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Abstract

This Thesis aims at the development of the Inverse Scattering Transform (IST),
in the form of a Riemann–Hilbert problem, for the modified Camassa–Holm
(mCH) equation

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥

on the line with non-zero boundary conditions.
In the first part (Chapter 2 and 3), we develop the Riemann–Hilbert (RH)

formalism to the Cauchy problem on the whole 𝑥-line in the case when the
solution is assumed to approach a non-zero constant as |𝑥| → ∞. In this case,
the spectral problem for the associated Lax pair has a continuous spectrum,
which allows formulating the inverse spectral problem as a Riemann–Hilbert
factorization problem with jump conditions across the real axis. We obtain a
representation for the solution of the Cauchy problem for the mCH equation
and also a description of certain soliton-type solutions, both regular and non-
regular. Moreover, we apply the nonlinear steepest descent method to study
the large-time asymptotics of the solution of this Cauchy problem.

In the second part (Chapter 4), we develop the Riemann–Hilbert formalism
for the Cauchy problem on the whole 𝑥-line in the case when the solution is
assumed to approach two different constants as 𝑥 → +∞ and 𝑥 → −∞. We
present detailed properties of spectral functions associated with the initial data
for the Cauchy problem for the mCH equation and obtain a representation
for the solution of this problem in terms of the solution of an associated RH
problem.
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Zusammenfassung

Das Ziel der Dissertation ist die inverse Streutransformation (IST) in der Form
eines Riemann–Hilbert-Problems (RHP) für die modifizierte Camassa–Holm
(mCH) Gleichung

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥

auf der Achse mit nichttrivialen Randverhalten zu entwickeln.
Im ersten Teil (Kapitel 2 und 3) entwickeln wir den Riemann–Hilbert-Formalismus

für das Cauchy-Problem auf der ganzen 𝑥-Achse für den Fall, dass die Lösung
zu einer von Null verschiedenen Konstante für |𝑥| → ∞ konvergiert. In diesem
Fall hat das Spektralproblem für das zugehörige Lax-Paar ein kontinuierliches
Spektrum. Das erlaubt das inverse Spektralproblem als ein Riemann–Hilbert-
Faktorisierungsproblem mit Sprungbedingung über die reelle Achse zu for-
mulieren. Wir erhalten eine Darstellung für die Lösung des Cauchy-Problems
für die mCH-Gleichung und auch eine Beschreibung bestimmter Solitonen-
Typ-Lösungen, sowohl regulärer als auch nicht regulärer. Darüber hinaus ver-
wenden wir die nichtlineare Methode des steilsten Abstiegs, um die Langzeit-
Asymptotik zu untersuchen.

Im zweiten Teil (Kapitel 4) entwickeln wir den Riemann–Hilbert-Formalismus
für das Cauchy-Problem auf der ganzen 𝑥-Achse für den Fall, dass die Lösung
zu zwei verschiedenen Konstanten für 𝑥→ +∞ und 𝑥→ −∞ konvergiert. Wir
präsentieren detaillierte Eigenschaften der Spektralfunktionen, die mit den An-
fangsdaten für das Cauchy-Problem der mCH-Gleichung assoziiert sind, und er-
halten eine Darstellung für die Lösung dieses Problems in Bezug auf die Lösung
eines zugehörigen RHPs.
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Extended Abstract

I. Karpenko, “The modified Camassa-Holm equation with nonvanishing bound-
ary conditions by a Riemann-Hilbert approach,” – Scholarly manuscript.

PhD Thesis in Mathematics (specialty code: 111). B. Verkin Institute for
Low Temperature Physics and Engineering of the National Academy of Sciences
of Ukraine and University of Vienna.

This Thesis aims at the development of the inverse scattering transform
(IST), in the form of a Riemann-Hilbert problem, for the modified Camassa-
Holm (mCH) equation:

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥,

in order to study the long-time behavior of solutions.
Two main problem settings are as follows:

(i) The Cauchy problem on the whole 𝑥-line in the case when the solution is
assumed to approach a non-zero constant as |𝑥| → ∞.

(ii) The Cauchy problem on the whole 𝑥-line in the case when the solution is
assumed to approach two different constants as 𝑥→ +∞ and 𝑥→ −∞.

In Chapter 2, we consider the Cauchy problem for the modified Camassa–
Holm equation on the line:

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞,
𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞,
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assuming that
𝑢0(𝑥)→ 1 as 𝑥→ ±∞

and that the time evolution preserves this behavior: 𝑢(𝑥, 𝑡) → 1 as 𝑥 → ±∞
for all 𝑡 > 0. A non-zero background provides that the spectral problem in
the associated Lax pair equations has a continuous spectrum, which allows us
to formulate the inverse spectral problem as a Riemann-Hilbert factorization
problem with jump conditions across the real axis (constituting the continuous
spectrum).

Our development of the Riemann–Hilbert problem formalism is based on
the adaptation of a general idea — the use of dedicated (Jost) solutions of
the associated Lax pair equations as "building blocks" for a matrix-valued
Riemann–Hilbert problem, which is formulated in the complex plane of the
spectral parameter and parameterized by the spatial and temporal variable of
the nonlinear equation in question — to the case of the mCH equation taking
into account particular features of its Lax pair equations.

The Lax pair originally proposed and conventionally used in studies of the
mCH equation has the form of 2× 2 matrix linear differential equations:

Φ𝑥(𝑥, 𝑡, 𝜆) = U(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆), Φ𝑡(𝑥, 𝑡, 𝜆) = V(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆)

where the coefficient matrices U and V are defined in terms of a solution of the
mCH equation:

U =
1

2

(︃
−1 𝜆𝑚

−𝜆𝑚 1

)︃
, V =

(︃
𝜆−2 + 𝑢2−𝑢2

𝑥

2 −𝑢−𝑢𝑥

𝜆 − 𝜆(𝑢2−𝑢2
𝑥)𝑚

2
(𝑢+𝑢𝑥)

𝜆 + 𝜆(𝑢2−𝑢2
𝑥)𝑚

2 −𝜆−2 − 𝑢2−𝑢2
𝑥

2

)︃
.

Two specific features of the 𝑥-equation associated with the mCH equation (in-
volving U and constituting the spectral problem, with the spectral parameter 𝜆)
that affect analytic properties of the Jost solutions are as follows: (a) 𝜆 enters
U through a product with the “momentum” 𝑚(𝑥, 𝑡), which, in the framework
of the inverse problem, is an unknown function; (b) as |𝑥| → ∞, 𝑚(𝑥, 𝑡) ap-
proaches a non-zero constant. In particular, these features affect the problem
of control of the large-𝜆 behavior of the Jost solutions. In our development of
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the RH formalism, this problem is addressed by (i) transforming (by applying
a dedicated gauge transformation) the Lax pair equations to an appropriate
form, with selected diagonal parts that dominate, in a certain sense, for large
𝜆; (ii) introducing a new spatial-type variable, in view of having an explicit de-
scription of the large-𝜆 behavior of the Jost solutions in terms of space and time
parameters; (iii) introducing a new (uniformising) spectral parameter 𝜇 (related
to 𝜆 by 𝜆 = −1

2(𝜇 + 1
𝜇)), which allows us to avoid non-rational dependence of

the coefficients in the Lax pair equations on the spectral parameter.
Moreover, we take advantage of a consequence of property (a) that for 𝜆 = 0,

U becomes “solution-independent” (independent of 𝑢), which suggests an effi-
cient way for “extracting” the solution of the Cauchy problem from the so-
lution of the RH problem taking the details of the behavior of the latter as
𝜆→ 0. With this respect, the mCH equation turns out to be remarkably differ-
ent from other Camassa-Holm-type equations (including the original Camassa-
Holm equation): in order to control the Jost solutions at 𝜆 = 0, there is no need
of a separate gauge transformation of the original Lax pair, but the required
form of the Lax pair comes from regrouping the terms of that appropriate for
large 𝜆.

Using the developed formalism, we obtain a parametric representation of the
solution of the Cauchy problem for the mCH equation on a constant background
in terms of the solution of the associated RH problem, the data for which (the
jump matrix and the parameters of the residue conditions, if any) are uniquely
determined by the initial data for the Cauchy problem.

Particularly, this formalism allows us to characterize regular as well as non-
regular one-soliton solutions associated with the RH problems with trivial jump
condition and appropriately prescribed residue conditions. In this way, we
specify two families of non-regular soliton solutions of the mCH equation: (i)
peakon-type solutions, which are continuous together with their first derivative
but having unbounded derivatives of order greater than 2 at the peak points;
(ii) loop-shaped, multi-valued solutions, which are conventional, signal-valued
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solitons in the modified variables that becomes multivalued when going back
to the original variables, 𝑥 and 𝑡.

