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Einleitung

Diese Arbeit untersucht folgende Problemstellung: welche Spektraldaten eines
endlichen Jacobioperators reichen aus, um den Operator eindeutig zu rekonstru-
ieren.

Fiir f € (?(Z) ist der Jacobioperator H definiert durch

(Hf)(n) =anf(n+1)+an1f(n—1) +bnf(n),

wobel

an, € R\{0}, b, €R, neZ

Durch Dirichlet Randbedingungen (i.e. f(ng) =0, f(n1) = 0) an die Definition
von (Hf)(ng+ 1) und (H f)(ny — 1) erhalten wir den endlichen Jacobioperator
auf (2[ng + 1,n; — 1], der zu folgender reellen, tridiagonalen, symmetrischen
Matrix gehort:

bn0+1 Ango+1
QAng+1 bno +2  Qng+2

a’ﬂ173 b’I’L172 an172
a77,172 bnlfl

Jacobioperatoren tauchen in einer Vielzahl von Anwendungen auf. Man
kann sie als das diskrete Analogon zu Sturm-Liouville-Operatoren auffassen und
ihre Behandlung weist viele Ahnlichkeiten mit der Theorie fiir Sturm-Liouville-
Operatoren auf. Spektraltheorie und Inverse Spektraltheorie fiir Jacobiopera-
toren spielen eine grofie Rolle bei Untersuchungen von vollstandig integrablen
nichtlinearen Gittern, wie beispielsweise dem Toda Gitter ([14]).

Unser Ausgangspunkt war eine Arbeit von F. Gesztesy and B. Simon, [3].
Wir erweitern einige ihrer Resultate, zum Teil indem wir die Theorie, die von
G. Teschl in [I2] fiir Jacobioperatoren entwickelt wird, auf den endlichdimen-
sionalen Fall {ibertragen.

Wir beweisen, dass N Eigenwerte einer N x N Jacobi Matrix J zusammen
mit N — 1 Eigenwerten von zwei Teilmatrizen die Jacobi Matrix eindeutig be-
stimmen. Die Teilmatrizen erhalten wir durch Streichen der n-ten Zeile und
Spalte von J. Hinreichende und notwendige Bedingungen an die Eigenwerte
werden gegeben, aus denen die Existenz einer zugehorigen Jacobi Matrix folgt.
In der Physik beschreibt dieses Modell eine Kette von N Massenpunkten mit
fixierten Enden, die durch Federn miteinander verbunden sind (siehe [12], Sek-
tion 1.5). Aus den Eigenfrequenzen dieses Systems und des Systems, in dem ein
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weiterer innerer Punkt festgehalten wird, kénnen die Massen und die Federkon-
stanten des urspriinglichen Systems eindeutig rekonstruiert werden.

Die Koeffizienten a2, b eines endlichen Jacobioperators kénnen explizit durch
die Spektraldaten angegeben werden, analog wie in [12] fir reflektionslose Ja-
cobioperatoren.

Kapitel 1 bis Kapitel 4 behandeln direkte und inverse Spektraltheorie fiir
beschrankte Jacobioperatoren, um sie dann in Kapitel 5 auf den endlichdimen-
sionalen Fall anzuwenden.

Kapitel 1 gibt eine Einfithrung in die Theorie der beschrankten Jacobiopera-
toren. Eigenschaften von Losungen der Jacobi Differenzengleichung, Eigen-
schaften der Wronskideterminante und der Green Funktion werden untersucht.
Jacobioperatoren mit Randwertbedingungen werden definiert.

Kapitel 2 stellt die Fundamente der Spektraltheorie fiir Jacobioperatoren
vor. Wir studieren Weyl-m-Funktionen und ihre asymptotische Entwicklung,
identifizieren diese als Herglotz Funktionen und zeigen den Zusammenhang
zum Momentenproblem auf. Das Momentenproblem wird diskutiert, wie auch
asymptotische Entwicklungen von Green Funktionen.

Kapitel 3 priisentiert eine einfache rekursive Methode, die Koeffizienten a2,
b zu rekonstruieren, wenn die Weylmatrix fiir ein fixes n bekannt ist.

Kapitel 4 fithrt die £-Funktion und Spurformeln fiir Jacobioperatoren ein.

Kapitel 5 sammelt nun alle Resultate fiir endliche Jacobioperatoren. Die
explizite Darstellung der £&-Funktion ist der Schliissel zur Berechnung der Spur-
formeln. Wir présentieren die Losung des Inversen Spektralproblems, die in [3]
gegeben wird, und unsere Erweiterung.

Im Appendix werden die benétigten Resultate aus der Theorie fiir Herglotz
Funktionen zusammengefaf3t, um in der Arbeit darauf verweisen zu kénnen.

Danksagung

In vielen Teilen dieser Arbeit folgte ich der Monographie [I2] meines Diplom-
arbeitsbetreuers, Prof. Gerald Teschl. Ich mo6chte mich bei ihm bedanken fir
seine hervorragende Betreuung, fiir das Thema meiner Diplomarbeit und den
Zeitaufwand, den ihn seine Hilfestellungen und Erklarungen gekostet haben.

Weiters danke ich meinem Freund Mag. Georg Schneider sehr fiir seine
Unterstiitzung und seine hilfreichen Bemerkungen.

Nicht zuletzt gebiihrt mein Dank meiner gesamten Familie.



Contents

Einleitung i
Motroductionl iv
[1 _Jacobi Operators| 1
L1 Preliminaries . . . . v v v v oo 1
1.2 Jacobi Operators| . . . . . ... ... ... ... .. ........ 4
1.3 Jacobi Operators with Boundary Conditions|. . . . . . . . . . .. 7
[2_Spectral Theory for Jacobi Operators| 9
2.1 eyl m-Functions| . . . ... .. ... oL 9
2.2 The Moment Probleml . . . .. ... ... ... ... ....... 13
2.3 Asymptotic Expansions| . . . . .. ..o 0oL 16
[3 Inverse Spectral Theory| 18
4_Trace Formulas| 21
[6~ Finite Jacobi Operators| 24
5.1 The ¢ Function| . . . . . .. ... ... ... ... ... 25
|5.2 [race Formulas for Finite Jacobl Operators| . . . . . . . ... .. 27
5.3 e Inverse Spectral Problem| . . . . . . .. ... ... ... ... 30
|A Herglotz Functions| 39
Bibliography 41

[Curriculum Vitael 42

iii



Introduction

The goal of this thesis is to determine spectral data of finite Jacobi operators
which are necessary and sufficient to reconstruct the operator uniquely.

For f € (%(Z), the Jacobi operator H is defined by

(Hf)(n) = anf(n+1)+an1f(n—1) +bnf(n),

where
an, € R\{0}, b, €R, neZ

If we impose Dirichlet boundary conditions (i.e. f(ng) = 0, f(n1) = 0) on
the definition of (H f)(no+ 1) and (H f)(n1 — 1), we obtain a finite dimensional
Jacobi operator on £2[ng+1,n; — 1] associated to the real tridiagonal symmetric
matrix

bno-‘rl Ang+1

Ang+1 bng+2 Ano+2

a“ﬂ173 b’ﬂ172 an172
Apy—2 bn1—1

Jacobi operators appear in a variety of applications. They can be viewed
as the discrete analogue of Sturm-Liouville operators and their investigation
has many similarities with Sturm-Liouville theory. Spectral and inverse spec-
tral theory for Jacobi operators play a fundamental role in the investigation of
completely integrable nonlinear lattices, in particular the Toda lattice ([I4]).

Our work was motivated by the paper of F. Gesztesy and B. Simon, [3], and
we extended some of their results, partially by applying the theory given in the
monograph [12] of G. Teschl to the finite dimensional case.

We prove that N eigenvalues of a N x N Jacobi matrix J together with
N —1 eigenvalues of two submatrices of J which we obtain by omitting the n-th
line and column uniquely determine J. Necessary and sufficient restrictions on
the sets of eigenvalues are given under which one obtains existence of J. From
a physical point of view such a model describes a chain of N particles coupled
via springs and fixed at both end points (see [12], Section 1.5). Determining
the eigenfrequencies of this system and the one obtained by keeping one particle
fixed, one can uniquely reconstruct the masses and spring constants.

The coefficients a2, b of a finite Jacobi operator can be expressed explic-
itly in terms of the spectral data, in analogy to reflectionless Jacobi operators
considered in [12].

iv
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Chapter 1 to Chapter 4 deal with spectral and inverse spectral theory for
bounded Jacobi operators to apply them in Chapter 5 to the finite case.

Chapter 1 gives an introduction to the theory of bounded Jacobi opera-
tors. Properties of solutions of the Jacobi difference equation, properties of
the Wronskian and the Green function are prepared. Jacobi operators with
boundary conditions are defined.

Chapter 2 establishes the pillars of spectral theory for Jacobi operators.
We study Weyl m-functions and their asymptotic expansions, identify them as
Herglotz functions and show their connection with the Moment problem. The
Moment problem is discussed, as well as asymptotic expansions of the Green
function.

Chapter 3 presents a simple recursive method of reconstructing the sequences
a?, b, if the Weyl matrix is known for one fixed n.

Chapter 4 introduces to the £ function and to trace formulas for Jacobi
operators.

Chapter 5 collects then all our results for finite Jacobi operators. The explicit
computation of the £ function is the main tool to derive the trace formulas.
We present the solution of the inverse spectral problem given in [3] and our
extension.

The Appendix compiles the results from the theory of Herglotz functions we
apply and is included for easy reference.
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Chapter 1

Jacobi Operators

1.1 Preliminaries

We start with some notation. Denote by ¢(Z,R) the set of real-valued sequences
(f(n))nez, by £(Z,C) =: £(Z) the set of complex-valued sequences. For I C Z,

(1) :=A{(f(n))ner}-

Definition 1.1.

