and Its [Its81, Its86, Its87, Its82]. The method
of nonlinear steepest descent (also known as nonlinear stationary phase method) which
they applied to gain the asymptotics of solutions of a Riemann–Hilbert factorization
problem can be viewed as an analogue to the steepest descent method to approximate
oscillatory integrals, a well-known principle of asymptotic analysis. The idea is that
in the asymptotic limit for large times the solution of the RHP reduces to a simpler
RHP localized at the stationary phase points, which is exactly solvable.

Recently Grunert and Teschl [Grunert09] used exactly this method to derive the
long-time asymptotics of solutions of the KdV equation involving the case of solitons.
They followed the work done by Krüger and Teschl [Krüger09a, Krüger09b] concerning
the long-time asymptotic behavior of solutions of the Toda lattice, a discrete version
of the KdV equation.

Generally speaking, the long-time behavior of KdV solutions on constant background
has been studied for a long time and is well-known. However, an interesting task
to be investigated in this thesis is the long-time asymptotics of KdV solutions on
(quasi-)periodic background, i.e., of KdV solutions which are short-range perturba-
tions of (quasi-)periodic KdV solutions. Kamvissis and Teschl have been recently
studying this question for solutions of the Toda lattice [Kamvissis07b, Kamvissis07a],
also concerning higher order asymptotics [Kamvissis08], by the method of nonlinear
steepest descent for Riemann–Hilbert problems. Here the RHP is not set on the com-
plex plane but on a hyperelliptic Riemann surface. The generalization to involve the
case where solitons are present was later made by Krüger and Teschl [Krüger09c], who
made use of the ideas presented in [Deift96] how to treat solitons in the context of
Riemann–Hilbert problems.

All in all, concerning the question of the long-time asymptotics of solutions of the
periodic Toda lattice it turned out that the radiation tail does not decay as in the
constant case, rather it approaches a modulated lattice instead of the background
solution. Apart from that solitons can be observed traveling on a limiting lattice.

As mentioned above, the task of this thesis is to determine the long-time asymptotic
behavior of solutions of the periodic KdV equation.

The content of the thesis at hand will be structured in the following way:

Chapter 2 deals with hyperelliptic curves of the KdV-type, i.e., curves that have a
branchpoint at infinity. The way how to construct a hyperelliptic Riemann surface Kg

of genus g ∈ N0 associated with this curve is described in detail.

Chapter 3 presents the so-called Baker–Akhiezer function. Then via the Lax ap-
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proach the Its–Matveev formula for quasi-periodic finite-gap KdV solutions, from which
class we will choose our background solution, is obtained.

Chapter 4 establishes the asymptotic behavior of the Jost solutions, i.e., solutions
which asymptotically look like the Baker–Akhiezer functions. Apart from that, the
main results from scattering theory will be presented, from which we will be able to
derive the vector Riemann–Hilbert problem set on the hyperelliptic Riemann surface
Kg. Finally we obtain a formula for the one-soliton solution corresponding to a van-
ishing reflection coefficient and one bound state.

Chapter 5 is devoted to the method of stationary phase. That means we will con-
jugate our Riemann–Hilbert problem and deform the jump contours of it in such a
way that the problem reduces to a much simpler, explicitly solvable Riemann–Hilbert
problem, which has jumps on small crosses centered at the stationary phase points.

Moreover, we introduce the so-called oscillatory and soliton region and derive the
long-time asymptotic behavior of our perturbed KdV solution in the latter.

Chapter 6 presents the long-time asymptotics inside the oscillatory region. For that
purpose a decoupling argument will be used.

Chapter 7 describes how to establish an analytic approximation of the reflection
coefficient. This is necessary since it is not guaranteed that, while performing the
deformation step, it has an analytic extension in the corresponding regions.

Chapter 8 finally summarizes the results obtained in the scope of this thesis.

Appendix A deals with the connection between singular integral equations and
Riemann–Hilbert problems, which is used when deriving the long-time asymptotics
of the perturbed KdV solution.

Appendix B presents the solution of a Riemann–Hilbert problem with a jump on a
small cross. The problem is here set in the complex plane. Nevertheless, we are able
to use this result to gain the asymptotics inside the oscillatory region.

5
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2. Hyperelliptic Curves of the KdV-Type

In this thesis we will investigate the long-time asymptotic behavior of solutions of the
KdV equation which are short-range perturbations of quasi-periodic KdV solutions.
The latter will be chosen from a class of solutions of the KdV equation, which can be
constructed by means of algebraic geometry. To derive such algebro-geometric KdV
solutions we will need an underlying algebraic curve of the KdV-type.

Hence this chapter, which is heavily based on [Gesztesy03, Appendix B] and [Teschl00,
Section A.7] summarizes the basic facts on such hyperelliptic KdV-type curves, i.e.
curves branched at infinity. Since we only take a look at the self-adjoint case, where
all Ej are real and distinct points, we refer to [Gesztesy03, Appendix B] for further
information and a detailed study of the general case.

Let g ∈ N0. In this chapter we are going to describe how to construct the hyperelliptic
Riemann surface Kg of genus g associated with the KdV-type curve

R2g+1(z) =

2g∏

j=0

(z − Ej), {Ej}j=0,...,2g. (2.1)

Let {Ej}j=0,...,2g be real and distinct fixed points, i.e.

{Ej}j=0,...,2g ⊂ R, E0 < E1 < · · · < E2g, g ∈ N0. (2.2)

Define the cut plane

Π = C\(
g−1⋃

j=0

[E2j , E2j+1] ∪ [E2g,∞)), (2.3)

which is obviously a domain, that is an open and connected subset of C. Hence we
may declare a holomorphic function on Π

R
1/2
2g+1(.) : Π → C

z 7→
( 2g∏
j=0

(z − Ej)
)1/2 . (2.4)

The square root branch in (2.4) is chosen such that

R
1/2
2g+1(z) = lim

ε↓0
R

1/2
2g+1(z + iε), for z ∈ C\Π (2.5)

7



2. Hyperelliptic Curves of the KdV-Type

and

R
1/2
2g+1(z) = |R1/2

2g+1(z)| ·

·





(−1)gi for z ∈ (−∞, E0),
(−1)g+j i for z ∈ (E2j−1, E2j), j = 1, . . . , g,
(−1)g+j for z ∈ (E2j , E2j+1), j = 0, . . . , g − 1,
1 for z ∈ (E2g,∞).

(2.6)

Next, define the following set

Mg = {(z, σR2g+1(z)
1/2)|z ∈ C, σ ∈ {−1,+1}} ∪ {p∞}, (2.7)

where p∞ = (∞,∞) is the point at infinity. To describe charts on Mg we need to
introduce more notation. Let p0 ∈ Mg, Up0 ⊂ Mg a neighborhood of p0, ζp0 : Up0 →
Vp0 ⊂ C a homeomorphism defined below, and write

p0 = (z0, σ0R
1/2
2g+1(z0)) or p0 = p∞

p = (z, σR
1/2
2g+1(z)) ∈ Up0 ⊂ Mg, Vp0 = ζp0(Up0) ⊂ C. (2.8)

The set
B = {(Ej , 0)}0≤j≤2g ∪ {p∞} (2.9)

is called the set of branch points on Mg. For introducing charts on Mg one has to
distinguish three different cases; (i) p0 ∈ Mg\B, (ii) p0 = (∞,∞), and (iii) p0 = (Ei, 0)
for some i = 0, . . . , 2g.

(i) p0 ∈ Mg \ B: Then one defines

Up0 = {p ∈ Mg| |z − z0| < C0 and σR
1/2
2g+1(z)

γ−→ σ0R
1/2
2g+1(z0)}, (2.10)

where
C0 = min

j=0,...,2g
|z0 − Ej| > 0 (2.11)

and σR
1/2
2g+1(z)

γ−→ σ0R
1/2
2g+1(z0) means that σR

1/2
2g+1(z) is the branch reached by

analytic continuation along γ, the straight line from z to z0,

Vp0 = {ζ ∈ C| |ζ| < C0}, (2.12)

and

ζp0 : Up0 → Vp0

p 7→ (z − z0) (2.13)

with inverse

ζ−1
p0 : Vp0 → Up0,

ζ 7→ (z0 + ζ, σR
1/2
2g+1(ζ + z0)). (2.14)

8



(ii) p0 = p∞: Here one introduces

Up∞ = {p ∈ Mg| |z| > C∞}, C∞ = max
j=0,...,2g

|Ej | <∞, (2.15)

Vp∞ = {ζ ∈ C| |ζ| < C−1/2
∞ } (2.16)

and

ζP∞
: UP∞

→ VP∞
,

p 7→ σ/z1/2, (2.17)

p∞ 7→ 0

with inverse

ζ−1
p∞ : Vp∞ → Up∞ ,

ζ 7→
(
ζ−2,

( 2g∏

j=0

(1 − ζ2Ej)
)1/2

ζ−2g−1
)

(2.18)

0 7→ p∞,

The former square root is defined as

z1/2 = |z1/2|ei arg(z)/2, 0 ≤ arg(z) < 2π, (2.19)

and the latter root is holomorphic on Up∞ with the sign fixed by

( 2g∏

j=0

(1 − ζ2Ej)
)1/2

= 1 − 1

2

( 2g∑

n=0

En

)
ζ2 +O(ζ4). (2.20)

(iii) p0 = (Ei, 0): Define

Up0 = {p ∈ Mg| |z − Ei| < Ci}, (2.21)

Ci =





min
j=0,...,2g
j 6=i

|Ej − Ei| > 0, g ∈ N

∞, g = 0,

Vp0 = {ζ ∈ C| |ζ| < C
1/2
i }, (2.22)

and

ζp0 : Up0 → Vp0

p 7→ σ(z −Ei)
1/2, (2.23)

with inverse

ζp0 : Vp0 → Up0

ζ 7→
(
Ei + ζ2,

(
−

2g∏

j=0
j 6=i

(Ei − Ej − ζ2)
)1/2

ζ
)
, (2.24)

9



2. Hyperelliptic Curves of the KdV-Type

where the first root is defined as

(z − Ei)
1/2 = |z − Ei|1/2 exp

(
i arg(z − Ei)/2

)

arg(z − Ei) ∈
{

[0, 2π) if i is even,
(−π, π] if i is odd,

(2.25)

and the second root is holomorphic on Up0 with the sign fixed by

( 2g∏

j=0
j 6=i

(Ei − Ej − ζ2)
)1/2

=
( 2g∏

j=0
j 6=i

(Ei − Ej)
)1/2( 2g∏

j=0
j 6=i

(
1 − (Em − En)

−1ζ2
))1/2

= (−1)gi−i
∣∣∣
( 2g∏

j=0
j 6=i

(Ei − Ej)
)1/2∣∣∣

(
1 − 1

2

( 2g∑

j=0
j 6=i

(Ei − Ej)
−1
)
ζ2 +O(ζ4)

)
(2.26)

The set Mg defined in (2.7) together with the charts in (2.10)–(2.26) yields a compact
Riemann surface of genus g, which we will denote by Kg.

Topologically, Kg can be constructed as indicated in Figure 2.1: Take two copies Π±
of the cut plane Π defined as in (2.32) and glue the rims of the cuts on Π+ together
crosswise with the rims of the corresponding cuts on Π−, i.e. the +-rims on Π+ with
the −-rims on Π− and vice versa. This leads to the compact hyperelliptic Riemann
surface Kg of genus g (corresponding to Mg).

Next we will introduce the representatives {aj , bj}gj=1 of a canonical homology basis
for Kg as it is sketched in Figure 2.2. Set E2g+1 = ∞, then for bj we start at a point
in the interval (E2j−2, E2j−1) on Π+ (i.e. on the upper rim of the cut [E2j−2, E2j−1]),
surround E2g (i.e. bj hits a point on the cut [E2g,∞)) thereby changing to Π− and
return to our starting point encircling E2j−1, again changing sheets. For aj we choose
a cycle surrounding the cut [E2j−2, E2j−1], j = 1, . . . , g clockwise (once) on Π+. The
cycles are chosen so that their intersection matrix reads

ai ◦ bk = δik. (2.27)

We will now define three maps on Kg. The holomorphic sheet exchange map (invo-
lution) is defined as

∗ : Kg → Kg

(z,R
1/2
2g+1(z)) 7→ (z, σR

1/2
2g+1(z))

∗ = (z,−σR1/2
2g+1(z))

p∞ 7→ p∞

. (2.28)

Moreover, we define two meromorphic projections:

π : Kg → C ∪ {∞}
(z, σR

1/2
2g+1(z)) 7→ z

p∞ 7→ ∞
, (2.29)
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Figure 2.1.: The construction of the Riemann surface Kg for genus g = 1.
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2. Hyperelliptic Curves of the KdV-Type

a1 a2 a3

b1
b2

b3

E0 E1 E2 E3 E4 E5 E6 ∞

Figure 2.2.: The homology basis {aj , bj}gj=1 on Kg for genus g = 2. Here the solid lines

indicate the parts on Π+ and the doted ones the parts on Π−.

F : Kg → C ∪ {∞}
(z, σR

1/2
2g+1(z)) 7→ σR

1/2
2g+1(z)

p∞ 7→ ∞
. (2.30)

π has a pole of order 2 at p∞ and two simple zeros at (0,±R1/2
2g+1(0)) if R

1/2
2g+1(0) 6= 0,

respectively one double zero at (0, 0) if R
1/2
2g+1(0) = 0, and F has a pole of order 2g+ 1

at p∞ and 2g + 1 simple zeros at (Ej , 0). Notice that

π(p∗) = π(p), F (p∗) = −F (p), p ∈ Kg. (2.31)

Therefore we can make the following conclusions: Kg is a two–sheeted, ramified
covering of the Riemann sphere (i.e. Kg

∼= C ∪ {∞}). Moreover, Kg is compact, since
π is open and C ∪ {∞} is compact. Finally, we have that Kg is hyperelliptic, since it
admits a function with a single pole of order 2.

Let us take two subsets

Π± = {(z,±R1/2
2g+1(z))|z ∈ Π} ⊂ Mg, (2.32)

which will be called upper and lower sheet, respectively, and define two more quite
useful charts

ζ± : Π± → Π
p 7→ z.

The charts (2.10)–(2.26) are chosen such that there are compatible with the charts ζ±
wherever they overlap. Now consider

dπ

F
. (2.33)
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Again using local charts we see that dπ/F is holomorphic everywhere and has a zero
of order 2g − 2 at p∞. So we may conclude that

ηj =
πj−1dπ

F
, 1 ≤ j ≤ g, (2.34)

form a basis for the space of holomorphic differentials on Kg.
If we introduce the constants c(.) via

c(k) =
(
c1(k), . . . , cg(k)

)
, cj(k) = (C−1)j,k, j, k = 1, . . . , g,

C = (Cj,k)j,k=1,...,g, Cj,k =

∫

ak

ηj = 2

∫ E2k−1

E2k−2

zj−1dz

R
1/2
2g+1(z)

∈ R,

(C is invertible since otherwise there would be a nonzero differential with vanishing
a-periods.) the differentials ζj

ζj =

g∑

k=1

cj(k)ηk, j = 1, . . . , g, (2.35)

fulfill ∫

ak

ζj = δj,k, j = 1, . . . , g, (2.36)

and are thus a basis of the required form. The matrix of b-periods

τjk =

∫

bk

ζj =

g∑

j=1

cj(m)

∫

bk

ηj = 2

g∑

j=1

cj(m)

g∑

ℓ=k

∫ E2ℓ

E2ℓ−1

zj−1dz

R
1/2
2g+1(z)

∈ iR (2.37)

fulfills
τ = iT , T > 0.

Moreover, τ is symmetric, that is
τjk = τkj.
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3. Algebro-geometric solutions of the

KdV-equation

We want to choose our background solution, denoted by Vq(x, t), from the class of
algebro-geometric quasi-periodic solutions of the KdV equation corresponding to g–
gap initial values, i.e., from the finite-gap class of stationary solutions of the KdV
hierarchy.

Thus this chapter will be devoted to the construction of such quasi-periodic finite-
gap KdV solutions represented in terms of theta functions. The basic Riemann surface
will be the hyperelliptic curve Kg, g ∈ N0, introduced in Chapter 2.

In the whole chapter we will follow closely the book by Gesztesy and Holden [Gesztesy03,
Chapter 1] and the lecture notes by Gesztesy [Gesztesy89].

3.1. The Baker-Akhiezer function

Definition 3.1 (Baker–Akhiezer function). Let Dp1,...,pg be a positive divisor of degree

g on Kg, g ∈ N0, ζ = z−1/2 the local coordinate near p∞ = (∞,∞) ∈ Kg, and q : C → C

a polynomial. Then the Baker-Akhiezer function

ψy,s : Kg \ {p∞} → C ∪ {∞}, y, s ∈ C, (3.1)

associated with Kg, q, ζ, and Dp1,...,pg is defined as follows:
(i) ψy,s is meromorphic on Kg \ {p∞} and the divisor Dψy,s of poles of ψy,s

∣∣
Kg\{p∞}

satisfies
Dψy,s ≥ −Dp1,...,pg . (3.2)

(ii) The product

(
ψy,s ◦ z−1

)
(ζ) exp

(
− iyq(ζ−1) − isq(ζ−3)

)
= c+O(ζ), c ∈ C, (3.3)

is holomorphic near ζ = 0.

For the rest of this chapter we shall confine ourselves to the KdV equation and hence
choose

q(z) = z, z ∈ C.

Higher order polynomials q are used for the equations of the KdV hierarchy.
Pick g numbers (the Dirichlet eigenvalues)

(µ̂j(x, t))
g
j=1 = (µj(x, t), σj)

g
j=1 (3.4)
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3. Algebro-geometric solutions of the KdV-equation

whose projections lie in the spectral gaps, i.e.,

µj(x, t) ∈ [E2j−1, E2j ], j = 1, . . . , g. (3.5)

Associated with these numbers is the divisor

Dµ̂(x,t)(p) =

{
1 p = µ̂j(x, t), j = 1, . . . , g,
0 else.

(3.6)

We introduce

z(p, x, x0, t, t0) = Ξ̂E0
− ÂE0

(p) + α̂E0
(Dµ̂(x,t)) ∈ C

g, (3.7)

where Ξ̂E0
is the vector of Riemann constants

Ξ̂E0,j =
1 −∑g

k=1 τj,k
2

, j = 1, . . . , g (3.8)

and AE0
(αE0

) is Abel’s map (for divisors). The hat indicates that we regard it as a

(single-valued) map from K̂g (the fundamental polygon associated with Kg by cutting
along the a and b cycles) to C

g.
Moreover, we have the linearizing property of the Abel map ([Gesztesy03, Theo-

rem 1.44])

α̂E0
(Dµ̂(x,t)) = α̂E0

(Dµ̂) +
(x− x0)

2π
U0 + 12

(t − t0)

2π
U2, (3.9)

where Dµ̂ = Dµ̂(x0,t0) and U0 and U2 are the b-periods of the Abelian differential ωp∞,0

and ωp∞,2, respectively, defined below, i.e.

U0 =
(
U0,1, . . . , U0,g

)
where U0,j =

∫

bj

ωp∞,0, j = 1, . . . , g, (3.10)

U2 =
(
U2,1, . . . , U2,g

)
where U2,j =

∫

bj

ωp∞,2, j = 1, . . . , g. (3.11)

By θ(z) we denote the Riemann theta function associated with Kg defined by

θ(z) =
∑

m∈Zg

exp 2πi

(
〈m, z〉 +

〈m, τ m〉
2

)
, z ∈ C

g. (3.12)

The Riemann theta function fulfills the quasi-periodic property

θ(z +m+ τ n) = exp
{
2πi
(
− 〈n, z〉 − 〈n, τ n〉

2

)}
θ(z), n,m ∈ Z

g, (3.13)

where τ is the matrix of b-periods defined in (2.37) and 〈., .〉 denotes the scalar prod-
uct in R

g (cf., e.g. [Farkas92] or [Teschl00, App. A]). We recall that the function
θ(z(p, x, x0, t, t0)) has precisely g zeros µ̂j(x, t) (with µ̂j(x0, t0) = µ̂j). This follows
from Riemann’s vanishing theorem (cf. [Teschl00, Theorem A.13]).
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3.1. The Baker-Akhiezer function

Theorem 3.1 (The time dependent Baker-Akhiezer function). The function

ψq(p, x, x0, t, t0) =
θ
(
z(p, x, x0, t, t0)

)

θ
(
z(p∞, x, x0, t, t0)

) θ
(
z(p∞, x0, x0, t0, t0)

)

θ
(
z(p, x0, x0, t0, t0)

) ·

· exp
(
− i(x− x0)

∫ p

E0

ωp∞,0 − 12i(t − t0)

∫ p

E0

ωp∞,2

)
, (3.14)

is the uniquely determined time dependent Baker-Akhiezer function associated with Kg,
p∞, q = id, ζ and the divisor Dµ̂(x,t), where ωp∞,0 and ωp∞,2 are normalized Abelian
differentials of the second kind with a single pole of multiplicity two at p∞ and principal
part ζ−2dζ and ζ−4dζ, respectively.

Proof. The function defined in (3.14) is single-valued on Kg. Indeed, changing the path
from E0 to p in (3.14) results in the changes

∫ p

E0

ωp∞,0 −→
∫ p

E0

ωp∞,0 +

∫

γ
ωp∞,0,

∫ p

E0

ωp∞,2 −→
∫ p

E0

ωp∞,2 +

∫

γ
ωp∞,2,

AE0
(p) =

∫ p

E0

ζ −→ AE0
(p) +

∫

γ
ζ, ζ := {ζj}gj=1

for some closed cycle γ

γ =

g∑

j=1

(mjaj + njbj), mj , nj ∈ Z, j = 1, . . . , g. (3.15)

Since the Abelian differentials ωp∞,0 and ωp∞,2 have to be normalized to have vanishing
aj-periods we have

∫

γ
ωp∞,0 =

g∑

j=1

nj

∫

bj

ωp∞,0 = nU0,

∫

γ
ωp∞,2 =

g∑

j=1

nj

∫

bj

ωp∞,2 = nU2,

∫

γ
ζ =

g∑

j=1

(
mj

∫

aj

ζ + nj

∫

bj

ζ
)

= m+ τ n,

where n := {nj}gj=1 and m := {mj}gj=1. Thus the quasi-periodic property of the
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3. Algebro-geometric solutions of the KdV-equation

Riemann theta function (3.13) implies

ψq(p, x, x0, t, t0) →

→ θ
(
z(p, x, x0, t, t0) −m− (τ n)

)

θ
(
z(p∞, x, x0, t, t0)

) θ
(
z(p∞, x0, x0, t0, t0)

)

θ
(
z(p, x0, x0, t0, t0) −m− (τ n)

) ·

· exp
(
− i(x− x0)

( ∫ p

E0

ωp∞,0 + nU0

)
− 12i(t − t0)

( ∫ p

E0

ωp∞,2 + nU2

))

= ψq(p, x, x0, t, t0) exp
(
− i(x− x0)nU0 − 12i(t − t0)nU2

)
·

· exp
(
2πinU0

(x− x0)

2π
+ 2πinU212

(t− t0)

2π

)

and hence

ψq(p, x, x0, t, t0) → ψq(p, x, x0, t, t0),

that is ψ is independent of the path chosen to connect E0 and p and hence single-valued.

The function defined in (3.14) satisfies (i) and (ii) of Definition 3.1. In fact, the
function θ

(
z(p, x0, x0, t0, t0)

)
has precisely g zeros µ̂j(x0, t0) and the corresponding

divisor Dµ̂ is positive. Thus ψq satisfies (i). Setting y = (x− x0) and s = 4(t− t0) we
will see later (cf. proof of Theorem 3.6, (3.31)) that (ii) also holds. Note that we have
c = 1, since the function (3.14) is already normalized.

To show uniqueness let ψ̃q be another Baker-Akhiezer function. Since Dµ̂(x,t) is the

divisor of zeros of ψq we get that ψ̃q/ψq is meromorphic on Kg with poles in Dµ̂(x,t).

Since the divisor Dµ̂(x,t) is nonspecial, ψ̃q/ψq must be equal a constant by the Riemann-
Roch theorem.

Remark 3.2. The differentials ωp∞,2k, k = 0, 1, 2, . . . are Abelian differentials of the
second kind with a single pole of multiplicity two at p∞ and principal part ζ−2k−2dζ.
They are explicitly given by

ωp∞,2k =

(
πg+k + Pk(π)

−2R
1/2
2g+1

)
dπ. (3.16)

Here Pk(π) is a monic polynomial of degree g + k whose coefficients have to be deter-
mined from the behavior at p∞ (principal part ζ−2k−2dζ) and the normalization, i.e.,
the differential has vanishing a-periods.

Next, we derive explicit expressions for ωp∞,0 and ωp∞,2.

Lemma 3.3. We have

ωp∞,0 = −1

2

∏g
j=1(π − λj)

R
1/2
2g+1

dπ. (3.17)
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3.1. The Baker-Akhiezer function

Proof. Clearly (3.17) is an Abelian differential of the second kind. Moreover, intro-
ducing ζ = z−1/2 we obtain that near p∞ the following is valid:

ωp∞,0 = − 1

2

g∏

j=1

(ζ−2 − λj)R
−1/2
2g+1(ζ

−2)(−2ζ−3dζ)

=ζ−2gζ−3
g∏

j=1

(1 − ζ2λj)ζ
2g+1

( 2g∏

j=0

(1 − ζ2Ej)
1/2
)−1

dζ

=ζ−2
(
1 −

( g∑

j=1

λj
)
ζ2 +O(ζ4)

)(
1 +

1

2

( 2g∑

j=0

Ej
)
ζ2 +O(ζ4)

)
dζ

=ζ−2
(
1 +

1

2

(
E0 +

g∑

j=1

(E2j−1 + E2j − 2λj)
)
ζ2 +O(ζ4)

)
dζ.

Hence,

ωp∞,0 =
(
ζ−2 +O(1)

)
dζ near p∞. (3.18)

Furthermore, ωp∞,0 is normalized to have vanishing aj-periods, that is,

∫

aj

ωp∞,0 = 0, j = 1, . . . , g. (3.19)

Lemma 3.4. We have

ωp∞,2 = −1

2

∏g
j=0(π − λ̃j)

R
1/2
2g+1

dπ,

g∑

j=0

λ̃j =
1

2

2g∑

j=0

Ej . (3.20)

Proof. By inspection (3.20) is an Abelian differential of the second kind. Moreover,
introducing ζ = z−1/2 we obtain that the following behavior near p∞ is valid:

ωp∞,2 = − 1

2

g∏

j=0

(ζ−2 − λ̃j)R
−1/2
2g+1(ζ

−2)(−2ζ−3dζ)

=ζ−2g−2ζ−3
g∏

j=0

(1 − ζ2λ̃j)ζ
2g+1

( 2g∏

j=0

(1 − ζ2Ej)
1/2
)−1

dζ

=ζ−4
(
1 −

( g∑

j=0

λ̃j
)
ζ2 +O(ζ4)

)(
1 +

1

2

( 2g∑

j=0

Ej
)
ζ2 +O(ζ4)

)
dζ

=ζ−4
(
1 +

(1

2

( 2g∑

j=0

Ej
)
−
( g∑

j=0

λ̃j
))
ζ2 +O(ζ4)

)
dζ.
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3. Algebro-geometric solutions of the KdV-equation

Since we have chosen λ̃j, j = 0, . . . , g such that they have to satisfy

g∑

j=0

λ̃j =
1

2

2g∑

j=0

Ej, (3.21)

we finally deduce
ωp∞,2 =

(
ζ−4 +O(1)

)
dζ near p∞. (3.22)

Furthermore, ωp∞,2 is uniquely determined by its normalization, i.e.
∫

aj

ωp∞,2 = 0, j = 1, . . . , g. (3.23)

Remark 3.5. In general, the following asymptotic expansions hold
∫ p

E0

ωp∞,2k =
z→∞

−(2k + 1)−1zk+1/2 + ck +O(z−1/2),

where ck are some constants. Here ωp∞,2k, k = 0, 1, 2, . . . are the Abelian differentials
of the second kind given by (3.16). In particular,

∫ p

E0

ωp∞,0 =
z→∞

−z1/2 + c0 +O(z−1/2), (3.24)

∫ p

E0

ωp∞,2 =
z→∞

−1

3
z3/2 + c2 +O(z−1/2). (3.25)

3.2. Quasi-periodic finite-gap KdV solutions

The next theorem establishes the well-known Its-Matveev formula for quasi periodic,
finite-gap KdV solutions in terms of theta functions (cf. [Its75a, Its75b]). We will show
that the Baker–Akhiezer function defined in (3.14) is a solution of the Schrödinger
equation corresponding to the Schrödinger operator Hq with the potential Vq.

Theorem 3.6 (Its–Matveev formula). Let p = (z, σR2g+1(z)
1/2) ∈ Kg \ {p∞},

(z, x, x0, t, t0) ∈ C × R
4. Then the Baker-Akhiezer function ψq(p, x, x0, t, t0) defined

as in (3.14) satisfies the Schrödinger equation

Hq(t)ψq(p, x, x0, t, t0) = zψq(p, x, x0, t, t0), (3.26)

where Hq is the operator from the Lax pair of the KdV equation, i.e.,

Hq(t) = −∂2
x + Vq(., t), on H2(R) (3.27)

and Vq is the quasi-periodic finite-gap solution

Vq(x, t) = E0 +

g∑

j=1

(E2j−1 + E2j − 2λj) − 2∂2
x ln θ

(
z(p∞, x, x0, t, t0)

)
. (3.28)

20



3.2. Quasi-periodic finite-gap KdV solutions

Proof. Expanding ωp∞,0 in (3.17) near p∞ we get (cf. proof of Lemma 3.3)

ωp∞,0 =
(
ζ−2 + C +O(ζ2)

)
dζ, (3.29)

where we have set

C =
1

2

(
E0 +

g∑

j=1

(E2j−1 + E2j − 2λj)
)
. (3.30)

Then from (3.29) and (3.22) one infers that near p∞

ψq(p, x, x0, t, t0) =
(
1 + c1(x, t)ζ + c2(x, t)ζ

2 + c3(x, t)ζ
3 +O(ζ4)

)
·

· exp
(
i(x− x0)

(
ζ−1 − Cζ +O(ζ3)

)
+ 4i(t− t0)

(
ζ−3 +O(ζ)

))
,

(3.31)

where cj, j = 1, . . . , 3 denote the coefficients in the expansion of the ratio of theta
functions. Note that there are no O(1) terms in the exponents in (3.31) since both
integrals over ωp∞,0 and ωp∞,2 vanish at E0. From (3.31) one computes

ψq,xx(p, x, x0, t, t0) =
(
− ζ−2 − c1(x, t)ζ

−1 + 2C − c2(x, t) + 2ic1,x(x, t) +O(ζ)
)
·

· exp
(
i(x− x0)

(
ζ−1 − Cζ +O(ζ3)

)
+ 4i(t− t0)

(
ζ−3 +O(ζ)

))

=
(
− ζ−2 + 2C + 2ic1,x(x, t) +O(ζ)

)
ψq(p, x, x0, t, t0).