Theorem. The mCH equation has a family of one-soliton solutions, regular
as well as non-regular, 𝑢(𝑥, 𝑡) ≡ 𝑢𝜃,𝛿(𝑥, 𝑡), parametrized by two parameters,
𝛿 > 0 and 𝜃 ∈ (0, 𝜋2 ). These solitons 𝑢(𝑥, 𝑡) ≡ 𝑢̂(𝑦(𝑥 − 𝑡, 𝑡), 𝑡) + 1 are given,
in parametric form, by

𝑢̂(𝑦, 𝑡) = 4 tan2 𝜃
𝑧2(𝑦, 𝑡) + 2 cos2 𝜃 · 𝑧(𝑦, 𝑡) + cos2 𝜃

(𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + cos2 𝜃)2
𝑧(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln
𝑧(𝑦, 𝑡) + 1 + sin 𝜃

𝑧(𝑦, 𝑡) + 1− sin 𝜃
,

𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 e𝑦 sin 𝜃e−
2 sin 𝜃
cos2 𝜃

𝑡.

Depending on the value of the parameter 𝜃, the solutions have qualitatively
different properties:

(i) For 𝜃 ∈ (0, 𝜋3 ), one-soliton solutions are smooth in the original ((𝑥, 𝑡))
variables.

(ii) For 𝜃 = 𝜋
3 , one-soliton solutions have finite smoothness in the (𝑥, 𝑡) vari-

ables.

(iii) For 𝜃 ∈ (𝜋3 ,
𝜋
2 ), one-soliton solutions are regular in the (𝑦, 𝑡) variables but

can be viewed as multivalued and loop-shaped in the (𝑥, 𝑡) variables.

In Chapter 3, taking the formalism developed in Section 2 as the starting
point, we obtain the leading large-𝑡 asymptotic terms for the solution of the
Cauchy problem for the modified Camassa–Holm equation on the whole line
in the case when the solution is assumed to approach a non-zero constant
at the both infinities of the space variable. We focus on the study of the
solitonless case assuming that there are no residue conditions (for the soliton
case, where the basic RH problem involves residue conditions, one can reduce
(using the Blaschke–Potapov factors) this RH problem to that having no residue
conditions).
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For the sake of the large-𝑡 analysis, we reduce the original (singular) RH
problem representation for the solution of the mCH equation to the solution of
a regular RH problem (i.e., to a RH problem with the jump and normalization
conditions only). A notable feature of the modified Camassa-Holm equation
is that the associated basic RH problem has two singularity conditions (at
𝜇 = ±1) with different matrix structures, which does not allow getting rid of
them by reducing the matrix RH problem to a vector one, as it can be done in
the case of the (original) Camassa-Holm equation. In our approach, we address
the reduction problem in two steps. First, we reduce the RH problem with
the singularity conditions at 𝜇 = ±1 to a RH problem which is characterized
by the following two conditions: (i) the matrix entries are regular at 𝜇 = ±1,
but the determinant of the (matrix) solution vanishes at 𝜇 = ±1 (notice that
det𝑀(𝜇) ≡ 1 for the solution of the original RH problem); (ii) the solution is
singular at 𝜇 = 0. Then, we represent the solution of the latter RH problem
in terms of the solution of a regular one. In turn, the solution of the resulting
regular RH problem is analyzed asymptotically, as 𝑡→ +∞, using an appropri-
ate adaptation of the nonlinear steepest descent method. This finally allows us
to present the leading asymptotic terms for the solution 𝑢(𝑥, 𝑡) of the Cauchy
problem, in two sectors of the (𝑥, 𝑡) half-plane, 1 < 𝑥

𝑡 < 3 and 3
4 <

𝑥
𝑡 < 1,

where the deviation from the background value is nontrivial (in the remaining
sectors 𝑥

𝑡 > 3 and 𝑥
𝑡 <

3
4 , 𝑢(𝑥, 𝑡) decays to 1 rapidly).

Theorem. Let 𝑢0(𝑥) be a smooth function which tends sufficiently fast to
1 as 𝑥→ ±∞ and satisfies (1−𝜕2𝑥)𝑢0(𝑥) > 0 for all 𝑥. Assume the solitonless
case, i.e., assume that the appropriate spectral (scattering) function associated
with 𝑢0(𝑥) has no zeros in the upper half-plane

Then the solution 𝑢(𝑥, 𝑡) of the Cauchy problem has the following large-time
asymptotics in two sectors of the (𝑥, 𝑡) half-plane specified by 1 < 𝑥

𝑡 < 3 and
3
4 <

𝑥
𝑡 < 1:
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(i) For 1 < 𝜁 := 𝑥
𝑡 < 3,

𝑢(𝑥, 𝑡) = 1 +
𝐶1(𝜁)√

𝑡
cos
{︁
𝐶2(𝜁)𝑡+ 𝐶3(𝜁) ln 𝑡+ 𝐶4(𝜁)

}︁
+ o(𝑡−1/2);

(ii) For 3
4 <

𝑥
𝑡 < 1,

𝑢(𝑥, 𝑡) = 1+
∑︁
𝑗=0,1

𝐶
(𝑗)
1 (𝜁)√
𝑡

cos
{︁
𝐶

(𝑗)
2 (𝜁)𝑡+ 𝐶

(𝑗)
3 (𝜁) ln 𝑡+ 𝐶

(𝑗)
4 (𝜁)

}︁
+o(𝑡−1/2),

where 𝐶𝑖, 𝐶
(𝑗)
𝑖 , 𝐶4, 𝐶𝑗

4 are functions of 𝜁 that can be specified in terms of the
scattering data, which in turn are uniquely determined by the initial data.

The error term is uniform in any sectors 1 + 𝜀 < 𝜁 < 3− 𝜀 and 3
4 + 𝜀 < 𝜁 <

1− 𝜀 resp., where 𝜀 is a small positive number.
In Chapter 4, we consider the Cauchy problem for the modified Camassa–

Holm equation on the whole line in the case when the solution is assumed to
approach two different constants at plus and minus infinity of the space variable,
namely:

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞,
𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞,

assuming that

𝑢0(𝑥)→

⎧⎨⎩𝐴1, 𝑥→ −∞
𝐴2, 𝑥→∞

and that the time evolution preserves this behavior.
We develop the Riemann–Hilbert problem formalism for this Cauchy prob-

lem. For this purpose, we introduce appropriate transformations of the Lax pair
equations and the associated Jost solutions (“eigenfunctions”) and present de-
tailed analytic properties of the eigenfunctions and the corresponding spectral
functions (scattering coefficients), including the symmetries and the behavior at
the branch points. The construction of the Riemann–Hilbert problem exploits
the transformed Lax pair equations involving the functions 𝑘𝑗(𝜆) :=

√︁
𝜆2 − 1

𝐴2
𝑗
,
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𝑗 = 1, 2 specified as having the branch cuts (−∞,− 1
𝐴𝑗

)∪ ( 1
𝐴𝑗
,∞). Similarly to

the case of the constant background, the solution of the constructed Riemann–
Hilbert problem evaluated at 𝜆 = 0 gives a parametric representation of the
solution of the Cauchy problem.

Theorem. Assume that 𝑢(𝑥, 𝑡) is the solution of the Cauchy problem and
let 𝑀̂(𝑦, 𝑡, 𝑥) be the solution of the associated RH problem, whose data are
determined by 𝑢0(𝑥). Let

𝑀̂(𝑦, 𝑡, 𝜆) = i

(︃
0 𝑎̂1(𝑦, 𝑡)

𝑎̂−11 (𝑦, 𝑡) 0

)︃
+ i𝜆

(︃
𝑎̂2(𝑦, 𝑡) 0

0 𝑎̂3(𝑦, 𝑡)

)︃
+ O(𝜆2)

be the development of 𝑀̂(𝑦, 𝑡, 𝜆) as 𝜆 → 0. Then the solution 𝑢(𝑥, 𝑡) of the
Cauchy problem can be expressed, in a parametric form, in terms of 𝑎̂𝑗(𝑦, 𝑡),
𝑗 = 1, 2, 3 as follows: 𝑢(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂(𝑦, 𝑡) = 𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 − 2 ln 𝑎̂1(𝑦, 𝑡) + 𝐴2
2𝑡.

Moreover, 𝑢̂𝑥(𝑦, 𝑡) can also be algebraically expressed in terms of 𝑎̂𝑗(𝑦, 𝑡), 𝑗 =

1, 2, 3; namely, 𝑢𝑥(𝑥, 𝑡) = 𝑢̂𝑥(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂𝑥(𝑦, 𝑡) = −𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡).

Keywords: modified Camassa-Holm equation, Riemann-Hilbert problem,
Inverse Scattering Transform method, nonlinear steepest decent method, soli-
tons.
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Анотацiя

Карпенко I. М., “Метод задачi Рiмана-Гiльберта для модифiкованого
рiвняння Камаси-Хольма з ненульовими крайовими умовами,” – квалiфiкацiйна
наукова праця на правах рукопису.