{(Fet@fll,= > Ifm)P <oo}, 1<p<oo,

n=—oo

2(2) = {fel@|flleo = ité};\f(n)l < oo}

(z)

Let a,b € ¢(Z,R) satisty
a, € R\{0}, b, e R.
We introduce the second order, symmetric difference equation

T: HZ) — (Z)
fn) — anf(n+1)+an_1f(n—1)+b,f(n). (1.1)

Associated with 7 is the tridiagonal matrix

Ap—2 bn—l Gn—1
An—1 bn Ap . (12)
Ay, bn+1 an+1

We consider the corresponding eigenvalue problem which is referred to as
Jacobi difference equation

Tu=zu, ué€l(Z), zeC, (1.3)

apu(n + 1) + ap_1u(n — 1) + byu(n) = zu(n), Vn e Z. (1.4)
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The appropriate setting for this eigenvalue problem is the Hilbert space £2(Z), as
we will consider it in the next section. But first we study the space of solutions
and introduce fundamental solutions.

Since all a,, # 0, we see from that a solution u of T7u = zu is uniquely
determined by the values u(ng) and u(ng + 1) at two consecutive points ng,
no + 1. Thus we have exactly two linearly independent solutions. We introduce
the following fundamental solutions ¢, s € ¢(Z)

Te(z,.,n0) = z¢(z, ., ng), 75(z,.,n0) = z8(z,.,Mn0), (1.5)
fulfilling the initial conditions

e(z,m0,n0) = 1, e(z,ng + 1,n9) =0, (1.6)
s(z,mo,m0) =0, s(z,mo+ 1,m0) = 1.

Now we can write any solution w as a linear combination of these two solutions
u(n) = u(no)c(z,n,n0) + u(no +1)s(z,n,no).

Our next task will be to treat expansions of ¢(z,n,ng) and s(z,n,ng). Let
Jnq.n, be the Jacobi Matrix

bTL1 +1  Ony+1
Any+1 bn1+2 Qny+2

Ininy = : (1.7)
a’ﬂz*?) bn272 an272
Apop—2 bng—l

Set ng = 0 for simplicity. For n > 0, s(z,n,0) is a polynomial in z of degree
n — 1. By (1.6, s(z,0,0) =0, s(z,1,0) = 1, and we see by induction on (1.4)),

ans(z,n+1,0) = (z — b,)s(z,n,0) — an—_18(z,n — 1,0), (1.8)

that s(z,n + 1,0) is a polynomial of degree n. Again, inductively we know the

leading coefficient

1
s(z,m+1,0) = ———2" 4 - (1.9)

ay...ay
since s(z,1,0) =1,
Z*bl

S(Z,Q,O) = a—ll((z—bl)s(z,l,())—GOS(Z,O,O)) = a ’

and we use induction on (1.8]).

Proposition 1.2. ([1], p. 542). The following expansion holds for s(z,n,ng),

n > ng,
det(z — Jng.n)

n—1 )
Hj:no+1 aj

Proof. By lb (anl a;)s(z,n,ng) and det(z — Jy,,n) are monic polyno-

s(z,n,mg) = (1.10)

j=no+1
mials of degree (n — 1) — ng. We have to show that they have the same zeros

and multiplicities. But if zg is a zero of s(.,n,ng), then

(s(zo,no +1,n0),...,8(z0,n — 1, no))
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is an eigenvector of corresponding to the eigenvalue z3. The converse
statement is also true since the eigenvalue condition is the defining equation for
s(z0,m,ng). Moreover, the eigenvalues are simple by Remark below, so the
multiplicities are all one. O

By the same reasoning,
det(= = Jug-nno+1)
Hngfl .
j=np—n aJ

is a polynomial of degree n. The fundamental solutions ¢(z) and s(z) are related
by

c(z,ng —n,ng) = (1.11)

Iy s(z,m1 + 1,n9), (1.12)

no

C(Z, o, nl) =
further considerations can be found in [12].

As a last preparation we introduce the (modified) Wronskian for two se-
quences u, v

Wy (u,v) = an (u(n)v(n + 1) — v(n)u(n + 1)). (1.13)
Proposition 1.3. For f, g € {(Z),
n
> (1r9) = (79) () = Walf,9) = Wan-1(f,9)- (1.14)
j=m
This formula is referred to as Green’s formula.
Proof. By simple calculation. In the case of two summands,

(frg) = (tN9) () = F()(ajg(i+1)+a;_19(i — 1) +bg(j))
—(a; £+ 1) +aj1f(G— 1) + b f(5))9(d)

(f(rg) = (tg)G+1) = fG+1)(ajr190 +2) +a;9(j) + bj19(j + 1))
—(aj1f(G+2) +a; () + 0 f(G+1)g(G+ 1)
If we follow the cancellations, just W,y1(f,g) — W;_1(f, g) survives. O

Remark 1.4. For any two solutions of the Jacobi difference equation Tu = zu,
(1.3), W is constant (i.e. W is independent of n) since ([1.14]) becomes

n n
> (1r9) = 709) ) = Y- (29— 2£9) () =0
j=m j=m
and thus
Wn(fa g) = Wmfl(f? g)
The Wronskian also indicates linear independence of solutions.

Proposition 1.5. Let u, v be solutions of 7f = zf, then

Walu,v) 20 & w,v are lineary independent. (1.15)
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1.2 Jacobi Operators

We will study operators on the Hilbert space ¢?(Z) associated with the sym-
metric difference equation (1.1). For f, g € £2(Z), the scalar product and norm
are given by

(f,9) =Y f(n)gn), Ifll = V{f. F)-

ne”Z
For simplicity we will assume from now on that a, b are bounded sequences.

Hypothesis 1.6. Suppose
a,be (>*(Z,R), an # 0. (1.16)
Definition 1.7. Associated with a, b is the Jacobi operator H
H: *(7) — *2)
fo= 7/
where 7 has been defined in
f(n)=anf(n+1)+ap_1f(n—1)+b,f(n), Vne€Z (1.17)

Remark 1.8. If we drop the assumption a,, # 0 for a fixed n in Hypothesis[1.6], H
can be decomposed into the direct sum of two operators acting on £?(—oco,n] ®
¢%[n+1, 00) (see [12]). Hence the analysis of H in the case a,, = 0 can be reduced
to the analysis of restrictions of H. In addition, [12] (Lemma 1.6) shows that
the case a,, # 0 for n fixed reduces to the case a,, > 0 or a,, < 0.

In the next theorems we collect some results from operator theory on Hilbert
spaces. Let ¢,, denote the standard basis of £(Z)

0 m#n
1 m=n.

8 (1) = Oy = {

Theorem 1.9. Assume Hypothesis[I.6, Then H is a bounded self-adjoint oper-
ator. a, b bounded is equivalent to H bounded since ||a|lcoc < ||H||, |blloo < ||H ||
and

IH|| < 2llallcc 4 [|blloc, (1.18)

where ||[H|| denotes the operator norm of H and ||al|s = supn(|an])-

Proof. Clearly,
lim W,(f,g) =0 for f, g€ (*(Z). (1.19)

n—=+oo

Green’s formula (|1.14))

n

> (£(r9) = (79) () = Walf,9) = Wan-1(/ 9)

j=m
together with (1.19)) shows that H is self-adjoint, so
(f,Hg) = (Hf,9), [,9€ ).

The second statement follows from a? + a2 | + b2 = ||HS,|* < ||H|? and

[, HE)| < 2llallco + [1Blloo)1£11%-
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Theorem 1.10. If H is a bounded self-adjoint operator on a Hilbert space, all
eigenvalues of H are real and two eigenvectors of H corresponding to distinct
eigenvalues are orthogonal.

Proof. If Hf = zf and f # 0, then

Z<f7f> = <Hf’f>:<f7Hf>:<f72f> :E<faf>
and hence z € R. Suppose
Hf=zf, Hf =Zf, 2#7,
then -
2 ) = HE L) = LH) = (£ 1) =2 ),
so (f, ') =0 and f, f’ are orthogonal. O

The spectrum o(H) of H is defined to be the set of those z € C where
(H — 2I)~! does not exist as a bounded operator on £? — (2.

Theorem 1.11. The spectrum of a bounded operator is a monempty compact
subset of C. If H is also self-adjoint, then the spectrum of H lies in the segment
(=L ([ 1]

Remark 1.12. A proof can be found in [§] or in any book on functional analysis.
We even know that the spectrum o(H) of a bounded operator lies in the disk
of radius || H||. If |A| > || H]||, then H — Al has an inverse operator given by the
series

(H=A)~' ==Y AxF'Hh
k=0

Therefore, o(H) is contained in the disk |A| < [|H]|.

For Jacobi operators we know even more:

Lemma 1.13. ([I2]). Let
cx(n) = by £ (|an| + |an-1])-

Then

o(H) € [inf c—(n).supe. (m).

Proof. First we show that H is bounded from above by sup c,..

SHS) = @) (anf(n+ 1)+ an-1f (0= 1) + baf ()

ne”Z

= 3 (a1~ P+ (@0 +an b)),

nez

this equation follows from routine calculation. Write down three consecutive
summands of the last sum and follow the cancellations.
By Remark [1.8] (cf. [12], Lemma 1.6), we can first choose a,, > 0 to obtain

(f,Hf) <supey(n)||f]?
nez
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and if we let a,, < 0, we see that H is bounded from below by inf c¢_
(f,Hf) = inf c_(n) || f|*.
nez
O

One of the most important objects in spectral theory is the resolvent of H,
(H —2I)7t = (H — 2)7 !, where z € p(H) := C\o(H) and p(H) denotes the
resolvent set of H.