Since

− ψq,xx +
(
2C + 2ic1,x(x, t) − ζ−2

)
ψq = O(ζ)ψq

is also a Baker-Akhiezer function with the same essential singularity at p∞ and the
same pole divisor as ψq, uniqueness of the Baker-Akhiezer function proves

− ψq,xx +
(
2C + 2ic1,x(x, t) − ζ−2

)
ψq = 0. (3.32)

Next, we will compute c1 and c2 directly. We have

θ
(
Ξ̂E0

− ÂE0
(p)
)

=

= θ
(
Ξ̂E0

− ÂE0
(p∞)

)
− ζ

g∑

j=1

U0,j

2πi

( ∂

∂zj
θ(z)

)∣∣∣
z=Ξ̂E0

−ÂE0
(p∞)

− 1

4π2

1

2
ζ2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)∣∣∣
z=Ξ̂E0

−ÂE0
(p∞)

, (3.33)

where U0,j , j = 1, . . . , g are defined in (3.10). Therefore, expanding the ratios of theta

21



3. Algebro-geometric solutions of the KdV-equation

functions near p∞ yields

θ
(
z(p, x, x0, t, t0)

)

θ
(
z(p∞, x, x0, t, t0)

) = 1 −
[ 1

2πi
ζ

g∑

j=1

U0,j

( ∂

∂zj
θ(z)

)

+
1

4π2

ζ2

2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)]
θ(z)−1

∣∣∣
z=z(p∞,x,x0,t,t0)

+O(ζ3)

= 1 + iζ∂x ln θ
(
z(p∞, x, x0, t, t0)

)

− 1

4π2

ζ2

2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)
θ(z)−1

∣∣∣
z=z(p∞,x,x0,t,t0)

+O(ζ3)

and

θ
(
z(p∞, x0, x0, t0, t0)

)

θ
(
z(p, x0, x0, t0, t0)

) =

= 1 +
[ 1

2πi
ζ

g∑

j=1

U0,j

( ∂

∂zj
θ(z)

)
+

1

4π2

ζ2

2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)

− 1

4π2
ζ2
( g∑

j=1

U0,j

( ∂

∂zj
θ(z)

))2]
θ(z)−1

∣∣∣
z=z(p∞,x0,x0,t0,t0)

+O(ζ3)

= 1 − iζ∂x ln θ
(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

+
1

4π2

ζ2

2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)
θ(z)−1

∣∣∣
z=z(p∞,x0,x0,t0,t0)

− ζ2
(
∂x ln θ

(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

)2
+O(ζ3).

Finally, one obtains

θ
(
z(p, x, x0, t, t0)

)

θ
(
z(p∞, x, x0, t, t0)

) θ
(
z(p∞, x0, x0, t0, t0)

)

θ
(
z(p, x0, x0, t0, t0)

) =

= 1 + iζ∂x ln θ
(
z(p∞, x, x0, t, t0)

)
− iζ∂x ln θ

(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

− ζ2

8π2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)
θ(z)−1

∣∣∣
z=z(p∞,x,x0,t,t0)

+
ζ2

8π2

g∑

j,l=1

U0,jU0,l

( ∂2

∂zj∂zl
θ(z)

)
θ(z)−1

∣∣∣
z=z(p∞,x0,x0,t0,t0)

+ ζ2
(
∂x ln θ

(
z(p∞, x, x0, t, t0)

))(
∂x ln θ

(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

)

− ζ2
(
∂x ln θ

(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

)2
+O(ζ3)

= 1 + c1(x, t)ζ + c2(x, t)ζ
2 +O(ζ3),

22



3.2. Quasi-periodic finite-gap KdV solutions

and thus

c1(x, t) =i∂x ln θ
(
z(p∞, x, x0, t, t0)

)
− i∂x ln θ

(
z(p∞, x, x0, t0, t0)

)∣∣∣
x=x0

,

c1,x(x, t) =i∂2
x ln θ

(
z(p∞, x, x0, t, t0)

)
.

Hence
2ic1,x(x, t) = Vq(x, t) − 2C. (3.34)

Then (3.32) and (3.34) prove (3.26) and (3.28).

The next theorem shows that the Baker–Akhiezer function defined in (3.14) solves
the equation ∂tψq = Pq,2ψq, where Pq,2 denotes the operator from the Lax pair.

Theorem 3.7. Let p = (z, σR2g+1(z)
1/2) ∈ Kg \ {p∞}, (z, x, x0, t, t0) ∈ C ×R

4. Then
the Baker-Akhiezer function ψq(p, x, x0, t, t0) defined as in (3.14) satisfies

ψq,t(p, x, x0, t, t0) = Pq,2ψq(p, x, x0, t, t0), (3.35)

where Pq,2 is the operator from the Lax pair of the KdV equation, i.e.,

Pq,2(t) = −4∂3
x + 6Vq(., t)∂x + 3Vq,x(., t), on H3(R) (3.36)

with Vq given by (3.28).

Proof. First, we make use of (3.26) to get

ψq,t(p, x, x0, t, t0) −
(
Pq,2(t)ψq

)
(p, x, x0, t, t0) =

=ψq,t(p, x, x0, t, t0) − 2
(
Vq(x, t) + 2ζ−2

)
ψq,x(p, x, x0, t, t0)

+ Vq,x(x, t)ψ(p, x, x0, t, t0). (3.37)

Second, (3.31) implies

ψq,t(p, x, x0, t, t0) =4i
(
ζ−3 + c1(x, t)ζ

−2 + c2(x, t)ζ
−1 + c3(x, t)

)
·

· exp
(
i(x− x0)

(
ζ−1 − Cζ +O(ζ3)

)
+ 4i(t− t0)

(
ζ−3 +O(ζ)

))

and

ψq,x(p, x, x0, t, t0) =
(
iζ−1 + ic1(x, t) +

(
c1,x(x, t) − iC + ic2(x, t)

)
ζ

+
(
c2,x(x, t) − iCc1(x, t) + ic3(x, t)

)
ζ2
)
·

· exp
(
i(x− x0)

(
ζ−1 − Cζ +O(ζ3)

)
+ 4i(t− t0)

(
ζ−3 +O(ζ)

))
.

Inserting these expressions into (3.37) yields

ψq,t(p, x, x0, t, t0) −
(
Pq,2(t)ψq

)
(p, x, x0, t, t0) =

=
(
2ic1,xx(x, t) − 4c2,x(x, t) + 4c1(x, t)c1,x(x, t) +O(ζ)

)
ψq(p, x, x0, t, t0).
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3. Algebro-geometric solutions of the KdV-equation

Note that in the above equation the terms containing the coefficient c3 cancel, such
that there are only terms left which contain c1, c1,x, c1,xx and c2,x. Uniqueness of the
Baker-Akhiezer function then implies as in (3.32) that

ψq,t(p, x, x0, t, t0) −
(
Pq,2(t)ψq

)
(p, x, x0, t, t0) =

=
(
2ic1,xx(x, t) − 4c2,x(x, t) + 4c1(x, t)c1,x(x, t)

)
ψq(p, x, x0, t, t0). (3.38)

The expansion of the ratio of theta functions near p∞ in the proof of Theorem 3.6
implies

c2,x(x, t) = − 1

2
∂3
x ln θ

(
z(p∞, x, x0, t, t0)

)

−
(
∂x ln θ

(
z(p∞, x, x0, t, t0)

))(
∂2
x ln θ

(
z(p∞, x, x0, t, t0)

))

+
(
∂2
x ln θ

(
z(p∞, x, x0, t, t0)

))(
∂x ln θ

(
z(p∞, x, x0, t, t0)

)∣∣∣
x=x0

)

and hence
2ic1,xx(x, t) + 4c1(x, t)c1,x(x, t) − 4c2,x(x, t) = 0.

This yields (3.35) by (3.38).

Combining the last two theorems we easily check that the potential Vq defined as in
(3.28) is a solution of the KdV equation, since the operators Hq and Pq,2 constitute
the Lax pair for the KdV equation. More precisely, we have the following result:

Theorem 3.8 (Quasi-periodic finite-gap KdV solutions). Let p = (z, σR2g+1(z)
1/2) ∈

Kg \ {p∞}, (z, x, x0, t, t0) ∈ C × R
4. Then Vq(x, t) given by (3.28) satisfies the KdV

equation
KdV(Vq) := Vq,t − 6VqVq,x + Vq,xxx = 0. (3.39)

Proof. From (3.26) one gets

Hq(t)ψq,t(p, x, x0, t, t0) = −∂2
xψq,t(p, x, x0, t, t0) + Vq(x, t)ψq,t(p, x, x0, t, t0)

=∂t
(
− ∂2

xψq(p, x, x0, t, t0)
)

+ Vq(x, t)ψq,t(p, x, x0, t, t0)

=∂t
(
zψq(p, x, x0, t, t0) − Vq(x, t)ψq(p, x, x0, t, t0)

)
+ Vq(x, t)ψq,t(p, x, x0, t, t0)

=zψq,t(p, x, x0, t, t0) − Vq,tψq(p, x, x0, t, t0) − Vq(x, t)ψq,t(p, x, x0, t, t0)

+ Vq(x, t)ψq,t(p, x, x0, t, t0)

=zψq,t(p, x, x0, t, t0) − Vq,tψq(p, x, x0, t, t0). (3.40)

One can easily verify that Hq(t) and Pq,2(t) satisfy the Lax equation

∂tHq(t) −
[
Pq,2(t),Hq(t)

]
= KdV(Vq). (3.41)

From (3.35), (3.40), and (3.41) one deduces

KdV(Vq)ψq(p, x, x0, t, t0) =
(
Vq,t(x, t) − zPq,2(t) +H(t)Pq,2(t)

)
ψq(p, x, x0, t, t0)

=Vq,t(x, t)ψq(p, x, x0, t, t0) − zψq,t(p, x, x0, t, t0) +Hq(x, t)ψq,t(p, x, x0, t, t0)

=Vq,t(x, t)ψq(p, x, x0, t, t0) − zψq,t(p, x, x0, t, t0)

+
(
zψq,t(p, x, x0, t, t0) − Vq,t(x, t)ψq(p, x, x0, t, t0)

)
= 0,
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3.2. Quasi-periodic finite-gap KdV solutions

that is,
KdV(Vq) = 0.

The two branches of the Baker-Akhiezer function are denoted by

ψq,±(z, x, x0, t, t0) = ψq(p, x, x0, t, t0), p = (z,±). (3.42)

It is well-known that the continuous spectrum of the quasi-periodic Schrödinger oper-
ator

Hq(t) = −∂2
x + Vq(., t) on H2(R), (3.43)

is time independent and consists of g + 1 spectral bands

σ(Hq(t)) =

g⋃

j=1

[E2j−2, E2j−1] ∪ [E2g,∞), t ∈ R. (3.44)
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4. Scattering theory and the

Riemann–Hilbert problem

In this chapter we use the same notation as in Chapter 3, but choose x0 = t0 = 0 and
suppress the dependence on x0, t0 in the argument of the functions.

Let ψq,±(z, x, t) be the branches of the Baker-Akhiezer functions defined in Chap-
ter 3. We determine two Jost functions ψ±(z, x, t) for the perturbed problem as solu-
tions of the equation

(
− d

dx2
+ V

)
ψ± = zψ±, z ∈ C, (4.1)

where V is the perturbed potential satisfying the short-range assumption

∫ +∞

−∞
(1 + |x|)

(
|V (x, t) − Vq(x, t)|

)
dx <∞. (4.2)

Next we establish the existence of such Jost solutions, that is, solutions of the perturbed
operator H which asymptotically look like the Baker-Akhiezer functions.

4.1. The asymptotics of the Jost functions

This section is based on [BoutetdeMonvel08] and [Mikikits-Leitner09].

From the definition (3.14) we obtain that the branches of the Baker-Akhiezer function
have the following form

ψq,±(z, x, t) = θq,±(z, x, t) exp(±ixk(z) ∓ 12it

∫ p

E0

ωp∞,2), (4.3)

where θq,±(z, x, t) is quasi-periodic with respect to x and

k(z) = −
∫ p

E0

ωp∞,0, p = (z,+), (4.4)

denotes the quasi-momentum map.

Theorem 4.1. Assume (4.2). For every z ∈ C\{Ej}2g
j=0 there exist (weak) solutions

ψ±(z, ., t) of Hψ = zψ satisfying

lim
x→±∞

e∓ixk(z)
(
ψ±(z, x, t) − ψq,±(z, x, t)

)
= 0, (4.5)
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4. Scattering theory and the Riemann–Hilbert problem

where ψq,±(z, ., t) are the Baker–Akhiezer functions. Moreover, ψ±(z, ., t) are continu-
ous (resp. holomorphic) with respect to z whenever ψq,±(z, ., t) are and

∣∣e∓ixk(z)
(
ψ±(z, x, t) − ψq,±(z, x, t)

)∣∣ ≤ C(z), (4.6)

where C(z) denotes some constant depending only on z.

Proof. Finding solutions of (4.1) is equivalent to solving the equation

(Hq − z)ψ = −V̂ ψ, z ∈ C, (4.7)

where Hq is the operator defined in (3.27) and we have set

V̂ = V − Vq. (4.8)

By Theorem 3.6 the Baker-Akhiezer function ψq defined in (3.14) is the solution of the
homogeneous equation, that is,

(Hq − z)ψq = 0, z ∈ C.

Thus by using the variation of constants formula (cf. [Teschl08, Section 5.3]) we obtain
the Volterra integral equations for the two Jost functions

ψ±(z, x, t) = ψq,±(z, x, t) − 1

W
(
ψq,+, ψq,−

)
∫ ±∞

x

(
ψq,−(z, x, t)ψq,+(z, y, t)

− ψq,−(z, y, t)ψq,+(z, x, t)
)
V̂ (y, t)ψ±(z, y, t)dy. (4.9)

Moreover, introducing ψ̃±(z, x) = e±ixk(z)ψ±(z, x) the resulting integral equation can
be solved using the method of successive iterations. This proves the claims.

Now we are ready to prove the asymptotic behavior of the Jost functions.

Theorem 4.2. Assume (4.2). The asymptotic behavior of the two Jost functions are
given by

ψ±(z, x, t) = ψq,±(z, x, t)
(
1 + Ṽ±(x, t)

1

2i
√
z

+ o
( 1√

z

))
, (4.10)

as z → ∞, where

Ṽ±(x, t) = ∓
∫ ±∞

x
(V − Vq)(y, t)dy. (4.11)

Proof. Again abbreviating V̂ = V − Vq and invoking (4.9) one deduces

ψ±(z, x, t)

ψq,±(z, x, t)
=

= 1 − 1

W
(
ψq,+, ψq,−

)
∫ ±∞

x

(
ψq,−(z, x, t)ψq,+(z, y, t)

ψq,±(z, y, t)

ψq,±(z, x, t)

−
∫ ±∞

x
ψq,−(z, y, t)ψq,+(z, x, t)

ψq,±(z, y, t)

ψq,±(z, x, t)

)
V̂ (y, t)

ψ±(z, y, t)

ψq,±(z, y, t)
dy

= 1 ∓
∫ ±∞

x

(
Gq(z, x, x)

ψq,±(z, y, t)2

ψq,±(z, x, t)2
−Gq(z, y, y)

)
V̂ (y, t)

ψ±(z, y, t)

ψq,±(z, y, t)
dy, (4.12)
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4.1. The asymptotics of the Jost functions

where

Gq(z, x, y) =
1

W
(
ψq,+, ψq,−

)
{
ψq,+(z, x, t)ψq,−(z, y, t), x ≥ y,
ψq,+(z, y, t)ψq,−(z, x, t), x ≤ y

(4.13)

is the Green function of Hq. We have

Gq(z, x, x) =
ψq,+(z, x, t)ψq,−(z, x, t)

W
(
ψq,+, ψq,−

) =
i
∏g
j=1

(
z − µj(x, t)

)

2R
1/2
2g+1(z)

. (4.14)

Hence for z near ∞ the Green function has the following asymptotic behavior

G(z, x, x) =
i

2
√
z

(
1 +

1

2
Vq(x, t)

1

z
+O

( 1

z2

))
, (4.15)

where we made use of the fact that the quasi-periodic potential Vq defined in (3.28)
can be written as

Vq(x, t) = E0 +

g∑

j=1

(
E2j−1 + E2j − 2µj(x, t)

)
(4.16)

for p = (z,+) near p∞. Next we insert (4.15) into (4.12) such that iteration implies

ψ±(z, x, t)

ψq,±(z, x, t)
= 1 ∓ i

2
√
z

(∫ ±∞

x

ψq,±(z, y, t)2

ψq,±(z, x, t)2
V̂ (y, t)dy −

∫ ±∞

x
V̂ (y, t)dy

)
+O

(1
z

)
.

Next we will show that the first integral vanishes as
√
z → ∞. We begin with the case

Im(
√
z) → ∞. Making use of Remark 3.5 we compute

∣∣∣
∫ ±∞

x

ψq,±(z, y, t)2

ψq,±(z, x, t)2
V̂ (y, t)dy

∣∣∣ ≤ C

∫ ±∞

x
exp

(
∓ 2Im(

√
z)(y − x)

)∣∣V̂ (y, t)
∣∣dy

≤ C

∫ x+ε

x

∣∣V̂ (y, t)
∣∣dy +C · exp

(
∓ 2Im(

√
z)ε
) ∫ ±∞

x+ε

∣∣V̂ (y, t)
∣∣dy,

such that the first integral can be made arbitrary small if ε > 0 is small and the second
integral vanishes as Im(

√
z) → ∞.

Otherwise, if Re(
√
z) → ∞, we use (4.3) to rewrite the integral as

∫ ±∞

x

(
θq,±(z, y, t)2

θq,±(z, x, t)2
V̂ (y, t) exp

(
∓ 2Im(

√
z)(y − x)

))
exp

(
± 2iRe(

√
z)(y − x)

)
dy.

Since ∣∣∣∣
θq,±(z, y, t)2

θq,±(z, x, t)2
V̂ (y, t) exp

(
∓ 2Im(

√
z)(y − x)

)∣∣∣∣ ≤ |V̂ (y, t)|

the integral vanishes as Re(
√
z) → ∞ by a slight variation of the Riemann–Lebesgue

lemma.
Hence we finally have

ψ±(z, x, t)

ψq,±(z, x, t)
= 1 ± i

2
√
z

∫ ±∞

x
V̂ (y, t)dy + o

( 1√
z

)
(4.17)

as z → ∞.
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4. Scattering theory and the Riemann–Hilbert problem

Moreover, we have the following result which concerns the asymptotics of the Jost
solutions at the other side.

Lemma 4.3. ([Mikikits-Leitner09]) Assume (4.2). Then the Jost solutions ψ±(z, ., t),
z ∈ C\σ(H), satisfy

lim
x→∓∞

∣∣e∓ixk(z)
(
ψ±(z, x, t) − α(z)ψq,±(z, x, t)

)∣∣ = 0, (4.18)

where

α(z) =
W (ψ−(z), ψ+(z))

W (ψq,−(z), ψq,+(z))
=

∏g
j=1(z − µj)

2iR
1/2
2g+1(z)

W (ψ−(z), ψ+(z)). (4.19)

Proof. The proof can be looked up in [Mikikits-Leitner09], proof of Lemma 3.5.

4.2. The Riemann-Hilbert problem

Now we are ready to deduce the Riemann–Hilbert problem from scattering theory.

Lemma 4.4 (Scattering relations). One has the scattering relations

T (z)ψ±(z, x, t) = ψ∓(z, x, t) +R∓(z)ψ∓(z, x, t), z ∈ σ(Hq), (4.20)

where T (z), R±(z) are the transmission respectively the reflection coefficient defined as

T (z) =
W (ψ+(z), ψ+(z))

W (ψ−(z), ψ+(z))
, R±(z) := −W (ψ∓(z), ψ±(z))

W (ψ∓(z), ψ±(z))
, z ∈ σ(Hq). (4.21)

Here ψ±(z, x, t) is defined such that ψ±(z, x, t) = limε↓0 ψ±(z + iε, x, t), z ∈ σ(Hq).

If we take the limit from the other side we have ψ±(z, x, t) = limε↓0 ψ±(z − iε, x, t).
Moreover, the transmission T (z) and reflection R±(z) coefficients satisfy

T (z)R+(z) + T (z)R−(z) = 0, |T (z)|2 + |R±(z)|2 = 1. (4.22)

In particular one reflection coefficient, say R(z) = R+(z), suffices.

Proof. To see that (4.20) indeed holds note that apart from ψ±(z, x, t) also ψ±(z, x, t)
is a solution of

(
− d2

dx2
+ V

)
ψ = zψ, z ∈ σ(Hq). (4.23)

Therefore we have found four solutions of a second order linear differential equation,
hence they have to be linearly dependent, that is,

ψ±(z, x, t) = α∓(z)ψ∓(z, x, t) + β∓(z)ψ∓(z, x, t).

Thus we have

W (ψ±(z), ψ∓(z)) = α∓(z)W (ψ∓(z), ψ∓(z)),

W (ψ±(z), ψ∓(z)) = β∓(z)W (ψ∓(z), ψ∓(z)),
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4.2. The Riemann-Hilbert problem

and hence

α±(z) =
W (ψ∓(z), ψ±(z))

W (ψ±(z), ψ±(z))
and β±(z) =

W (ψ∓(z), ψ±(z))

W (ψ±(z), ψ±(z))
. (4.24)

Defining
T (z) := α(z)−1 = α+(z)−1 = α−(z)−1

and
R±(z) := β±(z)α(z)−1

one gets the scattering relations (4.20). The properties (4.22) can be verified directly
by straight-forward calculations.

Lemma 4.5. The transmission coefficient T (z) has a meromorphic extension to
C\σ(Hq(t)) with simple poles at the eigenvalues ρj . The residues are given by

ResρjT (z) =
2iR

1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γ±,j
c±1
j

, (4.25)

where

γ−1
±,j =

∫ ∞

−∞
|ψ±(ρj, y, t)|2dy (4.26)

are referred to as norming constants and ψ−(ρj , x, t) = cjψ+(ρj , x, t).

Proof. For notational simplicity let us suppress the dependence on x and t in the scope
of this proof. To see that (4.25) indeed holds we note that

ResρjT (z) =
W (ψ+(ρj), ψ+(ρj))(

d
dzW (ψ−(z), ψ+(z))

)∣∣
z=ρj

, (4.27)

since W (ψ+(z), ψ+(z)) has no zeros at ρj but W (ψ−(z), ψ+(z)) has. Let us denote the
differentiation with respect to z with a dot, then we have

d

dz
W (ψ−(z), ψ+(z)) = W (ψ̇−(z), ψ+(z)) +W (ψ−(z), ψ̇+(z)). (4.28)

Moreover, using (4.1) one obtains

∂

∂x
W (ψ̇−(z), ψ+(z)) = ψ−(z)ψ+(z),

∂

∂x
W (ψ−(z), ψ̇+(z)) = −ψ−(z)ψ+(z).

(4.29)

From [Mikikits-Leitner09], proof of Lemma 4.1, we know that

W (ψ̇−(z), ψ+(z)) −→ α(z)W (ψ̇q,−(z), ψq,+(z)) as x→ −∞,

W (ψ−(z), ψ̇+(z)) −→ α(z)W (ψq,−(z), ψ̇q,+(z)) as x→ +∞,
(4.30)
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4. Scattering theory and the Riemann–Hilbert problem

where α(z) is given by (4.19). Since ρj is a zero of W (ψ−(z), ψ+(z)) one has α(ρj) = 0
and thus

W (ψ̇−(ρj), ψ+(ρj)) −→ 0 as x→ −∞,

W (ψ−(ρj), ψ̇+(ρj)) −→ 0 as x→ +∞.
(4.31)

Combining (4.28), (4.30), and (4.31) yields

d

dz
W (ψ−(z), ψ+(z))

∣∣
z=ρj

= (4.32)

=

∫ x

−∞

∂

∂y
W (ψ̇−(ρj), ψ+(ρj))dy −

∫ +∞

x

∂

∂y
W (ψ−(ρj), ψ̇+(ρj))dy =

=

∫ ∞

−∞
ψ−(ρj)ψ+(ρj)dy, (4.33)

where the prime denotes differentiation with respect to z. Hence

( d
dz
W (ψ−(z), ψ+(z))

)∣∣
z=ρj

= γ−1
±,jc

±1
j , (4.34)

where γ−1
±,j = ‖ψ±(ρj , ., t)‖2

2 and ψ−(ρj , x, t) = cjψ+(ρj , x, t). Moreover, for z ∈ σ(Hq)
we have (cf. [Gesztesy03, Equ. (1.87)])

W (ψ±(z), ψ±(z)) = W (ψq,∓(z), ψq,±(z)) = ±
2iR

1/2
2g+1(z)∏g

k=1(z − µk)
, (4.35)

which finishes the proof.

Note that one reflection coefficient, say R(z) = R+(z) and one set of norming con-
stants, say γj = γ+,j suffices.

We will define a Riemann–Hilbert problem on the Riemann surface Kg as follows:

m(p, x, t) =





(
T (z) ψ−(z,x,t)

ψq,−(z,x,t)
ψ+(z,x,t)
ψq,+(z,x,t)

)
, p = (z,+)(

ψ+(z,x,t)
ψq,+(z,x,t) T (z) ψ−(z,x,t)

ψq,−(z,x,t)

)
, p = (z,−)

(4.36)

We are interested in the jump condition ofm(p, x, t) on Σ, the boundary of Π± (oriented
counterclockwise when viewed from top sheet Π+). It consists of two copies Σ± of
σ(Hq) which correspond to non-tangential limits from p = (z,+) with ±Im(z) > 0,
respectively to non-tangential limits from p = (z,−) with ∓Im(z) > 0.

To formulate our jump condition we use the following convention: When representing
functions on Σ, the lower subscript denotes the non-tangential limit from Π+ or Π−,
respectively,

m±(p0, x, t) = lim
Π±∋p→p0

m(p, x, t), p0 ∈ Σ. (4.37)

Using the notation above implicitly assumes that these limits exist in the sense that
m(p, x, t) extends to a continuous function on the boundary away from the band edges.
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4.2. The Riemann-Hilbert problem

Moreover, we will also use symmetries with respect to the sheet exchange map

p∗ =

{
(z,∓) for p = (z,±),

∞∓ for p = ∞±,
(4.38)

and complex conjugation

p =





(z,±) for p = (z,±) 6∈ Σ,

(z,∓) for p = (z,±) ∈ Σ,

∞± for p = ∞±.

(4.39)

In particular, we have p = p∗ for p ∈ Σ.
Note that we have m̃±(p, x, t) = m∓(p∗, x, t) for m̃(p, x, t) = m(p∗, x, t) (since ∗

reverses the orientation of Σ) and m̃±(p, x, t) = m±(p∗, x, t) for m̃(p, x, t) = m(p, x, t).

Theorem 4.6 (Vector Riemann–Hilbert problem). Let S+(H(0)) = {R(z), z ∈
σ(Hq); (ρj , γj), 1 ≤ j ≤ N} be the right scattering data of the operator H(0). Then
m(p) = m(p, x, t) defined in (4.36) is meromorphic away from Σ and satisfies:

1. The jump condition

m+(p) = m−(p)J(p), for p ∈ Σ, (4.40)

where the jump matrix is given by

J(p) =

(
1 − |R(p)|2 −R(p)Θ(p, x, t)e−tφ(p)

R(p)Θ(p, x, t)etφ(p) 1

)
, (4.41)

2. the divisor conditions

(m1) ≥ −Dµ̂(x,t)∗ −Dρ, (m2) ≥ −Dµ̂(x,t) −Dρ∗ , (4.42)

and pole conditions

(
m1(p) +

2iR
1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γj
π(p) − ρj

ψq(p, x, t)

ψq(p∗, x, t)
m2(p)

)
≥ −Dµ̂(x,t)∗ , near ρj ,

( 2iR
1/2
2g+1(ρj)∏g

k=1(ρj − µk)

γj
π(p) − ρj

ψq(p, x, t)

ψq(p∗, x, t)
m1(p) +m2(p)

)
≥ −Dµ̂(x,t), near ρ∗j ,

(4.43)

3. the symmetry condition

m(p∗) = m(p)

(
0 1
1 0

)
(4.44)

4. and the normalization
m(p∞) =

(
1 1

)
. (4.45)
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4. Scattering theory and the Riemann–Hilbert problem

Here

Dρ =
∑

j

Dρj , Dρ∗ =
∑

j

Dρ∗j
. (4.46)

denotes the divisor of poles, and the phase is given by

φ(p,
x

t
) = −24i

∫ p

E0

ωp∞,2 − 2i
x

t

∫ p

E0

ωp∞,0 ∈ iR for p ∈ Σ. (4.47)

Moreover, we have set

Θ(p, x, t) =
θ(z(p, x, t))

θ(z(p, 0, 0))

θ(z(p∗, 0, 0))
θ(z(p∗, x, t))

. (4.48)

Proof. 1. For the proof of the jump condition we need the scattering relations (4.20)
and (4.22). We have

J(p)−1 =

(
1 R(p)Θ(p, x, t)e−tφ(p)

−R(p)Θ(p, x, t)etφ(p) 1 − |R(p)|2
)

(4.49)

and we will show m+(p)J(p)−1 = m−(p). Note

ψq(p, x, t)

ψq(p∗, x, t)
= Θ(p, x, t)etφ(p).