Дисертацiя на здобуття наукового ступеня доктора фiлософiї за спецi-
альнiстю 111 «математика» (галузь знань 11 «математика та статистика»).
Фiзико-технiчний iнститут низьких температур iм. Б.I. Вєркiна НАН України.

Предметом дослiдження дисертацiйної роботи є розробка метода оберненої
задачi розсiювання (МОЗР) у формi задачi Рiмана–Гiльберта для модифiкованого
рiвняння Камаси-Хольма (мКХ):

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥,

з метою дослiдження властивостей розв’язкiв цього рiвняння, зокрема,
асимптотики за великим часом.

Основними постановками задачi є наступнi:

(i) Задача Кошi на 𝑥-осi у випадку, коли розв’язок прямує до ненульової
сталої при |𝑥| → ∞.

(ii) Задача Кошi на 𝑥-осi у випадку, коли розв’язок прямує до двох рiзних
сталих при 𝑥→ +∞ та 𝑥→ −∞.

У Роздiлi 2 розглядається задача Кошi для модифiкованого рiвняння
Камаси-Хольма на осi:

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞,
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𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞,

за вимоги, що
𝑢0(𝑥)→ 1 коли 𝑥→ ±∞

i що еволюцiя за часом зберiгає цю поведiнку: 𝑢(𝑥, 𝑡) → 1 при 𝑥 → ±∞
для всiх 𝑡 > 0. Рiвняння мКХ є модифiкацiєю з кубiчную нелiнiйнiстю
оригiнального рiвняння Камаси-Хольма (КХ)

𝑚𝑡 + (𝑢𝑚)𝑥 + 𝑢𝑥𝑚 = 0, 𝑚 := 𝑢− 𝑢𝑥𝑥.

Рiвняння мКХ, як i рiвняння КХ, є iнтегровними у тому сенсi, що вони
є умовами сумiсностi вiдповiдних пар лiнiйних диференцiальних рiвнянь
— так званих рiвнянь пари Лакса. Завдяки ненульовому фону, 𝑥-рiвняння
з пари Лакса для рiвняння мКХ може розглядатися як спектральна задача,
яка має неперервний спектр. Це дозволяє сформулювати обернену спектральну
задачу (обернену задачу розсiювання) як задачу аналiтичної факторизацiї
Рiмана-Гiльберта у комплекснiй площинi спектрального параметра, з умовою
стрибка на дiйснiй осi (яка є неперервним спектром).

Запропонований формалiзм задачi Рiмана–Гiльберта базується на адаптацiї
загальної iдеї — використання спецiальних розв’язкiв (Йоста) асоцiйованих
рiвняннь пари Лакса як «блокiв» для побудови матричної задачi Рiмана–
Гiльберта, що формулюється як задача алалiтичної факторизацiї у комплекснiй
площинi спектрального параметра i параметризується просторовою та часовою
змiнними нелiнiйного рiвняння — до випадку рiвняння мКХ, з урахуванням
особливостей рiвнянь асоцiйованої пари Лакса.

Стандартна пара Лакса для рiвняння мКХ, вiдома в лiтературi, має
форму 2× 2 матричних лiнiйних диференцiальних рiвнянь:

Φ𝑥(𝑥, 𝑡, 𝜆) = U(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆), Φ𝑡(𝑥, 𝑡, 𝜆) = V(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆)

де матрицi-коефiцiєнти U та V визначаються у термiнах розв’язку рiвняння
мКХ:

U =
1

2

(︃
−1 𝜆𝑚

−𝜆𝑚 1

)︃
, V =

(︃
𝜆−2 + 𝑢2−𝑢2

𝑥

2 −𝑢−𝑢𝑥

𝜆 − 𝜆(𝑢2−𝑢2
𝑥)𝑚

2
(𝑢+𝑢𝑥)

𝜆 + 𝜆(𝑢2−𝑢2
𝑥)𝑚

2 −𝜆−2 − 𝑢2−𝑢2
𝑥

2

)︃
.

13



Зазначимо, що 𝑥-рiвняння з пари Лакса (включає U та є спектральною
задачею зi спектральним праметром 𝜆), має двi осообливосi, що суттєво
впливають на аналiтичнi властивостi розв’язкiв Йоста: (а) 𝜆 входить у U як
добуток з “моментом” 𝑚(𝑥, 𝑡), який у рамках оберненої задачi є невiдомою
функцiєю; (б) коли |𝑥| → ∞, 𝑚(𝑥, 𝑡) прямує до ненульової сталої. Зокрема,
цi особливостi впливають на проблему контролю поведiнки розв’язкiв Йоста,
коли 𝜆→∞. Ми вирiшуємо цю проблему наступним чином: (i) трансформуємо
(застосовуючи калiбрувальнi перетворення) рiвняння пари Лакса до зручної
форми, у якiй дiагональнi члени домiнують, у певному сенсi, коли 𝜆→∞;
(ii) вводимо нову просторову змiнну, що дозволяє отримати явний опис
поведiнки розв’язкiв Йоста коли 𝜆 → ∞ у термiнах (нової) просторової
та часової змiнних; (iii) вводимо новий (унiформiзуючий) спектральний
параметр 𝜇 (пов’язаний з 𝜆 наступним чином: 𝜆 = −1

2(𝜇 + 1
𝜇)), який

дозволяє уникнути нерацiональної залежностi коефiцiєнтiв у рiвняннях
пари Лакса вiд спектрального параметра.

Крiм того, ми використовуємо наслiдок властивостi (a), який полягає
у тому, що при 𝜆 = 0 матриця коефiцiєнтiв U стає незалежною вiд 𝑢. Ця
властивiсть дозволяє побудувати ефективний алгоритм отримання розв’язку
задачi Кошi для рiвняння мКХ з розв’язку асоцiйованої задачi РГ, розглядаючи
поведiнку останнього при 𝜆→ 0. Зазначимо, що цьому вiдношеннi рiвняння
мКХ суттєво вiдрiзняється вiд iнших рiвнянь типу Камаси-Холма (включно
з оригiнальним рiвнянням КХ): для контролю розв’язкiв Йоста при 𝜆 = 0

не треба вводити нове калiбрувальне перетворення початкової пари Лакса,
а достатньо перегрупувати члени у парi Лакса, яка забеспечує єфективний
контроль її розв’язкiв при 𝜆→∞.

Використовуючи розроблений формалiзм, ми отримуємо параметричне
зображення розв’язку задачi Кошi для рiвняння мКХ на постiйному фонi в
термiнах розв’язку асоцiйованої задачi РГ, данi для якої (матриця стрибкiв
i параметри для умов на залишки у сингулярних точках, якщо вони наявнi)
однозначно визначаються початковими даними для задачi Кошi.
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Запропонований формалiзм дозволяє нам охарактеризувати як регулярнi,
так i нерегулярнi односолiтоннi розв’язки, що вiдповiдають задачам РГ з
тривiальними умовами стрибка та вiдповiдним чином заданими умовами
на залишки. Зокрема, можна видiлити два типи нерегулярних солiтонних
розв’язкiв рiвняння мКХ: (i) розв’язки пiконного типу, якi є функцiями
неперервними разом iз першою похiдною, але мають необмеженi похiднi
порякiв бiльших за 2 у точцi пiку; (ii) петлеподiбнi багатозначнi розв’язки.

Теорема. Рiвняння мКХ має односолiтоннi розв’язки (серед яких є як
регулярнi, так i нерегулярнi), якi параметризуються двома параметрами,
𝛿 > 0 та 𝜃 ∈ (0, 𝜋2 ), та задаються у параметричнiй формi формулою
𝑢(𝑥, 𝑡) ≡ 𝑢̂(𝑦(𝑥− 𝑡, 𝑡), 𝑡) + 1, де

𝑢̂(𝑦, 𝑡) = 4 tan2 𝜃
𝑧2(𝑦, 𝑡) + 2 cos2 𝜃 · 𝑧(𝑦, 𝑡) + cos2 𝜃

(𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + cos2 𝜃)2
𝑧(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln
𝑧(𝑦, 𝑡) + 1 + sin 𝜃

𝑧(𝑦, 𝑡) + 1− sin 𝜃
,

𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 e𝑦 sin 𝜃e−
2 sin 𝜃
cos2 𝜃

𝑡.

Залежно вiд значення параметру 𝜃, розв’язки мають якiсно рiзнi властивостi:

(i) При 𝜃 ∈ (0, 𝜋3 ), односолiтоннi розв’язки є гладкими функцiями вихiдних
фiзичних змiнних (𝑥, 𝑡).

(ii) При 𝜃 = 𝜋
3 , односолiноннi розв’язки мають скiнчену гладкiсть, у

змiнних (𝑥, 𝑡), у точцi пiку.