Definition 1.14. The matrix elements of (H —2)~! are called Green function
G(z,m,n) = (6, (H — 2)716,), 2z € p(H). (1.20)
The symmetry of H implies that
G(z,m,n) = G(z,n,m) (1.21)
and by definition G(z,m,n) is the matrix of the resolvent

(H—-2)G(z,.,n) = 0,(.). (1.22)

We will now construct solutions u4(z) and u_(z) of the Jacobi difference
equation (|1.3]) which are square summable near + co respectively — co. Set

u(z,.) = (H — 2)"'6(.) = G(2,.,0), z¢€ p(H). (1.23)

u(z,.) € £2(Z) by construction, since (H — z)~! is bounded for z € p(H). But
u(z,.) fulfills the Jacobi difference equation ([1.3)) only for n > 0 and n < 0,

since

ramto =t = { 8 124 = G0N =t

If we take u(z,—2) and u(z,—1) as initial conditions we obtain a solution
u_(z,n) of Tu = zu on the whole of ¢(Z). By (1.4),

u_(z,0) = L((z —b_1)u(z, —1) — a_pu(z, —2))

a—1
and so on. wu_(z,n) coincides with u(z,n) for n < 0, so it is ¢? near —oco as
desired. A solution u, (z,n) being ¢? near +oco is constructed in analogy.

Remark 1.15. The solutions u4 (z) are unique up to constant multiples since the
Wronskian of two such solutions vanishes if we evaluate it at +co. This implies
that the point spectrum (i.e. the set of eigenvalues) of H and Hino is always

simple (cf. Section |1.3[for the definition of Hino)

With this solutions we get an explicit formula for G(z,m,n).

Proposition 1.16.

G(z,m,n) =

1 { uy(z,n)u—(z,m) form<n (1.24)

W(u_(2),us(2)) | us(z,m)u_(z,n) forn<m.
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Proof. We have to show that G(z,m,n) satisfies (1.22))
(H—2)G(z,.,n) = 0,(.).

The m,n element is

((H=2)GG ) =3 (Hyp = 26m0) Gz, kym) =

m,n
k

=am-1G(z,m—1,n)+ (by, — 2) G(z,m,n) + an, G(z,m + 1,n).

Now we have to hunt down the different cases: if m =n

1
= W(an,lqu(z,n)u,(z,n -1)

+(bn, — 2)us(z,n)u_(z,n) + anus(z,n + Du_(z,n)).  (1.25)
By (1.4) we obtain for u (2)

(bn — 2)ug(z,n) + apus(z,n+1) = —ap_1us(z,n — 1)
and (1.25) becomes
1
= W(an,1u+(z,n)u,(z,n —1)—ap_qus(z,n—1u_(z,n)) =1,
the last equation being the definition of the Wronskian (1.13). The other case
is similar, one just uses relation (|1.4]). O

We introduce the following abbreviations

us(z,n)u_(z,n)

g(z,n) = G(z,n,n)= W (2). s () (1.26)
h(z,n) = 2a,G(z,n,n+1)—1
_ (ug(z,m)u—(z,n+1) + up(z,n+ u_(z,n)) )

W(u—(2),ut(2))

1.3 Jacobi Operators with Boundary Conditions

We will consider finite and semi-infinite matrices associated with H which we
obtain by restricting H to intervals and imposing boundary conditions at the
endpoints. We will adopt the notation given in [12].

First we define restrictions H_ ,, and H, ,, of the Jacobi operator H to
the subspaces ¢%(—oo,ng — 1] and ¢?[ng + 1,00). The operators Hy ,, can be
thought of as imposing the boundary condition f(ng) = 0 on the definition of
(Hf)(no+£1). This case, f(ng) = 0, will be referred to as Dirichlet boundary
condition at ng.

Definition 1.17.

B ngt1f (Mo +2) + b1 f(no+1) n=mng+1
(Hynof)(n) = { (H}r)l(n) 0 i 0 n>n2—|—1

Ang—2f (Mo —2) + bpg—1f(no—1) n=mno—1
(Hono F)(n) - = {(Hf)(n)o ’ n<ng—1.
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For m,n > ng (< ng), the corresponding Green functions are
Gi,no(zamvn) = <5m7 (H:i:,ng - 2)715n>a Z € p(H:I:,no)~

Their explicit formulas read in analogy to ([1.24))

= ; s(z,n,no)us(z,m) form>n

o &m0 = ) () { s(zymyno)us (z,m) forn=m  (12)
_ -1 [ s(z,n,no)u—(z,m) form<n

G Zmom) = W (s(2), u-(2)) { s(z,m,ng)u—_(z,n) forn <m. (1.29)

s(z,.,np) is the fundamental solution of T7u = zu satisfying the Dirichlet
boundary condition s(z,ng,no) = 0 Cf (L6)). To show existence of u(z,.)
for 2 € p(Hx p,) we use (Hy o — 2) 7"

We can also consider half line operators Hi’no on (?(ng,+oo) associated
with the general boundary condition

fno+1)+Bf(no) =0, BeRU{c0} (1.30)

at ng rather than only the Dirichlet boundary condition f(ng) = 0.
Definition 1.18.

H‘Ohno = H+’n0+1’ Hf,’no = H+:n0 - a’ﬂo/@_1<5no+17 . >6no+13 ﬁ 7é 07

Hi(jno = H_’no’ Hf = H—;n0+1 - a’noﬁ<6no7 . >6noa ﬁ 7é Q.

sTo

The operators Hy ,, and Hino are considered in detail in [12], [13].

Last, we define finite restrictions H,, ,, to the subspaces ¢2(ny,nz) by im-
posing Dirichlet boundary conditions at the endpoints (f(n1) =0, f(n2) = 0).

Definition 1.19.

any+1f(n1 +2) + by, 41 f(n1 + 1) n=mn;+1
(Hpy my f)(0) = (Hf)(n) nm+l<n<ng—1
anz_gf(n2 — 2) + bnz_lf(ﬂg — 1) n=ny — 1.

The operator H,, n, is clearly associated with the Jacobi matrix J,,, ,, (cf.
(1.7)). We will study H,, n, in Chapter

All operators we defined here are bounded and self-adjoint, since they are
restrictions of such operators.



Chapter 2

Spectral Theory for Jacobi
Operators

2.1 Weyl m-Functions

Weyl m-functions are the quantities analogous to the Green function g(z,n) =
(6n, (H — 2)716,,) for the half line operators Hy ,,, (cf. Definition [1.17).

Definition 2.1. For z € p(Hx n,),

my(z,n0) = (Sng+1, (Hyng — 2)716W10+1> = Gy no(z,m0 + 1,m0 + 1),
m_(z,n9) = (Ong—1,(H-n, — z)_léno_l) =G_ polz,n0 —1,mp — 1).

The base point ng is of no importance and we will only consider my (z) :=
m4(z,0) most of the time. As in the previous chapter, uy(z) denote the so-
lutions of in ¢(Z) which are square summable near +oo. We also have a
more explicit form of m4(z, ng).

Proposition 2.2.

u_(z,ng — 1)

_ug(z,m0 +1)
Ang—1u—(z,m0)"

a’ﬂou+(z7 ’I'LQ) ’
Proof. (1.28]) becomes

mi(z,m0) = Gynolz,no+1,m0+1)
s(zymo + 1,m0)uqg(z,m0 + 1)
Qg (s(z,no,no)u+(z, no+ 1) — s(z,no + 1,n0)u+(z,no))

my(z,n9) = m_(z,n0) = — (2.1)

and the result follows since s(z,ng,no) = 0 and s(z,no + 1,n0) = 1 (cf. (1.6))).
Compute m_(z,ng) from (1.29). O

Remark 2.3. All results for m_(z) can be obtained from the corresponding re-
sults for m (z) using reflection at ng. [I12] (Lemma 1.7) shows how information
obtained near one endpoint can be transformed into information near the other.
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my (z,n) satisfy the following recurrence relations

1
2
b, - 2.2
anm-i-(za n) + m+(z7n — 1) z ( )
and 1
2
_ —— =0, — 2.
a‘nflm (Z,TL) + m_(z,n—|— 1) z ( 3)
since we know by (2.1)
a2 (zm) + 1 _ oug(zmntl)  anius(zn—1) b
ne m+(zvn7 1) a " anu+(z,n) u+(z,n) - 7

the last equality follows from (1.4)).
Furthermore, we can regain g(z,n) = G(z,n,n) from m4(2).

Lemma 2.4. ([3]).
1

= — 2.4
9(z:m) a2my(z,n)+a2_m_(z,n)+z— by, (24)
1
S . (2.5)
aqm—(z,n) = S

Proof. First we prove (2.5)). From the definition of g(z,n) (cf. (1.26)) we infer

U4 (Z, TL)U_ (Z> TL)

g(z, n) =

W(u—(2),ut(2))
B uy(z,n)u_(z,n)
 an (u—(z,n = Dus(z,n) —u_(z,n)us(z,n — 1))
_ 1
N u_(z,n —1) uy (z,m —1)

Up 11—~ —On-1—————~—

u_(z,m) uy(z,m)
—a2_ m_(z,n) m4(z,n—1)"1
by (2.1). (2.4)) follows now from ({2.2)). O

Now that we saw some of the basic relations for my(z) we will investigate
the role of Weyl m-functions in spectral theory.
The definition of Weyl m-functions (we omit the base point ng = 0),

me(2) = (011, (Hy —2)"1041), z€ p(HL),

implies that m4 (z) are holomorphic in C\o(H). We also know the following
properties.

Lemma 2.5. ([12]). For 611 € (*(Z) with ||641] = 1,
(i) Im(m(2)) = Im(2) | (Hx — 2) 01|
(i) m(2) = m(2)

(i) [mae(2)] < | (He — 2)7Y <
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Proof. (i)

_ Hi—-—Z—-—Hy+z2

(Hi_z)_l_(Hi_E)_l - (H:I: — Z)(H:t —E) = (Z_Z)(Hi_z)_l(Hi_z)_la

take now the inner product with d11, then

my(z) —me(z) = 2Im(2)(0sr, (He —2)" ' (He —2)"'611)
Im(my(2)) = Im(z)((Hx —2)"0x1, (Hy —2) 7 01)

(2) |(Hx = 2)" oal”.

We used that (Hy — 2)~! and (Hy —%)~! commute.

(ii) Hy is real symmetric.