To see that the jump condition holds for the first component of m−(p, x, t) we
calculate

T (p)
ψ−(p, x, t)

ψq,−(p, x, t)
−R(p)Θ(p, x, t)etφ(p) ψ+(p, x, t)

ψq,+(p, x, t)

= T (p)
ψ−(p, x, t)

ψq,−(p, x, t)
−R(p)

ψq,+(p, x, t)

ψq,−(p, x, t)

ψ+(p, x, t)

ψq,+(p, x, t)

=
1

ψq,−(p, x, t)
(T (p)ψ−(p, x, t) −R(p)ψ+(p, x, t))

=
ψ+(p, x, t)

ψq,−(p, x, t)
=

ψ+(p∗, x, t)
ψq,+(p∗, x, t)

, for p ∈ Σ.
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4.2. The Riemann-Hilbert problem

For the second component of m−(p) we compute

T (p)
ψ−(p, x, t)

ψq,−(p, x, t)
R(p)Θ(p, x, t)e−tφ(p) + (1 − |R(p)|2) ψ+(p, x, t)

ψq,+(p, x, t)

=
ψ−(p, x, t)

ψq,−(p, x, t)
R(p)

ψq,−(p, x, t)

ψq,+(p, x, t)
+ |T (p)|2 ψ+(p, x, t)

ψq,+(p, x, t)

=
(
ψ+(p, x, t) +R(p)ψ+(p, x, t)

) R(p)

ψq,+(p, x, t)
+ |T (p)|2 ψ+(p, x, t)

ψq,+(p, x, t)

=
ψ+(p, x, t)

ψq,+(p, x, t)
R(p) + |R(p)|2 ψ+(p, x, t)

ψq,+(p, x, t)
+ |T (p)|2 ψ+(p, x, t)

ψq,+(p, x, t)

=
1

ψq,+(p, x, t)

(
ψ+(p, x, t)R(p) + ψ+(p, x, t)

)

=
1

ψq,+(p, x, t)
T (p)ψ−(p, x, t) = T (p∗)

ψ−(p∗, x, t)
ψq,−(p∗, x, t)

, for p ∈ Σ.

Here we have extended our definition of T to Σ such that it is equal to T (z) on
Σ+ and equal to T (z) on Σ−. Similarly for R(z). In particular, the condition on
Σ+ is just the complex conjugate of the one on Σ− since we have R(p∗) = R(p)
and m±(p∗) = m±(p) for p ∈ Σ.

2. By Riemann’s vanishing theorem (cf. [Teschl00, Theorem A.13]) the divisor of
the Baker–Akhiezer function ψq satisfies

(
ψq(p, x, t)

)
= Dµ̂(x,t) −Dµ̂. (4.50)

Moreover, the transmission coefficient T (p) has simple poles at the eigenvalues
ρj , 1 ≤ j ≤ N . Thus the divisor conditions (4.42) are indeed fulfilled.

The pole conditions follow from the fact that the transmission coefficient T (p)
is meromorphic in Kg \ Σ with simple poles at ρj and its residues are given by
(4.25).

3. The symmetry condition (4.44) obviously holds by the definition of the function
m(p).

4. The normalization (4.45) is immediately clear from the asymptotic behavior of
m(p) near p∞, which will be derived later on (cf. Theorem 4.9).

Remark 4.7. Let ρj /∈ {µk(x, t)}gk=1. Note that the pole conditions (4.43) can be
equivalently formulated in the following way:

Resρjm(p) = lim
p→ρj

m(p)




0 0
2iR

1/2
2g+1(ρj)γj

Qg
k=1(ρj−µk)

0


 ,

Resρ∗jm(p) = lim
p→ρ∗j

m(p)


0

2iR
1/2
2g+1(ρj)γj

Qg
k=1(ρj−µk)

0 0


 .

(4.51)
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4. Scattering theory and the Riemann–Hilbert problem

For notational convenience we will abbreviate

Jj =




0 0
2iR

1/2
2g+1(ρj )γj

Qg
k=1(ρj−µk)

0




J∗
j =

(
0 1
1 0

)
Jj

(
0 1
1 0

)
=


0

2iR
1/2
2g+1(ρj)γj

Qg
k=1(ρj−µk)

0 0


 .

Moreover, one pole condition, e.g. the one at ρj , suffices, since the one at ρ∗j follows
by the symmetry condition:

Resρ∗jm(p) = lim
p→ρ∗j

(p − ρ∗j)m(p) = lim
p∗→ρj

(p∗ − ρj)m(p)

= lim
p∗→ρj

(p∗ − ρj)m(p∗)

(
0 1
1 0

)
= lim

p→ρj

m(p)Jj

(
0 1
1 0

)

= lim
p→ρj

m(p∗)

(
0 1
1 0

)
Jj

(
0 1
1 0

)
= lim

p→ρ∗j
m(p)J∗

j .

The following asymptotic behavior of the transmission coefficient for p near p∞ is
valid:

Lemma 4.8. Assume (4.2). Then the transmission coefficient T (z) has the following
asymptotic behavior

T (z) = 1 +
1

2i
√
z

∫ ∞

−∞
(V − Vq)(y, t)dy + o

( 1√
z

)
(4.52)

as z → ∞.

Proof. Use (4.10) to compute the asymptotic behavior of the Wronskian W (ψ−, ψ+).
Then inserting this expression into the definition of the transmission coefficient (4.21)
yields

T (z) =
W (ψq,−(z), ψq,+(z))

W (ψ−(z), ψ+(z))
= 1 +

1

2i
√
z

∫ ∞

−∞
(V − Vq)(y, t)dy + o(z−1/2).

We have the following asymptotic behavior of m(p) for p near p∞:

Theorem 4.9. The function m(p) defined in (4.36) satisfies

m(p) =
(
1 1

)
− 1

2i
√
z

∫ ∞

x
(V − Vq)(y, t)dy

(
−1 1

)
+ o
( 1√

z

)
, p = (z,±) (4.53)

for p near p∞.

36



4.2. The Riemann-Hilbert problem

Proof. Take p = (z,+), then using (4.10) one obtains the asymptotics for the second
component of m(p)

ψq,+(z, x, t)

ψ+(z, x, t)
= 1 + Ṽ+(x, t)

1

2i
√
z

+ o
(
z−1/2

)
. (4.54)

To get the asymptotic behavior of the first component use Lemma 4.8 and again (4.10)
to get

T (z)
ψ−(z, x, t)

ψq,−(z, x, t)
=
(
1 − 1

2i
√
z
(Ṽ−(x, t) + Ṽ+(x, t)) + o(z−1/2)

)
·

·
(
1 + Ṽ−(x, t)

1

2i
√
z

+ o(z−1/2)
)

= 1 − Ṽ+(x, t)
1

2i
√
z

+ o(z−1/2).

Hence we have verified (4.53). For p = (z,−) we get the same asymptotic behavior of
m(p) because of the symmetry condition (4.44).

For our further analysis it will be convenient to rewrite the pole conditions as jump
conditions following the idea of Deift, Kamvissis, Kriecherbauer, and Zhou [Deift96].
For that purpose we choose ε so small that the discs |π(p) − ρj| < ε are inside the
upper sheet Π+ and do not intersect with the other contours around the spectral bands
chosen as described in Section 5.4. Then we have the following

Lemma 4.10. Redefine m(p) in a neighborhood of ρj respectively ρ∗j in the following
way:

m(p) =





m(p)

(
1 0

γj(p,x,t)
π(p)−ρj

1

)
, |π(p)−ρj |<ε

p∈Π+
,

m(p)

(
1

γj(p,x,t)
π(p)−ρj

0 1

)
, |π(p)−ρj |<ε

p∈Π−
,

m(p), else,

(4.55)

where γj(p, x, t) is a function which is analytic in 0 < |π(p) − ρj | < ε and satisfies

lim
p→ρj

γj(p, x, t)
ψq(p

∗, x, t)

ψq(p, x, t)
= lim

p→ρ∗j

γj(p, x, t)
ψq(p

∗, x, t)

ψq(p, x, t)
=

2iR
1/2
2g+1(ρj)∏g

k=1(ρj − µk)
. (4.56)

For example, we can choose

γj(p, x, t) =
2iR

1/2
2g+1(ρj)∏g

k=1(ρj − µk)

ψq(p, x, t)

ψq(p∗, x, t)
(4.57)

or

γj(p, x, t) =
2iR

1/2
2g+1(ρj)∏g

k=1(π(p) − µk)

ψq(p, x, t)

ψq(p∗, x, t)
. (4.58)
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Then m(p) is meromorphic away from Σ and satisfies (4.40), (4.44), (4.45), the divisor
conditions change according to

(m1) ≥ −Dµ̂(x,t)∗ , (m2) ≥ −Dµ̂(x,t), (4.59)

and the pole conditions are replaced by the jump conditions

m+(p) = m−(p)

(
1 0

γj(p,x,t)
π(p)−ρj

1

)
, p ∈ Σε(ρj),

m+(p) = m−(p)

(
1

γj(p,x,t)
π(p)−ρj

0 1

)
, p ∈ Σε(ρ

∗
j ),

(4.60)

where

Σε(p) = {q ∈ Π± : |π(q) − z| = ε}, p = (z,±), (4.61)

is a small circle oriented counterclockwise around p on the same sheet as p.

Proof. Everything except for the pole conditions follows as in the proof of Theorem
4.6. That the pole conditions (4.43) are indeed replaced by the jump conditions (4.60)
as m(p) is redefined as in (4.55) can be shown by a straightforward calculation.

Solitary waves are special solutions of the KdV equation in the sense that they
correspond to reflectionless potentials, i.e., R ≡ 0. This can be best seen by choosing an
initial profile which corresponds to a reflectionless potential and then solve this initial
value problem for the KdV equation by the inverse scattering method (cf. [Drazin90,
Section 4.5]). The solutions obtained in that way are the single-soliton solution if
one eigenvalue is present, or, more general, the N -soliton solution corresponding to
N eigenvalues. The velocities (and thus the amplitudes) and relative positions of
these solitary waves are determined by the eigenvalues and the norming constants,
respectively. Since our method makes use of the fact that one deduces the Riemann–
Hilbert problem from scattering theory, it is quite obvious that also in the Riemann–
Hilbert approach each discrete eigenvalue corresponds to a soliton.

The next thing we will do will thus be to deduce the one-soliton solution of our
Riemann–Hilbert problem, i.e., the solution in the case where only one eigenvalue ρ
corresponding to one bound state is present and the reflection coefficient R(p) vanishes
identically on Kg.

Lemma 4.11 (One-soliton solution). Suppose there is only one eigenvalue and a van-
ishing reflection coefficient, that is, S+(H(t)) = {R(p) ≡ 0, p ∈ Σ; (ρ, γ)}. Let

cq,γ(ρ, x, t) = 1 + γW(x,t)(ψ̇q(ρ, x, t), ψq(ρ, x, t)) (4.62)

and

ψq,γ(p, x, t) = ψq(p, x, t) +
γ

z − ρ

ψq(ρ, x, t)W(x,t)(ψq(ρ, x, t), ψq(p, x, t))

cq,γ(ρ, x, t)
. (4.63)
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Here the dot denotes a derivate with respect to ρ and W(x,t)(f, g) = (f(x)g′(x) −
f ′(x)g(x)) is the usual Wronski determinant, where the prime denotes the derivative
with respect to x.

Then the unique solution of the Riemann–Hilbert problem (4.40)–(4.45) is given by

m0(p) =
(
f(p∗, x, t) f(p, x, t)

)
, f(p, x, t) =

ψq,γ(p, x, t)

ψq(p, x, t)
.

In particular ∫ ∞

x
(V − Vq)(y, t)dy = 2γ

ψq(ρ, x, t)
2

cq,γ(ρ, x, t)
, (4.64)

or

(V − Vq)(x, t) = −4γ
ψq(ρ, x, t)ψ

′
q(ρ, x, t)

cq,γ(ρ, x, t)
+ 2γ

ψq(ρ, x, t)
2c′q,γ(ρ, x, t)

cq,γ(ρ, x, t)2
. (4.65)

Proof. Since we assume the reflection coefficient to vanish, the jump along Σ disap-
pears. Moreover, since the symmetry condition (4.44) has to be satisfied it follows
that the solution of the Riemann–Hilbert problem (4.40)–(4.45) has to be of the form
m0(p) =

(
f(p∗, x, t) f(p, x, t)

)
. The divisor conditions (4.42) follow from (4.50) and

by construction of ψq,γ . It is obvious that the normalization condition (4.45) holds.
Thus it is only left to check the pole conditions (4.43). For that purpose we compute

lim
p→ρ

(z − ρ)f(p∗) =
γ(ρ, x, t)

cq,γ(ρ, , x, t)
W(x,t)(ψq(ρ, x, t), ψq(ρ

∗, x, t))

= − γ(ρ, x, t)

cq,γ(ρ, , x, t)

2iR
1/2
2g+1(ρ)∏g

k=1(ρ− µk)
,

where we defined

γ(p, x, t) = γ
ψq(p, x, t)

ψq(p∗, x, t)
= γΘ(p, x, t)etφ(p),

and we used (4.35). Moreover,

lim
p→ρ

f(p) = 1 +
γ

cq,γ(ρ, x, t)
lim
p→ρ

W(x,t)(ψq(ρ, x, t), ψq(p, x, t))

z − ρ

= 1 +
γ

cq,γ(ρ, x, t)

[
ψq(ρ, x, t) lim

p→ρ

ψ′
q(p, x, t) − ψ′

q(ρ, x, t)

z − ρ
−

− ψ′
q(ρ, x, t) lim

p→ρ

ψq(p, x, t) − ψq(ρ, x, t)

z − ρ

]

= 1 +
γ

cq,γ(ρ, x, t)
W(x,t)(ψq(ρ, x, t), ψ̇q(ρ, x, t)) =

1

cq,γ(ρ, x, t)
.

Hence we see that the pole conditions (4.43) are satisfied.
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The formula (4.64) follows after expanding around p = p∞, that is,

f(p, x, t) = 1 +
γ

(z − ρ)cq,γ(ρ, x, t)
ψq(ρ, x, t)

(
ψq(ρ, x, t)mq(p, x, t) − ψ′

q(ρ, x, t)
)

= 1 ∓ γ

cq,γ(ρ, x, t)
ψq(ρ, x, t)

2 1

i
√
z

+O(z−1), p = (z,±),

where we have used that the Weyl–Titchmarsh m-function has the following asymptotic
expansion for p near p∞ (cf. [Mikikits-Leitner09, Lemma 6.1])

mq,±(z, x, t) =
ψ′
q,±(z, x, t)

ψq,±(z, x, t)
= ±i

√
z +

Vq(x, t)

2i
√
z

+O(z−1), p = (z,±). (4.66)

Thus comparing with (4.53) proves the equation (4.64).
To see uniqueness, let m̃0(p) be a second solution which must be of the form m̃0(p) =(
f̃(p∗) f̃(p)

)
by the symmetry condition. Since the divisor Dµ̂(x,t) is nonspecial, the

Riemann–Roch theorem implies f̃(p) = αf(p) + β for some α, β ∈ C. But the pole
condition implies β = 0 and the normalization condition implies α = 1.
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5.1. The stationary phase points and the nonlinear dispersion

relation

There is a correspondence between the energy λ of the Lax operator Hq and the
propagation speed v at which the corresponding parts of the solutions of the KdV
equation travel. In this section we want to investigate this correspondence, which can
be considered as an analog of the classical dispersion relation. If we set

v(λ) = lim
ε→0

−12Re
(
i
∫ (λ+iε,+)
E0

ωp∞,2

)

Re
(
i
∫ (λ+iε,+)
E0

ωp∞,0

) = lim
ε→0

−12 Im
∫ (λ+iε,+)
E0

ωp∞,2

Im
∫ (λ+iε,+)
E0

ωp∞,0

, (5.1)

the nonlinear dispersion relation is given by

v(λ) =
x

t
. (5.2)

Recall that the Abelian differentials are given by (3.17) and (3.20).

For ρ ∈ R\σ(Hq) we have by using (2.6)

v(ρ) =
−12

∫ (ρ,+)
E0

ωp∞,2
∫ (ρ,+)
E0

ωp∞,0

, (5.3)

i.e.,

v(ρ) =
x

t
⇔ φ(ρ,

x

t
) = 0, (5.4)

where φ, defined in (4.47), is the phase of factorization problem (4.40). In other words,
v(ρ) is precisely the velocity of a soliton corresponding to the eigenvalue ρ.

For λ ∈ σ(Hq) both numerator and denominator vanish on σ(Hq). This follows by
again using (2.6). Hence from (3.17) and (3.20) and by using de l’Hospital we get

v(λ) = −
12
∏g
j=0(λ− λ̃j)∏g

j=1(λ− λj)
, (5.5)

that is,

v(λ) =
x

t
⇔ φ′(λ,

x

t
) = 0. (5.6)
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5. Conjugation and Deformation

Definition 5.1 (Stationary phase point). A point p = (z,±) is said to be a stationary
phase point if

φ′(z,
x

t
) = 0, (5.7)

where the prime denotes differentiation with respect to z.

Invoking (3.17) and (3.20), one obtains

φ′(z,
x

t
) = 12i

∏g
j=0(z − λ̃j)

R
1/2
2g+1(z)

+ i
x

t

∏g
j=1(z − λj)

R
1/2
2g+1(z)

, (5.8)

and hence the stationary phase points are given by

12

g∏

j=0

(z − λ̃j) +
x

t

g∏

j=1

(z − λj) = 0. (5.9)

Due to the normalization of our Abelian differentials, the numbers λj , 0 ≤ j ≤ g, are
real and different with precisely one lying in each spectral gap, say λj in the j’th gap.
Similarly, λ̃j, 0 ≤ j ≤ g, are real and different and λ̃j , 1 ≤ j ≤ g, sits in the j’th gap.
However λ̃0 can be anywhere (see [Teschl00, Sect. 13.5]).

Thus if λ ∈ σ(Hq) equation (5.6) tells us that v(λ) = x/t if and only if λ is a
stationary phase point.

The following lemma clarifies the dependence of the stationary phase points on x/t.

Lemma 5.1. Denote by zj(v), 0 ≤ j ≤ g, the stationary phase points, where v = x/t.
Set λ0 = −∞ and λg+1 = ∞, then

λj < zj(v) < λj+1 (5.10)

and there is always at least one stationary phase point in each spectral gap. Moreover,
zj(v) is monotone decreasing with

lim
η→−∞

zj(v) = λj+1 and lim
η→∞

zj(v) = λj. (5.11)

Proof. Since the Abelian differential ω2 + vω0 is normalized, there is at least one
stationary phase point in each gap, and they are all different. Setting

q̃(z) =

g∏

j=0

(z − λ̃j), q(z) =

g∏

j=1

(z − λj), (5.12)

we calculate

12q̃
(
zj(v)

)
+ ηq

(
zj(v)

)
= 0

12
∂q̃

∂zj

∂zj
∂η

+ q(zj) + v
∂q

∂zj

∂zj
∂v

= 0
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5.1. The stationary phase points

and finally obtain
∂zj
∂v

=
−q(zj)

12 ∂q̃
∂zj

+ v ∂q
∂zj

. (5.13)

Hence zj(v) is monotone decreasing and stays between λj and λj+1. Note that the
denominator in (5.13) cannot vanish since the zj , j = 0, . . . , g, are all different.

In other words Lemma 5.1 tells us the following: As v = x/t runs from −∞ to ∞ we
start with zg(v) coming from ∞ towards E2g, while the other stationary phase points
zj , j = 0, . . . , g− 1 stay in their spectral gaps until zg(v) has passed E2g and therefore
left the first spectral band [E2g,∞). After this has happened, the next stationary phase
point zg−1(v) can leave its gap (E2g−1, E2g) while zg(v) remains there, traverses the
next spectral band [E2g−2, E2g−1] and so on. Finally z0(v) traverses the last spectral
band [E0, E1] and moves to −∞. So, depending on x/t there is at most one single
stationary phase point belonging to the union of the bands σ(Hq), say zj(x/t). On
the Riemann surface, there are two such points zj and its flipping image z∗j which may
(depending on x/t) lie in Σ.

From the picture described above we conclude that there can occur three cases.

1. One stationary phase point, say zj , belongs to the interior of a band [E2j , E2j+1],
j = 0, . . . , g (setting E2g+1 = ∞) and all other stationary phase points lie in
open gaps.

2. No stationary phase point belongs to σ(Hq(t)) =
⋃g
j=1[E2j−2, E2j−1] ∪ [E2g,∞),

t ∈ R.

3. zj = z∗j = Ej for some j and all other stationary phase points lie in open gaps.

We will only consider case 1 and case 2. In the first case we have

φ′′(zj)/i =

∏g
k=0,k 6=j(zj − zk)

R
1/2
2g+1(zj)

> 0. (5.14)

According to these two cases we will define corresponding regions in the (x, t)-plane
in the following way:

Definition 5.2 (Oscillatory and soliton region). In the (x, t)-plane we can consider
the first two cases described above as two different regions:

Case 1 defines the oscillatory region, that is,

D =

g⋃

j=0

Dj =

g⋃

j=0

{(x, t)|zj(x/t) ∈ (E2j , E2j+1)}.

Case 2 defines the soliton region, that is,

{(x, t)|ζ(x/t) ∈ R \ σ(Hq(t))}.
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5. Conjugation and Deformation

We now can establish that v(λ) is monotone.

Lemma 5.2. The function v(ρ) defined in (5.1) is continuous and strictly monotone
decreasing. Moreover, it is a bijection from R to R.

Proof. That v(λ) defined in (5.1) is continuous is obvious except at the band edges
λ = Ej . However, in this case (5.1) becomes (5.5) by using de l’Hospital. The function
v(λ) defined in (5.5) is obviously continuous at the band edges Ej since λj lies in the
j’th gap and thus does not hit the band edges.

Furthermore, for large ρ we have

lim
|ρ|→∞

v(ρ)

−12ρ/ log(|ρ|) = 1, (5.15)

which shows limρ→±∞ v(ρ) = ∓∞.

In the regions where there is one stationary phase point zj(v) ∈ σ(Hq) we know that
zj(v) is the inverse of v(λ) and monotonicity follows from Lemma 5.1. In the other
regions we have v(ζ(z)) = z. By the implicit function theorem the derivative ζ ′, where
the prime denotes differentiation with respect to z, exists. Using definition (5.1) and
differentiating with respect to z yields

ζ ′ = −R1/2
2g+1(ζ)

Im
∫ (ζ,+)
E0

ωp∞,0

12
∏g
j=0(ζ − λ̃j) + v

∏g
j=1(ζ − λj)

= −R1/2
2g+1(ζ)

Im
∫ (ζ,+)
E0

ωp∞,0∏g
j=0(ζ − zj(v))

.

(5.16)

This shows strict monotonicity since Im
∫ (ζ,+)
E0

ωp∞,0 > 0 for ζ ∈ R\σ(Hq) and zj(v) ≤
ζ(v) ≤ zj−1(v) for ζ(v) ∈ (E2j−1, E2j) (if we set z−1 = ∞, zg+1 = −∞, E−1 = −∞,
E2g+2 = ∞). To see the last claim we can argue as follows: If ζ(v) were below zj(v)
at some point it would decrease as v decreases whereas zj(v) increases as v decreases.
This contradicts the fact that both must hit at E2j−1. Similarly we see that ζ(v) stays
below zj(v).

In summary, we can define a function ζ(x/t) via

v(ζ) =
x

t
. (5.17)

In particular, different solitons travel at different speeds and don’t collide with each
other or the parts corresponding to the continuous spectrum.

Moreover, there is some ζ0 for which v(ζ0) = 0 and hence there can be stationary
solitons provided ζ0 6∈ σ(Hq).

Lemma 5.3 (Stationary solitons). There exists a unique ζ0 such that v(ζ0) = 0.
Moreover, if ζ0 ∈ σ(Hq) or λ̃0 ∈ σ(Hq), then ζ0 = λ̃0. In particular, ζ0 ∈ σ(Hq) if and
only if λ̃0 ∈ σ(Hq).
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5.2. The partial transmission coefficient

Proof. Existence and uniqueness of ζ0 follows since v is a bijection. It is left to show
that ζ0 = λ̃0 if ζ ∈ σ(Hq) or λ̃0 ∈ σ(Hq). Assume ζ0 ∈ σ(Hq). Then using v(ζ0) = 0
and (5.5) we get

g∏

j=0

(ζ0 − λ̃j) = (ζ0 − λ̃0)

g∏

j=1

(ζ0 − λ̃j) = 0.

Since λ̃j ∈ (E2j−1, E2j), j = 1, . . . , g it follows ζ0 = λ̃0. Now suppose λ̃0 ∈ σ(Hq) and
again use (5.5) to get

v(λ̃0)

g∏

j=1

(λ̃0 − λj) = 0.

Since λj ∈ (E2j−1, E2j), j = 1, . . . , g we obtain v(λ̃0) = 0 and thus ζ0 = λ̃0.

5.2. The partial transmission coefficient

Apart from the transmission coefficient T (p) corresponding to the jump on Σ we will
also need the so-called partial transmission coefficient T (p, x, t) which corresponds
to the jump along C(x/t) = Σ ∩ π−1

(
(−∞, ζ(x/t))

)
. The usefulness of T (p, x, t) will

become clear later on in Section 5.3. Before defining the partial transmission coefficient
it is necessary to introduce the Blaschke factor.

Definition 5.3 (Blaschke factor). The factor

B(p, ρ) = exp
(
g(p, ρ)

)
= exp

(∫ p

E0

ωρ ρ∗
)

= exp
(∫ ρ

E(ρ)
ωp p∗

)
, π(ρ) ∈ R, (5.18)

where E(ρ) is E0 if ρ < E0 and either E2j−1 or E2j if ρ ∈ (E2j−1, E2j), 1 ≤ j ≤ g
is called Blaschke factor. Here ωp p∗ denotes an Abelian differential of the third kind
with simple poles at p and p∗. Note that the Blaschke factor B(p, ρ) is a multivalued
function with a simple zero at ρ and simple pole at ρ∗ satisfying |B(p, ρ)| = 1, p ∈ ∂Π+.
It is real-valued for π(p) ∈ (−∞, E0) and satisfies

B(E0, ρ) = 1 and B(p∗, ρ) = B(p, ρ∗) = B(p, ρ)−1 (5.19)

(see e.g., [Teschl07]).

Later on it will be useful to work with explicit formulas of such differentials appearing
in (5.18). Hence we give the following

Remark 5.4. Abelian differentials of the third kind ωq1 q2 , with simple poles at q1
and q2, corresponding residues +1 and −1, vanishing a-periods, and holomorphic on
Kg \ {q1, q2}, are explicitly given by ([Gesztesy03, Appendix B])

ωp1 p2 =
(R1/2

2g+1 +R
1/2
2g+1(p1)

2
(
π − π(p1)

) −
R

1/2
2g+1 +R

1/2
2g+1(p2)

2
(
π − π(p2)

) + Pp1 p2(z)
) dπ

R
1/2
2g+1

, (5.20)

ωp1 p∞ =
(
−
R

1/2
2g+1 +R

1/2
2g+1(p1)

2
(
π − π(p1)

) + Pp1 p∞(z)
) dπ

R
1/2
2g+1

, (5.21)
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5. Conjugation and Deformation

where p1, p2 ∈ Kg \ {p∞} and Pp1 p2(z) and Pp1 p∞(z) are polynomials of degree g − 1
which have to be determined from the normalization

∫
aℓ
ωp1 p2 = 0 and

∫
aℓ
ωp1 p∞ = 0,

respectively. In particular,

ωpp∗ =
(R1/2

2g+1(p)

π − π(p)
+ Ppp∗(π)

) dπ

R
1/2
2g+1

. (5.22)

The following lemma defines a divisor of new poles νj, j = 1, . . . , g. As one will see
in the proof of Lemma 5.6 these poles are introduced in such a way that the single-
valuedness of the partial transmission coefficient T (p, x, t) is guaranteed.

Lemma 5.5. [Kamvissis07b] Define a divisor Dν̂(x,t) of degree g via

αE0
(Dν̂(x,t)) = αE0

(Dµ̂(x,t)) + δ(x/t), (5.23)

where

δℓ(x/t) = 2
∑

ρk<ζ(x/t)

AE0
(ρ̂k) +

1

2πi

∫

C(x/t)
log(1 − |R|2)ζℓ, ℓ = 1, . . . , g, (5.24)

where C(x/t) = Σ∩ π−1((−∞, ζ(x/t)) and ζ(x/t) is defined in (5.17). Then Dν̂(x,t) is
nonspecial and π(ν̂j(x, t)) = νj(x, t) ∈ R with precisely one in each spectral gap.

Proof. One checks that δℓ is real. Hence it follows from [Teschl00, Lem. 9.1] that the
νj are real and that there is one in each gap. In particular, the divisor Dν̂ is nonspecial
by [Teschl00, Lem. A.20].

Definition 5.4 (Partial transmission coefficient). We define the partial transmission
coefficient as

T (p, x, t) =
θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

) θ
(
z(p, x, t)

)

θ
(
z(p, x, t) + δ(x/t)

) ·

·
( ∏

ρk<ζ(x/t)

exp
(
−
∫ p

E0

ωρk ρ
∗
k

))
exp

( 1

2πi

∫

C(x/t)
log(1 − |R|2)ωp p∞

)
,

(5.25)
where δ(x, t) is defined in (5.24) and ωp1 p2 is the Abelian differential of the third kind
with poles at p1 and p2 (cf. Remark 5.4).

The function T (p, x, t) is meromorphic in Kg\C(x/t) with first order poles at ρk <
ζ(x/t), ν̂j(x, t) and first order zeros at µ̂j(x, t).

Lemma 5.6. T (p, x, t) satisfies the following scalar meromorphic Riemann–Hilbert
problem:

T+(p, x, t) = T−(p, x, t)(1 − |R(p)|2), p ∈ C(x/t),

(T (p, x, t)) =
∑

ρk<ζ(x/t)

Dρ∗k
−

∑

ρk<ζ(x/t)

Dρk
+ Dµ̂(x,t) −Dν̂(x,t),

T (p∞, x, t) = 1.

(5.26)

Moreover,
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5.2. The partial transmission coefficient

1.