(iii) При 𝜃 ∈ (𝜋3 ,
𝜋
2 ), односолiтоннi розв’язки є регулярними функцiями

у змiнних (𝑦, 𝑡), але стають багатозначними (петлеподiбними) у
змiнних (𝑥, 𝑡).

У Роздiлi 3, використовуючи формалiзм, розроблений у Роздiлi 2, ми
отримуємо головнi члени асимптотики за великим часом 𝑡 для розв’язку
задачi Кошi для модифiкованого рiвняння Камаси–Хольма на сталому не-
нульовому фонi. Дослiдження зосереджене на безсолiтонному випадку,
тобто у припущеннi, що умови на лишки вiдсутнi (нерегулярну задачу
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Рiмана-Гiльберта (яка включає в себе умови на лишки) для загального
випадку можна звести регулярної, використовуючи множники Бляшке–Потапова).

Для асимптотичного аналiзу розв’язку задачi Кошi, коли 𝑡 → ∞, ми
застосовуємо нелiнiйний метод найскорiшого спуску. Попередньо, ми зводимо
вихiдну задачу РГ, асоцiйовану з рiвнянням мКХ, яка має специфiчнi сингу-
лярностi при 𝜇 = ±1, до звичайної задачi РГ (тобто такої, що має тiльки
умову стрибка та умову нормування). Примiтною особливiстю модифiкованого
рiвняння Камаси-Хольма є те, що асоцiйована вихiдна задача РГ має умови
сингулярностi у 𝜇 = 1 та 𝜇 = −1 з рiзними матричними структурами,
що не дозволяє позбутися їх шляхом зведення матричної задачi РГ до
векторної (що має мiсце у випадку звичайного рiвняння Камаси-Хольма).
Ми вирiшуємо цю проблему у два кроки. На першому кроцi, задача РГ з
умовами сингулярностi у 𝜇 = ±1 зводиться до задачi РГ, що характеризу-
ється такими двома умовами: (i) елементи матричного розв’язку регулярнi
у 𝜇 = ±1, але його визначник дорiвнює нулю у цих точках (зазначимо, що
det𝑀(𝜇) ≡ 1 для розв’язку вихiдної задачi РГ); (ii) розв’язок є сингулярним
при 𝜇 = 0. Наступним кроком, знаходимо зображення розв’язку цiєї
задачi РГ через розв’язок вiдповiдної регулярної задачi. Саме розв’язок
отриманої регулярної задачi РГ ми аналiзуємо асимптотично при 𝑡 →
+∞, адаптуючи нелiнiйний метод найскорiшого спуску. У пiдсумку, ми
отримуємо головнi асимптотичнi члени для розв’язку 𝑢(𝑥, 𝑡) задачi Кошi у
тих секторах напiвплощини (𝑥, 𝑡), де вiдхилення вiд фону є нетривiальним
(у рештi секторiв, 𝑥

𝑡 > 3 i 𝑥
𝑡 <

3
4 , 𝑢(𝑥, 𝑡) швидко спадає до 1).

Теорема. Нехай 𝑢0(𝑥) є гладка функцiя така, що (i) вона достатньо
швидко прямує до 1, коли 𝑥→ ±∞, i задовольняє нерiвнiсть (1−𝜕2𝑥)𝑢0(𝑥) >

0 для всiх 𝑥 та (ii) асоцiйована з нею спектральна функцiя 𝑎(𝜇) не має
нулiв у верхнiй напiвплощинi (безсолiтонний випадок)

Тодi розв’язок 𝑢(𝑥, 𝑡) задачi Кошi має наступну асимптотичну поведiнку
за великим часом у секторах (𝑥, 𝑡) напiвплощини, що задаються нерiвностями
1 < 𝑥

𝑡 < 3 та 3
4 <

𝑥
𝑡 < 1:
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(i) Для 1 < 𝑥
𝑡 < 3,

𝑢(𝑥, 𝑡) = 1 +
𝐶1(𝜁)√

𝑡
cos
{︁
𝐶2(𝜁)𝑡+ 𝐶3(𝜁) ln 𝑡+ 𝐶4(𝜁)

}︁
+ o(𝑡−1/2);

(ii) Для 3
4 <

𝑥
𝑡 < 1,

𝑢(𝑥, 𝑡) = 1+
∑︁
𝑗=0,1

𝐶
(𝑗)
1 (𝜁)√
𝑡

cos
{︁
𝐶

(𝑗)
2 (𝜁)𝑡+ 𝐶

(𝑗)
3 (𝜁) ln 𝑡+ 𝐶

(𝑗)
4 (𝜁)

}︁
+o(𝑡−1/2),

де 𝐶𝑖, 𝐶
(𝑗)
𝑖 , 𝐶4, 𝐶𝑗

4 є функцiями вiд 𝜁 := 𝑥
𝑡 , що визначаються у термiнах

спектральних функцiй, якi, у свою чергу, однозначно визначаються початковими
даними 𝑢0(𝑥).

При цьому оцiнки похибки є рiвномiрними у секторах 1 + 𝜀 < 𝜁 < 3− 𝜀
та 3

4 + 𝜀 < 𝜁 < 1− 𝜀 вiдповiдно, де 𝜀 є довiльним додатним числом.
У Роздiлi 4 розглядається задача Кошi для модифiкованого рiвняння

Камаси–Холма у випадку, коли розв’язок прямує до двох рiзних констант,
коли просторова змiнна прямує до рiзних нескiнченностей дiйсної осi:

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞,
𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞,

де

𝑢0(𝑥)→

⎧⎨⎩𝐴1, 𝑥→ −∞
𝐴2, 𝑥→∞

i еволюцiя за часом зберiгає цю поведiнку:

𝑢(𝑥, 𝑡)→

⎧⎨⎩𝐴1, 𝑥→ −∞
𝐴2, 𝑥→∞

для всiх 𝑡.
Ми розробляємо формалiзм задачi Рiмана-Гiльберта для цiєї задачi Кошi.

Для цього проводяться перетворення рiвнянь пари Лакса, якi дозволяють
детально дослiдити аналiтичнi властивостi вiдповiдних розв’язкiв Йоста та
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спектральних функцiй, зокрема, симетрiї та поведiнку в точках розгалуження.
При побудовi задачi Рiмана–Гiльберта ми використовуємо трансформованi
пари Лакса, що включають функцiї 𝑘𝑗(𝜆) :=

√︁
𝜆2 − 1

𝐴2
𝑗
, 𝑗 = 1, 2, визначенi

як такi, що мають гiлки з розрiзами вздовж (−∞,− 1
𝐴𝑗

) та ( 1
𝐴𝑗
,∞). Подiбно

до випадку з постiйним фоном, аналiзуючи поведiнку розв’язку побудованої
задачi Рiмана–Гiльберта при 𝜆 = 0, ми отримуємо параметричне зображення
розв’язку задачi Кошi.

Теорема. Припустимо, що задача Рiмана–Гiльберта, асоцiйована з
початковими даними 𝑢0(𝑥), має розв’язок 𝑀̂(𝑦, 𝑡, 𝑥), який має розклад

𝑀̂(𝑦, 𝑡, 𝜆) = i

(︃
0 𝑎̂1(𝑦, 𝑡)

𝑎̂−11 (𝑦, 𝑡) 0

)︃
+ i𝜆

(︃
𝑎̂2(𝑦, 𝑡) 0

0 𝑎̂3(𝑦, 𝑡)

)︃
+ O(𝜆2)

коли 𝜆→ 0. Тодi розв’язок 𝑢(𝑥, 𝑡) задачi Кошi може бути зображений, у
параметричний формi, у термiнах 𝑎̂𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3 наступним чином:
𝑢(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡), де

𝑢̂(𝑦, 𝑡) = 𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 − 2 ln 𝑎̂1(𝑦, 𝑡) + 𝐴2
2𝑡.

Крiм того, 𝑢̂𝑥(𝑦, 𝑡) також може бути алгебраїчно зображений у термiнах
𝑎̂𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3, а саме: 𝑢𝑥(𝑥, 𝑡) = 𝑢̂𝑥(𝑦(𝑥, 𝑡), 𝑡), де

𝑢̂𝑥(𝑦, 𝑡) = −𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡).

Ключовi слова: модифiковане рiвняння Камаси-Хольма, задача Рiмана-
Гiльберта, метод обереної задачi розсiювання, нелiнiйний метод найшвидшого
спуска, солiтони.