(iii)

Im
Im

Im(2)] = (81, (Hy — 2) 7 0xa)| < [l |(Hx — 2) 7"

nd [t (s (2))] 1
m{mi(z
Im zZ = )
() = T =) Tom P = T(Hz =) Tom]
this holds for all § with [|d|| = 1, so (iii) is proven. O

A holomorphic function F' : C; — C_ is called a Herglotz function, where
Cy = {z € C| £ Im(z) > 0} (see Appendix [A). my(z) are Herglotz functions
since m (z) are holomorphic on C; and Lemma [2.5] (i), shows that they map
the upper half plane to itself. Hence by Theoremﬂ m4 (2) have the following
representation

dp+ ()

where

p+(A) = / dp+
(=00,2]

is a nondecreasing bounded function which is given by Stieltjes inversion formula
(cf. Theorem [A.1]

1 A5

pr(A) = %{gléllr(r)l = Im(my (z +ie€))da.

Here we have normalized p such that it is right continuous and obeys py(\) = 0
for A < o(Hy).

Let Py(Hz), A C R, denote the family of spectral projections corresponding
to Hy. Then dp+ can be identified using the spectral theorem,

{041, P_oo 1 (H+)6
my(z) = (621, (He — 2) " 641) :/ (941 (/\ A]z( +)0+1)
R —

. (2.7)

Thus we see that dp+ = d{d+1, P(—oo,x)(H+)d+1) is the spectral measure of H.
associated to the sequence d41.



CHAPTER 2. SPECTRAL THEORY FOR JACOBI OPERATORS 12

Lemma 2.6. ([13]). m4(z,n) have the Laurent expansions

= my i(n
ma(zn)=—Y_ Zii(l) myo(n) = 1. (2.8)
§=0
The coefficients are given by
my j(n) = (ps1, (Hen) Sps1), JEN, (2.9)

and satisfy
mio=1, ms1(n)=Dbpti,
2 2 2 2
m+,2(n) = bn+1 + A1y m—,Q(n) = bn—l +an_9,
j—1

my ji1(n) =bpyimy j(n)+ap, Y my ja(m)myi(nt1), jEN, (2.10)
=0

m_ j+1(n) = byp_1m_ ;(n) +aZ_, Zm,,j,l,l(n)m,,l(n—i— 1), jeN. (2.11)

Remark 2.7. Note that m.(z,n) only depend on a?.

Proof. We invoke Neumann’s expansion for the resolvent

— — H:I:,n B = H:tn
(Hep—2) 1 _ -1 (1 - z) Z L |2| > | Hin |-
7=0
Thus we infer
M (em) = (B, (Ha o — ) ) = — 3 Lol e o)

=0

for |z| > ||Hx »||. To prove the recurrence relations we take (2.2) at my(z,n+1)

appymy(z,n 4 1) + )= bnt1 — 2

my(z,n

multiply with m (z,n) and insert the Laurent expansion (2.8))

s+ = yn) |
”+1 Z ShHI+2 + (bn+1 - Z) Z N +1=0.

k,l=0 7=0

Set k 4+ [ = 7, rewrite the first sum

(o]
m+,'(n)
nﬂzzmz s a4 1)+ (b = 2) 32 1 =0

J=0

and collect the coefficients of z/*1

i Z My j—i—1(n)myi(n+1) + bpyimy j(n) —my j41(n) = 0.
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Remark 2.8. For arbitrary expectations of resolvents of self-adjoint operators
similar results as Lemma[2.5] Lemma[2.6] and the considerations about spectral
measures hold. We will discuss them in Section 2.3l

If we combine
[ dpx(N) / dp(N) 1 / j
mi(z)—/R A=z  Jpaz(l—=Xz"1) szﬂ R)\dpi()\)
=0

with Lemma (at the base point n = 0), we see that the moments my ; of
dp+ are finite and given by

My, j 1= / Ndpr(N) = (341, (He) 611). (2.12)
R

There is a close connection between the so called moment problem (i.e. deter-
mining dp4 from all its moments m ;) and the reconstruction of Hx from dp.
Since by Lemma [2.6]

2 2 2 2
mio=1, mi1=br1, my2=>by+aj, m_p=0>01,+al,, etc

we infer

by =meq, al=mio—(my1)? aly=m_o—(m_1)% etc. (2.13)

We will consider this topic in the next section. Before that we want to
modify m4(z,n) a bit, since when it comes to calculations, the following pair
of Weyl m-functions

mﬂamzxfﬁ§j$ﬁ s (2) = s (2,0) (2.14)

is often more convenient than the original one. The connection is given by

alm_(z,n) —z+ b,

er(Zan) = Tth(Z,TL), m,(z;n) = a2 ’ (215)
n—1
and 1
_— = — 2.5 _ . 21
Ty — ) (2.16)

The corresponding spectral measures (for n = 0) are related by

2
~ a ~
dpy = dpy, dp = —P-dp. (2.17)
21

2.2 The Moment Problem

We want to investigate how the sequences a? and b can be reconstructed from
the measure p; and we will see that the moments m_ ;, j € N, are sufficient
for this task. This is generally known as (Hamburger) moment problem.
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Suppose we have a given sequence m;, j € Ny, such that

mg  mi o o Mgt
ml m2 .« .. mk
C(k) = det . L . > (0 forall ke N. (2.18)
mrg—1 Mg - M2k—2

Without restriction we assume my = 1. Now we can define a sesquilinear form
(linear in the first entry and complex linear in the second entry) on the set of
polynomials as follows

(PO, Q)2 = Y mysibian, (2.19)
4,k=0
where P(z) =Y p;jz7 and Q(z) = " qr2"*. It has the property that
(P2Q)r2 = Z M +kPjqk—1 = Z Mjr1Pjqe = (2 P, Q) 2. (2.20)
k=0 k=0

Next we consider the polynomials (set C(0) = 1)

mo my o Mp—1
) mq mo my
(2, k) = ——————det ; D ; , kel
O(k a 1)C(k) mrg—2 Mg—1 -+ "T2k-3
1 z “ e Zkil

(2.21)
{s(z,k),k € N} forms a basis for the set of polynomials which is clear if we
compute s(z, k) explicitly

sz, k) = C(k_ll)c(k) (#71C(k — 1) + 52D (k — 1) + O(z*%))
- C(éf(;)l) <zk_1 + gé: — B k2 O(zk_?’)) , (2.22)
where D(0) =0, D(1) = my, and
mo my o M2 my
D(k) = det n?l n?2 m’f_l m’f“ ,keN. (2.23)
mrp—1 Mg - mor—3 M2k—1

Moreover, this basis is orthonormal

(s(A, k), s(N, 1) 2 = 0. (2.24)

To prove this claim, let k£ > j, say, then

k—1
(s(\E), M) = ij+l (coeff of (A1) in s(\, k))

=0
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mo mq mEg—1
mi mo mi
1
= det :
Ck—1)C(k) :
Mr—2 ME_1 mak—3
m; mij+1 mMjit+k—1
0, 0<j<k-2 (2.25)
= C(k) - 2.25
Vewn, J=k-L

So (s(\, k),s(\ k))r2 = 1 since the additional coefficient of \¥~! is Cék(;)l).

The sesquilinear form ([2.19) is positive definite and hence an inner product
(C(k) > 0 is also necessary for this).
Expanding the polynomial zs(z, k) in terms of s(z,7), j € N, we infer

k+1

zs(z,k) = Y (s(\4), As(\ k) 25(z, )
j=0
k+1

= ) (As(A ), s(A k) z2s(z, )

=0
= ;ks(z, k+41) +bgs(z, k) + cg—18(z, k — 1), (2.26)
by we only get values for j > k — 1. Here we have set s(z,0) = 0 and
ar = (N k+ 1), A8(\ k)2, b = (s(\ k), As(\, k)2, keEN, (2.27)
cho1 = (s k — 1), As(\, k)2 = (s(\ k), As(\ k — 1)) 2 = ag_1.
Now we can compare powers of z in to determine ay, b, explicitly. By

(2.22),
ek, DY o
=@R=\V"em * t Jennom: ¢ )

and if we compute the coefficients of z¥ and z*~! in ([2.26)) we obtain

co-1),_, [ cwm
cky = "™\ ck+)
o wm YOETOETT ooy
D=1 oy D)y, [ek-1)
Clk—1)C (k) NGO e "\c)
_ D(k) D(k—1)
¥ BT Em T Chon) (2.29)

This says that given the measure dp; (or its moments my ;, j € N) we can
compute s(A,n), n € N, via orthonormalization of the set {\",n € Np}. This
fixes s(A,m) up to a sign if we require s(A, n) real-valued. Then we can compute
an, by, as above up to the sign of a, which changes if we change the sign of
s(A,n).

So dpy uniquely determines a2 and b,, for n € N. Since knowing dp ()) is
equivalent to knowing m (2), m(z) uniquely determines a2 and b,, for n € N.



CHAPTER 2. SPECTRAL THEORY FOR JACOBI OPERATORS 16

2.3 Asymptotic Expansions

Our aim is to derive asymptotic expansions for g(z,n), h(z,n) and to describe
their associated spectral measures. This treatment will of course be similar to
that of Weyl m-functions in Section [2.1

First we recall the definition of g(z,n) and h(z,n) given in and

g(z,n) = G(z,n,n) = (6n, (H — 2)715,),
h(z,n) = 2a,G(z,n,n+1) —1=2a,(0n, (H—2)" 5,41) — 1.

As a consequence of the spectral theorem we have the following result.
Lemma 2.9. ([12]). Suppose § € (*(Z) with ||5|| = 1. Then
9(2) = (8, (H — 2)7'4)

is Herglotz, so g(z) has the following representation

o) = [ L,

where dps(\) = d(J, P—oo,x)(H)6) is the spectral measure of H associated to the
sequence §. Moreover,

glz) = — Y2, D)

Im(g(2)) = Im(2) [|(H — z)~"4]?