T (p∗, x, t)T (p, x, t) =

g∏

j=1

z − µj
z − νj

, z = π(p),

2. T (p, x, t) = T (p, x, t) and in particular T (p, x, t) is real-valued for p ∈ Σ.

Proof. For the purpose of making the proof easier to follow we will split it into four
steps.

Step 1: Solving the Riemann–Hilbert problem
On the Riemann sphere a scalar Riemann-Hilbert problem is solved by the
Plemelj–Sokhotsky formula. This means that the Cauchy type integral

Φ(z) =
1

2πi

∫

L

ϕ(λ)

z − λ
dλ, (5.27)

where L denotes a simple smooth oriented arc and ϕ(z) is a function, which is
Hölder continuous on L, solves the Riemann–Hilbert problem

Φ+(z) − Φ−(z) = ϕ(z), z ∈ L. (5.28)

Here Φ+(z) and Φ−(z) denote the limiting values of Φ(z) as z approaches L from
the left and the right, respectively. For more details on scalar Riemann–Hilbert
problems we refer to [Ablowitz03, Chapter 7] and [Muskhelishvili53].

On the Riemann surface Kg we need to replace the Cauchy kernel dλ
λ−z by the

Abelian differential of the third kind ωpp∞ . Now note that solving the Riemann–
Hilbert problem

T+(p) = T−(p)(1 − |R(p)|2), p ∈ C(x/t), (5.29)

for T is equivalent to finding the solution log(T ) of

log T+(p) − log T−(p) = log
(
1 − |R(p)|2

)
, p ∈ C(x/t). (5.30)

Therefore by the analogue of the Plemelj–Sokhotsky formula for the Riemann
surface Kg we get

T (p) = c · exp
( 1

2πi

∫

C(x/t)
log(1 − |R|2)ωp p∞

)
, (5.31)

where the normalization constant c has to be chosen such that the divisor and
normalization condition are fulfilled (cf. Step 3).

Step 2: Single-valuedness
Recall that the Riemann theta function satisfies the quasi-periodic property
(3.13), i.e.,

θ(z +m+ τ n) = exp
{

2πi
(
− 〈n, z〉 − 〈n, τ n〉

2

)}
θ(z), n,m ∈ Z

g, (5.32)
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where τ is the matrix of b-periods defined in (2.37) and 〈., .〉 denotes the scalar
product in R

g (cf., e.g. [Farkas92] or [Teschl00, App. A]). By definition both the
theta functions (as functions on Kg) and the exponential term are only defined on
the fundamental polygon K̂g of Kg and do not extend to single-valued functions
on Kg in general. Hence we have to verify that (5.25) gives rise to a single-valued
function on Kg.

Let us start by looking at the values from the left/right on the cycle bℓ. Since our
path of integration in z(p, x, t) is forced to stay in K̂g, the difference between the
limits from the right and left is the value of the integral along aℓ. So by (3.13)
we have

θ
(
zr(p, x, t)

)

θ
(
zr(p, x, t) + δ(x/t)

) −→
θ
(
zl(p, x, t) +

∫
aℓ
ζ
)

θ
(
zl(p, x, t) + δ(x/t) +

∫
aℓ
ζ
) =

=
θ
(
zl(p, x, t)

)

θ
(
zl(p, x, t) + δ(x/t)

) ,

where zr(p, x, t) and zl(p, x, t) denote the value of z(p, x, t) if p approaches bℓ
from the right and left, respectively. Similarly, since ωp p∞ is normalized along
aℓ cycles, the limits from the left/right of ωp p∞ coincide. So the limits of the
exponential terms from different sides of bℓ match as well.

Next, let us compare the values from the left/right on the cycle aℓ. Since our
path of integration in z(p, x, t) is forced to stay in K̂g, the difference between the
limits from the right and left is the value of the integral along bℓ. Thus by (3.13)
we have

θ
(
zr(p, x, t)

)

θ
(
zr(p, x, t) + δ(x/t)

) −→
θ
(
zl(p, x, t) +

∫
bℓ
ζ
)

θ
(
zl(p, x, t) + δ(x/t) +

∫
bℓ
ζ
) =

=
θ
(
zl(p, x, t)

)

θ
(
zl(p, x, t) + δ(x/t)

) · exp(−2πiδℓ).

On the other hand, since ωp p∞ is normalized along aℓ cycles, we deduce

exp
( 1

2πi

∫

C(x/t)
log(1 − |R|2)ωpr p∞

)
−→ (5.33)

−→ exp
( 1

2πi

∫

C(x/t)
log(1 − |R|2)

(
ωpl p∞ + 2πiζℓ

))
(5.34)
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and using (A.21) in [Teschl00] we have

∏

ρk<ζ(x/t)

exp
(
−
∫ pr

E0

ωρk ρ
∗
k

)
= exp

(
−

∑

ρk<ζ(x/t)

∫ pr

E0

ωρk ρ
∗
k

)
=

= exp
(
−

∑

ρk<ζ(x/t)

∫ ρk

E(ρk)
ωpr p∗r

)
−→

−→ exp
(
−

∑

ρk<ζ(x/t)

( ∫ ρk

E(ρk)
ωpl p

∗
l
+ 4πi

∫ ρk

E(ρk)
ζℓ
))

= (5.35)

= exp
(
−

∑

ρk<ζ(x/t)

( ∫ ρk

E(ρk)
ωpl p

∗
l
+ 4πiAE0

(ρ̂k)
))
. (5.36)

Thus by our definition of δ in (5.24) the jumps of the ratio of theta functions
and the exponential terms compensate each other, which shows that (5.25) is
single-valued.

Step 3: Poles and zeros
T is a (locally) holomorphic solution of our Riemann–Hilbert problem, which is
1 at p∞ by our choice of the second pole of the Cauchy kernel ωp p∞. The ratio
of theta functions is meromorphic with simple zeros at µ̂j and simple poles at
ν̂j because of Riemann’s vanishing theorem and the choice of the divisor Dν̂(x,t)

defined by (5.23). From the product of the Blaschke factors we get that T has
simple poles at ρk and simple zeros at ρ∗k for which ρk < ζ(x/t) is valid. Moreover,
the normalization is chosen again such that the ratio of theta functions is one at
p∞.

Step 4: Uniqueness
To prove uniqueness let T̃ be a second solution and consider T̃ /T . Then T̃ /T
has no jump and the Schwarz reflection principle implies that it extends to a
meromorphic function on Kg. Since the poles of T cancel the poles of T̃ , its
divisor satisfies (T̃ /T ) ≥ −Dµ̂(x,t). Since Dµ̂(x,t) is nonspecial, T̃ /T has to be
a constant by the Riemann–Roch theorem. Setting p = p∞, we see that this
constant is one, that is, T̃ = T as claimed.

Finally, T (p, x, t) = T (p, x, t) follows from uniqueness since both functions solve
(5.26).

Remark 5.7. Alternatively to (5.25) there exists also an other representation of the
partial transmission coefficient. First observe that

∫

C(x/t)
fωpp∞ =

∫

C(x/t)
f
(
ωp p∗ + ωp∗ p∞

)
,
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and hence by using
∫
C(x/t) fωp∗ p∞ = −

∫
C(x/t) fωpp∞ we have

∫

C(x/t)
fωpp∞ =

1

2

∫

C(x/t)
fωpp∗ , (5.37)

where f can be any symmetric function f(q) = f(q∗). Thus, by using symmetry,
|R(p∗)| = |R(p)| for p ∈ C(x/t), the partial transmission coefficient defined in (5.25)
can also be expressed in the following form

T (p, x, t) =
θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

) θ
(
z(p, x, t)

)

θ
(
z(p, x, t) + δ(x/t)

) ·

·
( ∏

ρk<ζ(x/t)

exp
(
−
∫ ρk

E(ρk)
ωp p∗

))
exp

( 1

4πi

∫

C(x/t)
ln(1 − |R|2)ωp p∗

)
.

(5.38)

Later on we will also need the expansion of T (p, x, t) around p∞. For that purpose
note the following

Theorem 5.8. The asymptotic expansion of the partial transmission coefficient for p
near p∞ is given by

T (p, x, t) = 1 ± T1(x, t)√
z

+O(
1

z
), p = (z,±), (5.39)

where

T1(x, t) = −
∑

ρk<ζ(x/t)

2

∫ ρk

E(ρk)
ωp∞,0 +

1

2πi

∫

C(x/t)
log(1 − |R|2)ωp∞,0

− i∂x ln

(
θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

)
)
,

where ωp∞,0 is the Abelian differential of the second kind defined in (3.17).

Proof. From dk

dzkωpE0 = k!ωp∞,k−1 we get that

ωpE0 = ωp∞E0 +
∞∑

k=1

ζkωp∞,k−1, ζ = z−1/2,

ωp∗E0 = ωp∞E0 +
∞∑

k=1

ζkωp∞,k−1, ζ = −z−1/2.

Using this it follows

ωpp∗ = ωpE0 − ωp∗E0 = 2

∞∑

k=1

ωp∞,2k−2ζ
2k−1, ζ = z−1/2. (5.40)

Thus, referring to the expression (5.38) of the partial transmission coefficient one can
check by expanding the ratio of theta functions, like it is done in the proof of Theo-
rem 3.6, and using (5.40) that the expansion (5.39) is indeed valid.
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5.3. Conjugation

Remark 5.9. Once the last stationary phase point has left the spectrum, that is, once
C(x/t) = Σ, we have T (p, x, t) = T (z)±1, p = (z,±) (compare [Teschl07]).

5.3. Conjugation

This section deals with the conjugation of the Riemann–Hilbert problem. We will
see that conjugation provides a useful method for passing from a Riemann–Hilbert
problem involving solitons to one without.

Since to each discrete eigenvalue there corresponds a soliton, it follows that solitons
are represented in Riemann–Hilbert problems by pole conditions like (4.60). For this
reason we will study how poles can be dealt with in this section. For this purpose we
will follow closely the presentation of [Krüger09a, Section 4].

In order to remove the poles there are two cases to distinguish. If ρj > ζ(x/t), the
jump at ρj is exponentially close to the identity and there is nothing to do.

Otherwise, if ρj < ζ(x/t), we need to use conjugation to turn the jumps at these
poles into exponentially decaying ones, again following [Deift96]. It turns out that we
will have to handle the poles at ρj and ρ∗j in one step in order to preserve symmetry
and in order to not add additional poles elsewhere.

Moreover, the conjugation of the Riemann–Hilbert problem also serves another pur-
pose, namely that the jump matrix can be separated into two matrices, one containing
an off-diagonal term with exp(−tφ) and the other with exp(tφ). Without conjugation
this is not possible for the jump on C(x/t) = Σ∩π−1

(
(−∞, ζ(x/t))

)
, since in this case

there also appears a diagonal matrix if one wants to separate the jump matrix. As we
will see, the partial transmission coefficient T (p, x, t), which was introduced exactly for
that purpose in Section 5.2, will play a major role in the conjugation step.

For easy reference we note the following result.

Lemma 5.10 (Conjugation). Assume that Σ̃ ⊆ Σ. Let D be a matrix of the form

D(p) =

(
d(p∗) 0

0 d(p)

)
, (5.41)

where d : M\Σ̃ → C is a sectionally analytic function. Set

m̃(p) = m(p)D(p), (5.42)

then the jump matrix transforms according to

ṽ(p) = D−(p)−1v(p)D+(p). (5.43)

m̃(p) satisfies the symmetry condition (4.44) if and only if m(p) does. Furthermore,
m̃(p) satisfies the normalization condition (4.45) if m(p) satisfies (4.45) and d(p∞) =
1.
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5. Conjugation and Deformation

Proof. For p ∈ Σ one computes

m̃+(p) = m+(p)D+(p) = m−(p)v(p)D+(p) = m̃−(p)D−(p)−1v(p)D+(p) = m̃+(p)ṽ(p),

and hence ṽ(p) = D−(p)−1v(p)D+(p). The symmetry condition for m̃ follows from

m̃(p∗) = m(p∗)D(p∗) = m(p)

(
0 1
1 0

)(
d(p) 0
0 d(p∗)

)
= m̃(p)

(
0 1
1 0

)
.

The normalization can be investigated by a straightforward calculation.

Lemma 5.11. Introduce

B̃(p, ρ) = Cρ(x, t)
θ(z(p, x, t))

θ(z(p, x, t) + 2AE0
(ρ))

B(p, ρ). (5.44)

Then B̃(., ρ) is a well defined meromorphic function, with divisor

(B̃(., ρ)) = −Dν̂ + Dµ̂ −Dρ∗ + Dρ, (5.45)

where ν is defined via
αE0

(Dν̂) = αE0
(Dµ̂) + 2AE0

(ρ). (5.46)

Furthermore,
B̃(p∞, ρ) = 1, (5.47)

if

Cρ(x, t) =
θ(z(p∞, x, t) + 2AE0

(ρ))

θ(z(p∞, x, t))
. (5.48)

Proof. We start by checking single-valuedness. This is done like in the proof of
Lemma 5.6. The a-periods follow from normalization. For the b periods, we com-
pute for E ∈ (E2l−1, E2l) using (3.13)

θ
(
zr(p, x, t)

)

θ
(
zr(p, x, t) + 2AE0

(ρ)
) −→

θ
(
zl(p, x, t) +

∫
bℓ
ζ
)

θ
(
zl(p, x, t) + 2AE0

(ρ) +
∫
bℓ
ζ
) =

=
θ
(
zl(p, x, t)

)

θ
(
zl(p, x, t) + 2AE0

(ρ)
) · exp

(
− 2πi(2AE0,l(ρ))

)
,

and by using (A.21) in [Teschl00] we have

B(pr, ρ) = exp
(∫ ρ

E(ρ)
ωpr p∗r

)
−→ exp

( ∫ ρk

E(ρk)
ωpl p

∗
l
+ 2πi

(
2

∫ ρk

E(ρk)
ζℓ
))

=

= exp
( ∫ ρk

E(ρk)
ωpl p

∗
l

)
exp

(
2πi(2AE0,l(ρ))

)

and the claim follows.
The normalization condition (5.47) follows by a computation using (5.19).
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5.3. Conjugation

Now let us start with an easy case, namely to show how to conjugate the jump
corresponding to one eigenvalue ρ.

Lemma 5.12. Assume that the Riemann–Hilbert problem for m has jump conditions
near ρ and ρ∗ given by

m+(p) = m−(p)

(
1 0
γ(p)

π(p)−ρ 1

)
, p ∈ Σε(ρ),

m+(p) = m−(p)

(
1 − γ(p∗)

π(p)−ρ
0 1

)
, p ∈ Σε(ρ

∗),

(5.49)

and satisfies a divisor condition

(m1) ≥ −Dµ̂∗ , (m2) ≥ −Dµ̂. (5.50)

Then this Riemann–Hilbert problem is equivalent to a Riemann–Hilbert problem for m̃
which has jump conditions near ρ and ρ∗ given by

m̃+(p) = m̃−(p)

(
1 B̃(p,ρ∗)(π(p)−ρ)

γ(p)B̃(p∗,ρ∗)

0 1

)
, p ∈ Σε(ρ),

m̃+(p) = m̃−(p)

(
1 0

− B̃(p∗,ρ∗)(π(p)−ρ)
γ(p∗)B̃(p,ρ∗)

1

)
, p ∈ Σε(ρ

∗),

(5.51)

divisor condition
(m̃1) ≥ −Dν̂∗ , (m̃2) ≥ −Dν̂ , (5.52)

where Dν̂ is defined via

αE0
(Dν̂) = αE0

(Dµ̂) + 2AE0
(ρ), (5.53)

and all remaining data conjugated (as in Lemma 5.10) by

D(p) =

(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
. (5.54)

Proof. Denote by U the interior of Σε(ρ). To turn γ into γ−1, introduce D by

D(p) =





(
1 π(p)−ρ

γ(p)

− γ(p)
π(p)−ρ 0

)(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, p ∈ U,

(
0 − γ(p∗)

π(p)−ρ
π(p)−ρ
γ(p∗) 1

)(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, p∗ ∈ U,

(
B̃(p∗, ρ∗) 0

0 B̃(p, ρ∗)

)
, else,

and note that D(p) is meromorphic away from the two circles. Now set m̃(p) =
m(p)D(p). The claim about the divisors follows from noting where the poles of B̃(p, ρ)
are.
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5. Conjugation and Deformation

Observe that our original jump matrix (4.41) has the following important factoriza-
tion

J(p) = b−(p)−1b+(p), (5.55)

where

b−(p) =

(
1 R(p∗)Θ(p∗)e−tφ(p)

0 1

)
, b+(p) =

(
1 0

R(p)Θ(p)etφ(p) 1

)
.

Later in Section 5.4 it will become clear that this is the right factorization for p ∈
Σ\C(x/t), i.e., π(p) > ζ(x/t). Similarly, we have

J(p) = B−(p)−1

(
1 − |R(p)|2 0

0 1
1−|R(p)|2

)
B+(p), (5.56)

where

B−(p) =

(
1 0

−R(p)Θ(p)etφ(p)

1−|R(p)|2 1

)
, B+(p) =

(
1 −R(p∗)Θ(p∗)e−tφ(p)

1−|R(p)|2
0 1

)
.

This constitutes the right factorization for p ∈ C(x/t), i.e., π(p) < ζ(x/t). Here we
have used R(p) = R(p∗), for p ∈ Σ. To get rid of the diagonal part in the factorization
corresponding to π(p) < ζ(x/t) and to conjugate the jumps near the eigenvalues we
need the partial transmission coefficient defined in (5.25). Note that Lemma 5.12 can
be applied iteratively to conjugate the eigenvalues ρj < ζ(x/t): start with the poles
µ = µ0 and apply the lemma setting ρ = ρ1. This results in new poles µ1 = ν. Then
repeat this with µ = µ1, ρ = ρ2, and so on.

All in all we will now make the following conjugation step: abbreviate

γk(p, x, t) =
2iR

1/2
2g+1(ρk)∏g

l=1(ρk − µl)

ψq(p, x, t)

ψq(p∗, x, t)
γk

and introduce

D(p) =





(
1 π(p)−ρk

γk(p,x,t)

−γk(p,x,t)
π(p)−ρk

0

)
D0(p),

|π(p)−ρk|<ε
p∈Π+

, ρk < ζ(x/t),

(
0 −γk(p∗,x,t)

π(p)−ρk
π(p)−ρk

γk(p∗,x,t) 1

)
D0(p),

|π(p)−ρk|<ε
p∈Π−

, ρk < ζ(x/t),

D0(p), else,

(5.57)

where

D0(p) =

(
T (p∗, x, t) 0

0 T (p, x, t)

)
.

Note that D(p) is meromorphic in Kg\C(x/t) and that we have

D(p∗) =

(
0 1
1 0

)
D(p)

(
0 1
1 0

)
. (5.58)
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5.3. Conjugation

Now we conjugate our problem using D(p) and observe that, since T (p, x, t) has the
same behavior as T (p) for p a band edge, the new vector m2(p) = m(p)D(p) is again
continuous near the band edges.

Theorem 5.13 (Conjugation). The function m2(p) = m(p)D(p), where D(p) is de-
fined in (5.57), is meromorphic away from C(x/t) and satisfies:

1. The jump condition
m2

+(p) = m2
−(p)J2(p), p ∈ Σ, (5.59)

where the jump matrix is given by

J2(p) = D0−(p)−1J(p)D0+(p), (5.60)

2. the divisor conditions

(m2
1) ≥ −Dν̂(x,t)∗ , (m2

2) ≥ −Dν̂(x,t), (5.61)

All jumps corresponding to poles, except for possibly one if ρk = ζ(x/t), are
exponentially decreasing. In that case we will keep the pole condition which is
now of the form:

(
m2

1(p) +
γk(p, x, t)

π(p) − ρk

T (p∗, x, t)
T (p, x, t)

m2
2(p)

)
≥ −Dν̂(x,t)∗ , near ρk,

(γk(p∗, x, t)
π(p) − ρk

T (p, x, t)

T (p∗, x, t)
m2

1(p) +m2
2(p)

)
≥ −Dν̂(x,t), near ρ∗k.

(5.62)

3. the symmetry condition

m2(p∗) = m2(p)

(
0 1
1 0

)
,

4. and the normalization
m2(p∞) =

(
1 1

)
.

Proof. Invoking Lemma 5.10 and (4.40) we see that the jump matrix J2(p) is indeed
given by (5.60). Using the divisor conditions (5.26) and (4.59) we obtain

(m2
1(p)) = (m1(p)T (p∗)) ≥ −Dν̂(x,t)∗ , (m2

2(p)) = (m2(p)T (p)) ≥ −Dν̂(x,t). (5.63)

That means the shifting of the poles from µ̂j(x, t) to ν̂j(x, t) stems from conjugating
m with the matrix D0.

Moreover, using Lemma 5.12 one easily sees that the jump corresponding to ρk <
ζ(x/t) (if any) is given by

ṽ(p) =

(
1 T (p,x,t)(π(p)−ρk)

γk(p,x,t)T (p∗,x,t)

0 1

)
, p ∈ Σε(ρk),

ṽ(p) =

(
1 0

−T (p∗,x,t)(π(p)−ρk)
γk(p∗,x,t)T (p,x,t) 1

)
, p ∈ Σε(ρ

∗
k),

(5.64)
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5. Conjugation and Deformation

and by Lemma 5.10 the jump corresponding to ρk > ζ(x/t) (if any) reads

ṽ(p) =

(
1 0

γk(p,x,t)T (p∗,x,t)
T (p,x,t)(π(p)−ρk) 1

)
, p ∈ Σε(ρk),

ṽ(p) =

(
1 − γk(p∗,x,t)T (p,x,t)

T (p∗,x,t)(π(p)−ρk)

0 1

)
, p ∈ Σε(ρ

∗
k).

(5.65)

That is, all jumps corresponding to the poles ρk 6= ζ(x/t) are exponentially decreasing.
That the pole conditions are of the form (5.62) in the case ρk = ζ(x/t) can be checked
directly: just use the pole conditions of the original Riemann–Hilbert problem (4.43)
and the divisor condition (5.26) for T (p, x, t). Furthermore, by (4.44) and (5.58) one
checks that the symmetry condition for m2 is fulfilled. From T (p∞, x, t) = 1 we finally
deduce

m2(p∞) = m(p∞) =
(
1 1

)
, (5.66)

which finishes the proof.

Using (5.55) for p ∈ Σ \ C(x/t) = Σ ∩ π−1
(
(ζ(x/t),∞)

)
the jump matrix J2 can be

factorized as

J2 =

(
1 − |R|2 − T (p,x,t)

T (p∗,x,t)RΘe−t φ

T (p∗,x,t)
T (p,x,t) RΘet φ 1

)
= D−1

0 JD0 = D−1
0 b−1

− b+D0 =

= D−1
0 b−1

− D0D
−1
0 b+D0 = (b̃−)−1b̃+,

where b̃± = D−1
0 b±D0, that is,

b̃− =

(
1 T (p,x,t)

T (p∗,x,t)R(p∗)Θ(p∗)e−tφ(p)

0 1

)
, b̃+ =

(
1 0

T (p∗,x,t)
T (p,x,t) R(p)Θ(p)etφ(p) 1

)
. (5.67)

For p ∈ C(x/t) = Σ ∩ π−1
(
(−∞, ζ(x/t))

)
we can factorize J2 in the following way

J2 =

(
1 − T+(p,x,t)

T−(p∗,x,t)R(p∗)Θ(p∗)e−t φ(p)

T+(p∗,x,t)
T−(p,x,t) R(p)Θ(p)et φ(p) 1 − |R(p)|2

)
= D−1

0−JD0+ =

= D−1
0−B

−1
−

(
1 − |R(p)|2 0

0 (1 − |R(p)|2)−1

)
B+D0+ =

= D−1
0−B

−1
−

(
T−(p∗,x,t)
T+(p∗,x,t) 0

0 T−(p,x,t)
T+(p,x,t)

)
B+D0+ =

= D−1
0−B

−1
− D0−D

−1
0+B+D0+ = (B̃−)−1B̃+,

where B̃± = D−1
± B±D±, that is,

B̃− =

(
1 0

−T−(p∗,x,t)
T−(p,x,t)

R(p)Θ(p)
1−|R(p)|2 et φ(p) 1

)
, B̃+ =

(
1 − T+(p,x,t)

T+(p∗,x,t)
R(p∗)Θ(p∗)
1−|R(p)|2 e−t φ(p)

0 1

)
.

(5.68)
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Figure 5.1.: The lens contour near a band containing a stationary phase point zj and
its flipping image containing z∗j . Views from the top and bottom sheet.

Dotted curves lie in the bottom sheet. [Kamvissis07b]

Here we have used (5.56).

Note that by T (p, x, t) = T (p, x, t) we have

T−(p∗, x, t)
T+(p, x, t)

=
T−(p∗, x, t)
T−(p, x, t)

1

1 − |R(p)|2 =
T+(p, x, t)

T+(p, x, t)
, p ∈ C(x/t), (5.69)

respectively

T+(p, x, t)

T−(p∗, x, t)
=

T+(p, x, t)

T+(p∗, x, t)
1

1 − |R(p)|2 =
T−(p∗, x, t)
T−(p∗, x, t)

, p ∈ C(x/t). (5.70)

5.4. Deformation

In our next step we make a contour deformation and move the corresponding parts
of the jumps into regions where the off-diagonal terms are exponentially decreasing.
That means that we will move those parts of the jump matrices containing exp(−tφ)
(resp. exp(tφ)) into regions where Re(φ(p, x/t)) > 0 (resp. Re(φ(p, x/t)) < 0).

In the oscillatory region, that is in the case where one stationary phase point, say zj ,
lies in the interior of its spectral band (E2j , E2j+1), we introduce the “lens” contour
near that band as shown in Figure 5.1, which is taken from [Kamvissis07b].

The oriented paths Cj = Cj1 ∪ Cj2, C∗
j = C∗

j1 ∪ C∗
j2 are meant to be close to the

band [E2j , E2j+1].

Concerning the other bands [E2k, E2k+1], k 6= j, k = 0, . . . , g (setting E2g+1 = ∞),
one simply constructs “lens” contour near each of the other bands [E2k, E2k+1] and
[E∗

2k, E
∗
2k+1] as shown in Figure 5.2, which is taken from [Kamvissis07b].
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Figure 5.2.: The lens contour near a band not including any stationary phase point.
Views from the top and bottom sheet. [Kamvissis07b]

The oriented paths Ck, C
∗
k are meant to be close to the band [E2k, E2k+1]. In par-

ticular, these loops must not intersect with any of the loops around the eigenvalues
ρj .

In the soliton region, that is in the case where no stationary phase point lies in
σ(Hq(t)), we choose “lens” contours near all bands [E2k, E2k+1], k = 0, . . . , g (setting
E2g+1 = ∞) as shown in Figure 5.2, which is taken from [Kamvissis07b].

We will next investigate the sign of Re(φ).

Lemma 5.14. In the soliton resp. oscillatory region the sign of Re(φ) is given by:

1. Soliton region:
In the case of no stationary phase point lying in a spectral band, we have for all
bands [E2k, E2k+1]

Re(φ(p)) < (>)0, p ∈ Dk, π(p) > (<)ζ(x/t). (5.71)

2. Oscillatory region:
In the case of one stationary phase point ζ(x/t) = zj(x/t) lying in the interior
of its corresponding spectral band (E2j , E2j+1), we have

Re(φ(p)) > 0, p ∈ Dj1, Re(φ(p)) < 0, p ∈ Dj2,

and concerning the remaining spectral bands (5.71) still holds.

Proof. Let us assume that we have already shown

Im
(
φ′(p)

)
< 0, p ∈ σ(Hq(t)), π(p) < ζ(x/t), (5.72)

Im
(
φ′(p)

)
> 0, p ∈ σ(Hq(t)), π(p) > ζ(x/t). (5.73)
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5.4. Deformation

If we denote z = x+ iy, then by Cauchy-Riemann we have

Im
(
φ′(z)

)
=

1

2

(
Im
(∂φ
∂x

)
− Re

(∂φ
∂y

))
= −∂Reφ

∂y
, (5.74)

which proves the claim as long as Cj1, Cj2 respectively Dk are close enough to the band
[E2j , E2j+1] respectively [E2k, E2k+1]. A similar picture appears in the lower sheet.

So it is left to show (5.72) and (5.73). We will do so by induction on g ∈ N0. We
start with g = 0: For z ∈ [E0,∞) we have

Im
(
φ′(z)

)
= Im

(
12i

(z − λ̃0)

|R1/2
2g+1(z)|

)
= 12

z − λ̃0

|R1/2
2g+1(z)|

. (5.75)

Hence for z0 ∈ (E0,∞) we indeed get

Im
(
φ′(z)

)
< 0, z ∈ (E0, zj)

Im
(
φ′(z)

)
> 0, z ∈ (zj , E1),

and for z0 ∈ (−∞, E0) we have

Im
(
φ′(z)

)
> 0, z ∈ (E0, E1).

Now let us assume (5.72) and (5.73) hold for g−1 ∈ N0, then we will make the inductive
step by showing that it also holds for g. In the case of genus g we have one additional
spectral band, say [E0, E1], the others stay the same as in the case of genus g − 1 but
are now enumerated appropriately. Using (2.6) one gets

Im
(
φ′(z)

)
= Im

(
12i

∏g
j=0(z − λ̃j)

R
1/2
2g+1(z)

+ i
x

t

∏g
j=1(z − λj)

R
1/2
2g+1(z)

)
= (−1)g+kϕ(z),

where

ϕ(z) := 12

∏g
j=0(Re(z) − λ̃j)

|R1/2
2g+1(z)|

+
x

t

∏g
j=1(Re(z) − λj)

|R1/2
2g+1(z)|

, (5.76)

for z ∈ [E2k, E2k+1], k = 0, . . . , g (setting E2g+1 = ∞). In principal there are three
cases which might occure:

1. z0 ∈ (E0, E1) and all other stationary phase points lie in open gaps:

a) g is odd. Then from Figure 5.3 one deduces

Im
(
φ′(z)

)
=

{
−ϕ(z) < 0 for z ∈ (E0, z0),
−ϕ(z) > 0 for z ∈ (z0, E1).