18



Список публiкацiй здобувача за темою дисертацiї

Науковi працi, в яких опублiкованi основнi результати дисертацiї

1. A. Boutet de Monvel, I. Karpenko, D. Shepelsky, “A Riemann-Hilbert
approach to the modified Camassa–Holm equation with nonzero boundary
conditions,” J. Math. Phys. 61, No. 3, 031504, 24 (2020).

https://doi.org/10.1063/1.5139519

2. I. Karpenko, “Long-time asymptotics for the modified Camassa-Holm equa-
tion with nonzero boundary conditions”, Journal of Mathematical Physics,
Analysis, Geometry 16, No.4, 418–453 (2022).

https://doi.org/10.15407/mag18.2.224-252

3. I. Karpenko, D. Shepelsky, G. Teschl “A Riemann–Hilbert approach to
the modified Camassa–Holm equation with step-like boundary conditions”,
Monatshefte für Mathematik (2022).

https://doi.org/10.1007/s00605-022-01786-y

Науковi працi, якi засвiдчують апробацiю матерiалiв дисертацiї

4. I. Karpenko, D. Shepelsky, “A Riemann-Hilbert approach to the modified
Camassa-Holm equation with nonzero boundary conditions”, VI Interna-
tional Conference "Analysis and Mathematical Physics", Kharkiv, Ukraine
(June 2018).

5. I. Karpenko, D. Shepelsky, “The Riemann-Hilbert approach to the Cauchy
problem for the modified Camassa-Holm equation”, 6th Ya. B. Lopatyn-
sky International School-Workshop on Differential Equations and Appli-
cations, Vinnytsia, Ukraine (June 2019).

6. I. Karpenko, D. Shepelsky, “The inverse scattering transform, in the form
of Riemann-Hilbert problem, for the modified Camassa-Holm equation”,
international Conference dedicated to 70th anniversary of Professor A.M.Plichko
"Banach Spaces and their Applications", Lviv, Ukraine (June 2019).

19



7. I. Karpenko, D. Shepelsky, “A Riemann-Hilbert problem approach to the
modified Camassa-Holm equation on a nonzero background”, Pidzakharychi,
Ukraine (August 2019).

8. I. Karpenko, D. Shepelsky, “The modified Camassa-Holm equation on a
nonzero background: large-time asymptotics for the Cauchy problem”,
Workshop "New horizons in dispersive hydrodynamics", Isaac Newton
Institute for Mathematical Sciences, Cambridge, United Kingdom (June
2021).

9. I. Karpenko, D. Shepelsky, “The large-time asymptotics for the modified
Camassa–Holm equation on a non-zero background”, 5-th International
Conference “DIFFERENTIAL EQUATIONS and CONTROL THEORY”,
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine (September
2021).

10. I. Karpenko, D. Shepelsky, G. Teschl, “A Riemann–Hilbert approach to
the modified Camassa–Holm equation with step-like boundary conditions”,
Ivano-Frankivsk, Ukraine (May 2022).

11. I. Karpenko, “The modified Camassa-Holm equation on a step-like back-
ground”, Complex Analysis, Spectral Theory and Approximation meet in
Linz, Johannes Kepler University, Linz, Austria (July 2022).

12. I. Karpenko, “A Riemann-Hilbert problem approach to the modified Camassa-
Holm equation on a step like background”, Workshop From Modeling and
Analysis to Approximation and Fast Algorithms, Hasenwinkel, Germany
(December 2022).

20



Contents

Acknowledgement 23

Notation 24

Introduction 25

1 The Inverse Scattering Transform method and Camassa–Holm
type equations (literature review) 32
1.1 Integrable equations and the Inverse Scattering Transform method 32
1.2 The Camassa–Holm equation . . . . . . . . . . . . . . . . . . . 36
1.3 Generalizations of the Camassa–Holm equation . . . . . . . . . 37
1.4 Other peakon equations . . . . . . . . . . . . . . . . . . . . . . 39

2 The Riemann–Hilbert approach to the modified Camassa–Holm
equation with nonzero boundary conditions 44
2.1 Lax pairs and eigenfunctions . . . . . . . . . . . . . . . . . . . 45
2.2 Riemann–Hilbert problem . . . . . . . . . . . . . . . . . . . . . 54
2.3 From a solution of the RH problem to a solution of the mCH

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4 Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5 Conclusions to Chapter 2 . . . . . . . . . . . . . . . . . . . . . 82

3 The modified Camassa–Holm equation on a nonzero back-
ground: large-time asymptotics for the Cauchy problem 84
3.1 Reduction to a regular RH problem . . . . . . . . . . . . . . . 84

21



3.2 Large-time asymptotics of the regular RH problem . . . . . . . 94
3.3 Soliton asymptotics . . . . . . . . . . . . . . . . . . . . . . . . 115
3.4 Conclusions to Chapter 3 . . . . . . . . . . . . . . . . . . . . . 117

4 The Riemann–Hilbert approach to the modified Camassa–Holm
equation with step-like boundary conditions 119
4.1 Sign-preserving property of 𝑚 . . . . . . . . . . . . . . . . . . 120
4.2 Lax pairs and eigenfunctions . . . . . . . . . . . . . . . . . . . 121
4.3 Riemann–Hilbert problems . . . . . . . . . . . . . . . . . . . . 141
4.4 The case 𝐴2 < 𝐴1 . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.6 Conclusions to Chapter 4 . . . . . . . . . . . . . . . . . . . . . 168

Conclusions 170

References 172

22



Acknowledgement

First of all, I would like to express my gratitude to my supervisors, Dmitry
Shepelsky and Gerald Teschl. Thank you for inspiring me, helping me to grow
as mathematician and always believing in me. Thank you for your constant
support, patience and all the helpful suggestion [not only mathematical] you
gave me. And thank you for always being here for me whenever I needed it. I
hope we will obtain many more interesting results together in the future.

Furthermore, I want to thank my friends for making me smile no matter
what is going on in my life, and my parents Tamara and Mykola for their love,
care and understanding.

And last but not least, the biggest thank to Ukrainian Armed Forces for your
titanic work, and to all the people who are supporting them! Слава Українi!

23



Notation

𝜎1 ... first Pauli matrix, 𝜎1 := ( 0 1
1 0 )

𝜎2 ... second Pauli matrix, 𝜎2 :=
(︀
0 −i
i 0

)︀
𝜎3 ... third Pauli matrix, 𝜎3 := ( 1 0

0 −1 )

𝑓 *(𝑘) ... Schwarz conjugate of the function 𝑓(𝑘): for 𝑘 ∈ C, 𝑓 *(𝑘) := 𝑓(𝑘)

𝜆 ... spectral parameter

𝜇 ... spectral parameter related to 𝜆 by 𝜆 = −1
2

(︁
𝜇+ 1

𝜇

)︁
𝑘 ... spectral parameter related to 𝜆 by 𝜆2 = 4𝑘2 + 1

C+ ... upper complex half-plane, C+ = {𝜆 ∈ C| Im(𝜆) > 0}
C− ... lower complex half-plane, C− = {𝜆 ∈ C| Im(𝜆) < 0}
𝑀 𝑖 ... 𝑖-th column of the matrix 𝑀
Σ𝑗 ... closed interval, Σ𝑗 = (−∞,− 1

𝐴𝑗
] ∪ [ 1

𝐴𝑗
,∞)

Σ̇𝑗 ... open interval, Σ𝑗 = (−∞,− 1
𝐴𝑗

) ∪ ( 1
𝐴𝑗
,∞)

Σ0 ... closed interval, [− 1
𝐴1
,− 1

𝐴2
] ∪ [ 1

𝐴2
, 1
𝐴1

]

Σ̇0 ... open interval, Σ̇0 = (− 1
𝐴1
,− 1

𝐴2
) ∪ ( 1

𝐴2
, 1
𝐴1

)

𝜆+ ... point on the upper side of Σ𝑗, 𝜆+ = lim𝜖↓0 𝜆+ i𝜖

𝜆− ... point on the lower side of Σ𝑗, 𝜆− = lim𝜖↓0 𝜆− i𝜖

𝑘𝑗(𝜆) ... branch of the square root 𝑘𝑗(𝜆) :=
√︁
𝜆2 − 1

𝐴2
𝑗
, 𝑗 = 1, 2 with the branch cut Σ𝑗,

fixed by the condition 𝑘𝑗(0) = i
𝐴𝑗
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Introduction

Rationale for the choice of the research topic
Plenty of scientists have been studying intensively the integrable nonlinear

equations for over the last 50 years, since they realised that the Inverse Scatter-
ing Transform method, which was invented for the integration of a particular
nonlinear equation - the Korteweg–de Vries equation [74], was not just an acci-
dental pretty mathematical trick, but could be effectively applied to the study
of a wide class of equations that are important models of nonlinear phenomena
in many branches of physics.

One of such equations is the Camassa–Holm (CH) equation [35, 36]

𝑚𝑡 + (𝑢𝑚)𝑥 + 𝑢𝑥𝑚 = 0, 𝑚 := 𝑢− 𝑢𝑥𝑥.