(iv) lg()| < I(H =)~ < meyy-

Proof. (i) We use again Neumann’s expansion for the resolvent
—1 o] ;
H HI
-1_ _-1(,_ __\
fr-o =t (1-0) ==Y S > Al
3=0
(ii), (iii) and (iv) are proven in an analogous manner as in Lemma O

Lemma implies the following asymptotic expansions for g(z,n) and
h(z,n).

Lemma 2.10. ([13]). The quantities g(z,n) and h(z,n) have the Laurent ex-
pansions

o~ 9i(1)
g(Z,TL) = 72 Z]j_;’_l ;9o =1,

h(zn) = —1- i () =0, (2.30)

and the coefficients are given by

gj(”) = <6n7Hj6n>7
hj(n) = 2a,(6n, H8,11), j€N. (2.31)
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Remark 2.11. [12], Lemma 1.6, shows that g;(n), h;j(n) do not depend on the

sign of a,, they only depend on a2.

In the next lemma we show how to compute g;, h; recursively.

Lemma 2.12. (2], Lemma 2.1). The coefficients g;(n) and hj(n) for j € Ny
satisfy the following recursion relations

hj(n) + hj(n—1)

gi+1(n) = 2J + bngj(n), (2.32)
hjp1(n) —hjia(n=1) = 2(apg;(n+1) —aj,_1g;(n — 1))
+ b (hj(n) — hj(n —1)). (2.33)
Proof. The first equation follows from
gj+1(n) = <H5na HJ5n>
= an—1<6n—17Hj5n> +bn<6naHJ6n> +an<6n+17Hj6n>
_ hyn—1) hy(n)
using Hé,, = an—16p—1 + bpdy + apdpy1. Similarly,
hjti(n) = 2an(H6,, H6,11)

= 2an (an—1<5n—17 Hj5n+1> + bn<5na Hj5n+1> + an<5n+1; HJ6n+1>)
= 2anan_1<(5n_1,Hj6n+1) +byhji(n) + Zaigj(n +1),

hivi(n—1) = 2a,_1(H&n, H 5p_1)
= 2a,-1 (an,1<5n,1,Hj6n,1>
b, (6, H 8r—1) + an (Sng1, H 6n—1))
= Qaiflgj(n — 1)+ bphj(n —1) + 2anan—1(0n—1, HI6,11).

Subtraction yields the result. In the last step we used G(z,m,n) = G(z,n,m).
O

The system in Lemma does not determine g;(n), h;j(n) uniquely since
it requires solving a first order recurrence relation at each step, producing an
unknown summation constant each time. One can determine this constant (cf.
[12], p. 107) but since this procedure is not very straightforward, we advocate
a different approach. If we take from below

4a2g(z,n)g(z,n +1) = h(z,n)? — 1,

insert the Laurent expansions for g(z,.), h(z,n) and compare powers of 2712
we infer

hjt1(n) = 2a;, Zgjl n)gi(n+1 Zhaz Ju(n), jeN.  (2.34)

This determines g;, h; recursively together with (2.32). Explicitly we obtain
go = 17 gl(n) = bna gQ(n) = a72’L + a’ifl + b?w
ho = 0, hi(n)=2a2, ha(n)=2a2(by+bns1), etc.. (2.35)

Remark 2.13. A third approach producing a recursion for g; only is given in
[12], Remark 6.5.



Chapter 3

Inverse Spectral Theory

We already discovered in our survey of the moment problem, Section that
m4 (z) uniquely determines a2 and b, for n € N.

Now we want to present a simple recursive method of reconstructing the
sequences a2, b from g(z,n) and h(z,n). When the Weyl matrix is known for
one fixed ng € Z, this is a well known result which is sharpened in [I13]. We will
see for example that g(z,ng) and h(z,ng) are sufficient for this task.

Definition 3.1. The Weyl matrix M (z) is given by
 dp(N) 1 0 1

M(z) = -
(2) /Oo A—z 290\ 1 O

0 h(z,0)
= <g,féj0)) 20 ), zeC\o(H).

Dag 9(2,1)

Suppose we know

g(z n) héz,n)
M(z,n) = i an , z2€C\o(H), 3.1
O W R \o(H) (3.1)
for one fixed n € Z. By Lemma we obtain
- <6717HJ57L> 1 bn -3
J:
- 2an<6naHj5n+l> 20‘31 -
h(z,n) = —1—ZT:717 2 +O(z 3). (3.3)
§=0

All O (27") terms apply for |2| — oco. Hence a? and b, can be recovered as
follows

by = — lim z(1+ zg(z,n)), (3.4)
1
a2 = — < lim 2*(1 + h(z,n)). (3.5)
2 z—00
Moreover, we derive useful identities
40’?19(2’”)9(2’”—"_ 1) = h(z,n)2 - 17 (36)
h(z,n+1)+h(z,n) = 2(z—bpy1)g(z,n+1), (3.7)

18
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if we combine and

u+(z,n)u_(z,n)

W(u—(2),u4(2))’

an(uy(z,n)u_(z,n+ 1) + uy(z,n+ u_(z,n))
W(u—(2), uy(2))

The identities show that g(z,n) and h(z,n) together with a2 and b,, can be
determined recursively. If, say, g(z,n¢) and h(z,ng) are given, we obtain by,
and a2 by taking the limit in (3.4) and (3.5). Then we know g(z,n0 + 1) by
(3.6) and thus b,,,11. Inserting them in (3.7) gives h(z,n9 + 1) and so on.

In addition, we see that a2, g(z,n), g(z,n + 1) determine h(z,n) up to its
sign,

g(z,n) =

h(z,m) =

h(z,n) = /14 4a2g(z,n)g(z,n + 1),

since h(z,n) is holomorphic with respect to z € C\o(H). The remaining sign
can be determined from the asymptotic behavior h(z,n) = —1 + O(z72).
Hence we have proven the following result.

Theorem 3.2. ([13]). One of the following set of data for a fixed ny € Z
determines the sequences a®> and b:

(i) g(-,no) and h(.,no)
(i) g(.,no +1) and h(.,ng)
(iii) g(.,n0), g(-,no + 1) and a2, .

Remark 3.3. Remark shows that the sign of a,, cannot be determined from
either g(z,no), h(z,n9) or g(z,no + 1).

The off diagonal Green function can be recovered as follows

n+k—1

1+ h(z,j)
G(z,n,n+k)=g(z,n —=, k>0, 3.8
( )=o) 1T 555 (38)
since by (T27) and (2]
n+k—1 . n+k—1 ..
1+ h(z,) G(z,4,j+1)
gz, n o5 /. . — 9N —
( )j:n 2a;9(z, j) ( )jll G(2,5,7)
n+k—1

_ Al,u zZ,n)u—_(z,n Ei&ilzj;})
= e I =7

j=n
= % u_(z,n)uy(z,n+k)=G(z,n,n+k).

A similar procedure works for H,. The asymptotic expansion

1 b, a?_ | +b?
my(z,n) = — o 2;1 - n+1z3 074 (3.9)
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shows that a2, by41 can be recovered from m (z,n). In addition,

1
2 - 1
a,my(z,n) + P P z (3.10)

shows that m (z,ng) determines a2, b,,, and m (z,n) for n > ng. By the same
considerations, m_(z,ng) determines a?_;, b,, and m_(z,n — 1) for n < ng.
Thus both m4(z,n) determine the sequences a? and b except for a2 a?

no—1» “ng»
bn,. But if we consider (cf. (2.15)) ’ ’

. 2 —bp +a2_ym_(z,n)
m_(z,n) = 2 )
n

we see that a? a2, s bny, and m_(z,ng) can be computed from m_(z,ng).

no—17
We conclude

Theorem 3.4. ([13]). The quantities m, (z,n9) and m_(z,ng) for one fized
ng € Z uniquely determine the sequences a®> and b.

Furthermore, we have the following relations between g(z), h(z), and m4 (z)

1
B = e F )
_ g(zn)im_(z,n)
g(z,n+1) = — (z,n) +m_(z,n)’
_ ~+(Z>n)7ﬁl_(z’n)
an) = % +(z,m) +m_(z,n) .
Conversely,
(o) = LEBE) 290+ ) (3.12)

T 2a2g(zn) | L¥h(zn)



Chapter 4

Trace Formulas

In this chapter we will investigate trace formulas for bounded Jacobi operators
H, for a treatment of unbounded Jacobi operators and Jacobi operators with
boundary conditions we refer the reader to [I2] or [I3]. The most basic example

of a trace formula is
tr(H — Hy,) = by,

where H,, = H_,, ® H, ,,.

Our main tool will be the exponential Herglotz representation of g(z,n) =
(6p, (H — 2)716,). g(2,n) is a Herglotz function by Lemma and its expo-
nential representation (cf. Theorem reads

e =laimles ([ (72 - ) e0mar) =€ Clota,

(4.1)
where the £ function £(A,n) (see [4]) is defined by
1
&\ n)=— lilI(T)l arg g(A +ie,n) for a.e. A € R. (4.2)
T €
arg(.) € (—m, ] and &(A\, n) satisfies 0 < (A, n) < 1. By [12], p. 112,
£(A,n) -
= . 4.
[ 00— arglion) (13)
For a bounded Jacobi operator H we know by Lemma that
o(H) C [inf c_(n),sup cy(n)],
nez nez
where ¢y (n) = by, £ (Jan| + |an—1]). So we can abbreviate
Ey =mino(H), E. =maxo(H).
We claim that ;
] 0 for A< Ey
§An) = { 1 for A\ > E.. (4.4)

To show this, we have to derive the sign of g(A,n) for A < Ey and A > E.
(H—X)>0for A < Egy, so (H—X)"1>0and g(\,n) = (§,, (H—X)"16,) >0,
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this implies £(A,n) = 0. Similarly, we infer {(A\,n) = 1 for A > E since in
this case (H — A) < 0 and thus g(A,n) < 0. For this argumentation we need of
course that g(\, n) is continuous and real for A € R.

(4.1)) reads now

Es n
g(z,n) = Eoolf ~ exp (/E 5(;\\’),5/\> , (4.5)

we will give an analogous proof in Proposition below.