(5.77)

b) g is even. From Figure 5.4 one similarly obtains

Im
(
φ′(z)

)
=

{
ϕ(z) < 0 for z ∈ (E0, z0),
ϕ(z) > 0 for z ∈ (z0, E1).

(5.78)
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Figure 5.3.: A sketch of the function ϕ(z) defined in (5.76) for g odd and z0 ∈ (E0, E1).
The thick lines denote the spectral bands.
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Figure 5.4.: A sketch of the function ϕ(z) defined in (5.76) for g even and z0 ∈ (E0, E1).
The thick lines denote the spectral bands.

2. z0 ∈ (E1, E2) and maybe some other stationary phase point zj lies in its corre-
sponding spectral band (E2j , E2j+1), j = 1, . . . , g. Note that depending on z1
having or not having already passed its spectral band (E2, E3), z1 can lie either
in one of the gaps (E1, E2), (E3, E4) or in its spectral band (E2, E3).

a) g is odd. Then from Figure 5.5 one deduces

Im
(
φ′(z)

)
= −ϕ(z) < 0 for z ∈ (E0, E1). (5.79)

b) g is even. From Figure 5.6 one obtains

Im
(
φ′(z)

)
= ϕ(z) < 0 for z ∈ (E0, E1). (5.80)

3. z0 ∈ (−∞, E0) and all other stationary phase points lie in a spectral gap.

a) g is odd. Then from Figure 5.7 one deduces

Im
(
φ′(z)

)
= −ϕ(z) > 0 for z ∈ (E0, E1). (5.81)
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Figure 5.5.: A sketch of the function ϕ(z) defined in (5.76) for g odd and z0 ∈ (E1, E2).
The thick lines denote the spectral bands.
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Figure 5.6.: A sketch of the function ϕ(z) defined in (5.76) for g even and z0 ∈ (E1, E2).
The thick lines denote the spectral bands.

b) g is even. From Figure 5.8 one obtains

Im
(
φ′(z)

)
= ϕ(z) > 0 for z ∈ (E0, E1). (5.82)
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Figure 5.7.: A sketch of the function ϕ(z) defined in (5.76) for g odd and z0 ∈ (−∞, E0).
The thick lines denote the spectral bands.
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Figure 5.8.: A sketch of the function ϕ(z) defined in (5.76) for g even and z0 ∈
(−∞, E0). The thick lines denote the spectral bands.

4. z0 ∈ (−∞, E0) and all other stationary phase points lie in a spectral gap.

a) g is odd. Then from Figure 5.7 one deduces

Im
(
φ′(z)

)
= −ϕ(z) > 0 for z ∈ (E0, E1). (5.83)

b) g is even. From Figure 5.8 one obtains

Im
(
φ′(z)

)
= ϕ(z) > 0 for z ∈ (E0, E1). (5.84)

In all of the three cases the sign for Im
(
φ′(z)

)
for z ∈ (E2k, E2k+1), k = 1, . . . , g can

be obtained from the induction hypothesis, which makes the proof complete.

Having investigated the sign of Re(φ) we are now able to redefine the Riemann–
Hilbert problem for m2 in such a way that the jumps of the new Riemann–Hilbert
problem will lie in the regions where they are exponentially close to the identity for
large times.

Theorem 5.15 (Deformation). Define m3 by

m3 = m2B̃−1
+ , p ∈ Dk, k < j,

m3 = m2B̃−1
− , p ∈ D∗

k, k < j,

m3 = m2B̃−1
+ , p ∈ Dj1,

m3 = m2B̃−1
− , p ∈ D∗

j1,

m3 = m2b̃−1
+ , p ∈ Dj2,

m3 = m2b̃−1
− , p ∈ D∗

j2,

m3 = m2b̃−1
+ , p ∈ Dk, k > j,

m3 = m2b̃−1
− , p ∈ D∗

k, k > j,

m3 = m2, else,

(5.85)
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5.4. Deformation

where the matrices b̃± and B̃± are defined in (5.67) and (5.68), respectively. Here we
assume that the deformed contour is sufficiently close to the original one. Then the
function m3(p) satisfies:

1. The jump condition

m3
+(p) = m3

−(p)J3(p), for p ∈ Σ3, (5.86)

where the jump matrix J3 is given by

J3 = B̃+, p ∈ Ck, k < j,

J3 = B̃−1
− , p ∈ C∗

k , k < j,

J3 = B̃+, p ∈ Cj1,

J3 = B̃−1
− , p ∈ C∗

j1,

J3 = b̃−1
+ , p ∈ Cj2,

J3 = b̃−, p ∈ C∗
j2,

J3 = b̃+, p ∈ Ck, k > j,

J3 = b̃−1
− , p ∈ C∗

k , k > j,

(5.87)

2. the divisor conditions

(m3
1) ≥ −Dν̂(x,t)∗ , (m3

2) ≥ −Dν̂(x,t), (5.88)

3. the symmetry condition

m3(p∗) = m3(p)

(
0 1
1 0

)
, (5.89)

4. and the normalization
m3(p∞) =

(
1 1

)
. (5.90)

Proof. To see that the jump matrix J3 is indeed given by (5.87) note

m3
+ = m2

+ =
(
m2

+B̃
−1
+

)
B̃+ = m3

−B̃+, for p ∈ Ck, k < j,

m3
+ = m2

+ =
(
m2

+b̃
−1
+

)
b̃+ = m3

−b̃+, for p ∈ Ck, k > j,

m3
+ = m2

+ =
(
m2

+B̃
−1
+

)
B̃+ = m3

−B̃+, for p ∈ Cj1,

m3
+ = m2

+b̃
−1
+ = m2

−b̃
−1
+ = m3

−b̃
−1
+ , for p ∈ Cj2.

Analogously one shows

m3
+ = m2

+B̃
−1
− = m2

−B̃
−1
− = m3

−B̃
−1
− , for p ∈ C∗

k , k < j,

m3
+ = m2

+b̃
−1
− = m2

−b̃
−1
− = m3

−b̃
−1
− , for p ∈ C∗

k , k > j.

m3
+ = m2

+B̃
−1
− = m2

−B̃
−1
− = m3

−B̃
−1
− , for p ∈ C∗

j1,

m3
+ = m2

+ =
(
m2

+b̃
−1
−
)
b̃− = m3

−b̃−, for p ∈ C∗
j2.
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5. Conjugation and Deformation

Finally, the jump along Σ disappears:

m3
+ = m2

+B̃
−1
+ =

(
m2

−B̃
−1
− B̃+

)
B̃−1

+ = m2
−B̃

−1
− = m3

−, for p ∈ C(x/t),

m3
+ = m2

+b̃
−1
+ =

(
m2

−b̃
−1
− b̃+

)
b̃−1
+ = m2

−b̃
−1
− = m3

−, for p ∈ Σ \ C(x/t).

Invoking (5.61) one can easily verify that m3 indeed satisfies

(m3
1) ≥ −Dν̂(x,t)∗ , (m3

2) ≥ −Dν̂(x,t). (5.91)

To see that m3 fulfills the symmetry condition we have to distinguish cases. Suppose
p ∈ Dj1 ∪

⋃
k<jDk, then by using the symmetry of m2 one gets

m3(p∗) = m2(p∗)B̃−1
− (p∗) =

= m2(p)

(
0 1
1 0

)(
0 1
1 0

)
B̃−1

+ (p)

(
0 1
1 0

)
=

= m2(p)B̃−1
+ (p)

(
0 1
1 0

)
= m3(p)

(
0 1
1 0

)
.

Next let p ∈ Dj2 ∪
⋃
k>j Dk. Then we obtain

m3(p∗) = m2(p∗)b̃−1
− (p∗) =

= m2(p)

(
0 1
1 0

)(
0 1
1 0

)
b̃−1
+ (p)

(
0 1
1 0

)
=

= m2(p)b̃−1
+ (p)

(
0 1
1 0

)
= m3(p)

(
0 1
1 0

)
.

Analoguously one can prove the symmetry condition for m3 if p ∈ D∗
j1 ∪

⋃
k<jD

∗
k or

p ∈ D∗
j2 ∪

⋃
k>jD

∗
k. For all other p we have m3 = m2 and thus nothing is to show.

Finally it is straightforward to check that the normalization of m2 at p∞ yields

m3(p∞) =
(
1 1

)
.

Here we have assumed that the reflection coefficient R(p) appearing in the jump
matrices admits an analytic extension in the corresponding regions. Of course this is
not true in general, but we can always evade this obstacle by approximating R(p) by
analytic functions. We refer to the discussion in Chapter 7 for the details.

5.5. The long-time asymptotics inside the soliton region

First we will define the so-called limiting KdV solution. Note that the definition is
motivated by (4.53) and (5.39).
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5.5. The long-time asymptotics inside the soliton region

Definition 5.5 (Limiting KdV solution). To define a limiting KdV solution we have
to distinguish between the oscillatory and the soliton region.

(i) In the oscillatory region we define the limiting KdV solution Vl(x, t) by
∫ ∞

x
(Vl − Vq)(y, t)dy = 2iT1(x, t), (5.92)

where T1(x, t) is defined as in Theorem 5.8, that is,
∫ ∞

x
(Vl − Vq)(y, t)dy = −

∑

ρk<ζ(x/t)

4i

∫ ρk

E(ρk)
ωp∞,0 +

1

π

∫

C(x/t)
log(1 − |R|2)ωp∞,0

+ 2∂x ln

(
θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

)
)
, (5.93)

δℓ(x/t) =2
∑

ρk<ζ(x/t)

AE0
(ρ̂k) +

1

2πi

∫

C(x/t)
log(1 − |R|2)ζℓ, (5.94)

where R = R+(λ, t) is the associated reflection coefficient, ζℓ is a canonical basis
of holomorphic differentials, and C(x/t) = Σ ∩ π−1

(
(−∞, ζ(x/t))

)
is oriented

such that the upper sheet is to the left.

(ii) In the soliton region we define the limiting KdV solution Vl,v(x, t) by

∫ ∞

x
(Vl,v − Vq)(y, t)dy = 2iT1(x, t), (5.95)

where T1(x, t) is defined as in Theorem 5.8, that is,
∫ ∞

x
(Vl,v − Vq)(y, t)dy = −

∑

ρj<ζ(v)

4i

∫ ρj

E(ρj)
ωp∞,0 +

1

π

∫

C(v)
log(1 − |R|2)ωp∞,0

+ 2∂x ln

(
θ
(
z(p∞, x, t) + δ(v)

)

θ
(
z(p∞, x, t)

)
)
, (5.96)

or equivalently

(Vl,v − Vq)(x, t) = −2∂2
x ln

(
θ
(
z(p∞, x, t) + δ(v)

)

θ
(
z(p∞, x, t)

)
)
, (5.97)

with

δℓ(v) = 2
∑

ρj<ζ(v)

AE0
(ρ̂j) +

1

2πi

∫

C(v)
log(1 − |R|2)ζℓ,

where R = R+(λ, t) is the associated reflection coefficient, ζℓ is a canonical basis
of holomorphic differentials, and ck = v(ρk) denotes the velocity of the k’th soliton
defined by (5.3). Moreover, C(v) = Σ ∩ π−1

(
(−∞, ζ(v))

)
is oriented such that

the upper sheet is to the left. If v = x/t we set Vl(x, t) = Vl,x/t(x, t).
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5. Conjugation and Deformation

The next two theorems concern the long-time asymptotics of the perturbed KdV
solution V (x, t) in the soliton region. They tell us that in the soliton region for large
times t the perturbed solution V (x, t) splits into a number of stable solitons traveling
on the limiting KdV solution Vl,v(x, t).

Theorem 5.16. Assume

∫ +∞

−∞
(1 + |x|1+n)(|V (x, t) − Vq(x, t)|)dx <∞, (5.98)

for some integer n ≥ 1 and abbreviate by ck = v(ρk) the velocity of the k’th soliton
given by (5.3). Then the asymptotics in the soliton region, {(x, t)| ζ(x/t) ∈ R\σ(Hq)},
are the following:

Let ε > 0 sufficiently small such that the intervals [ck − ε, ck + ε], 1 ≤ k ≤ N , are
disjoint and lie inside v(R\σ(Hq)).

If |xt − ck| < ε for some k, the solution is asymptotically given by a one-soliton
solution on top of the limiting solution:

∫ +∞

x
(V − Vl,ck)(y, t)dy = 2

γ̃kψl,ck(ρk, x, t)
2

cl,k(x, t)
+O(t−l), (5.99)

for any l ≥ 1, where

cl,k(x, t) = 1 + γ̃kW(x,t)(ψ̇l,ck(ρk, x, t), ψl,ck(ρk, x, t)) (5.100)

and

γ̃k = γk

(
θ(z(ρk, 0, 0) + δ(ck))

θ(z(ρk, 0, 0))

)2



∏

ρj<ζ(ck)

exp

(
2

∫ ρk

E0

ωρj ρ∗j

)
 ·

· exp

(
−1

πi

∫

C(ck)
log(1 − |R|2)ωρk p∞

)
.

(5.101)

Here ψl,v(p, x, t) is the Baker–Akhiezer function corresponding to the limiting solution
Vl,v(x, t) defined above and the dot denotes differentiation with respect to ρk.

If |xt − ck| ≥ ε, for all k, the solution is asymptotically close to the limiting solution:

∫ ∞

x
(V − Vl)(y, t)dy = O(t−l), (5.102)

for any l ≥ 1.

Proof. We apply Theorem A.7 in the following way:

If |ζ(x/t) − ρk| > ε for all k we can choose γt0 = 0 and wt0 by removing all jumps
corresponding to poles from wt. The error between the solutions of wt and wt0 is expo-
nentially small in the sense of Theorem A.7, that is, ‖wt−wt0‖∞ ≤ O(t−l) for any l ≥ 1.
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5.5. The long-time asymptotics inside the soliton region

We have the one soliton solution (cf. Lemma 4.11) m̂0(p) =
(
f̂(p∗, x, t) f̂(p, x, t)

)
,

where f̂(p) = 1 for p large enough. Using Theorem 5.8 we compute

m(p) =m̂0(p)

(
T (p∗, x, t)−1 0

0 T (p, x, t)−1

)

=
(
1 + T1(x,t)√

z
+O(z−1) 1 − T1(x,t)√

z
+O(z−1)

)
.

Comparing this expression with (4.53) yields
∫ ∞

x
(V − Vq)(y, t)dy = 2iT1(x, t) +O(t−l),

and thus by our definition of the limiting solution we finally have
∫ ∞

x
(V − Vl)(y, t)dy =

∫ ∞

x

(
(V − Vq)(y, t) − (Vl − Vq)(y, t)

)
dy = O(t−l),

for any l ≥ 1. This proves the second part of the theorem.
If |ζ(x/t) − ρk| < ε for some k, we choose γt0 = γ̃k and wt0 ≡ 0. Again we conclude

that the error between the solutions of wt and wt0 is exponentially small, that is,
‖wt −wt0‖∞ ≤ O(t−l), for any l ≥ 1. By Lemma 4.11 we have the one soliton solution
m̂0(p) =

(
f̂(p∗, x, t) f̂(p, x, t)

)
, with

f̂(p, x, t) = 1 +
γ̃k

z − ρk

ψl,ck(ρk, x, t)W(x,t)(ψl,ck(ρk, x, t), ψl,ck(p, x, t))

ψl,ck(p, x, t)cl,k(x, t)
,

for p large enough, where γ̃k is defined as in (5.101). We will again use

m(p) = m̂0(p)

(
T (p∗, x, t)−1 0

0 T (p, x, t)−1

)
=
(
f̂(p∗,x,t)
T (p∗,x,t)

f̂(p,x,t)
T (p,x,t)

)
,

and now expand f̂(p) as in the proof of Lemma 4.11. Finally a comparison with (4.53)
yields ∫ ∞

x
(V − Vq)(y, t)dy = 2iT1(x, t) + 2

γ̃kψl,ck(ρk, x, t)
2

cl,k(x, t)
+O(t−l),

and hence by our definition of the limiting solution (5.96)

∫ ∞

x
(V − Vl,ck)(y, t)dy = 2

γ̃kψl,ck(ρk, x, t)
2

cl,k(x, t)
+O(t−l),

for any l ≥ 1, which makes the proof complete.

To be able to prove the long-time asymptotic behavior for V −Vl,ck we will need the
following lemma.

Lemma 5.17. We have

T (z)
ψ−(z, x, t)

ψq,−(z, x, t)

ψ+(z, x, t)

ψq,+(z, x, t)
= 1 +

1

2
(V − Vq)(x, t)

1

z
+ o(z−1). (5.103)
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5. Conjugation and Deformation

Proof. We will use the following representation of the Jost solutions

ψ±(z, x, t) = ψq,±(z, x, t) exp
(
∓
∫ ±∞

x

(
m±(z, y, t) −mq,±(z, y, t)

)
dy
)
, (5.104)

where

m±(z, x, t) = ±ψ
′
±(z, x, t)

ψ±(z, x, t)
, mq,±(z, x, t) = ±

ψ′
q,±(z, x, t)

ψq,±(z, x, t)

are the Weyl–Titchmarsh functions. Here the prime denotes differentiation with re-
spect to x. By [Mikikits-Leitner09, Lemma 6.1] the Weyl m-functions have the follow-
ing asymptotic expansion for large z

m±(z, x, t) ≍ i
√
z ±

∞∑

n=1

χn(x, t)

(±2i
√
z)n

,

with coefficients defined recursively via

χ1(x, t) = V (x, t), χn+1(x, t) = − ∂

∂x
χn(x, t) −

n−1∑

m=1

χn−m(x, t)χm(x, t).

Similarly, we have

mq,±(z, x, t) ≍ i
√
z ±

∞∑

n=1

χq,n(x, t)

(±2i
√
z)n

,

with coefficients determined by the recursive formulas

χq,1(x, t) = Vq(x, t), χq,n+1(x, t) = − ∂

∂x
χq,n(x, t) −

n−1∑

m=1

χq,n−m(x, t)χq,m(x, t).

Thus, we obtain the following formulas

m±(z, x, t) ≍ i
√
z + V (x, t)

1

2i
√
z
± V ′(x, t)

1

4z
+O(z−3/2),

mq,±(z, x, t) ≍ i
√
z + Vq(x, t)

1

2i
√
z
± V ′

q (x, t)
1

4z
+O(z−3/2),

and therefore

(m± −mq,±)(z, x, t) ≍ (V − Vq)(x, t)
1

2i
√
z
± (V − Vq)

′(x, t)
1

4z
+O(z−3/2).

Plugging this expansion into (5.104) we get

ψ−(z, x, t)

ψq,−(z, x, t)

ψ+(z, x, t)

ψq,+(z, x, t)
≍ exp

(
−
∫ +∞

−∞
(V − Vq)(y, t)dy

1

2i
√
z
+

+
( ∫ x

−∞
(V − Vq)

′(y, t)dy −
∫ +∞

x
(V − Vq)

′(y, t)dy
) 1

4z
+O(z−3/2)

)
.

(5.105)
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Using [Mikikits-Leitner09, Theorem 6.2] we have the following asymptotic expansion
for log T (z) around z = ∞:

log T (z) ≍ i
√
z

∞∑

k=1

τk
zk
,

where the quantities τk are given by

τk =

∫ ∞

−∞

χ2k−1(x, t) − χq,2k−1(x, t)

(−1)k22k−1
dx.

From this we deduce

T (z) = exp
( ∫ +∞

−∞
(V − Vq)(y, t)dy

1

2i
√
z

+O(z−3/2)
)
. (5.106)

Finally, combining (5.105) and (5.106) we get

T (z)
ψ−(z, x, t)

ψq,−(z, x, t)

ψ+(z, x, t)

ψq,+(z, x, t)
= exp

(
(V − Vq)(x, t)

1

2z
+ o(z−1)

)

=1 + (V − Vq)(x, t)
1

2z
+ o(z−1),

which proves the claim.

Theorem 5.18. Assume (5.98) and abbreviate by ck = v(ρk) the velocity of the k’th
soliton given by (5.3). Then the asymptotics in the soliton region, {(x, t)| ζ(x/t) ∈
R\σ(Hq)}, are the following:

Let ε > 0 sufficiently small such that the intervals [ck − ε, ck + ε], 1 ≤ k ≤ N , are
disjoint and lie inside v(R\σ(Hq)).

If |xt − ck| < ε for some k, the solution is asymptotically given by a one-soliton
solution on top of the limiting solution:

(V − Vl,ck)(x, t) = 2γ̃2
k

ψl,ck(ρk, x, t)
4

cl,k(x, t)2
− 4γ̃k

ψl,ck(ρk, x, t)ψ
′
l,ck

(ρk, x, t)

cl,k(x, t)
(5.107)

for any l ≥ 1, where

cl,k(x, t) = 1 + γ̃kW(x,t)(ψ̇l,ck(ρk, x, t), ψl,ck(ρk, x, t))

and

γ̃k = γk

(
θ(z(ρk, 0, 0) + δ(ck))

θ(z(ρk, 0, 0))

)2



∏

ρj<ζ(ck)

exp

(
2

∫ ρk

E0

ωρj ρ∗j

)
 ·

· exp

(
−1

πi

∫

C(ck)
log(1 − |R|2)ωρk p∞

)
.

(5.108)
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Here ψl,ck(p, x, t) is the Baker–Akhiezer function corresponding to the limiting solution
Vl,v(x, t) defined above and the dot denotes differentiation with respect to ρk.

If |xt − ck| ≥ ε, for all k, the solution is asymptotically close to the limiting solution:

(V − Vl)(x, t) = O(t−l), (5.109)

for any l ≥ 1.

Proof. If |ζ(x/t)−ρk| > ε for all k we can choose γt0 = 0 and wt0 by removing all jumps
corresponding to poles from wt. The error between the solutions of wt and wt0 is expo-
nentially small in the sense of Theorem A.7, that is, ‖wt−wt0‖∞ ≤ O(t−l) for any l ≥ 1.
We have the one soliton solution (cf. Lemma 4.11) m̂0(p) =

(
f̂(p∗, x, t) f̂(p, x, t)

)
,

where f̂(p) = 1 for p large enough. As in the proof of the previous theorem we have

m(p) =
(
f̂(p∗,x,t)
T (p∗,x,t)

f̂(p,x,t)
T (p,x,t)

)
,

and thus

m1 ·m2 = f̂(p∗, x, t)f̂ (p, x, t)T (p∗, x, t)−1T (p, x, t)−1 = 1 +
∑

j

(µj − νj)
1

z
+O(z−1),

where we made use of (cf. Lemma 5.6)

T (p∗, x, t)T (p, x, t) =

g∏

j=0

z − µj
z − νj

. (5.110)

On the other hand from Lemma 5.17 we have

m1 ·m2 = 1 + (V − Vq)(x, t)
1

2z
+ o(z−1). (5.111)

Comparing these two expressions for m1 ·m2 yields

(V − Vq)(x, t) = 2
∑

j

(µj − νj) +O(t−l),

or

(V − Vl)(x, t) = O(t−l),

where in the last step we have used the representations

Vq(x, t) =

2g∑

j=0

Ej − 2

g∑

j=0

µj(x, t),

Vl(x, t) =

2g∑

j=0

Ej − 2

g∑

j=0

νj(x, t).

(5.112)
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5.5. The long-time asymptotics inside the soliton region

If |ζ(x/t) − ρk| < ε for some k, we choose γt0 = γ̃k and wt0 ≡ 0. Again we conclude
that the error between the solutions of wt and wt0 is exponentially small, that is,
‖wt −wt0‖∞ ≤ O(t−l), for any l ≥ 1. By Lemma 4.11 we have the one soliton solution
m̂0(p) =

(
f̂(p∗, x, t) f̂(p, x, t)

)
, with

f̂(p, x, t) = 1 +
γ̃k

z − ρk

ψl,ck(ρk, x, t)W(x,t)(ψl,ckq(ρk, x, t), ψl,ck(p, x, t))

ψl,ck(p, x, t)cl,k(x, t)
,

for p large enough, where γ̃k is defined as in (5.108). The function f̂(p, x, t) can be
expanded near p = p∞ as it is done in the proof of Lemma 4.11

f̂(p, x, t) = 1 ∓ γ̃k
ψl,ck(ρk, x, t)

2

cl,k(x, t)

1

i
√
z
− γ̃k

ψl,ck(ρk, x, t)ψ
′
l,ck

(ρk, x, t)

cl,k(x, t)

1

z
+O(z−3/2).

Then we can compute

m1 ·m2 =f̂(p∗, x, t)f̂(p, x, t)T (p∗, x, t)−1T (p, x, t)−1

=1 +
[
γ̃2
k

ψl,ck(ρk, x, t)
4

cl,k(x, t)2
− 2γ̃k

ψl,ck(ρk, x, t)ψ
′
l,ck

(ρk, x, t)

cl,k(x, t)

+
∑

j

(µj − νj)
]1
z

+O(z−3/2),

where we again made use of (5.110). Comparing this expression form1 ·m2 with (5.111)
yields

(V − Vq)(x, t) = 2γ̃2
k

ψl,ck(ρk, x, t)
4

cl,k(x, t)2
− 4γ̃k

ψl,ck(ρk, x, t)ψ
′
l,ck

(ρk, x, t)

cl,k(x, t)
+ 2

∑

j

(µj − νj),

or

(V − Vl,k)(x, t) = 2γ̃2
k

ψl,ck(ρk, x, t)
4

cl,k(x, t)2
− 4γ̃k

ψl,ck(ρk, x, t)ψ
′
l,ck

(ρk, x, t)

cl,k(x, t)
.

Note that we again used the representations (5.112).

Note that the asymptotics for V − Vl,ck given by expression (5.107) can be checked
to be equal the derivative of (5.99) with respect to x by using

cl,k(x, t) = 1 + γ̃kW(x,t)(ψ̇l,ck(ρk, x, t), ψl,ck(ρk, x, t))

= 1 + γ̃k

∫ +∞

x
|ψl,ck(ρk, y, t)|2dy.
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6. The Riemann-Hilbert problem in the

oscillatory region

In Chapter 5 we have seen that in the case zj ∈
⋃g
k=1[E2k−2, E2k] ∪ [E2g,∞) we can

reduce everything to a Riemann–Hilbert problem for m3(p) such that the jumps are
”I + exponentially decaying” except in small neighborhoods of the stationary phase
points zj and z∗j .

Let us start by showing how to decouple the Riemann–Hilbert problem form3(p) into
simpler parts such that everything is reduced to finding the solution of these simpler
parts.

6.1. Decoupling

Let us denote by ΣC(zj) and ΣC(z∗j ) the parts of Σ3 inside a small neighborhood of
zj and z∗j , respectively. The next theorem will enable us to get the solution of our
original problem by solving the two Riemann–Hilbert problems on the small crosses
ΣC(zj) and ΣC(z∗j ) separately.

Theorem 6.1 (Decoupling). Consider the Riemann–Hilbert problem

m+(p) = m−(p)J(p), p ∈ Σ,

m(p∞) =
(
1 1

) (6.1)

and let 0 < β < α ≤ 2β, ρ(t) → ∞, and some points zk ∈ Σ, k = 1, . . . , n, be given.

Suppose each of the points zk, k = 1, . . . , n, has a neighborhood Dk ⊂ Kg, which
should be sufficiently small such that both the L2 and L∞ norms of J are O(t−α) away
from these neighborhoods. Moreover, suppose that the solution of the problem with
jump J(p) restricted to a neighborhood D̃k ⊂ Dk has a solution given by

Mk(p) = I +
1

ρ(t)β
Mk

z − zk
+O

(
ρ(t)−α

)
, p ∈ Kg \ D̃k. (6.2)

Then the solution m(p) is given by

m(p) =
(
1 1

)
− 1

ρ(t)β
(
1 1

) n∑

k=1

MkΩ
ν̂
p(zk) +O

(
ρ(t)−α

)
, (6.3)

where the error term depends on the distance of p to Σ.
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6. The Riemann-Hilbert problem in the oscillatory region

Proof. To prove the theorem we will make use of the theory developed in Appendix
A with the Cauchy kernel Ων̂

p defined in (A.8). We make the assumption that m(p)
exists. Introduce m̃(p) by

m̃ =

{
m(p)Mk(p)

−1, p ∈ Dk,
m(p), else,

(6.4)

where Dk denotes the closure of Dk. The Riemann–Hilbert problem for m̃(p) has
jumps given by

J̃(p) =





Mk(p)
−1, p ∈ ∂Dk,

Mk(p)J(p)Mk(p)
−1, p ∈ Σ ∩ (D◦

k \ D̃k),

I, p ∈ Σ ∩ D̃◦
k,

J(p), else,

(6.5)

where ∂Dk denotes the boundary of Dk, D
◦
k and D̃◦

k the interior of Dk and D̃k, re-

spectively, and D̃k the closure of D̃k. By assumption the jumps are O
(
ρ(t)−β

)
on

the boundary ∂Dk and even O
(
ρ(t)−α

)
on the rest (both in L2 and L∞ norms). In

particular as in Lemma B.4 we get

‖µ̃−
(
1 1

)
‖2 = O

(
ρ(t)−β

)
.

Hence we deduce

m(p) =
(
1 1

)
+

1

2πi

∫

Σ̃
µ̃w̃Ων̂p

=
(
1 1

)
+

1

2πi

n∑

k=1

∫

∂Dk

µ̃
(
Mk(p)

−1 − I
)
Ων̂
p +O

(
ρ(t)−α

)

=
(
1 1

)
− 1

2πi
ρ(t)−β

(
1 1

) n∑

k=1

Mk

∫

∂Dk

1

π − zk
Ων̂
p +O

(
ρ(t)−α

)

=
(
1 1

)
− ρ(t)−β

(
1 1

) n∑

k=1

MkΩ
ν̂
p(zk) +O

(
ρ(t)−α

)
,

which finishes the proof.