It has been studied intensively over the last 28 years, due to its reach mathe-
matical structure. It is a model for the unidirectional propagation of shallow
water waves over a flat bottom [84, 46], is bi-Hamiltonian [35], and is completely
integrable with algebro-geometric solutions [107]. The CH equation has both
globally strong solutions and blow-up solutions at finite time [41, 43, 44, 45],
and also it has globally weak solutions in 𝐻1(R) [33, 47, 118]. The soliton-type
solutions of the CH equation vanishing at infinity [36] are weak solutions, hav-
ing the form of peaked waves (𝑢(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) are bounded but 𝑢𝑥(𝑥, 𝑡) is
discontinuous), which are orbitally stable [48].

Interesting mathematical and physical properties of the CH equation raised
the question of studying its various modifications and generalizations, see, e.g.,
[120]. Novikov [105] applied the perturbative symmetry approach in order to

25



classify integrable equations of the form(︀
1− 𝜕2𝑥

)︀
𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . ), 𝑢 = 𝑢(𝑥, 𝑡), 𝜕𝑥 = 𝜕/𝜕𝑥,

assuming that 𝐹 is a homogeneous differential polynomial over C, quadratic
or cubic in 𝑢 and its 𝑥-derivatives. In the list of equations presented in [105],
equation (32), which was the second equation with cubic nonlinearity, had the
form

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥.
This equation (in an equivalent form) was firstly introduced independently by
Fokas in [69] and Olver and Rosenau [106] in 1996 as a new integrable system.
Physically, it models unidirectional propagation of shallow water waves over a
flat bottom, and has a rich mathematical structure (in particular, there are bi-
Hamiltonian system and has a representation in the form of a Lax pair). An
Lax pair for this equation was given by Qiao [108], so it is sometimes referred to
as the Fokas–Olver–Rosenau–Qiao (FORQ) equation [79], but is mostly known
as the modified Camassa–Holm (mCH) equation.

In the Thesis, we develop the IST machinery to the mCH equation. The
specificity of our study is that we consider this equation in the case of with non-
vanishing boundary conditions at infinity, in particular, step-like ones. Such
problems are of particular interest because they can be used as models for
studying expanding, oscillatory dispersive shock waves [12].

The obtained results are interesting from theoretical point of view, as well
as for potential applications.

Aim and tasks of the research
The Thesis aims at the development of the inverse scattering transform

approach to the modified Camassa–Holm equation in view of its further appli-
cation for studying properties of solutions of the Cauchy problem for this equa-
tion with various boundary conditions, particularly, their long-time behavior.
Namely, we consider a non-zero constant background (Section 2 and Section 3)
and step-like background (Section 4). We also compare the implementation of
the RH approach to the mCH and CH equations.
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The object of study is the modified Camassa–Holm equation, which is a
nonlinear partial differential equation, and initial value problems for it.

The subject of study is the solutions of the initial value problems on the
axis for the modified Camassa–Holm equation in the case when these solutions
tend to non-zero constants when the spatial variable tends to one or another
infinity.

Research methods
In order to investigate our tasks we apply the Inverse Scattering Transform

(IST) method in form of the Riemann–Hilbert (RH) problem.
The scheme of the IST method is the following: (i) starting from a given

initial data 𝑢0(𝑥), we obtain the scattering data by solving the direct problem;
(ii) then we obtain the evolution of this scattering data by solving a certain
number of linear problems; (iii) finally, we obtain the solution of the Cauchy
problem for the nonlinear equation by solving the inverse scattering problem.

The last step in this procedure, the inverse scattering problem, can be ef-
fectively solved by reformulating it as a Riemann–Hilbert (RH) factorization
problem. A starting point here is a Lax pair representation. It is a pair of linear
differential equations that depend on additional spectral parameter and whose
compatibility condition is exactly the nonlinear differential equation. The RH
problem method boils down in choosing the solutions of the Lax pair equations
in a right way and then constructing a RH problem from these chosen solutions.

Then we analyze the long time asymptotics by using the so-called nonlinear
steepest descent method [54]. This method consists in successive transforma-
tions of the original RH problem, in order to reduce it to an explicitly solvable
problem. The consecutive steps include (i) appropriate triangular factoriza-
tions of the jump matrix; (ii) “absorption” of the triangular factors with good
large-time behavior; (iii) reduction, after rescaling, to a RH problem which is
solvable in terms of certain special functions.

Novelty of the results
All results presented in the works [18], [87] and [88] and included in the
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dissertation were obtained by the author independently. The results belong-
ing to other scientists are mentioned as necessary for the completeness of the
presentation and are accompanied by appropriate references., we develop the
inverse scattering transform method in the form of the Riemann–Hilbert prob-
lem for the Cauchy problems for modified Camassa–Holm equation with various
boundary conditions. In particularly, we obtain the following results:

(i) the representation of the solution of this Cauchy problem for the modified
Camassa–Holm equation on the whole line in the case when the solution
is assumed to approach a non-zero constant at the both infinities of the
space variable in the form of the solution associated with it Riemann–
Hilbert problems. This result was obtained for the first time. (Section
2)

(ii) the leading asymptotic terms for the solution of the Cauchy problem for
the modified Camassa–Holm equation on the whole line in the case when
the solution is assumed to approach a non-zero constant at the both in-
finities of the space variable. This result was obtained for the first time.
(Section 3)

(iii) the representation of the solution of this Cauchy problem for the modified
Camassa–Holm equation on the whole line in the case when the solution is
assumed to approach two different constants at plus and minus infinity of
the space variable in the form of the solution associated with it Riemann–
Hilbert problems. This result was obtained for the first time. (Section
4)

Personal contribution
The setting of the problem considered in Section 2 belongs to the scientific

advisor Dmitry Shepelsky, the setting of the problem considered in Section 3
belongs to the scientific advisor Dmitry Shepelsky and Anne Boutet de Monvel,
the setting of the problem considered in Section 4 belongs to the scientific
advisors Dmitry Shepelsky and Gerald Teschl. All results presented in the
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works [18], [87] and [88] and included in the Thesis were obtained by the author
independently. The results that belongs to other scientists are mentioned for
the completeness and are accompanied by appropriate references.

Approbation of the thesis results
The thesis results were discussed at the scientific seminar of the Department

of Mathematical Physics of B.Verkin Institute for Low Temperature Physics
and Engineering of the National Academy of Sciences of Ukraine and the SE
Mathematical Physics of University of Vienna, and presented at nine interna-
tional conferences:

1. I. Karpenko, D. Shepelsky, “A Riemann–Hilbert approach to the modified
Camassa–Holm equation with nonzero boundary conditions”, VI Interna-
tional Conference "Analysis and Mathematical Physics", Kharkiv, Ukraine
(June 2018).

2. I. Karpenko, D. Shepelsky, “The Riemann–Hilbert approach to the Cauchy
problem for the modified Camassa–Holm equation”, 6th Ya. B. Lopatyn-
sky International School-Workshop on Differential Equations and Appli-
cations, Vinnytsia, Ukraine (June 2019).

3. I. Karpenko, D. Shepelsky, “The inverse scattering transform, in the form
of Riemann–Hilbert problem, for the modified Camassa–Holm equation”,
international Conference dedicated to 70th anniversary of Professor A.M.Plichko
“Banach Spaces and their Applications”, Lviv, Ukraine (June 2019).

4. I. Karpenko, D. Shepelsky, “A Riemann–Hilbert problem approach to
the modified Camassa–Holm equation on a nonzero background”, Pidza-
kharychi, Ukraine (August 2019).

5. I. Karpenko, D. Shepelsky, “The modified Camassa–Holm equation on
a nonzero background: large-time asymptotics for the Cauchy problem”,
Workshop "New horizons in dispersive hydrodynamics", Isaac Newton
Institute for Mathematical Sciences, Cambridge, United Kingdom (June
2021).
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6. I. Karpenko, D. Shepelsky, “The large-time asymptotics for the modified
Camassa–Holm equation on a non-zero background”, 5-th International
Conference “DIFFERENTIAL EQUATIONS and CONTROL THEORY”,
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine (September
2021).

7. I. Karpenko, D. Shepelsky, G. Teschl, “A Riemann–Hilbert approach to
the modified Camassa–Holm equation with step-like boundary conditions”,
Ivano-Frankivsk, Ukraine (May 2022).

8. I. Karpenko, “The modified Camassa–Holm equation on a step-like back-
ground”, Complex Analysis, Spectral Theory and Approximation meet in
Linz, Johannes Kepler University, Linz, Austria (July 2022).

9. I. Karpenko, “A Riemann–Hilbert problem approach to the modified Camassa–
Holm equation on a step like background”, Workshop From Modeling and
Analysis to Approximation and Fast Algorithms, Hasenwinkel, Germany
(December 2022).

Structure and scope of the thesis
The thesis consists of a table of contents, an acknowledgment, a glossary

of notation, an introduction, four chapters, a conclusion and references, which
contains 120 items. The total volume of the dissertation is 185 pages. The
volume of the main part of the work is 151 pages.