Theorem 4.1. ([12]). Let (A, n) be defined as above and let H,, = H_ ,,&H .
Then we have the following trace formulas

E
o) = e (H' = Hy) = B — 1| N7\ m)dn, (4.6)
Eo
where
b = bu,
-1 ‘
o0 = talo) = s, 122 (@
j=1

Proof. The claim follows after expanding both sides of

Fe n
In (Boo = 2)g(zm) = [ S0MD

T (4.8)

and comparing coefficients. The right side becomes

/Ew ¢\ n)d\ _/Eoc £\, n)dX

B A—z B, 2(1—=2Az71)
oo 1 Fo
= =) 7/ AN n)dA.
=1~ /Eo

Using the asymptotic expansion of g(z,7n) we expand the left side

_ Eo . = gj(n)
z I+l
=0
E

In (B —2)g(z,m)) = In (—z

where
ci(n) =gi1(n), an)=g(n)— lgz—j(n)cj(n), 1>2.

Set ley(n) = bg) and compare coefficients of z!. O
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Remark 4.2. The special case [ =1 of (4.6]),

Es

has first been given in [4].
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Chapter 5

Finite Jacobi Operators

In this chapter we will study finite restrictions H,,, », of H to the subspaces

?%(n1,n9) as introduced in Section We set ny = 0, no = N + 1 and

Ho n+1 = Hy for simplicity. Hy has been obtained from H by imposing

Dirichlet boundary conditions at the endpoints (f(0) =0, f(N + 1) =0).
First we recall the definition of Hy.

alf(2) + blf(l) n=1
(Hyf)(n) =< (Hf)(n) l<n<N (5.1)
an—1f(N—=1)+bnf(N) n = N.

The tridiagonal Jacobi matrix Jy y1 is associated with Hy:

bl al
aq bQ a9
JoNt1 = . (5.2)
an—2 by-1 an—1
an—1 by

One immediately obtains that the eigenvalues of Hpy are simple. Suppose
u, v are two different eigenfunctions of Hy f = zf corresponding to the same
eigenvalue z € C, then

Wi(u,v) = a

:u(

(u(1)v(2) — u(2)v(1))
1)(z = b1)v(l) —v(1)(z — by)u(l) =0,

by Proposition this implies that v and v are not linearly independent. We
used

a1 f(2) + b1 f(1) = 2f(1) (5.3)

for v(2) and w(2). Our choice of evaluating W, (u,v) at n = 1 is no restriction
since the Wronskian is constant in n by Remark

Next we consider the special solution s(z,n,0) characterized by the initial

conditions s(z,0,0) = 0, s(z,1,0) = 1 (cf. (1.5)). For n € N, s(z,n,0) has
precisely n — 1 distinct real zeros. To prove this, we consider the expansion

24



CHAPTER 5. FINITE JACOBI OPERATORS 25

for s(z,n,0), n > 0,

det(z — Jo.n)
1= a

s(Ao,m,0) = 0 implies that Ao is an eigenvalue of Hy ., thus Ao must be real and

simple. Summarizing, we have the following classical result from the theory of
orthogonal polynomials.

s(z,m,0) =

Theorem 5.1. The polynomial s(z,n,0), n € N, has n — 1 real and distinct
roots denoted by
)\l,n < A2,71 < ... < >\n—1,n-

The zeros of s(z,n,0) and s(z,n + 1,0) are interlacing, that is,
AMoant1 <A < Aopg1 < oot < Ap—in < Apnti (5.4)
Moreover,
o(Hou) = (i1
Proof. A proof of using Priifer variables can be found in [12], p. 77. O
So Hy = Hy n+1 has real eigenvalues A\; < ... < Ay (we set \; v = A;) and

associated orthonormal eigenvectors ¢1,...,pn with ¢;(1) # 0 (if ¢;(1) = 0,
then ¢; would be identical 0 by (5.3)).

For the Green function of Hy (1 < m,n < N)
Go,n+1(z,m,n) = (O, (Hy — 2)7185)

we obtain

(5.5)

1 s(z,n,0)c(z,m,N) form >n
GO,N+1(27m7n) = { ( ) ( )

W(s(2),c(z)) | s(z,m,0)c(z,n,N) forn>m.

s(z,.,0) and ¢(z,.,N) are the fundamental solutions satisfying the boundary
conditions s(z,0,0) =0, ¢(z, N+ 1,N) =0.

5.1 The ¢ Function

We saw in Chapter (] that the £ function plays an important role, knowing its
precise form is the key ingredient to compute trace formulas explicitly. Indeed,
in the case of finite Jacobi operators, the £ function behaves very nicely.

Our starting point is the following result for the Weyl m-function m(z) =
my(z,0) = (01, (Hy — 2)7"61).

Theorem 5.2. ([3]). If Ay < ... < Ay denote the eigenvalues of Hy and
vy < ... <vn_j the eigenvalues of Hy N1, then

N-1
1= (z—mn)

. 5.6
| JAEEDY) >0

my(z) =
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Proof. By (55),

m+(z) = G07N+1(Z7 1, 1)
s(z,1,0)c(z, 1, N)
ao(s(2,0,0)c(z,1,N) — s(z,1,0)c(z,0, N))

__ c(x1LN)
N ape(z,0,N)
and (1.11)
det(z — Jpy—
C(Z,?’lo - nvno) = ‘ (Z no—qo n’”0+1)
Hj:ngfn a;
becomes
det(z — det(z —
ez 1, ) = FEZANL) o, g ) = SUE o)
N—1 N—1
Hj:l aj Hj:o aj
N—1
_ (Z — I/l)
= my(z) = -2 ——
Hj:l(z —Aj)
O
The £ function is defined by
1
&M n)=— lilrgl argmy (A +ie,n) for a.e. A €R, (5.7)
T €

where arg(.) € (—m,7]. We set £(\,0) = &()\). Again we have to study the
sign changes of m(z) as z € R moves along the real line. Remember that
my(z) is continuous and real for z € R. For z < A1, m4.(z) > 0 by (5.6)), this
implies £(z) = 0. After the first pole, z = A1, m_ (z) becomes negative and thus
&(z) = 1. At z = vq, the sign changes again and so on. For z > Ay, m4(2) <0
and therefore £(z) = 1. We conclude

Lemma 5.3.

N-1
€N =D X0y N+ Xy (A for ae. NER, (5.8)
j=1
where xqo(.) denotes the characteristic function of the set Q CR, A} < ... < Ay
are the eigenvalues of Hy and vy < ... < vy_1 the eigenvalues of Hi nyi1. £(X)
for Hs is depicted below.
£\
1
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5.2 Trace Formulas for Finite Jacobi Operators

In [3], trace formulas for finite Jacobi operators are derived. We will give another
proof based on the results for arbitrary Jacobi operators in Chapter [4 and we
will extend the results in [3] to higher order trace relations.

For our investigations we will need the exponential Herglotz representation
of my(z).

Proposition 5.4.

my(z) = )\Nl_ _ exp </\VN1 i(\)\_)i)\) . (5.9)

1

Proof. my(z) is a Herglotz function by the conclusions of Lemma and its
exponential Herglotz representation reads by Theorem [A.2| (¢ = In|m (7)|)

1 A
P (*/R (x_ - m) 5”‘”)
AN Sl | A
exXp (C-ﬁ-/}\l )\_Zf(/\)d/\—l-/AN )\_ZdA—/wa()\)d)\>

e [T cvan)
= exp(ch/)\ mf() >)\N—Z,

1

m4(2)

where we collected the terms which are independent of z in ¢,

~ ) VN-1 )\ In(1+ %)
=1 — —_—
&= In|m () /A e+

1

Fortunately, we do not have to show directly that ¢ = 0 since we infer by the
asymptotic expansion of m (z)

my(z) = —=+0(:z?)

O

Theorem 5.5. ([3]). Assume N € N and let \y < ... < Ay be the eigenvalues
of Hy = Ho n41 and vy < ... < vn_1 the eigenvalues of Hi ny41. Then

UN_1 N N-1
by = Ay — / ENAA=D "N =D w, (5.10)
A j=1 1=1

1

UN—

2a§+b§:A§V—2/
A1

. N N-1
AENAA =D "N = > 12, (5.11)
j=1 =1
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Proof. If we know that

bi= Ay — /:Nl £(N)d, (5.12)

1

the second claim follows if we insert the explicit form of the £ function (5.8))

VN1 N-1 N-1
)\Nf/ ENAA=Av = D> N =D w,
A -
j=1 =1

1

this holds also for (5.11)). To prove (5.12), we use (5.9), the exponential repre-

sentation of m(z),

mi(z) = XP<AW>

AN — 2 . A—2z

1 N N
— AN—zeXp<_kZ_OZ’““/A1 >\§(>\)d>\>.

Abbreviate now ¢ = [ AFE(N)dA, then

1 > Ck
mi(z) = )\NzeXp<_sz+1>

k=0
1 ﬁ Ck )
= exp ( —
AN — 2 pated P Zht1
1 [ cx \J 1
N fz(lf)\Nz*l)kl;[O j;)(_zkﬂ) j!

2
1 Av-—c My —Avao+3 —a

_ —4
Tz 2 23 +OGT).
The asymptotic expansion of m, (z) reads
1 b 1+ b7
m+(z):————1—a1+ Lo

z 22 23
and comparing coefficients yields

b = )\NfCOZ)\N*/ C£(N)dr
A

1
2

R ()\N—Co)z-l-)\zvco—%o—cl
02
= a% = )\NCQ—EO—Cl
UN-—-1
= 2a34+b = Ny -2 :A?V—Q/ AEN)A.
A1
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The trace formulas in Theorem are of course just the tip of the iceberg.
In analogy to Theorem {4.1| we obtain the following result for finite operators.

Theorem 5.6. Assume N € N. We have the following trace formulas for Hy

N N-1
!
=320 - Y,
j=1 k=1

where
b = by,
-1 )
o) =tmig =Y my b, 1>2.