6.2. The long-time asymptotics inside the oscillatory region

In Chapter 5 we have reduced everything to the solution of the Riemann–Hilbert
problem

m3
+(p) = m3

−(p)J3(p),

(m3
1) ≥ −Dν̂(x,t)∗ , (m3

2) ≥ −Dν̂(x,t),

m3(p∗) = m3(p)

(
0 1
1 0

)

m3(p∞) =
(
1 1

)
,
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Figure 6.1.: The small cross containing the stationary phase point zj and its flipping
image containing z∗j . Views from the top and bottom sheet. Dotted curves

lie in the bottom sheet. [Kamvissis08]

where the jump matrix J3 is given by (5.87). We have performed a deformation in
such a way that the jumps J3 on the oriented paths Ck, C

∗
k for k 6= j are of the form

“I + exponentially small” asymptotically as t→ ∞. The same is true for the oriented
paths Cj1, Cj2, C

∗
j1, C

∗
j2 at least away from the stationary phase points zj , z

∗
j . On

these paths, and in particular near the stationary phase points (cf. Figure 6.1, which
is taken from [Kamvissis08]), the jumps read

J3(p) = B̃+(p) =

(
1 − T (p,x,t)

T (p∗,x,t)
R(p∗)Θ(p∗)

1−R(p∗)R(p)e
−t φ(p)

0 1

)
, p ∈ Cj1,

J3(p) = B̃−1
− (p) =

(
1 0

T (p∗,x,t)
T (p,x,t)

R(p)Θ(p)
1−R(p∗)R(p)e

t φ(p) 1

)
, p ∈ C∗

j1,

J3(p) = b̃+(p) =

(
1 0

T (p∗,x,t)
T (p,x,t) R(p)Θ(p)et φ(p) 1

)
, p ∈ Cj2,

J3(p) = b̃−1
− (p) =

(
1 − T (p,x,t)

T (p∗,x,t)R(p∗)Θ(p∗)e−t φ(p)

0 1

)
, p ∈ C∗

j2.

(6.6)

To reduce our Riemann–Hilbert problem to the one corresponding to the two crosses
we proceed as follows: We take a small disc D around zj(x/t) and project it to the
complex plane using the canonical projection π defined in (2.29). Now consider the
(holomorphic) Riemann–Hilbert problem in the complex plane with the very jump
obtained by projection and normalize it to be I near ∞.

Before one can apply Appendix B to our problem one has to make the following
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6. The Riemann-Hilbert problem in the oscillatory region

change of coordinates

ξ =

√
φ′′(zj)

i
(z − zj), z = zj + ξ

√
i

φ′′(zj)
, (6.7)

such that the phase reads

φ(z) = φ(zj) +
i

2
ξ2 +O(ξ3). (6.8)

Note that by (2.6) we have

φ′′(zj)

i
=

∏g
k=0,k 6=j(zj − zk)

R
1/2
2g+1(zj)

> 0. (6.9)

The corresponding Riemann–Hilbert problem will be solved in Appendix B. To apply
Theorem B.1 we need the behavior of the jump matrix J3, that is, the behavior of
T (p, x, t) near the stationary phase points zj and z∗j .

The following Lemma gives more information on the singularities of T (p, x, t) near
the stationary phase points zj , j = 0, . . . , g and the band edges Ej, j = 0, . . . , 2g + 1
(setting E2g+1 = ∞).

Lemma 6.2. For p near a stationary phase point zj or z∗j (not equal to a band edge)
we have

T (p, x, t) = (z − zj)
±iνe±(z), p = (z,±), (6.10)

where e±(z) has continuous limits near zj and

ν = − 1

2π
log(1 − |R(zj)|2) > 0. (6.11)

Here (z− zj)
±iν = exp(±iν log(z− zj)), where the branch cut of the logarithm is along

the negative real axis.
For p near a band edge Ek ∈ C(x/t) we have

T (p, x, t) = T±1(z)ẽ±(z), p = (z,±), (6.12)

where ẽ±(z) is holomorphic near Ek if none of the νj is equal to Ek and ẽ±(z) has a
first order pole at Ek = νj else.

Proof. By factorizing the jump according to 1 − |R(p)|2 = (1 − |R(zj)|2) 1−|R(p)|2
1−|R(zj)|2 we

can rewrite (5.25) in the following way

T (p, x, t) = exp
(
iν

∫

C(x/t)
ωp p∞

)θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

) θ
(
z(p, x, t)

)

θ
(
z(p, x, t) + δ(x/t)

) ·

· exp

(
−

∑

ρk<ζ(x/t)

∫ ρk

E(ρk)
ωp p∗ +

1

2πi

∫

C(x/t)
log
( 1 − |R|2

1 − |R(zj)|2
)
ωp p∞

)
,

(6.13)
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6.2. The long-time asymptotics inside the oscillatory region

where ν is defined in (6.11). Now consider the Abelian differential ωp p∗ for p ∈
Kg\{p∞} which is explicitly given by the formula (5.22). We have

1

2

∫

C(x/t)
ωp p∗ = ± log(z − zj) ± α(zj) +O(z − zj), p = (z,±). (6.14)

Then from (5.37) we deduce
∫

C(x/t)
ωp p∞ = ± log(z − zj) ± α(zj) +O(z − zj), p = (z,±), (6.15)

from which the first claim follows.
For the second claim note that the function

t(p) =

{
T (z), p = (z,+) ∈ Π+,
T (z)−1, p = (z,−) ∈ Π−,

satisfies the following (holomorphic) Riemann–Hilbert problem

t+(p) = t−(p)(1 − |R(p)|2), p ∈ Σ,

t(p∞) = 1.

Thus T (p, x, t)/t(p) has no jump along C(x/t) and is therefore holomorphic near C(x/t)
away from band edges Ek = νj (where there is a simple pole) by the Schwarz reflection
principle.

Moreover,

Lemma 6.3. We have

e±(z) = e∓(z), p = (z,±) ∈ Σ \ C(x/t) (6.16)

and

e+(zj) = exp
(
iνα(zj)

)θ
(
z(p∞, x, t) + δ(x/t)

)

θ
(
z(p∞, x, t)

) θ
(
z(zj , x, t)

)

θ
(
z(zj , x, t) + δ(x/t)

) ·

· exp

(
−

∑

ρk<ζ(x/t)

∫ ρk

E(ρk)
ωzj z∗j

+
1

4πi

∫

C(x/t)
log
( 1 − |R|2

1 − |R(zj)|2
)
ωzj z∗j

)
,

(6.17)
where

α(zj) = lim
p→zj

(1

2

∫

C(x/t)
ωp p∗ − log

(
π(p) − zj

))
. (6.18)

Here α(zj) ∈ R and ωp p∗ is real on C(x/t).

Proof. The first claim follows from the fact that

T (p∗, x, t) = T (p, x, t) = T (p, x, t) for p ∈ Σ \ C(x/t).

The second claim clearly follows from (6.13) and (5.37).
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6. The Riemann-Hilbert problem in the oscillatory region

By Lemma 6.2 one deduces that near the stationary phase points the jumps are
given by

B̂+ =


1 −

(√
φ′′(zj)

i (z − zj)

)2iν
r

1−|r|2 e−t φ

0 1


 , p ∈ Lj1,

B̂−1
− =




1 0(√
φ′′(zj)

i (z − zj)

)−2iν
r

1−|r|2 e
t φ 1


 , p ∈ L∗

j1,

b̂+ =




1 0(√
φ′′(zj)

i (z − zj)

)−2iν

ret φ 1


 , p ∈ Lj2,

b̂−1
− =


1 −

(√
φ′′(zj)

i (z − zj)

)2iν

re−t φ

0 1


 , p ∈ L∗

j2,

(6.19)

where (cf. (6.10))

r = R(zj)Θ(zj , x, t)
e+(zj)

e+(zj)

(φ′′(zj)
i

)iν
(6.20)

and Lj1, Lj2, L
∗
j1, L

∗
j2 are defined as indicated in Figure 6.1. The error terms will

satisfy appropriate Hölder estimates, that is

‖B̂+(p) − B̂+(p)‖ ≤ C|z − zj|α, p = (z,+) ∈ Cj1, (6.21)

for any α < 1 and similarly for the other matrices. Thus the assumptions of Theo-
rem B.1 are satisfied and we can conclude that the solution on π

(
ΣC(zj)

)
is of the

form

M(z) = I +
1

ξ

i

t1/2

(
0 −β(t)

β(t) 0

)
+O(t−α) =

= I +
M0

z − zj

1

t1/2
+O(t−α), (6.22)

where

M0 = i

√
i

φ′′(zj)

(
0 −β(t)

β(t) 0

)
, (6.23)

β(t) =
√
νei(π/4−arg(r)+arg(Γ(iν)))e−tφ(zj )t−iν, (6.24)

and 1/2 < α < 1. Now we lift this solution in the complex plane back to the small
disc D on the Riemann-surface Kg by setting

M(p) =





M(z), p ∈ D,(
0 1
1 0

)
M(z)

(
0 1
1 0

)
, p ∈ D∗.

(6.25)
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6.2. The long-time asymptotics inside the oscillatory region

Thus we conclude that the solution on ΣC(zj) is given by

MC(p) = I +
1

t1/2
M0

z − zj
+O(t−α), p = (z,+), (6.26)

and the one on ΣC(z∗j ) reads

M̃C(p) = I +
1

t1/2
M0

z − zj
+O(t−α), p = (z,−). (6.27)

Then as in the proof of Theorem 6.1 we define

m4(p) =





m3(p)MC(p)−1, p ∈ D,

m3(p)M̃C(p)−1, p ∈ D∗,

m3(p), else

(6.28)

and finally get

m4(p) =
(
1 1

)
−
(
1 1

)
M0

t1/2
Ων̂
p(zj) −

(
1 1

)
M0

t1/2
Ων̂
p(z

∗
j ) +O(t−α)

=
(
1 1

)
−
√

i

φ′′(zj)t
×

×
(
iβΩ

ν̂∗,p∞
p (zj) − iβΩ

ν̂∗,p∞
p (z∗j ) −iβΩ

ν̂,p∞
p (zj) + iβΩ

ν̂,p∞
p (z∗j )

)

+O(t−α), (6.29)

where the Cauchy kernel Ω
ν̂,p∞
p (zj) is defined as in Appendix A, namely by

Ων̂,p∞
p (zj) = ωp p∞(zj) +

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)

∫ p

p∞

ων̂ℓ,0ζk(zj). (6.30)

Since we need the asymptotic expansions around p∞ we note

Lemma 6.4. We have

Ων̂,p∞
p (zj) = Λ

ν̂
1(zj)ζ + Λ

ν̂
2(zj)ζ

2 +O
(
ζ3
)

(6.31)

for ζ = z−1/2 being the local chart near p∞ and

Λ
ν̂
1(zj) = ωp∞,0(zj) −

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)αg−1(ν̂ℓ)ζk(zj), (6.32)

Λ
ν̂
2(zj) = ωp∞,1(zj) −

1

2

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ζk(zj), (6.33)

where ωq,k, k = 0, 1, . . . , is an Abelian differential of the second kind with a single pole
of order k + 2 at q.
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6. The Riemann-Hilbert problem in the oscillatory region

Remark 6.5. The Abelian differential appearing in the previous lemma is explicitly
given by

ων̂,0 =

R
1/2
2g+1 +R

1/2
2g+1(ν̂) +

R′
2g+1(ν̂)

2R
1/2
2g+1(ν̂)

(π − ν) + Pν̂,0 · (π − ν)2

2(π − ν)2R
1/2
2g+1

dπ, (6.34)

with Pν̂,0 a polynomial of degree g− 1 which has to be determined from the normaliza-
tion. We will use the notation

Pν̂,0(z) =

g−1∑

j=0

αj(ν̂)z
j . (6.35)

Concerning the Abelian differential ωp∞,0 we refer to Lemma 3.3. The differential
ωp∞,1 is given by

ωp∞,1 =
(
−
R

1/2
2g+1

2
+ Pp∞,1

) dπ

R
1/2
2g+1

, (6.36)

where Pp∞,1 is a polynomial of degree g−1 which has to be determined by the vanishing
aj-periods as usual.

Proof. Note that using the local coordinate ζ = z−1/2 near p∞ = (∞,∞) we have (cf.
[Teschl07, Theorem 4.1])

ωpp∞ =

g∑

k=1

ζkωp∞,k−1 = ωp∞,0ζ + ωp∞,1ζ
2 +O(ζ3).

Moreover, we have

∫ p

p∞

ων̂ℓ,0 = ων̂ℓ,0(ζ)
∣∣
ζ=0

ζ +
( d
dζ
ων̂ℓ,0

)∣∣∣
ζ=0

ζ2

2
+O(ζ3).

Thus we get the following expansion of Ω
ν̂,p∞
p (zj) for p near p∞:

Ων̂,p∞
p (zj) =ωp∞,0ζ + ωp∞,1ζ

2

+

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)
[
ων̂ℓ,0(ζ)

∣∣
ζ=0

ζ +
( d
dζ
ων̂ℓ,0

)∣∣∣
ζ=0

ζ2

2

]
ζk(zj) +O(ζ3)

=
[
ωp∞,0 +

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ων̂ℓ,0(ζ)
∣∣
ζ=0

ζk(zj)
]
ζ

+
[
ωp∞,1 +

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)
1

2

( d
dζ
ων̂ℓ,0

)∣∣∣
ζ=0

ζk(zj)
]
ζ2 +O(ζ3)
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6.2. The long-time asymptotics inside the oscillatory region

and therefore

Λ
ν̂
1(zj) = ωp∞,0(zj) +

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ων̂ℓ,0(ζ)
∣∣
ζ=0

ζk(zj), (6.37)

Λ
ν̂
2(zj) = ωp∞,1(zj) +

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)
1

2

( d
dζ
ων̂ℓ,0

)∣∣∣
ζ=0

ζk(zj). (6.38)

For the purpose of deriving explicit expressions for ων̂ℓ,0(ζ)
∣∣
ζ=0

and
(
d
dζων̂ℓ,0

)∣∣
ζ=0

we
have to expand the Abelian differential ων̂ℓ,0 near ζ = 0:

ων̂,0(ζ) =

R
1/2
2g+1(ζ

−2) +R
1/2
2g+1(ν̂) +

R′
2g+1(ν̂)

2R
1/2
2g+1(ν̂)

(ζ−2 − ν) + Pν̂,0 · (ζ−2 − ν)2

2(ζ−2 − ν)2R
1/2
2g+1(ζ

−2)
(−2ζ−3)dζ =

=
( 1

2ζ−4(1 − ζ2ν)2
+

R
1/2
2g+1(ν̂)

2ζ−2g−5(1 − ζ2ν)2
(
1 − 1

2 (
∑

j Ej)ζ
2 +O(ζ4)

)+

+
R′

2g+1(ν̂)

4R
1/2
2g+1(ν̂)ζ

−2g−3(1 − ζ2ν)
(
1 − 1

2(
∑

j Ej)ζ
2 +O(ζ4)

)+

+
αg−1(ν̂)ζ

−2g+2 +O(ζ−2g+4)

2ζ−2g−1
(
1 − 1

2 (
∑

j Ej)ζ
2 +O(ζ4)

)
)
(−2ζ−3)dζ =

=
(
− ζ(1 + 2ζ2ν +O(ζ4)) − ζ2g+2R

1/2
2g+1(ν̂)

(
1 + (

1

2
(
∑

j

Ej) + 2ν)ζ2 +O(ζ4)
)

−
R′

2g+1(ν̂)

2R
1/2
2g+1(ν̂)

ζ2g
(
1 + (

1

2
(
∑

j

Ej) + ν)ζ2 +O(ζ4)
)

− ζ2g−2
(
αg−1(ν̂)ζ

−2g+2 +O(ζ−2g+4)
)(

1 +
1

2
(
∑

j

Ej)ζ
2 +O(ζ4)

))
dζ

and thus for g ≥ 1 we get

ων̂,0(ζ) = −αg−1(ν̂) − ζ +O(ζ2). (6.39)

This expansion is only valid for the case g ≥ 1, in the case g = 0 we do not need the
expansion of the Abelian differential ων̂,0, since the sums in (6.37) and (6.38) vanish
anyway. Finally, we deduce

ων̂ℓ,0(ζ)
∣∣
ζ=0

= −αg−1(ν̂ℓ),
( d
dζ
ων̂ℓ,0

)∣∣
ζ=0

= −1

and we indeed derive the claimed formulas for Λ
ν̂
1(zj) and Λ

ν̂
2(zj).

Note that the following relations are valid

ωp∞,0(z
∗
j ) = −ωp∞,0(zj),

ωp∞,1(z
∗
j ) + ωp∞,1(zj) = −1,

(6.40)
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6. The Riemann-Hilbert problem in the oscillatory region

and
ckℓ(ν̂

∗) = −ckℓ(ν̂), ζk(z
∗
j ) = −ζk(zj). (6.41)

Moreover, the coefficients αj(ν̂), j = 0, . . . , g − 1 of the polynomial Pν̂,0 fulfill the
relation

αj(ν̂
∗) = −αj(ν̂), j = 0, . . . , g − 1. (6.42)

This can be checked easily in the following way: the coefficients αj(ν̂), j = 0, . . . , g− 1
are determined by the normalization of the Abelian differential ων̂,0, i.e.

∫

aj

ων̂,0 = 0, j = 0, . . . , g − 1.

That means

0 =

∫

aj

ων̂,0 = 2

∫ E2j+1

E2j

R
1/2
2g+1(ν̂) +

R′
2g+1(ν)

2R
1/2
2g+1(ν̂)

(z − ν)

2(z − ν)2R
1/2
2g+1

dz

︸ ︷︷ ︸
=:cj(ν̂)

+

∫

aj

Pν̂,0

2R
1/2
2g+1

dπ,

and thus
∫

aj

Pν̂,0

2R
1/2
2g+1

dπ = −cj(ν̂),

Pν̂,0

2R
1/2
2g+1

dπ = −
g∑

k=1

ck(ν̂)ζk.

Since we have cj(ν̂
∗) = −cj(ν̂) it follows Pν̂∗,0 = −Pν̂,0, that is, the coefficients of the

polynomial indeed have to fulfill (6.42).
Finally, the next two theorems, i.e., Theorem 6.6 and Theorem 6.7, establish the long-

time asymptotic behavior of the perturbed solution V (x, t) in the oscillatory region.
More precisely, in this region of the (x, t)-plane the perturbed KdV solution V (x, t)
approaches a modulated solution with a decay rate of O(t−1/2).

Theorem 6.6. Assume
∫ +∞

−∞
(1 + |x|)7(|V (x, t) − Vq(x, t)|)dx <∞. (6.43)

and let Dj be the sector Dj = {(x, t) : zj(x/t) ∈ [E2j + ε,E2j+1 − ε]} for some ε > 0.
Then the asymptotic is given by

∫ +∞

x
(V − Vl)(y, t)dy = 4

√
i

φ′′(zj)t
Re
(
β(x, t)

)
Λ
ν̂
1(zj) +O(t−α), (6.44)

for any 1/2 < α < 1 uniformly in Dj as t→ ∞. Here

φ′′(zj)
i

=

∏g
k=0,k 6=j(zj − zk)

R
1/2
2g+1(zj)

> 0 (6.45)
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6.2. The long-time asymptotics inside the oscillatory region

(where φ(p, x/t) is the phase function defined in (4.47) and R
1/2
2g+1(z) the square root

of the underlying Riemann surface Kg),

Λ
ν̂
1(zj) = ωp∞,0(zj) −

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)αg−1(ν̂ℓ)ζk(zj), (6.46)

with ωp∞,0 an Abelian differential of the second kind with a second order pole at p∞
(cf. Lemma 3.3), ckℓ

(
ν̂(x, t)

)
some constants defined in (A.6),

β(x, t) =
√
νei
(
π/4−arg(R(zj ))+arg(Γ(iν))+2να(zj )

)(φ′′(zj)
i

)−iν
e−tφ(zj )t−iν ·

· θ
(
z(zj , 0, 0)

)

θ
(
z(zj , x, t) + δ(x/t)

)
θ
(
z(z∗j , x, t) + δ(x/t)

)

θ
(
z(z∗j , 0, 0)

) ×

· exp

(
−

∑

ρk<ζ(x/t)

∫ ρk

E(ρk)
ωzj z∗j

+
1

2πi

∫

C(x/t)
log
( 1 − |R|2

1 − |R(zj)|2
)
ωzj z∗j

)
,

(6.47)

where Γ(z) is the gamma function,

ν = − 1

2π
log
(
1 − |R(zj)|2

)
> 0, (6.48)

and α(zj) is a constant defined in (6.18).

Proof. The asymptotics can be read off by using

m(p) = m4(p)

(
1

T (p∗,x,t) 0

0 1
T (p,x,t)

)
(6.49)

for p near p∞ and comparing with (4.53). From that one deduces

m2(p) =m4
2(p)T (p)−1 =

=1 +
(√ i

φ′′(zj)t

(
iβΛ

ν̂
1(zj) − iβΛ

ν̂
1(z

∗
j )
)
− T1(x, t) +O(t−α)

) 1√
z

+O(z−1),

where we have used (6.29), (6.31) and (5.39). Comparing this asymptotic expansion
with (4.53) yields

∫ +∞

x
(V − Vq)(y)dy = 2

√
i

φ′′(zj)t

(
βΛ

ν̂
1(zj) − βΛ

ν̂
1(z

∗
j )
)

+ 2iT1(x, t) +O(t−α).

Invoking (6.40), (6.41) and (6.42) one gets

Λ
ν̂
1(z∗j ) = −Λ

ν̂
1(zj),

Λ
ν̂∗

1 (zj) = Λ
ν̂
1(zj),

(6.50)
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6. The Riemann-Hilbert problem in the oscillatory region

and therefore
∫ ∞

x
(V − Vq)(y, t)dy = 4

√
i

φ′′(zj)t
Re
(
β(x, t)

)
Λ
ν̂
1(x, t) + 2iT1(x, t) +O(t−α). (6.51)

Finally, using the definition of the limiting solution (5.93) proves the claim. Note that
one obtains the same result if one compares the expressions for the component m1.

Theorem 6.7. Assume (6.43) and let Dj be the sector Dj = {(x, t) : zj(x/t) ∈
[E2j + ε,E2j+1 − ε]} for some ε > 0. Then the asymptotic is given by

(V − Vl)(x, t) = 4

√
i

φ′′(zj)t

[
Im
(
β(x, t)

)
− iRe

(
β(x, t)

) g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ζk(zj)
]

+O(t−α)

(6.52)
for any 1/2 < α < 1 uniformly in Dj as t→ ∞. Here

φ′′(zj)

i
=

∏g
k=0,k 6=j(zj − zk)

R
1/2
2g+1(zj)

> 0. (6.53)

(where φ(p, x/t) is the phase function defined in (4.47) and R
1/2
2g+1(z) the square root

of the underlying Riemann surface Kg), ckℓ
(
ν̂(x, t)

)
some constants defined in (A.6),

β(x, t) =
√
νei
(
π/4−arg(R(zj ))+arg(Γ(iν))+2να(zj )

)(φ′′(zj)
i

)−iν
e−tφ(zj )t−iν ·

· θ
(
z(zj , 0, 0)

)

θ
(
z(zj , x, t) + δ(x/t)

)
θ
(
z(z∗j , x, t) + δ(x/t)

)

θ
(
z(z∗j , 0, 0)

) ·

· exp

(
−

∑

ρk<ζ(x/t)

∫ ρk

E(ρk)
ωzj z∗j

+
1

2πi

∫

C(x/t)
log
( 1 − |R|2

1 − |R(zj)|2
)
ωzj z∗j

)
,

(6.54)

where Γ(z) is the gamma function,

ν = − 1

2π
log
(
1 − |R(zj)|2

)
> 0, (6.55)

and α(zj) is a constant defined in (6.18).

Proof. From Lemma 5.17 we have

m1 ·m2 = 1 + (V − Vq)(x, t)
1

2z
+ o(z−1). (6.56)

On the other hand the following expansion is also valid

m1 ·m2 =m4
1 ·m4

2 · T (p∗, x, t)−1 · T (p, x, t)−1 =

=
(
1 −

√
i

φ′′(zj)t

[(
iβΛ

ν̂∗

2 (zj) − iβΛ
ν̂∗

2 (z∗j )
)

+
(
iβΛ

ν̂
2(z

∗
j ) − iβΛ

ν̂
2(zj)

)]1
z

)
·

·
(
1 +

(∑

j

(µj − νj)
)1
z

+ · · ·
)

+O(t−α), (6.57)
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6.2. The long-time asymptotics inside the oscillatory region

where we made use of (cf. Lemma 5.6)

T (p∗, x, t)T (p, x, t) =

g∏

j=0

z − µj
z − νj

.

Comparing the two expressions (6.56) and (6.57) we conclude

(V − Vq)(x, t) = − 2

√
i

φ′′(zj)t

[(
iβΛ

ν̂∗

2 (zj) − iβΛ
ν̂∗

2 (z∗j )
)

+
(
iβΛ

ν̂
2(z

∗
j ) − iβΛ

ν̂
2(zj)

)]

+ 2
∑

j

(µj − νj) +O(t−α)

or

(V −Vl)(x, t) = −2

√
i

φ′′(zj)t

[(
iβΛ

ν̂∗

2 (zj)−iβΛ
ν̂∗

2 (z∗j )
)
+
(
iβΛ

ν̂
2(z

∗
j )−iβΛ

ν̂
2(zj)

)]
+O(t−α),

where we have used the representations

Vq(x, t) =

2g∑

j=0

Ej − 2

g∑

j=0

µj(x, t),

Vl(x, t) =

2g∑

j=0

Ej − 2

g∑

j=0

νj(x, t).

Hence inserting the expression for Λ
ν̂
2(zj) and using (6.40) and (6.41) we can compute

(V − Vl)(x, t) = −2

√
i

φ′′(zj)t

[
− (iβ − iβ) + (iβ + iβ)

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ζk(zj)
]

+O(t−α)

= 4

√
i

φ′′(zj)t

[
Im(β) − iRe(β)

g∑

k=1

g∑

ℓ=1

ckℓ(ν̂)ζk(zj)
]

+O(t−α),

which completes the proof.
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6. The Riemann-Hilbert problem in the oscillatory region
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7. Analytic Approximation

This chapter is based on [Grunert09, Section 6] and [Krüger09b, Section 6] but will
be quite more general in the sense that it concerns Riemann–Hilbert factorization
deformations on a Riemann surface rather than in the complex plane.

Here we want to present the necessary changes in the case where the reflection
coefficient does not have an analytic extension in those regions of the Riemann surface
where the parts of the jump matrices are shifted to. The idea is to use an analytic
approximation and to split the reflection coefficient in an analytic part plus a small
rest. The analytic part will be moved to regions of the Riemann surface while the rest
remains on Σ = π−1

(
σ(Hq)

)
. This needs to be done in such a way that the rest is

of O(t−1) and the growth of the analytic part can be controlled by the decay of the
phase.

We will use a splitting based on the following Fourier transform of the reflection
coefficient

R(p) =

∫ +∞

−∞
F (x)ψq(p, x, 0)dx, (7.1)

where ψq(p, x, t) denotes the time-dependent Baker–Akhiezer function and F (x) =
F+,R(x, 0, 0) with

F+,R(x, y, t) =
1

2πi

∮

Σ
R(p)ψq(p, x, t)ψq(p, y, t)

i
∏g
j=1(π(p) − µj)

2R
1/2
2g+1(p)

dπ(p) (7.2)

the reflection coefficient part of the Marchenko kernel (cf. [Egorova09c, eq. (3.3)]). If
we make use of (4.3) the above expression for R(p) is equal to

R(p) =

∫ +∞

−∞
F (x)θq(p, x, 0) exp

(
ixk(p)

)
dx. (7.3)

Our decay assumption (4.2) implies F (x) ∈ L1(R) and the estimate (cf. [BoutetdeMonvel08,
Lemma 4.2])

|F (x)| ≤ c(x)

∫ +∞

x/2
|(V − Vq)(r, 0)|dr, (7.4)

where c(x) is a continuous function that decreases monotonically as x → ∞, implies
xlF (x) ∈ L1(0,∞).

Lemma 7.1. Suppose F ∈ L1(R), xlF (x) ∈ L1(0,∞) and let β > 0 be given. Then
we can split the reflection coefficient according to

R(p) = Ra,t(p) +Rr,t(p),
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7. Analytic Approximation

such that Ra,t(p) is analytic for in the region 0 < Im(k(p)) < ε and

|Ra,t(p)e−βt| = O(t−l), 0 < Im(k(p)) < ε, (7.5)

|Rr,t(p)| = O(t−l), p ∈ Σ. (7.6)

Proof. We choose

Ra,t(p) =

∫ ∞

−K(t)
F (x)θq(p, x, 0) exp

(
ixk(p)

)
dx

with K(t) = β0

ε t for some positive β0 < β. Then, for 0 < Im(k(p)) < ε,

∣∣∣Ra,t(k)e−βt
∣∣∣ ≤ Ce−βt

∫ ∞

−K(t)
|F (x)|e−Im(k(p))xdx

≤ Ce−βteK(t)ε‖F‖1 = ‖F‖1e
−(β−β0)t,

which proves the first claim. Similarly, for p ∈ Σ,

|Rr,t(k)| ≤ C

∫ ∞

K(t)

xl|F (x)|
xl

dx ≤ C
‖xlF (x)‖L1(0,∞)

K(t)l
≤ C̃

tl

We choose

β =

{
minp∈Ck

−Re(k(p)) > 0, π(p) > ζ(x, t),
minp∈Ck

Re(k(p)) > 0, π(p) < ζ(x, t).
(7.7)

Before we can split the jump matrices b̃± and B̃± defined in (5.67) and (5.68), re-
spectively, by splitting the reflection coefficient according to Lemma 7.1 we make the
following observation.

The matrices B̃± have at first sight more complicated off diagonal entries than the
matrices b̃±, but a closer look shows that they have indeed the same form. To remedy
this we will rewrite B̃± in terms of the left rather than the right scattering data. For
this purpose let us use the notation Rr(p) ≡ R+(p) for the right and Rl(p) ≡ R−(p)
for the left reflection coefficient. Moreover, let Tr(p, x, t) ≡ T (p, x, t) be the right and
Tl(p, x, t) ≡ T (p)/Tr(p, x, t) be the left partial transmission coefficient.