Section 1 is devoted to the review of the literature on the topic of the dis-
sertation. In Section 2, the initial problem for the modified Camassa–Holm
equation on non-zero constant background is studied. Section 3 studies the
long time asymptotics for this problem. Section 4 deals with the initial prob-
lem for the modified Camassa–Holm equation with step-type initial data.

Practical significance of the obtained results
The Thesis is purely theoretical. The obtained results and the proposed

methods can be used in further research of initial and initial boundary value
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problems for Camassa–Holm type equations, which can be promising models of
physical processes of various nature.

Publications
The main results of the Thesis are published in 3 scientific articles indexed

in international reference and citation databases Scopus and Web of Science.
According to the classification of SCImago Journal and Country Rank, pa-

pers [18] and [88] are published in journals from Quartile Q2; paper [87] is
published in a journal from Quartile Q3.

In addition, the results of the Thesis are reflected in the publication [19] and
7 theses of conferences.
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Chapter 1

The Inverse Scattering Transform
method and Camassa–Holm type
equations (literature review)

1.1 Integrable equations and the Inverse Scattering Trans-
form method

In 1965 Zabusky and Kruskal discovered that the pulse-like solitary wave so-
lution to the Korteweg-de Vries (KdV) equation had a property which was
previously unknown: namely, that this solution interacted "elastically" with
another such solution. They called these solutions solitons. Shortly after this
discovery, Gardner, Greene, Kruskal and Miura (1967), (1974) pioneered a new
method of mathematical physics (see [74, 75]). Specifically, they gave a method
of solution for the KdV equation by making use of the ideas of direct and in-
verse scattering. In 1968 Lax considerably generalized these ideas [91]. At
that time and shortly thereafter it was not clear if the method would apply
to other physically significant nonlinear evolution equations. However, in 1972
Zakharov and Shabat showed that the method was not a fluke. Applying the
direct and inverse scattering ideas they solved the initial value problem for
the nonlinear Schrodinger equation [121]. In 1973, using these ideas Ablowitz,
Kaup, Newell and Segur did the same for the sin–Gordon equation [2]. And
then they developed a method to find a rather wide class of nonlinear evolution
equations solvable by these techniques [3, 4]. They called the procedure the
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Inverse Scattering Transform (IST).
In the most broad terms, the equation 𝐹 (𝑢𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥, ...) = 0 is called

integrable, if it is a compatibility condition of the system of linear equations
(the so-called Lax pair):⎧⎨⎩Φ𝑥(𝑥, 𝑡, 𝑘) = 𝑈(𝑥, 𝑡, 𝑘)Φ(𝑥, 𝑡, 𝑘)

Φ𝑡(𝑥, 𝑡, 𝑘) = 𝑉 (𝑥, 𝑡, 𝑘)Φ(𝑥, 𝑡, 𝑘)
, (1.1)

where 𝑈 and 𝑉 are known in terms of the solution of the equation and 𝑘 ∈
C is an auxiliary (spectral) parameter. Exactly the Lax pair is a starting
point for studying various problems for integrable equations such as finding
the different types of exact solutions (via the so-called Backlund-Darboux type
transformations) and solving the initial and initial-boundary value problems.

Integrable nonlinear PDEs with non-vanishing boundary conditions at in-
finity have received plenty of attention in the literature, see e.g. [11, 15]. Par-
ticularly, initial value problems with initial data approaching different “back-
grounds” at different spatial infinities (so-called step-like initial data) have at-
tracted considerable attention because they can be used as models for studying
expanding, oscillatory dispersive shock waves (DSW), which are large scale,
coherent excitation in dispersive systems [12]. The large-time evolution of
step-like initial data has been studied or models of uni-directional (Korteweg—
de Vries equation) wave propagation [63] as well as bi-directional (nonlinear
Schrödinger equation) wave propagation [23, 24].

In general, the IST method for solving initial value problems for integrable
nonlinear equations written as the compatibility conditions for linear equations
consists in the following (see Figure 1.1): starting from a given data, solve the
direct problem, that is determine appropriate eigenfunction (solutions of the dif-
ferential x-equation in the Lax pair) having well-controlled analytic properties
as functions of the spectral parameter 𝜆 and the associated spectral functions
of 𝜆; then, by virtue of the 𝑡-equations in the Lax pair, the associated functions
evolve in a simple, explicit way. Finally, using the explicit evolution of the spec-
tral functions, solve the inverse problem of finding the associated coefficient in
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Solution 𝑢(𝑥, 𝑡)

Initial Data
𝑢(𝑥, 0)

Scattering Data
𝑆(𝑡) at time 𝑡 > 0

Scattering Data
𝑆(0) at time 𝑡 = 0

Nonlinear

PDE

Inverse Scattering Transform

Linear

ODE

Direct Scattering Transform

Figure 1.1: The scheme of the IST method

the 𝑥-equation, which, by the Lax pair equations, evolve according to the given
nonlinear equation and thus solve the Cauchy problem of this equation.

Figure 1.2: Riemann–Hilbert problem: boundary value problem in complex
analysis

The last step in this procedure, the inverse scattering problem, can be ef-
fectively solved by reformulating it as a Riemann–Hilbert (RH) factorizations
problem (see Figure 1.2): giving a contour in the complex plane and a matrix-
valued function defined on the contour, find a piecewise (relative to the contour)
analytic, matrix valued function, whose limiting values on the contour are re-
lated with the help of the given function. In applications to nonlinear equations,
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the given (jump) matrix depends also on parameters (which are physical vari-
ables in the nonlinear equation in question (e.g., space 𝑥 and time 𝑡), and thus
the solution of the RH problem also depend on these parameters. If the jump
matrix is constructed, in an appropriate way, using the initial data for the
(nonlinear) partial differential equation (PDE), then, evaluating the solution of
the RH problem at a particular value of the spectral variable, it is possible to
obtain the solution of the original Cauchy problem for this PDE.

In a certain sense, a Riemann–Hilbert problem representation for (inte-
grable) nonlinear PDEs play the role of an integral representation in the case of
linear PDEs, via Fourier series or Green’s functions. For linear PDEs, integral
representations allow:

• obtaining existence and uniqueness results directly from the well-understood
integration theory;

• studying asymptotics via the method of stationary phase or the method
of steepest descent;

• evaluating solutions numerically via simple quadrature.

In the case of integrable nonlinear PDEs, all these goals are achievable, to
some extent, through the development of the RH formalism [114]. Particularly,
the existence results can be obtained establishing a solution of the associated
RH problem and controlling its behaviour w.r.t. the spatial parameter.

The long time asymptotics can be efficiently analyzed by using the so-called
nonlinear steepest descent method [54]. This method consists in successive
transformations of the original RH problem, in order to reduce it to an explic-
itly solvable problem. The consecutive steps include (i) appropriate triangular
factorizations of the jump matrix; (ii) “absorption” of the triangular factors
with good large-time behavior; (iii) reduction, after rescaling, to a RH problem
which is solvable in terms of certain special functions.

Despite the fact that both the IST method and the nonlinear steepest de-
scent method are in a certain sense algorithmic, their adaptation to a particular
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nonlinear equation can be a difficult task that requires a lot of analytical work.
For example, the application of the IST method for initial problems with zero
background is very different from the application of the IST method for initial
problems with nonzero background. In particular, the properties of the corre-
sponding spectral functions, the associated Riemann–Hilbert problem, and the
adaptation of the nonlinear steepest descent method are significantly different.

On the other hand, the study of a specific problem can lead not only to
obtaining the results for that problem, but can also inspire the development
of new analytical methods and approaches that can be effectively applied to
a wide class of problems from other areas of mathematics (as it has already
happened, in particular, in the theory of orthogonal polynomials and random
matrices of large size).

1.2 The Camassa–Holm equation

The Camassa–Holm (CH) equation [35, 36]

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥 = 0, (1.2)

which can also be written in terms of the momentum variable

𝑚𝑡 + (𝑢𝑚)𝑥 + 𝑢𝑥𝑚 = 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, (1.3)

has been studied intensively over the last 30 years, due to its rich mathe-
matical structure. It is a model for the unidirectional propagation of shallow
water waves over a flat bottom [84, 46], is bi-Hamiltonian [35], and is com-
pletely integrable with algebro-geometric solutions [107]. The local and global
well-posedness of the Cauchy problem for the CH equation have been studied
extensively [43, 44, 49]. In particular, it has both globally strong solutions and
blow-up solutions at finite time [41, 43, 44, 45], and also it has globally weak
solutions in 𝐻1(R) [33, 47, 118].

The soliton-type solutions of the CH equation vanishing at infinity [36]
are weak solutions, having the form of peaked waves (𝑢(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) are
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bounded but 𝑢𝑥(𝑥, 𝑡) is discontinuous), which are orbitally stable [48]. They
can be expressed by 𝑢(𝑥, 𝑡) = 𝑐e−|𝑥−𝑐𝑡|, 𝑐 ∈ R. Such solutions are known as
peakons (peaked solutions).