Jj=1

Proof. As in the proof of Theorem [4.1] we expand

ln(()\N _ 2)m+(z)) _ AVN1 M

A—2z

1

using the Laurent expansion of m, (2)

_ o~ T
m(2) = *Z Si+l
=0
and infer
Eoo
o) = EL fz/ ATTE(A)dA
Ey

AN
= Aﬁv—l/ MNZEE(N)dA
A

1
VN-—-1

= A=A — =N

v
A1

N N-1

— ! !

= E )\j—g V.
j=1 k=1

AN_1

We can give a different proof for Theorem [5.2] that

IR CERD)
H;V:1(Z =)

my(2) =

)

(5.13)

(5.14)

(5.15)

if we insert the ¢ function (5.8]) in the representation (5.9) of m (z). Be aware
that this is a circular reasoning, since we derived the ¢ function from Theorem
but there are of course other possible ways to calculate £(\). So this proof

might be of interest on its own.
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Proof of Theorem[5.3 By (5.9),

my(z) = 1 ex /uN_l 7§(A,n)d)\
* AN — 2 P A A—z
1 e PN-1 ]
= —d\+ - d\
)\N_Zexp<//\1 A—2z + +/>\N1 A—2z )
1 vy — 2 UN_1— %
= 1 IR P e\ e
neer(n(5) e (B35))

N-1
1 vi—=Zz

AN — 2 i — 2z
N j=1 J

O

Corollary 5.7. ([3]). {)\}}L, U (w3t uniquely determine Hy. Any set of
real A and v is allowed as long as

M<V <A< <...<AN.

Proof. By (5.6), A and v determine m_ (z) and by (3.10),

aim, (z,1) + =b; — 2,

m+(z, O)

we see that m(z,0) determines a2, b,, and m(z,n) for n > 0 (cf. Theorem

and the considerations for (3.9) and (3.10))).

By Theorem @ the eigenvalues of Hy and H; y4; are interlacing. O

5.3 The Inverse Spectral Problem

We already saw how spectral information determines H, Hy (cf. Theorem [3.2]
Theorem and Corollary . Now we will focus on the actual reconstruction
of a2, b, from given spectral data for Hy and present an explicit expression of
a2, by, in terms of the spectral data.
In Section we derived an explicit expression of a2, b, in terms of the
moments m4 ;. So it remains to express my ; in terms of the spectral data.
The spectral measure of m4 (2) is

dp(X) = h(X;)6(A = A;)dA (5.16)
J
and if we insert dp4 (M) in (2.6) we infer

N
my(2) = /R o+ (\) = Z hy) . (5.17)

We claim that h()\;) is the residuum of m4 (z) in ;. By (5.6,

N-1
=1 (z =)

L AW
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Since A; is a pole of first order, the residuum in J; is

Resy;my(z) = lin}\l (A — 2)m4(2)
z2— X
N-1
s —
S V=GR ) (5.18)
Hk;éj()‘j - )\k)
N
Q;
= my(z) = (5.19)
=0 >‘j —Z
= a; = h()\J)

a; > 0 for all j since the eigenvalues are interlacing, \y < v < Ag <... < An.
The condition a; > 0 would also follow from the Herglotz property of m, (z).
The moments m4 ; of dp; (cf. (2.12)) are thus given by

N

myo = (01, (Hy)01) =1 = /deJr()\) = ;aj, (5.20)
N

my = {61, (H)'6)) = /R)\lder()\) = ZAé’O‘j‘ (5.21)

If we combine now (5.21]) with (2.28)) and (2.29)), we obtain the following
result.

Theorem 5.8. Let N € N. Suppose the spectral data {/\j};v:l and {v}7",
AL <y < A9 < ...< Ay, corresponding to Hy are given and Zj oaj =1. Then

the coefficients a®, b of Hy can be expressed explicitly in terms of the spectral
data

_ Ck—1)C(k+1)
a; = 0L : (5.22)
b — D(k) D(k—1) (5.23)

Ck) Ck-1)’
where C(k) and D(k) are defined as in and using

N
2 : l
my) = )\jOéj.
j=1

Remark 5.9. Theorem is a special case of [12], Theorem 8.5, where a certain
class of reflectionless bounded Jacobi operators is considered. A Jacobi operator
H is called reflectionless if for all n € Z,

&\ n) = % for a.e. X\ € gess(H). (5.24)

Oess(Hn) = 0 for finite Jacobi operators Hy, so [12], Theorem 8.5, holds for
Hpy as well.
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In our results for finite Jacobi operators so far we saw that the eigenvalues
{A\ 1L, of Hy together with the eigenvalues {v 3N of Hy ni1 uniquely de-
termine Hy.

Now we want to generalize this situation in the following way. If we split
Hy =Hont1atn (0 <n < N+1)into H_ ,, and H; ,, by omitting the n-th
line and column, is it possible to reconstruct Hy from the set {); }5\;1 and the
eigenvalues {y; }7Z1, {,uf}fi]” of H_ ,, and H; ,,7 From this point of view our
results above cover the case n =1 (and by reflection the case n = N).

H_,

Gp—1
HN = Qn—1 bn A,
Qnp

Hyo,

s

For the proof we will need the following representation of the Green function
g(z,n) = Go,n+1(z,n,n) of Hy (0 <n < N +1).

Proposition 5.10.

IR e CE o) | N CR 7 o5
9(z,n) H;V:1(Z_)\j) : (5.25)

Proof. By (5.3),

s(z,n,0)c(z,n, N)
W(s(2), (=)
s(z,m,0)c(z,n, N)
ao(s(2,0,0)c(z,1,N) — s(z,1,0)c(2,0,N))

$(2,0,0) =0, s(z,1,0) = 1 and we obtain from ([1.10)) and (1.11)
det(z — Jo.n)

g(z7n) =

s(z,n,0) = ——m———,
Hj:l aj
det(z — J,
c(z,n,N) = Nz — Jn,N+1) (ZN71 ’N+1)7
H]:n a.j
det(z — J,
o(2,0,N) = et~ Jovi)
szo aj
det(z — Jp. ) det(z — J,,
= gem) = - et(z — Jo.n) det(z — Jn,n11)

det(z - J07N+1)
_ _ N—
Z:ll(z — ) Ty (2 — 1)

| JREEPYY




CHAPTER 5. FINITE JACOBI OPERATORS 33

Thus we gained an expression for g(z,n) involving only the desired data.
From (2.4) we know that

=2 —by +aimy(z,n) +aZ_m_(z,n), (5.26)

g(z,n)

m_(z,n) and m4(z,n) uniquely determine H_ ,, and H; ,, (cf. (3.9), (3.10)).
(From our previous considerations we know the form of m4 (z) (cf. (5.19)), so
we make the following ansatz for my(z,n)

n—1 —
m_(z,n) = Z fék ) a >0, (5.27)
=1 Hr — %
N-—n Oé+
my(z,n) = +l , af >0, (5.28)
= M T #
where a;, a; denote the unknown residues. We assume {u }r N {p} = 0

and consider the general case later.
Evaluation of the first moments (cf. (5.20])) shows that

N-—n

n—1
dag=1, > of =1 (5.29)
k=1

=1

Inserting our ansatz in ((5.26)) we obtain

N —n
Hj:l(z —Aj) O NZ af
n—1 _ N—n - —Yn T HYp +
i (2= ) IR (2 = 1) =1~ H
n—1 _
—a?_, % (5.30)
k=1° " Mk

N n—1 N—n

[Ie=-2) = G=b) [[G—wm) ] G-wu)
j=1 k=1 =1

N—n n—1
—ay Y of [TG=m) [[G—rh)
1=1 k=1 ma£l
n—1 N—n
—ar > oy [[G=m) [TG-wh). (531)
k=1  msk 1=1
If we compare coefficients of 2N ~! we infer
N n—1 N—n
S SETI ST S
j=1 k=1 1=1

S S A

i3

s

I
\‘M =
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This is a simple trace formula we knew all along. To determine the unknown
residues afr and o we first set z =p,; , 1 <i<n—1,in l)

N —
[T =) =0-0—-ap_a; [T — ) H Fouh)- (5.33)
i=1 14 -1
Then N
V(g — N
B — ) (530

(i — o) TS (w7 — 1)
is uniquely determined and since > a; =1 (cf. (5.29)),

n—1
S5 =ai (5.35)
i=1
This uniquely determines o; fori=1,...,n—1
ap_1

In analogy, for I =1,...,N —n,

af = % (5.37)
where
H W =A))
8 =— , 5.38
: o (g —u*)Hp#(uz —iy) (539
= Z B (5.39)
=1

It remains to consider the necessary conditions on the sets of eigenvalues to
obtain a?‘ >0 and o >0 for all [, k.

Lemma 5.11. Set {p;}; = {u, }x U{p }i- A; denote the eigenvalues of Hy,
py, and :“l+ the eigenvalues of H_ ,, and H, ,,.

(i) M<pr <X <p <. <Ay

() py =" = = =\
Remark 5.12. For the splitting points n = 1, n = N the inequalities in (i) are
strict, so (ii) cannot happen. If p;” = X; or ,ul+ = );, one obtains by the same
proof that u, = uf = Aj.
Proof. (i) The eigenvalues of a Jacobi operator are all real and simple, so we
order them accordingly. Furthermore, it is well known that the poles and roots

of a Herglotz function must be interlacing. g(z,n) is Herglotz, so (i) follows
from Proposition [5.10

n 1( ﬂk)Hl 1 (Z*N?_).
H] 1(z = A5)

g(z7n):: -

(ii) By Theorem
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(1) Aeo(H_n) & s(A\ng0) =0
(2) N€eo(Hyp,) < s\ N,ng)=0
(3) Neo(Hy) < s(AN,0)=0.
Suppose (1) and (2) hold for A,
s(A, N,ng) =0 = s(A,ng,0)

= s(A\,N,n) =cs(\,n,0), ceR\{0}.