With this notation we have

J2(p) =

{
b̃−(p)−1b̃+(p), π(p) > ζ(x/t),

B̃−(p)−1B̃+(p), π(p) < ζ(x/t),
(7.8)

where

b̃− =

(
1 Tr(p,x,t)

Tr(p∗,x,t)Rr(p
∗)Θ(p∗)e−tφ(p)

0 1

)
, b̃+ =

(
1 0

Tr(p∗,x,t)
Tr(p,x,t) Rr(p)Θ(p)e−tφ(p) 1

)
,
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and

B̃− =

(
1 0

−Tr,−(p∗,x,t)
Tr,−(p,x,t)

Rr(p)Θ(p)
|T (p)|2 et φ(p) 1

)
,

B̃+ =

(
1 − Tr,+(p,x,t)

Tr,+(p∗,x,t)
Rr(p∗)Θ(p∗)

|T (p)|2 e−t φ(p)

0 1

)
.

Using (4.22) we can write

B̃− =

(
1 0

Tl(p
∗,x,t)

Tl(p,x,t)
Rl(p)Θ(p)e−tφ(p) 1

)
, B̃+ =

(
1 Tl(p,x,t)

Tl(p∗,x,t)
Rl(p

∗)Θ(p∗)e−tφ(p)

0 1

)
.

If we split now Rt(p) = Ra,t(p) +Rr,t(p) according to Lemma 7.1 we obtain

b̃±(p) = b̃a,t,±(p)b̃r,t,±(p) = b̃r,t,±(p)b̃a,t,±(p),

B̃±(p) = B̃a,t,±(p)B̃r,t,±(p) = B̃r,t,±(p)B̃a,t,±(p).

Here b̃a,t,±(p), b̃r,t,±(p) (resp. B̃a,t,±(p), B̃r,t,±(p)) denote the matrices obtained from
b̃±(p) (resp. B̃±(p)) by replacing Rr(p) (resp. Rl(p)) with Ra,t(p), Rr,t(p), respectively.
Now we can move the analytic parts into regions of the Riemann surface as in Sec-
tion 5.4 while leaving the rest on Σ. Hence, rather than (5.87), the jump now reads

J3(p) =





b̃a,t,+(p), p ∈ Ck, π(p) > ζ(x/t),

b̃a,t,−(p)−1, p ∈ C∗
k , π(p) > ζ(x/t),

b̃r,t,−(p)−1b̃r,t,+(p), p ∈ π−1((ζ(x/t),+∞)),

B̃a,t,+(p), p ∈ Ck, π(p) < ζ(x/t),

B̃a,t,−(p)−1, p ∈ C∗
k , π(p) < ζ(x/t),

B̃r,t,−(p)−1B̃r,t,+(p), p ∈ π−1(−∞, ζ(x/t))).

(7.9)

By construction we have v̂(k) = I + O(t−l) on the whole contour and the rest follows
as in Chapter 5.

In the oscillatory region we need to take the small vicinities of the stationary phase
points into account. Since the phase is cubic near these points, we cannot use it to
dominate the exponential growth of the analytic part away from the unit circle. Hence
we will take the phase as a new variable and use the Fourier transform with respect
to this new variable. Since this change of coordinates is singular near the stationary
phase points, there is a price we have to pay, namely, requiring additional smoothness
for R(p). We begin with

Lemma 7.2. Suppose R(p) ∈ C5(Σ). Then we can split R(p) according to

R(p) = R0(p) + (π(p) − π(zj))H(p), p ∈ Σ ∩Dj,1, (7.10)

where R0(p) is a real rational function on Kg such that H(p) vanishes at zj , z
∗
j of order

three and has a Fourier transform

H(p) =

∫

R

Ĥ(x)exφ(p)dx, (7.11)
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7. Analytic Approximation

with xĤ(x) integrable. Here φ denotes the phase defined in (4.47).

Proof. We begin by choosing a rational function R0(p) = a(z) + b(z)R
1/2
2g+1(p) such

that a(z), b(z) are real-valued polynomials which are chosen such that a(z) matches

the values of Re(R(p)) and its first four derivatives at zj and i−1b(z)R
1/2
2g+1(p) matches

the values of Im(R(p)) and its first four derivatives at zj . Since R(p) is C5 we infer
that H(p) ∈ C4(Σ) and it vanishes together with its first three derivatives at zj , z

∗
j .

Note that φ(p)/i, where φ is defined in (4.47) has a maximum at z∗j and a minimum
at zj . Thus the phase φ(p)/i restricted to Σ ∩ Dj,1 gives a one to one coordinate
transform Σ ∩ Dj,1 → [φ(zj)/i, φ(z∗j )/i] and we can hence express H(p) in this new
coordinate (setting it equal to zero outside this interval). The coordinate transform
locally looks like a cube root near zj and z∗j , however, due to our assumption that H

vanishes there, H is still C2 in this new coordinate and the Fourier transform with
respect to this new coordinates exists and has the required properties.

Moreover, as in Lemma 7.1 we obtain:

Lemma 7.3. Let H(p) be as in the previous lemma. Then we can split H(p) according
to H(p) = Ha,t(p) + Hr,t(p) such that Ha,t(p) is analytic in the region Re(φ(p)) < 0
and

|Ha,t(p)e
φ(p)t/2| = O(1), Re(φ(p)) < 0, Im(k(p)) ≤ 0, |Hr,t(p)| = O(t−1), p ∈ Σ.

(7.12)

Proof. We choose Ha,t(p) =
∫∞
−K(t) Ĥ(x)exφ(p)dx with K(t) = t/2. Then we can con-

clude as in Lemma 7.1:

|Ha,t(p)e
φ(p)t/2| ≤ ‖Ĥ(x)‖1|e−K(t)φ(p)+φ(p)t/2| ≤ ‖Ĥ(x)‖1 ≤ const

and

|Hr,t(p)| ≤
∫ −K(t)

−∞
|Ĥ(x)|dx ≤ const

√∫ −K(t)

−∞

1

x4
dx ≤ const

1

K(t)3/2
≤ const

1

t
.

By construction Ra,t(p) = R0(p) + (π(p) − π(zj))Ha,t(p) will satisfy the required
Lipschitz estimate in a vicinity of the stationary phase points (uniformly in t) and all
jumps will be I + O(t−1). The remaining parts of Σ can be handled analogously and
hence we can proceed as in Section 6.2.

90



8. Summary

In the thesis at hand we studied the Korteweg–de Vries (KdV) equation

Vt(x, t) = 6V (x, t)Vx(x, t) − Vxxx(x, t), (x, t) ∈ R × R.

This equation can be considered to be one of the prototype equations in soliton theory.
The KdV equation is a completely integrable nonlinear wave equation. Special solu-
tions of this equation are solitary waves (solitons), i.e., waves traveling at a constant
speed and not changing their shape for all times.

Completely integrable nonlinear partial differential equations of the soliton-type have
so-called algebro-geometric solutions. Solutions belonging to this huge class can be de-
rived by means of algebraic geometry (especially using the theory of compact Riemann
surfaces) and can be explicitly written down in terms of Riemann theta functions.
Due to the quasi-periodic property of such functions (see equation (3.13)) these solu-
tions are often called quasi-periodic. In particular, this class of solutions contains all
soliton-like solutions.

The goal of this thesis was to investigate the long-time asymptotics of KdV solutions
V which are short-range perturbations of such quasi-periodic KdV solutions Vq.

The long-time behavior of solutions in the classical (free) case is well-understood. In
this case the background Vq is constant and the “perturbed” solution V is a rapidly
decaying classical KdV solution, which, e.g., can be derived by the inverse scattering
method. In the long-time limit the classical solution V shows the following behavior:

(i) in the so-called soliton region of the (x, t)-plane the classical KdV solution V
splits up into a number of solitons travelling on the constant background, which
are generated by the discrete spectrum of the corresponding Lax operator.

(ii) In the oscillatory region of the (x, t)-plane there can be observed an oscillating
part emerging from the continuous spectrum of the Lax operator, which decays
exponentially with time and in the limit approaches the constant background.

As already mentioned above, in this thesis we studied the quasi-periodic background
case. Let g be the genus of the hyperelliptic curve associated with the unperturbed
background solution Vq. Then the continuous spectrum of the Lax operator Hq =
d2/dx2 + Vq consists of g + 1 spectral bands. The eigenvalues of the Lax operator
lie in the spectral gaps. We were able to derive the following long-time asymptotic
behavior of KdV solutions V that can be considered short-range perturbations of the
quasi-periodic background solution Vq:
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8. Summary

(i) in the soliton region of the (x, t)-plane, which consists of g+1 areas (corresponding
to the spectral gaps), the perturbed solution V splits up into a number of solitons,
each of them corresponding to one eigenvalue. For large times these solitons do
not travel on the quasi-periodic background Vq but on a modulated KdV solution
(cf. Definition 5.5). The exact result is given by Theorem 5.18.

(ii) In the oscillatory region of the (x, t)-plane, which consists of g + 1 areas (corre-
sponding to the spectral bands), the perturbed solution V does not approach the
quasi-periodic solution Vq but again the so-called limiting KdV solution with a
decay rate of O(t−1/2). For the explicit asymptotic term we refer to Theorem 6.7.

This result turned out to be quite surprising given that – taking the classical result
concerning the free case into account – one may have expected that in the quasi-periodic
case the perturbed solution V asymptotically approaches the background solution Vq.
Nevertheless, the quasi-periodic case studied in this thesis is the more general one
which contains the classical case (choose g = 0).

The method which was used to derive this long-time asymptotics relies on the fact
that the inverse spectral problem can be equivalently formulated as a Riemann–Hilbert
factorization problem (RHP) defined on the underlying hyperelliptic curve. Then one
can use the nonlinear steepest descent method for oscillatory RHP, which can be consid-
ered an analogue to the stationary phase method to approximate oscillating integrals.
In that way the RHP with a jump on the spectral bands can be reduced to a local
RHP which has a jump on a small cross centered at a stationary phase point lying in
a spectral band. The advantage is that the localized RHP can be explicitly solved,
which enables one to derive the explicit asymptotic terms.
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A. Singular integral equations

In this appendix, which is based on [Kamvissis07b, Chapter 5] and [Krüger09c, Ap-
pendix A] we will show how to transform a meromorphic Riemann–Hilbert problem
with simple poles at ρ, ρ∗ of the form

m+(p) = m−(p)J(p), p ∈ Σ,

(m1) ≥ −Dµ̂(x,t)∗ −Dρ, (m2) ≥ −Dµ̂(x,t) −Dρ∗ ,

(
m1(p) +

2iR
1/2
2g+1(ρ)∏g

k=1(ρ− µk)

γ

π(p) − ρ

ψq(p, x, t)

ψq(p∗, x, t)
m2(p)

)
≥ −Dµ̂(x,t)∗ , near ρ,

( 2iR
1/2
2g+1(ρ)∏g

k=1(ρ− µk)

γ

π(p) − ρ

ψq(p, x, t)

ψq(p∗, x, t)
m1(p) +m2(p)

)
≥ −Dµ̂(x,t), near ρ∗,

m(p∗) = m(p)

(
0 1
1 0

)
,

m(p∞) =
(
1 1

)
,

(A.1)

into a singular integral equation. Since we require the symmetry condition we need to
adapt the Cauchy kernel such that the symmetry is indeed preserved.

Moreover, we keep the single soliton as an inhomogeneous term, which will play the
role of the leading asymptotics in our applications.

For notational simplicity we will abbreviate Lp(Σ) = Lp(Σ,C2×2).

Hypothesis H.A.1. Let Σ consist of a finite number of smooth oriented curves in
Kg which intersect at most finitely many times with all intersections being transversal.
Assume that the contour is invariant under p 7→ p∗. It is oriented such that under
the mapping p 7→ p∗ sequences converging from the positive side to Σ are mapped to
sequences converging to the negative side. Moreover, suppose the jump matrix J is
continuous and can be factorized according to J = b−1

− b+ = (I−w−)−1(I +w+), where
w± = ±(b± − I) are continuous and satisfy

w±(p∗) =

(
0 1
1 0

)
w∓(p)

(
0 1
1 0

)
, p ∈ Σ. (A.2)

In order to respect the symmetry condition we will restrict our attention to the set
L2
s(Σ) of square integrable functions f : Σ → C

2 such that

f(p) = f(p∗)

(
0 1
1 0

)
. (A.3)
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A. Singular integral equations

Clearly this will only be possible if we require our jump data to be symmetric as well
(i.e., Hypothesis A.1 holds).

In [Beals84] it is shown that the solution of a Riemann–Hilbert problem in the
complex plane can be reduced to the solution of a singular integral equation. Since in
our case the underlying space is not the complex plane but the Riemann surface Kg

defined in Chapter 2 we have to generalize the Cauchy kernel appropriately.
We follow the construction from [Rodin88, Sec. 4]. Allowing poles at the nonspecial

divisor Dµ̂ the corresponding Cauchy kernel is given by

Ω
µ̂,ρ
p = ωp ρ +

g∑

j=1

I
µ̂,ρ

j (p)ζj, (A.4)

where

I
µ̂,ρ

j (p) =

g∑

ℓ=1

cjℓ(µ̂)

∫ p

ρ
ωµ̂ℓ,0. (A.5)

Here ωµ̂ℓ,0 is the (normalized) Abelian differential of the second kind with a second

order pole at µ̂ℓ. Thus I
µ̂,ρ

j (p) has first order poles at the points µ̂. By ωp ρ we denote
the Abelian differential of the third kind with simple poles at p and ρ (cf. Remark 5.4).

The constants cjℓ(µ̂) are chosen such that Ω
µ̂,ρ
p is single valued. That is,

∫

bk

dI
µ̂,ρ

j =

g∑

ℓ=1

cjℓ

∫

bk

ωµ̂ℓ,0 =

g∑

ℓ=1

cjℓηk(µ̂ℓ) = δjk, (A.6)

where ζk = ηk(z)dz is the chart expression in a local chart near µ̂ℓ (here the bk periods
are evaluated using the usual bilinear relations, see [Farkas92, Sect. III.3] or [Teschl00,
Sect. A.2]). That the matrix ηk(µ̂ℓ) is indeed invertible can be seen as follows: If∑g

k=1 ηk(µ̂ℓ)ck = 0 for 1 ≤ ℓ ≤ g, then the divisor of ζ =
∑g

k=1 ckζk satisfies (ζ) ≥ Dµ̂.
But since we assumed the divisor Dµ̂ to be nonspecial, i(Dµ̂) = 0, we have ζ = 0
implying ck = 0.

We will always assume that Dµ̂ does not hit our contour Σ.

A.1. The Cauchy operator and its properties

Define the following generalized Cauchy operator

(Cf)(p) =
1

2πi

∫

Σ
f Ω

µ̂,ρ
p , p 6∈ Σ, (A.7)

for a vector valued function f : Σ → C
2. The generalized Cauchy kernel Ω

µ̂,ρ
p is given

by

Ω
µ̂,ρ
p =

(
Ω
µ̂∗,ρ∗

p 0

0 Ω
µ̂,ρ
p

)
, (A.8)
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where Ω
µ̂,ρ
p is the Cauchy kernel given by (A.4). In the case where no poles are present

we set

Ων̂p =

(
Ω
ν̂∗,p∞
p 0

0 Ω
ν̂,p∞
p

)
. (A.9)

Invoking Remark 5.4, Remark 6.5 and the property cjℓ(µ̂
∗) = −cjℓ(µ̂) one gets the

symmetry property

Ω
µ̂,ρ

p∗ (q∗) =

(
0 1
1 0

)
Ω
µ̂,ρ
p (q)

(
0 1
1 0

)
. (A.10)

Furthermore, we define the operators

(C±f)(q) = lim
p→q∈Σ

(Cf)(p), (A.11)

where the subscript denotes the non-tangential boundary limit from Π+ or Π−, respec-
tively.

Theorem A.2. Assume Hypothesis A.1. The operators C± : L2
s(Σ) → L2

s(Σ) defined
in (A.11) are bounded. The bound can be chosen independent of the divisor as long
as it stays some finite distance away from Σ. Moreover, the operators C± satisfy the
Plemelj formulae

(C+f)(q) − (C−f)(q) = f(q),

(C+f)(q) + (C−f)(q) =
1

πi
−
∫

Σ
f Ω

µ̂,ρ
q ,

(A.12)

where −
∫

denotes the principal value integral, and

(Cf)(ρ∗) =
(
0 ∗

)
, (Cf)(ρ) =

(
∗ 0

)
. (A.13)

Furthermore, C restricts to L2
s(Σ), that is

(Cf)(p∗) = (Cf)(p)

(
0 1
1 0

)
, p ∈ Kg\Σ (A.14)

for f ∈ L2
s(Σ). If w± satisfy (A.2), we also have

C±(fw∓)(p∗) = C∓(fw±)(p)

(
0 1
1 0

)
, p ∈ Σ. (A.15)

Proof. In a chart z = z(p) near q0 ∈ Σ, the differential Ω
µ̂,ρ
q = ( 1

z−z(q) + O(1))dz

and hence the first part follows as in the Cauchy case on the complex plane (cf.
[Muskhelishvili53]) using a partition of unity. By the definition of the Cauchy op-
erator one can easily check that the property (A.13) is fulfilled. Moreover, invoking
(A.2) and (A.10) one can verify by a straightforward calculation that (A.14) and (A.15)
also hold.
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A. Singular integral equations

A.2. The connection between singular integral equations and

Riemann–Hilbert problems

Let the operator Cw : L2
s(Σ) → L2

s(Σ) be defined by

Cwf = C+(fw−) +C−(fw+) (A.16)

for a vector valued f ∈ L2
s(Σ), where

w+ = b+ − I and w− = I − b−. (A.17)

From Lemma 4.11 we have that the solution corresponding to the jump J ≡ I is given
by

m0(p) =
(
f(p∗, x, t) f(p, x, t)

)
, f(p, x, t) =

ψq,γ(p, x, t)

ψq(p, x, t)
,

ψq,γ(p, x, t) = ψq(p, x, t) +
γ

z − ρ

ψq(ρ, x, t)W(x,t)(ψq(ρ, x, t), ψq(p, x, t))

cq,γ(ρ, x, t)
.

The divisor of f satisfies (f) ≥ −Dµ̂ − Dρ∗ . Since we assumed Dµ̂ to stay away from

Σ, we have m0 ∈ L2(Σ). The next theorem shows how one can transform a Riemann–
Hilbert problem like (A.1) into a singular integral equation and vice versa.

Theorem A.3. Assume Hypothesis A.1.
Suppose m solves the Riemann–Hilbert problem (A.1). Then

m(p) = (1 − c0)m0(p) +
1

2πi

∫

Σ
µ(s)(w+(s) + w−(s))Ω

µ̂,ρ
p , (A.18)

where

µ = m+b
−1
+ = m−b

−1
− and c0 =

(
1

2πi

∫

Σ
µ(s)(w+(s) + w−(s))Ω

µ̂,ρ
p∞

)

1

.

Here (m)j denotes the j’th component of the vector m. Furthermore, µ solves

(I − Cw)µ(p) = (1 − c0)m0(p). (A.19)

Conversely, suppose µ̃ solves

(I − Cw)µ̃(p) = m0(p), (A.20)

and

c̃0 =

(
1

2πi

∫

Σ
µ̃(s)(w+(s) + w−(s))Ω

µ̂,ρ
p∞

)

1

6= 1,

then m defined via (A.18), with (1 − c0) = (1 − c̃0)
−1 and µ = (1 − c̃0)

−1µ̃, solves the
Riemann–Hilbert problem (A.1) and µ = m±b

−1
± .
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A.2. Singular integral equations and Riemann–Hilbert problems

Proof. First note that by (A.15) (I − Cw) satisfies the symmetry condition and hence
so do (I − Cw)−1m0 and m.

So if m solves (A.1) and we set µ = m+b
−1
+ = m−b

−1
− , then m satisfies the following

additive jump

m+ −m− = m−(b−1
− b+ − I) = m−b

−1
− (b+ − b−) = µ

(
(b+ − I) + (I − b−)

)

= µ(w+ + w−).

Now define m̃ by the right hand side of (A.18), then one can show that m̃ satisfies the
same additive jump as m:

m+ −m− = (1 − c0)(m0,+ −m0,−) + (C+ − C−)(µw+) + (C+ − C−)(µw−)

= µ(w+ + w−).

Here we made use of (A.12) and the fact that m0 is the solution to the Riemann–Hilbert
problem with jump J = I and thus m0,+ = m0,−.

The uniqueness result Theorem A.6 yields m − m̃ = αm0 for some α ∈ C. By the
normalization of m and m̃ at p∞ we finally get that α = 0, that is m = m̃.

It is left to show that µ = m±b
−1
± solves the singular integral equation (A.19). For

that purpose note that if m is given by (A.18), making use of the Plemelj formulae
(A.12) yields

m± = (1 − c0)m0 + C±(µw−) + C±(µw+)

= (1 − c0)m0 + C±(µw−) + C∓(µw+) + C±(µw+) − C∓(µw+)

= (1 − c0)m0 + Cw(µ) ± µw±
= (1 − c0)m0 − (I − Cw)µ+ µ(I ± w±)

= (1 − c0)m0 − (I − Cw)µ+ µb±.

So by the definition of µ we have m± = µb± and hence

µb± = (1 − c0)m0 − (I − Cw)µ+ µb±,

which shows that (1 − c0)m0 − (I − Cw)µ = 0, that means µ indeed solves (A.19).

Conversely, suppose µ̃ solves the singular integral equation (A.20). Let m be defined
via (A.18) with (1 − c0) = (1 − c̃0)

−1 and µ = (1 − c̃0)
−1µ̃, then using the same

calculation as above implies

m± = (1 − c̃0)
−1m0 − (1 − Cw)(1 − c̃0)

−1µ̃+ (1 − c̃0)
−1µ̃b±

= (1 − c̃0)
−1m0 − (1 − c̃0)

−1m0 + (1 − c̃0)
−1µ̃b± = µb±,

which shows that m defined via (A.18) solves the Riemann–Hilbert problem (A.1).

In the oscillatory region, that is in the case γ = 0, we have m0(p) =
(
1 1

)
. Choosing

ρ = p∞ such that c0 = c̃0 = 0 yields the following Corollary:
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A. Singular integral equations

Corollary A.4. Assume Hypothesis A.1.

Suppose m solves the Riemann–Hilbert problem (A.1) with γ = 0. Then

m(p) = I +
1

2πi

∫

Σ
µ(s)(w+(s) + w−(s))Ων̂

p, (A.21)

where the Cauchy kernel Ων̂
p is defined as in (A.9) and

µ = m+b
−1
+ = m−b

−1
− .

Furthermore, µ solves

(I − Cw)µ = I. (A.22)

Conversely, suppose µ̃ solves (A.22) then m defined by the integral formula (A.21)
solves the Riemann–Hilbert problem (A.1).

Hence we have a formula for the solution of our Riemann–Hilbert problem m(p)
in terms of (I − Cw)−1m0(p) and thus we have to consider the question of bounded
invertibility of the operator I − Cw. This will follow from Fredholm theory (cf. e.g.
[Zhou89]) as the next section shows.

A.3. An existence and uniqueness result for symmetric

Riemann–Hilbert problems on a Riemann surface

The aim of this section is to prove a result that guarantees existence and uniqueness for
symmetric Riemann–Hilbert factorization problems, which are set on an hyperelliptic
curve with real branch cuts. We will use the same idea as presented in [Kamvissis07b,
Appendix A], whereas our result will be slightly more general since it includes the case
where solitons are present.

Lemma A.5. Assume Hypothesis A.1.

The operator I − Cw is Fredholm of index zero,

ind(I − Cw) = 0. (A.23)

Proof. Since one can easily check

(I − Cw)(I − C−w) = (I −C−w)(I − Cw) = I − Tw, (A.24)

where

Tw = T++ + T+− + T−+ + T−−, Tσ1σ2(f) = Cσ1 [Cσ2(fw−σ2)w−σ1 ],

it suffices to check that the operators Tσ1σ2 are compact ([Prössdorf78, Thm. 1.4.3]).

Indeed, suppose fn ∈ L2(Σ) converges weakly to zero. Without loss of generality we
can assume fn to be continuous. We will show that ‖Twfn‖L2 → 0.
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Let us temporally assume that w is analytic in a neighborhood of Σ. Then according
to the definition of C±, we can slightly deform the contour Σ to some contour Σ± close
to Σ, on the left, and have, by Cauchy’s theorem,

T++fn(p) =
1

2πi

∫

Σ+

(C(fnw−)(s)w−(s))Ω
µ̂,ρ
p .

Note that (C(fnw−)w−)(p) → 0 as n→ ∞ and

|(C(fnw−)w−)(p)| < const ‖fn‖L2‖w−‖L∞ < const.

Thus, using the dominated convergence theorem yields ‖T++fn‖L2 → 0 as desired.

Consider the operator I− εCw = I−Cεw for 0 ≤ ε ≤ 1. As is shown in [Prössdorf78,
Thm. 1.3.8] ind(I − εCw) is continuous with respect to ε, but since it is an integer, it
has to be constant, that is

ind(I − Cw) = ind(I) = 0.

Moreover, in the case where w is not analytic one can take an analytic approximation
by using the partition of unity.

By the Fredholm alternative we know that to show the bounded invertibility of the
operator I − Cw it suffices to check that ker(I − Cw) = 0. The latter is equivalent to
unique solvability of the corresponding vanishing Riemann–Hilbert problem.

We will consider the Riemann–Hilbert problem (A.1) where the pole conditions are
now rewritten as mentioned in Remark 4.7, i.e.,

m+(p) = m−(p)J(p), p ∈ Σ,

(m1) ≥ −Dµ̂(x,t)∗ −Dρ, (m2) ≥ −Dµ̂(x,t) −Dρ∗ ,

Resρjm(p) = lim
p→ρj

m(p)




0 0
2iR

1/2
2g+1(ρj)γj

Qg
k=1(ρj−µk)

0


 = lim

p→ρj

m(p)Jj ,

Resρ∗jm(p) = lim
p→ρ∗j

m(p)


0

2iR
1/2
2g+1(ρj)γj

Qg
k=1(ρj−µk)

0 0


 = lim

p→ρ∗j

m(p)J∗
j ,

m(p∗) = m(p)

(
0 1
1 0

)
,

m(p∞) =
(
1 1

)
.

(A.25)

Let us, for notational convenience, abbreviate

σ =

(
0 1
1 0

)
,

and note that J∗
j = σJjσ.
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A. Singular integral equations

Theorem A.6 (Existence and uniqueness). Assume Hypothesis A.1. Consider the
Riemann–Hilbert problem (A.25), where Σ is an oriented contour, consisting of a union
of finitely many smooth arcs, which is symmetric under sheet exchange plus conjugation
(Σ = Σ

∗
) such that

(i) J(p∗) = J∗(p), for p ∈ Σ \ π−1(σ(Hq)),

(ii) Re(J(p)) = 1
2 (J(p) + J∗(p)) is positive definite for p ∈ π−1(σ(Hq)),

(iii) Jjσ + σJ∗
j is purely imaginary, where the imaginary part is nonnegative,

(iv) J is analytic in a neighborhood of Σ.

The divisor Dµ̂(x,t) is such that µj ∈ [E2j−1, E2j ], j = 1, . . . , g.

Then the Riemann–Hilbert problem (A.25) on Kg has a unique solution.

Note that the +-side of the contour is mapped to the −-side under sheet exchange.
In particular, the theorem holds if J = I, that is there is no jump, on π−1(σ(Hq)).

Proof. As mentioned above we have to show that ker(I − Cw) = 0. For that purpose
suppose that (I − Cw)µ = 0 holds for some µ ∈ L2

s(Σ). Next, set

m̃(p) = (Cw)(µ)(p) for p ∈ Kg\Σ.

One can then show that m̃(p) solves the Riemann–Hilbert problem (A.1) except for
the normalization condition which is now given by m̃(p∞) =

(
0 0

)
. That is, m̃(p)

solves the corresponding vanishing Riemann–Hilbert problem.
Next we want to apply Cauchy’s integral theorem to m̃(p)m̃∗(p∗). To handle the

poles of m̃ we will multiply it by a meromorphic differential dΩ which has zeros at µ
and µ∗ and a simple pole at p∞ such that finally the differential m̃(p)m̃∗(p∗)dΩ(p) is
holomorphic away from the contour.

More precisely, let

dΩ =

∏g
j=1(π − µj)

R
1/2
2g+1

dπ (A.26)

and note that i
(∏

j(z − µj)
)
R

−1/2
2g+1(z) is a Herglotz function. That is, it has positive

imaginary part in the upper half-plane (and it is purely imaginary on σ(Hq)). Hence

m̃(p)m̃T (p)dΩ(p) will be positive on π−1(σ(Hq)).
Next, consider the integral

∫

D
m̃(p)m̃∗(p∗)dΩ(p), (A.27)

where D is a ∗-invariant contour consisting of one small loop in every connected com-
ponent of Kg\Σ. We will deform D to a ∗-invariant contour consisting of two parts,
one, say D+, wrapping around the part of Σ lying on Π+ and the + side of π−1(σ(Hq))
and the other being D− = D+

∗
.
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A.3. An existence and uniqueness result for Riemann–Hilbert problems

For each component Σν of Σ\π−1(σ(Hq)) there are two contributions to the integral
on the deformed contour:∫

Σν

m̃+(p)m̃∗
−(p∗)dΩ(p) =

∫

Σν

m̃−(p)J(p)m̃∗
−(p∗)dΩ(p),

∫

−Σν

m̃−(p)m̃∗
+(p∗)dΩ(p) =

∫

−Σν

m̃−(p)J∗(p∗)m̃∗
−(p∗)dΩ(p).