Since
0=s(A\N,N)=cs(AN,0)

= s(A,N,0)=0 = (3).
In the same manner (2) and (3) imply (1), as well as (3) and (1) imply (2). O
If we insert the assumption Ay < p1 < Ao < p2 < ... < Aw, {i;}; =
{1 1 U }i, into
- I (s =)
i = ) T " (s = 1)
we obtain 8; > 0 and hence o; > 0 for 1 <7 < n — 1 as desired. Analogously

we infer a;r >0 for 1 <1< N —n. If we follow now the Weyl m-function
reconstruction starting with m4 (z,n), H_ ,, and Hy , are uniquely determined,

B =

as well as a2 _, a2, by,.
It remains to show that Aq,..., Ax are indeed the eigenvalues of the Jacobi

operator Hy we constructed above. But this is clear from Proposition [5.10}
since the Green function g(z,n) of Hy has poles exactly at the eigenvalues of
Hy.

If p, = ,ul"r = )\j, the pole and one root cancel out and a root at z = A; re-
mains. Thus roots instead of poles in the set {A;} indicate colliding eigenvalues.
We will reconsider the proof for the case o(H_,) No(Hy ) # 0 immediately,
but before we have to introduce additional data o;.

Hypothesis 5.13. The spectral data of two submatrices of Hy are given by

{1j 0515,
where {11;}; = {py b U {p 1 I gy = pf = pj, o is determined by (5.42)
aza?' —a? 10
g, = 4Lt Tl R e -1,1),
' oy vz oY
otherwise . B
oj=—1 it p;=p,

O'jzl if ,U/j:/J/lJr

o; is either 1 (depending on whether p; is an eigenvalue of H_ ,, or H, ;) or
in (—1,1) (if p; is an eigenvalue of both submatrices and hence also of Hy).

Until now we have proven a special case of the following theorem.
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Theorem 5.14. Let 1 < n < N and denote o(Hy) = {\}L,, o(H_,) =
{pp Yz and o(Hy ) = {pf fi}" Assume Hypothesis |5.13,
The sets {\;};, {1j,0;}; uniquely determine Hy. A corresponding Hy

exists if and only if My < p1 <A < ... < Ay

Proof. If \1 < p1 < Ay < ... < Ay, Hy can be reconstructed uniquely from
(5.32), (5.34) - (5.39) by the proof above. It remains to consider the case
Ko = Mgy = uz (= Ajp), so g, € (—1,1). The proof is the same in this case,

except that some terms in ([5.34) and (5.38) vanish. (5.30) becomes

Hj;éjo(z_/\j) _ Z_bn_aiz afL

- - +
ez = ) T, (2 = 1) 12, © M
2 a _ Gnt, + @10y,
k#ko Z /’l’k p“]O

Following the calculations thereafter, we obtain (insert z = ;)

B Hj;éjg (g0 — Aj)
H/c;s/co (Mjo - #1;) Hl;élo (Hjo - Hz+)

2+ 2 - _
a0y + A1, =

=: 5jo' (540)

Now the additional data o, distributes this sum among «, ~and alt

I@f:l_ajo& a- — ﬁl;) :l_gjo 6]6
o 2 70 ko ai—l 2 a%_f
lo — 2 Jo lo = a% - 2 a/% : :

Positivity of the residues follows as before, since the terms which would be zero
do not appear in (5.40). So Hy can be reconstructed uniquely from ([5.32]),
O

(5.34) - (5.39)), where (5.41)) is to be used for ay, if o;, € (—1,1).

Given an arbitrary Jacobi operator Hy with pj, = pp = ul‘g, one can
evaluate oj, by

2+ 2
) a’nalg a’nflako (5 42
U]O 2 + 2 9 . )
analg + anflako
since 14 1
s — .
2 4+ 2 - _ Jo s Jo s ¢
A0y — Ay Oy = 5 djo 5 0jo = 005, -

Theorem 5.15. Let 1 < n < N and {11;}; = {p, }x U{p 1. The following
parametrizations of a N X N Jacobi matrix Hy determine each other and the
maps between these parameters are real bianalytic diffeomorphisms.

(i) {an}n= U{ba 3N, (an > 0).
(1) {1 U (g Yest u {1 (M1 <pr <A <. <A

(i) (s Jizh U Y™ U8 3 U8 10U b} (1 < < e, B > 0).
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There are 2N —1 parameters. a,, b, are the coefficients of Hy and oc(Hy) =
N, o(H- ) = {ug Yo, o(Hy ) = {1 1. ,Bji are the residues of the poles in
m4(z,m) up to a constant

a5
my(z,n) = T ,
; Hi T
where . B
+ _ 6]' - _ ﬂ]
o =5, o) =—5—.
ag, a‘nfl

Proof. Tt is known that the map from the N coefficients of a monic polynomial
of degree N to the roots A1, ..., Ay of that polynomial is a bianalytic diffeomor-
phism in the region where the roots are all real and distinct. The determinant
of the Jacobian matrix of this transformation map is £]];_,(A; — k)L (cf.
[9)). Since all eigenvalues are real and simple, the map from (i) to (ii) is real
analytic.

The map from (ii) to (iii) is rational by (5.34)), (5.38)) and (5.32])

P IS (7 =)

' Mo (i = ) TLS " (= )
— T (1 =)

l - n—1

e (= ) T (i — 1)

N n—1 N—n
b o= D N = >
j=1 k=1 =1

S B =a2_, Y. B = a? and the Weyl m-function reconstruction of H_ ,,
and H, ,, from

at
m4 (Za TL) = Z . .
; Hi T F
shows that the coefficients a, b are real analytic functions of (iii). O

Theorem 5.16. {)\j}évzl U {p Yzt U 3™ uniquely determine Hy. Any

set of real A and p is allowed as long as
/\1<u1</\2<u2<...</\1v,

where {p;}; = {pg 1 U{p i

Corollary 5.17. ([3]). The following parametrizations of Hy determine each
other and the maps between these parameters are real bianalytic diffeomor-
phisms.

() {an ibv;ll U {bn iy (an > 0).

(ii) {Aj};v:l U {Vl}l]izl ()\1 < <XA<...<vy_1 < )\N)

(iii) {3} U{ay 3, AL <. <An, oy >0, S0 ap = 1).
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Aj are the eigenvalues of Hy, v, the eigenvalues of Hi nt1 and o the
residues of the poles in m4 (z)

my(z) = Z )\jai oor dpy(\) = Zaj (A —Aj)dA.

Jj=1

At last we give an incomplete survey of spectral information which is suf-
ficient to reconstruct a finite Jacobi operator uniquely. Unlike our case, the
following theorems do not assert the existence of such an operator, but unique-
ness, if it exists.

Denote the coefficients b1, a1, b2, as ... by a single sequence ¢y, co, .. ., SO

Cop—1 = bn7 Cop = Qp.

Theorem 5.18. ([7]). Let N € N. Suppose that cyy1,...,can—1 are known,
as well as the eigenvalues A1, ...,An of Hyy1. Then c1,...,cn are uniquely
determined.

Proof. A proof can be found in [7], but it is modeled on that given in [6]. O
This result is sharpened in [3].

Theorem 5.19. ([3]). Suppose that1 < j < N and ¢j41,...,can—1 are known,
as well as j of the eigenvalues. Then cy,...,c; are uniquely determined.

Proof. A proof is given in [3]. Notice that one need not know which of the j
eigenvalues one has. O

Define H(b)ny to be the Jacobi operator where by is replaced by by + b
H(b)N =Hy + b<(51, >(51

Theorem 5.20. ([3]). The eigenvalues A1, ..., Ay of Hy together with b and
N —1 eigenvalues A(b)1,...,A(b)ny—1 of H(b)n uniquely determine H.

A1, ..., AN together with the N eigenvalues A(b)1,...,A\(b)n of H(b)N+1
(with b unknown) determine Hy and b.

Proof. A proof can be found in [3]. O



Appendix A

Herglotz Functions

[12], Appendix B, gives an extensive survey of Herglotz functions. We present
the theorems we cited above and follow the notation of [12].

Set Cx = {# € C| £1Im(z) > 0}. A function F : C; — C. is called a
Herglotz function (sometimes also Pick or Nevanlinna-Pick function), if F' is
analytic in C;. One usually defines F on C_ by F(z) = F(z).

Herglotz functions can be characterized by

Theorem A.1. F is a Herglotz function if and only if

1 A

where p is a measure on R which satisfies

1
/Rl-l-)\zdp(/\) < o0.

a, b, and p are determined by F using

F(z):a+bz+/

R

a = Re(F(i)) €R,

b = lim F) 5o,
Im(zz);>0 Z
and Stieltjes inversion formula
A1+
p((Ao, A1]) = limlim — Im(F (A +i€))dA. (A.2)

510 €lO 7T Xo+6

We will use an alternate integral representation of Herglotz functions which
we obtain by considering the logarithm In(z). Let In(z) be defined such that

In(z) =In|z| + iarg(z), —-w <arg(z)<m. (A.3)

In(z) is holomorphic and Im(In(z)) > 0 for z € C4, so In(z) is a Herglotz
function. The representation of In(z) according to Theorem reads

1 A
m(z) = | (= = =5 ) X o) VA .
n() A(A—z 1+v)x(w”()’ Pets

39
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The sum and the composition of two Herglotz functions are again Herglotz
functions, so in particular, In(F(z)) is Herglotz. Thus, using the representation
in Theorem for In(F(z)) we get another representation for F'(z).

Theorem A.2. F is a Herglotz function if and only if it has the representation

F(z) = exp (c—l—/R (A i - HAAQ) §(A)d)\) , z€Cy, (A.4)

where ¢ = In|F(i)] € R and € € LY(R, (1 + A\?)71d)) is the & function (cf. [{)])

£ = 1 limIm(In (F(\ +ie€))) = %leilrgarg (F(X\+ie)) (A.5)

T €l0

fora.e. NeR and 0 < E(N) <1 for a.e. A€ R. Here — < arg (F(A+ie)) <
according to the definition of In(z).
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