Using condition (i) one sees that the two integrals cancel each other.
Taking this into account one gets
∫

D
m̃(p)m̃∗(p∗)dΩ(p) =

∫

π−1(σ(Hq))

(
m̃+(p)m̃∗

−(p∗) + m̃−(p)m̃∗
+(p∗)

)
dΩ(p)

=

∫

π−1(σ(Hq))
m̃−(p)(J(p) + J∗(p∗))m̃∗

−(p∗)dΩ(p) ≥ 0, (A.28)

where we have used condition (ii) to see that this integral is positive. On the other
hand by Cauchy’s residue theorem we have

∫

D
m̃(p)m̃∗(p∗)dΩ(p) =

N∑

j=1

(
Resρjm̃(p)m̃∗(p∗) + Resρ∗j m̃(p)m̃∗(p∗)

)
dΩ(p). (A.29)

Thus, our next aim will be to calculate the residues of m̃(p)m̃∗(p∗)dΩ(p). The function
m̃(p)dΩ(p) has the following representations near the poles ρj resp. ρ∗j :

m̃(p) =

{ Aj

z−ρj
+Bj +O(z − ρj) near ρj,

Cj

z−ρj
+Dj +O(z − ρ∗j) near ρ∗j ,

(A.30)

where Aj, Bj, Cj, and Dj are vectors. Since m̃(p) has to fulfill the symmetry condition

m̃(p∗) = m̃(p)σ,

the following restrictions have to be satisfied:

Cj = Ajσ and Dj = Bjσ. (A.31)

Moreover, the pole condition

Resρjm̃(p) = lim
p→ρj

m̃(p)Jj ,

yields the conditions
Aj = BjJj and AjJj = 0, (A.32)

which are indeed both fulfilled since in our case J2
j = 0. Thus, we are ready to compute

the residue of m̃(p)m̃∗(p∗) at ρj:

Resρjm̃(p)m̃∗(p∗)dΩ(p) = Resρj

(( BjJj
z − ρj

+Bj
)((BjJjσ)∗

z − ρj
+ (Bjσ)∗

))
dΩ(p)

= Resρj

(( BjJj
z − ρj

+Bj
)(σJ∗

jB
∗
j

z − ρj
+ σB∗

j

))
dΩ(p)

= BjJjσB
∗
j +BjσJ

∗
jB

∗
j = Bj(Jjσ + σJ∗

j )B
∗
j ,
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where J∗
j = σJjσ. The residue at ρ∗j can be computed similarly, but it also follows

easily by the symmetry condition

Resρ∗j m̃(p)m̃∗(p∗)dΩ(p) = lim
p→ρ∗j

(p− ρ∗j)m̃(p)m̃∗(p∗)dΩ(p)

= lim
p∗→ρj

(p∗ − ρj)m̃(p)m̃∗(p∗)dΩ(p)

= lim
p∗→ρj

(p∗ − ρj)m̃(p∗)σσ∗m̃∗(p)dΩ(p)

= lim
p→ρj

(p− ρj)m̃(p)m̃∗(p∗)dΩ(p)

= Resρjm̃(p)m̃∗(p∗)dΩ(p) = Bj(Jjσ + σJ∗
j )B

∗
j .

We are now ready to compute the integral (A.29):

∫

D
m̃(p)m̃∗(p∗)dΩ(p) = 4πi

g∑

j=1

Bj(Jjσ + σJ∗
j )B

∗
j ≤ 0, (A.33)

where we made use of condition (iii) to see that the integral is non-positive. Finally,
comparing (A.28) and (A.33) it follows that m̃ = 0 and hence µ = 0, which shows that
indeed ker(I − Cw) = 0.

To prove uniqueness, suppose there were two solutions. Their difference would satisfy
the same jump and would vanish at p∞. Using the above argument for m̃ we see that
the difference would have to vanish everywhere.

We are interested in comparing two Riemann–Hilbert problems associated with re-
spective jumps w0 and w with ‖w − w0‖∞ and ‖w − w0‖2 small, where

‖w‖∞ = ‖w+‖L∞(Σ) + ‖w−‖L∞(Σ). (A.34)

and
‖w‖2 = ‖w+‖L2(Σ) + ‖w−‖L2(Σ) (A.35)

For such a situation we have the following result:

Theorem A.7. Assume that for some data wt0 the operator

I − Cwt
0

: L2
s(Σ) → L2

s(Σ) (A.36)

has a bounded inverse, where the bound is independent of t, and let ρ = ζ0, γ
t = γt0.

Furthermore, assume wt satisfies

‖wt − wt0‖∞ ≤ α(t) and
∥∥wt − wt0

∥∥
2
≤ α(t) (A.37)

for some function α(t) → 0 as t → ∞. Then (I − Cwt)−1 : L2
s(Σ) → L2

s(Σ) also exists
for sufficiently large t and the associated solutions of the Riemann–Hilbert problems
(A.1) only differ by O(α(t)).
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Proof. By the boundedness of the Cauchy transform we conclude

‖(Cwt − Cwt
0
)(f)‖2 = ‖C+(f(wt− − wt0,−)) + C−(f(wt+ −wt0,+))‖2

≤ c ‖f‖L2(Σ)

∥∥wt − wt0
∥∥
∞

and thus by (A.37) we obtain

‖Cwt − Cwt
0
‖L2(Σ)→L2(Σ) = O(α(t)).

Hence by the second resolvent identity, we infer that (I−Cwt)−1 exists for large t and

‖(I − Cwt
0
)−1 − (I − Cwt)−1‖L2(Σ)→L2(Σ) = O(α(t)).

Next, observe that since µ solves (A.19) we get

µt − µt0 = (I − Cwt)−1(1 − c0)m0(k) − (I − Cwt
0
)−1(1 − c0)m0(k) ∈ L2

s(Σ)

and can therefore compute

‖µt − µt0‖L2(Σ) = ‖[(I − Cwt)−1 − (I − Cwt
0
)−1](1 − c0)m0(k)‖L2(Σ)

≤ ‖(I − Cwt
0
)−1 − (I − Cwt)−1‖L2(Σ)→L2(Σ)‖(1 − c0)m0(k)‖L2(Σ)

= O(α(t)).

This now implies that for p ∈ Kg\Σ

∣∣mt(k) −mt
0(k)

∣∣ =

∣∣∣∣
1

2πi

∫

Σ
µt(s)(wt+(s) + wt−(s)) − µt0(s)(w

t
0,+(s) + wt0,−(s))Ω

µ̂,ρ
p

∣∣∣∣

≤ 1

2π

∣∣∣∣
∫

Σ
µt(s)(wt+ + wt−(s) − (wt0,+(s) + wt0,−(s)))Ω

µ̂,ρ
p

∣∣∣∣

+
1

2π

∣∣∣∣
∫

Σ
(µt(s) − µt0(s))(w

t
0,+(s) + wt0,−(s))Ω

µ̂,ρ
p

∣∣∣∣

≤c‖µt∞‖L∞(Σ)‖wt − wt0‖2 + c‖µt2‖L2(Σ)‖wt − wt0‖∞
+ c‖µt − µt0‖L2(Σ)‖wt0‖∞ = O(α(t)).

Here µt∞ denotes the L∞ part of µt and similarly µt2 denotes the L2 part of µt.

Now we want to investigate the case p ∈ Σ. Since by definition w± = I ± w± we
have

wt − wt0 = (bt+ − bt0,+) + (bt− − bt0,−)

and hence

‖bt± − bt0,±‖2 ≤ ‖wt − wt0‖2 = O(α(t)),

‖bt± − bt0,±‖∞ ≤ ‖wt − wt0‖∞ = O(α(t)).
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A. Singular integral equations

Thus we can conclude

‖mt
±(k) −mt

0,±(k)‖L2(Σ) =‖µtbt± − µt0b
t
0,±‖L2(Σ)

≤‖µtbt± + µt0b
t
± − µt0b

t
± − µt0b

t
0,±‖L2(Σ)

≤‖µt − µt0‖L2(Σ)‖bt±‖∞ + ‖µt0,∞‖L∞(Σ)‖bt± − bt0,±‖2

+ ‖µt0,∞‖L2(Σ)‖bt± − bt0,±‖∞ = O(α(t)),

where similarly as above µt0,∞ denotes the L∞ part of µt0 and µt0,2 denotes the L2 part
of µt0.
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B. The Riemann-Hilbert problem on a

small cross

This chapter is taken from Krüger and Teschl [Krüger09b, Appendix A]. It is devoted
to solving the Riemann–Hilbert problem on a small cross.

Introduce the cross Σ = Σ1 ∪ · · · ∪ Σ4 (cf. Figure B.1) by

Σ1 = {ue−iπ/4, u ∈ [0,∞)} Σ2 = {ueiπ/4, u ∈ [0,∞)}
Σ3 = {ue3iπ/4, u ∈ [0,∞)} Σ4 = {ue−3iπ/4, u ∈ [0,∞)}.

The contour Σ is oriented such that the real part of z increases in the positive direction.
Denote by D = {z ∈ C, |z| < 1} the open unit disc. Throughout this appendix ziν will
denote the function eiν log(z), where the branch cut of the logarithm is chosen along the
negative real axis (−∞, 0).

Now consider the Riemann–Hilbert problem given by

m+(z) = m−(z)vj(z), z ∈ Σj, j = 1, . . . , 4,

m(z) → I, z → ∞,
(B.1)

where the jump matrices are given as follows: (vj for z ∈ Σj)

v1 =

(
1 −R1(z)z

2iνe−tΦ(z)

0 1

)
, v2 =

(
1 0

R2(z)z
−2iνetΦ(z) 1

)
,

v3 =

(
1 −R3(z)z

2iνe−tΦ(z)

0 1

)
, v4 =

(
1 0

R4(z)z
−2iνetΦ(z) 1

)
.
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R2(z) · · · 1

«

„

1 −R3(z) · · ·
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R4(z) · · · 1

«

Figure B.1.: Contours of a cross. [Krüger09b]
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B. The Riemann-Hilbert problem on a small cross

We can now state the next theorem, which gives us the solution of the Riemann–
Hilbert problem (B.1). In the proof we follow the computations of Deift and Zhou
[Deift93, Section 3 and 4].

We will allow some variation, in all parameters as indicated.

Theorem B.1. There is some ρ0 > 0 such that vj(z) = I for |z| > ρ0. Moreover,
suppose that within |z| ≤ ρ0 the following estimates hold:

1. The phase satisfies Φ(0) ∈ iR, Φ′(0) = 0, Φ′′(0) = i and

± Re
(
Φ(z) − Φ(0)

)
≥ 1

4
|z|2,

{
+ for z ∈ Σ1 ∪ Σ3,

− else,
(B.2)

|Φ(z) − Φ(0) − iz2

2
| ≤ C|z|3. (B.3)

2. There is some r ∈ D and constants (α,L) ∈ (0, 1] × (0,∞) such that Rj, j =
1, . . . , 4, satisfy Hölder conditions of the form

|R1(z) − r| ≤ L|z|α, |R2(z) − r| ≤ L|z|α,

|R3(z) −
r

1 − |r|2 | ≤ L|z|α, |R4(z) −
r

1 − |r|2 | ≤ L|z|α.

Then the solution of the Riemann–Hilbert problem (B.1) satisfies

m(z) = I +
1

z

i

t1/2

(
0 −β
β 0

)
+O(t−

1+α
2 ), (B.4)

for |z| > ρ0, where

β =
√
νei(π/4−arg(r)+arg(Γ(iν)))e−tΦ(0)t−iν , ν = − 1

2π
log(1 − |r|2). (B.5)

Furthermore, if Rj(z) and Φ(z) depend on some parameter, the error term is uniform
with respect to this parameter as long as r remains within a compact subset of D and
the constants in the above estimates can be chosen independent of the parameters.

Remark B.2. Note that the solution of the Riemann–Hilbert problem (B.1) is unique.
This follows from the usual Liouville argument [Deift00, Lemma 7.18] since det(vj) =
1.

Before we are able to prove this theorem, which will be done in the end of Section B.2
(see page 114), we have to work out some necessary preliminaries.
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B.1. Approximation

B.1. Approximation

A close look at Theorem B.1 shows, that the actual value of ρ0 is of no importance. In
fact, if we choose 0 < ρ1 < ρ0, then the solution m̃ of the problem with jump ṽ, where
ṽ is equal to v for |z| < ρ1 and I otherwise, differs from m only by an exponentially
small error.

This already indicates that we should be able to replace Rj(z) by their respective
values at z = 0. To see this we start by rewriting our Riemann–Hilbert problem as
a singular integral equation. We will use the theory similar to the one developed in
Appendix A with the only difference being that the problem is now set in the complex
plane. We will apply the theory to the case of 2 × 2 matrix valued functions with
m0(z) = I and will use the usual Cauchy kernel (since we won’t require symmetry in
this appendix)

Ω∞(s, z) = I
ds

s− z
.

Moreover, since our contour is unbounded, we will again assume w ∈ L∞(Σ) ∩ L2(Σ).
All results from Appendix A still hold in this case with some straightforward modifi-
cations as the only difference is that µ is now a matrix and no longer a vector. Indeed,
as in Appendix A (cf. Corollary A.4), in the special case b+(z) = vj(z) and b−(z) = I

for z ∈ Σj, j = 1, . . . , 4, we obtain

m(z) = I +
1

2πi

∫

Σ
µ(s)w(s)

ds

s − z
, (B.6)

where µ− I is the solution of the singular integral equation

(I − Cw)(µ− I) = CwI, (B.7)

that is,
µ = I + (I − Cw)−1CwI, Cwf = C−(wf). (B.8)

Here C denotes the usual Cauchy operator given by

(Cf)(z) =
1

2πi

∫

Σ

f(s)

s− z
ds, z ∈ C\Σ,

and we have set w(z) = w+(z) (since w−(z) = 0).
As our first step we will get rid of some constants and rescale the entire problem by

setting
m̂(z) = D(t)−1m(zt−1/2)D(t), (B.9)

where

D(t) =

(
d(t)−1 0

0 d(t)

)
, d(t) = etΦ(0)/2tiν/2. (B.10)

Then one checks that m̂(z) solves the Riemann–Hilbert problem

m̂+(z) = m̂−(z)v̂j(z), z ∈ Σj, j = 1, 2, 3, 4,

m̂(z) → I, z → ∞, z /∈ Σ,
(B.11)
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B. The Riemann-Hilbert problem on a small cross

where the jump matrices are now given by

v̂j(z) = D(t)−1vj(zt
−1/2)D(t), j = 1, . . . , 4,

or explicitly by

v̂1(z) =

(
1 −R1(zt

−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0))

0 1

)
,

v̂2(z) =

(
1 0

R2(zt
−1/2)z−2iνet(Φ(zt−1/2)−Φ(0)) 1

)
,

v̂3(z) =

(
1 −R3(zt

−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0))

0 1

)
,

v̂4(z) =

(
1 0

R2(zt
−1/2)z−2iνet(Φ(zt−1/2)−Φ(0)) 1

)
.

Our next aim is to show that the solution m̂(z) of the rescaled problem is close to the
solution m̂c(z) of the Riemann–Hilbert problem

m̂c
+(z) = m̂c

−(z)v̂cj(z), z ∈ Σj, j = 1, 2, 3, 4,

m̂c(z) → I, z → ∞, z /∈ Σ,
(B.12)

associated with the following jump matrices

v̂c1(z) =

(
1 −rz2iνe−iz2/2

0 1

)
, v̂c2(z) =

(
1 0

rz−2iνeiz2/2 1

)
,

v̂c3(z) =

(
1 − r

1−|r|2z
2iνe−iz2/2

0 1

)
, v̂c4(z) =

(
1 0

r
1−|r|2 z

−2iνeiz2/2 1

)
.

The difference between the jump matrices v̂j and v̂cj , j = 1, . . . , 4, can be estimated as
follows.

Lemma B.3. The matrices ŵc and ŵ are close in the sense that

ŵj(z) = ŵcj(z) +O(t−α/2e−|z|2/8), z ∈ Σj, j = 1, . . . 4. (B.13)

Furthermore, the error term is uniform with respect to parameters as stated in Theo-
rem B.1.

Proof. We only give the proof z ∈ Σ1, the other cases being similar. There is only one
nonzero matrix entry in ŵ1(z) − ŵc1(z) given by

W =

{
−R1(zt

−1/2)z2iνe−t(Φ(zt−1/2)−Φ(0)) + rz2iνe−iz2/2, |z| ≤ ρ0t
1/2,

rz2iνe−iz2/2 |z| > ρ0t
1/2.
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B.1. Approximation

A straightforward estimate for |z| ≤ ρ0t
1/2 shows

|W | = eνπ/4|R1(zt
−1/2)e−tΦ̂(zt−1/2) − r|e−|z|2/2

= eνπ/4
∣∣∣R1(zt

−1/2)e−tΦ̂(zt−1/2) − re−tΦ̂(zt−1/2) + re−tΦ̂(zt−1/2) − r
∣∣∣ e−|z|2/2

≤ eνπ/4|R1(zt
−1/2) − r|eRe(−tΦ̂(zt−1/2))−|z|2/2

+ eνπ/4|e−tΦ̂(zt−1/2) − 1|e−|z|2/2

≤ eνπ/4|R1(zt
−1/2) − r|e−|z|2/4 + eνπ/4t|Φ̂(zt−1/2)|e−|z|2/4,

where Φ̂(z) = Φ(z) − Φ(0) − i
2z

2 = Φ′′′(0)
6 z3 + . . . . Here we have used i

2z
2 = 1

2 |z|2 for

z ∈ Σ1, Re(−tΦ̂(zt−1/2)) ≤ |z|2/4 by (B.2), and |r| < 1. Furthermore, by (B.3) and
(B.4),

|W | ≤ eνπ/4Lt−α/2|z|αe−|z|2/4 + eνπ/4Ct−1/2|z|3e−|z|2/4, (B.14)

for |z| ≤ ρ0t
1/2. For |z| > ρ0t

1/2 we have

|W | ≤ eνπ/4e−|z|2/2 ≤ eνπ/4e−ρ
2
0t/4e−|z|2/4

which finishes the proof.

The next lemma allows us to replace m̂(z) by m̂c(z).

Lemma B.4. Consider the Riemann–Hilbert problem

m+(z) = m−(z)v(z), z ∈ Σ,

m(z) → I, z → ∞, z /∈ Σ.

Assume that w ∈ L2(Σ) ∩ L∞(Σ). Then

‖µ− I‖2 ≤ c‖w‖2

1 − c‖w‖∞
(B.15)

provided c‖w‖∞ < 1, where c is the norm of the Cauchy operator on L2(Σ).

Proof. We know that µ̃ = µ− I ∈ L2(Σ) and satisfies (I − Cw)µ̃ = CwI. Thus we can
estimate µ̃ by using Neumann series as follows:

‖µ̃‖2 =
∥∥(I − Cw)−1Cw

∥∥
2

=
∥∥(I + Cw + C2

w + . . . )Cw
∥∥

2

≤ ‖Cw‖2 +
∥∥C2

w

∥∥
2
+
∥∥C3

w

∥∥
2
+ . . .

≤ c ‖w‖2 + c2 ‖w‖2 ‖w‖∞ + c3 ‖w‖2 ‖w‖
2
∞ + . . .

≤ c ‖w‖2 (1 + c ‖w‖∞ + c2 ‖w‖2
∞ + . . . )

= c ‖w‖2

1

1 − c ‖w‖∞
.

Here we have used that
‖Cw(f)‖2 ≤ c ‖f‖2 ‖w‖∞ . (B.16)
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B. The Riemann-Hilbert problem on a small cross

Lemma B.5. The solution m̂(z) of the Riemann–Hilbert problem (B.11) has a con-
vergent asymptotic expansion

m̂(z) = I +
1

z
M̂(t) +O(

1

z2
) (B.17)

for |z| > ρ0t
1/2 with the error term uniformly in t. Moreover,

M̂(t) = M̂ c +O(t−α/2). (B.18)

Proof. Consider m̂d(z) = m̂(z)m̂c(z)−1, whose jump matrix is given by

v̂d(z) = m̂c
−(z)v̂(z)v̂c(z)−1m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z))(I + ŵc(z))−1m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z))(I − ŵc(z))m̂c

−(z)−1

= m̂c
−(z)(I + ŵ(z) − ŵc(z) − ŵ(z)ŵc(z))m̂c

−(z)−1

= I + m̂c
−(z)(ŵ(z) − ŵc(z))m̂c

−(z)−1.

By Lemma B.3 we have that ŵ − ŵc is decaying of order t−α/2 in the norms of L1

and L∞ and hence also in the norm of L2. Thus the same is true for ŵd = v̂d − I =
m̂c

−(z)(ŵ(z) − ŵc(z))m̂c
−(z)−1. Hence by the previous lemma

‖µ̂d − I‖2 = O(t−α/2).

Furthermore, by µ̂d = m̂d
− = m̂−(m̂c

−)−1 = µ̂(µ̂c)−1 we infer

‖µ̂− µ̂c‖2 =
∥∥∥µ̂dµ̂c − µ̂c

∥∥∥
2

= O(t−α/2)

since µ̂c is bounded. Now

m̂(z) = I +
1

2πi

∫

Σ
µ̂(s)ŵ(s)

1

s− z
ds

= I − 1

2πi

1

z

∫

Σ
µ̂(s)ŵ(s)

∞∑

l=0

(s
z

)l
ds

= I − 1

2πi

1

z

∫

Σ
µ̂(s)ŵ(s)ds +

1

2πi

1

z

∫

Σ
sµ̂(s)ŵ(s)

ds

s− z

shows (recall that ŵ has support inside |z| ≤ ρ0t
1/2)

m̂(z) = I +
1

z
M̂(t) +O(

‖µ̂(s)‖2‖sŵ(s)‖2

z2
),

where

M̂(t) = − 1

2πi

∫

Σ
µ̂(s)ŵ(s)ds.

Now the rest follows from

M̂(t) = M̂ c − 1

2πi

∫

Σ
(µ̂(s)ŵ(s) − µ̂c(s)ŵc(s))ds

using ‖µ̂ŵ − µ̂cŵc‖1 ≤ ‖ŵ − ŵc‖1 + ‖µ̂− I‖2‖ŵ − ŵc‖2 + ‖µ̂− µ̂c‖2‖ŵc‖2.
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Figure B.2.: Deforming back the cross. [Krüger09b]

B.2. Solving the Riemann–Hilbert problem on a small cross

with constant jumps

In Section B.1 we have shown that the solution of the rescaled Riemann–Hilbert prob-
lem (B.11) is close to the solution of the Riemann–Hilbert problem (B.12) with jumps
being constant with respect to t. Thus, it remains to show:

Theorem B.6. The solution of the Riemann–Hilbert problem (B.12) is of the form

m̂c(z) = I +
1

z
M̂ c +O(

1

z2
), (B.19)

where

M̂ c = i

(
0 −β
β 0

)
, β =

√
νei(π/4−arg(r)+arg(Γ(iν))). (B.20)

The error term is uniform with respect to r in compact subsets of D. Moreover, the
solution is bounded (again uniformly with respect to r).

The aim to prove this Theorem will be the task of the remainder of this section.
In order to solve (B.12) we begin with a deformation which moves the jump to R as
follows. Denote the region enclosed by R and Σj as Ωj , j = 1, . . . , 4, as indicated in
Figure B.2 and define a new Riemann–Hilbert problem by introducing

m̃c(z) = m̂c(z)

{
D0(z)Dj , z ∈ Ωj, j = 1, . . . , 4,

D0(z), else,
(B.21)

where

D0(z) =

(
ziνe−iz2/4 0

0 z−iνeiz2/4

)
,

and

D1 =

(
1 r
0 1

)
D2 =

(
1 0
r 1

)
D3 =

(
1 − r

1−|r|2
0 1

)
D4 =

(
1 0

− r
1−|r|2 1

)
.
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B. The Riemann-Hilbert problem on a small cross

Lemma B.7. The function m̃c(z) defined in (B.21) satisfies the Riemann–Hilbert
problem

m̃c
+(z) = m̃c

−(z)

(
1 − |r|2 −r

r 1

)
, z ∈ R

m̃c(z) = (I +
1

z
M̂ c + . . . )D0(z), z → ∞,

π

4
< arg(z) <

3π

4
.

(B.22)

Proof. First, one checks that m̃c
+(z) = m̃c

−(z)D0(z)
−1v̂c1(z)D0(z)D1 = m̃c

−(z), z ∈ Σ1

and similarly for z ∈ Σ2,Σ3,Σ4. To compute the jump along R observe that, by our
choice of branch cut for ziν , D0(z) has a jump along the negative real axis given by

D0,±(z) =

(
e(log |z|±iπ)iνe−iz2/4 0

0 e−(log |z|±iπ)iνeiz2/4

)
, z < 0.

Hence the jump along R is given by

D−1
1 D2, z > 0 and D−1

4 D−1
0,−(z)D0,+(z)D3, z < 0,

and (B.22) follows after recalling e−2πν = 1 − |r|2.

Now, we can follow [Deift93, (4.17)–(4.51)] to construct an approximate solution.
The idea is the following: taking a look at the Riemann–Hilbert problem (B.22) one

easily sees that the derivative d
dz m̃

c(z) has the same jump as m̃c(z) and hence

d

dz
m̃c(z) = n(z)m̃c(z),

where n(z) is an entire matrix which can be determined from the behavior z → ∞.
Since this will just serve as a motivation for our ansatz, we will not worry about
justifying any steps.

For z in the sector π
4 < arg(z) < 3π

4 (enclosed by Σ2 and Σ3) we have m̃c(z) =
m̂c(z)D0(z) and hence

(
d

dz
m̃c(z) +

iz

2
σ3m̃

c(z)

)
m̃c(z)−1

=

(
i(
ν

z
− z

2
)m̂c(z)σ3 +

d

dz
m̂c(z) + i

z

2
σ3m̂

c(z)

)
m̂c(z)−1

=
i

2
[σ3, M̂

c] +O(
1

z
), σ3 =

(
1 0
0 −1

)
.

Here we assumed that the solution of the Riemann–Hilbert problem (B.12) is given by
(B.19) and inserted it. Since the left hand side has no jump, it is entire and hence by
Liouville’s theorem a constant given by the right hand side. More precisely,

d

dz
m̃c(z) +

iz

2
σ3m̃

c(z) = βm̃c(z), β =

(
0 β12

β21 0

)
=

i

2
[σ3, M̂

c]. (B.23)

This differential equation can be solved in terms of parabolic cylinder function which
then gives the solution of (B.22).

112



B.2. Solving the Riemann–Hilbert problem on a small cross

Lemma B.8. The Riemann–Hilbert problem (B.22) has a unique solution, and the
term M̂ c is given by

M̂ c = i

(
0 −β12

β21 0

)
, β12 = β21 =

√
νei(π/4−arg(r)+arg(Γ(iν))). (B.24)

Proof. Uniqueness follows by the standard Liouville argument since the determinant
of the jump matrix is equal to 1. We find the solution using the ansatz

m̃c(z) =

(
ψ11(z) ψ12(z)
ψ21(z) ψ22(z)

)
.

From (B.23) we can conclude that the functions ψjk(z) satisfy

ψ′′
11(z) = −

(
i

2
+

1

4
z2 − β12β21

)
ψ11(z), ψ12(z) =

1

β21

(
d

dz
− iz

2

)
ψ22(z),

ψ21(z) =
1

β12

(
d

dz
+

iz

2

)
ψ11(z), ψ′′

22(z) =

(
i

2
− 1

4
z2 + β12β21

)
ψ22(z).

That is, ψ11(e
3πi/4ζ) satisfies the parabolic cylinder equation

D′′(ζ) +

(
a+

1

2
− 1

4
ζ2

)
D(ζ) = 0

with a = iβ12β21 and ψ22(e
iπ/4ζ) satisfies the parabolic cylinder equation with a =

−iβ12β21.

Let Da be the entire parabolic cylinder function defined in [Whittaker27, §16.5] and
set

ψ11(z) =

{
e−3πν/4Diν(−eiπ/4z), Im(z) > 0,

eπν/4Diν(e
iπ/4z), Im(z) < 0,

ψ22(z) =

{
eπν/4D−iν(−ieiπ/4z), Im(z) > 0,

e−3πν/4D−iν(ie
iπ/4z), Im(z) < 0.

Using the asymptotic behavior

Da(z) = zae−z
2/4
(
1 − a(a− 1)

2z2
+O(z−4)

)
, z → ∞, |arg(z)| ≤ 3π/4,

shows that the choice β12β21 = ν ensures the correct asymptotics

ψ11(z) = ziνe−iz2/4(1 +O(z−2)),

ψ12(z) = −iβ12z
−iνeiz2/4(z−1 +O(z−3)),

ψ21(z) = iβ21z
iνe−iz2/4(z−1 +O(z−3)),

ψ22(z) = z−iνeiz2/4(1 +O(z−2)),
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B. The Riemann-Hilbert problem on a small cross

as z → ∞ inside the half plane Im(z) ≥ 0. In particular,

m̃c(z) =
(
I +

1

z
M̂ c +O(z−2)

)
D0(z) with M̂ c = i

(
0 −β12

β21 0

)
.

It remains to check that we have the correct jump. Since by construction both limits
m̃c

+(z) and m̃c
−(z) satisfy the same differential equation (B.23), there is a constant

matrix v such that m̃c
+(z) = m̃c

−(z)v. Moreover, since the coefficient matrix of the
linear differential equation (B.23) has trace 0, the determinant of m̃c

±(z) is constant
and hence det(m̃c

±(z)) = 1 by our asymptotics. Moreover, evaluating

v = m̃c
−(0)−1m̃c

+(0) =

(
e−2πν −

√
2πe−iπ/4e−πν/2√

νΓ(iν)
γ−1

√
2πeiπ/4e−πν/2√

νΓ(−iν)
γ 1

)

where γ =
√
ν

β12
= β21√

ν
. Here we have used

Da(0) =
2a/2

√
π

Γ((1 − a)/2)
, D′

a(0) = −2(1+a)/2√π
Γ(−a/2)

plus the duplication formula Γ(z)Γ(z + 1
2 ) = 21−2z√πΓ(2z) for the Gamma function.

Hence, if we choose

γ =

√
νΓ(−iν)√

2πeiπ/4e−πν/2
r,

we have

v =

(
1 − |r|2 −r

r 1

)

since |γ|2 = 1. To see this use |Γ(−iν)|2 = Γ(1−iν)Γ(iν)
−iν = π

ν sinh(πν) which follows from

Euler’s reflection formula Γ(1 − z)Γ(z) = π
sin(πz) for the Gamma function.

In particular,
β12 = β21 =

√
νei(π/4−arg(r)+arg(Γ(iν)))

which finishes the proof.

Now we are ready to prove our main theorem.

Proof of Theorem B.1. Using Theorem B.6 and Lemma B.5 we can compute

m(z) = D(t)m̂(zt1/2)D(t)−1 = I +
1

t1/2z
D(t)M̂(t)D(t)−1 +O(z−2t−1)

= I +
1

t1/2z
D(t)M̂ cD(t)−1 +O(t−(1+α)/2)

for |z| > ρ0, where we have used that D(t) is bounded.
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