On the other hand, adding to (1.2) a linear dispersion term 𝑏𝑢𝑥 with 𝑏 > 0

leads to a form of the CH equation

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + 𝑏𝑢𝑥 + 3𝑢𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥𝑥 = 0, (1.4)

which supports conventional smooth solitons [42, 25, 26].
In the case of the Camassa–Holm equation, the inverse scattering transform

method (particularly, in the form of a Riemann–Hilbert factorization problem)
works for the version of this equation (considered for functions decaying at spa-
tial infinity) that includes an additional linear dispersion term [21, 25, 26, 27].
Equivalently, this problem can be rewritten as a Cauchy problem for equa-
tion (1.3) considered on a constant, nonzero background. Indeed, the inverse
scattering transform method requires that the spatial equation from the Lax
pair associated to the CH equation have continuous spectrum. On the other
hand, the asymptotic analysis of the dispersionless CH equation (1.3) on zero
background (where the spectrum is purely discrete) requires a different tool (al-
though having a certain analogy with the Riemann–Hilbert method), namely,
the analysis of a coupling problem for entire functions [60, 61, 62].

1.3 Generalizations of the Camassa–Holm equation

Over the last few years various modifications and generalizations of the CH
equation have been introduced, see, e.g., [120] and references therein. Novikov
[105] applied the perturbative symmetry approach in order to classify integrable
equations of the form(︀

1− 𝜕2𝑥
)︀
𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . ), 𝑢 = 𝑢(𝑥, 𝑡), 𝜕𝑥 = 𝜕/𝜕𝑥,

assuming that 𝐹 is a homogeneous differential polynomial over C, quadratic or
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cubic in 𝑢 and its 𝑥-derivatives (see also [101]). Such equations are known as
Camassa–Holm type equations.

The adaptation of the inverse scattering transform method in the form of
a Riemann–Hilbert problem for CH type equations has its own characteristic
features. Particularly, the initial steps involve gauge transformations Φ ↦→ 𝑃 Φ̃

transforming the original Lax pair to the form⎧⎨⎩Φ̃𝑥(𝑥, 𝑡, 𝜆) = 𝑄̃𝑥(𝑥, 𝑡, 𝜆)Φ̃(𝑥, 𝑡, 𝜆) + 𝑈̃(𝑥, 𝑡, 𝜆)Φ̃(𝑥, 𝑡, 𝜆)

Φ̃𝑡(𝑥, 𝑡, 𝜆) = 𝑄̃𝑡(𝑥, 𝑡, 𝜆)Φ̃(𝑥, 𝑡, 𝜆) + 𝑉 (𝑥, 𝑡, 𝜆)Φ̃(𝑥, 𝑡, 𝜆)
,

where

◁ near the singular points (w.r.t. the apectral parameter 𝜆), the dominating
terms have the form 𝑄̃𝑥 and 𝑄̃𝑡 with some diagonal matrix 𝑄̃ depending, in
general, on 𝑡 and 𝑥 through the solution of the nonlinear equation in question;

◁ the remaining terms 𝑈̃ and 𝑉 tend to zero as 𝑥→ ±∞.

Then, 𝑄̃ dictates a change of variables, such that the jump matrix in the mas-
ter RH problem associated to the Cauchy problem for the nonlinear equation
depends on new variables in an explicit way.

In the list of equations presented in [105], equation (32), which was the
second equation with cubic nonlinearity, had the form

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥. (1.5)

In an equivalent form, this equation was given by Fokas in [69] (see also [106] and
[73]). Shiff [110] considered equation (1.5) as a dual to the modified Korteweg–
de Vries equation (mKdV) and introduced the Lax pair for (1.5) by rescaling
the entries of the spatial part of the Lax pair for the mKdV equation. An
alternative (in fact, gauge equivalent) Lax pair for (1.5) was given by Qiao
[108], so it is sometimes referred to as the Fokas–Olver–Rosenau–Qiao (FORQ)
equation [79], but is mostly known as the modified Camassa–Holm (mCH)
equation.
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Equation (1.5) has a bi-Hamiltonian structure [106, 78]. In [85], a Liouville-
type transformation was presented relating the isospectral problems for the
mKdV equation and the mCH equation, and a Miura-type map form the mCH
equation to the CH equation was introduced.

Equation (1.5) belongs to the class of peakon equations: it has solutions
in the form of localized, peaked traveling waves – peakons [78]. The solitary,
single peaked, wave solutions (peakons) of the mCH equation have the form
[78]

𝑢(𝑥, 𝑡) =
𝑝

2
e−|𝑥−𝑥(𝑡)|, 𝑚(𝑥, 𝑡) = 𝑝𝛿(𝑥− 𝑥(𝑡)) with 𝑥(𝑡) =

1

6
𝑝2𝑡.

The dynamical stability of peakons is discussed in [109] (see also [96] for the
stability of peakons of a generalized mCH equation). The local well-posedness
and wave-breaking mechanisms for the mCH equation and its generalizations,
particularly, the mCH equation with linear dispersion, are discussed in [78, 72,
97, 40, 39]. Algebro-geometric quasiperiodic solutions are studied in [79]. The
local well-posedness for classical solutions and global weak solutions to (1.5)
in Lagrangian coordinates are discussed in [76]. In [38] the authors discuss
multipeakon solutions developing the inverse spectral method for the associ-
ated peakon system of ordinary differential equations. The Hamilton structure
and Liouville integrability of peakon systems are discussed in [8] and [37]. The
Bäcklund transformation for the mCH equation and the related nonlinear su-
perposition formula are presented in [117].

1.4 Other peakon equations

The peak-shaped solutions (peaked solutions or peakons) are particular so-
lutions admitted by certain nonlinear PDEs (so called "peakon equations").
These solutios take the form of a train of peak-shaped waves and interact like
a particle.

The peakons first appeared as solutions of the Camassa–Holm (CH) equa-
tion, and later in many other related PDEs, e.g. Degasperis-Procesi (DP),
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Novikov (N) and modified Camassa–Holm (mCH) equations.
The Degasperis-Procesi equation

𝑚𝑡 + 𝑢𝑚𝑥 + 3𝑢𝑥𝑚 = 0, 𝑚 = 𝑢− 𝑢𝑥𝑥

was discovered aroud 1998 by Degasperis and Procesi [59]. It arises as a model
equation describing the shallow-water approximation in inviscid hydrodynamics
in the so-called “moderate amplitude regime”. The DP equation (𝑏 = 3) and
the CH (𝑏 = 2) equation arise as the only integrable cases in the “b-family”

𝑚𝑡 +𝑚𝑥𝑢+ 𝑏𝑚𝑢𝑥 = 0, 𝑚 = 𝑢− 𝑢𝑥𝑥

and both have quadratic nonlinearity. It possesses peakon solutions of the
same form as CH equation. Despite being similar in appearance to the CH
equation, the DP equation has a different underlying integrability structure,
and its peakon solutions are connected to approximation theory via the concepts
of the discrete cubic string, mixed Hermite–Padé approximations and Cauchy
biorthogonal polynomials [98], [99]. Another difference is that the DP equation
admits weak solutions that are not continuous (with jump singularities in 𝑢(𝑥, 𝑡)

rather than in 𝑢𝑥(𝑥, 𝑡)).
The Novikov equation

𝑚𝑡 + (𝑢𝑚𝑥 + 3𝑢𝑥𝑚)𝑢 = 0, 𝑚 = 𝑢− 𝑢𝑥𝑥

was obtained by Novikov [105] in the search for a classification of integrable
generalized Camassa–Holm equations of the form(︀

1− 𝜕2𝑥
)︀
𝑢𝑡 = 𝐹 (𝑢, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . ), 𝑢 = 𝑢(𝑥, 𝑡), 𝜕𝑥 = 𝜕/𝜕𝑥.

It differs in appearance from the DP equation only by the extra factor 𝑢, so
that the nonlinearity is cubic (like for mCH). The Novikov equation can exhibit
the phenomenon of wave-breaking and possesses peakon solutions with 𝑢(𝑥, 𝑡)

ramaining continuous and discontinuous 𝑢𝑥(𝑥, 𝑡). Another remarkable feature
of the Novikov equation is that it can exhibit the phenomenon of wave-breaking
[10].
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Due to the rich mathematical structure and interesting properties of these
equation, it is natural to study their modifications and generalisation. In
pariticular, many researchers consider their short wave limits (the evolution
is involved in 𝑚𝑡 = −𝑢𝑡𝑥𝑥; in the case of original equations the evolution is
involved in 𝑚𝑡 = 𝑢𝑡−𝑢𝑡𝑥𝑥) and so-called 𝜇-equations (the evolution is involved
in 𝑚𝑡 = 𝜇(𝑢)𝑡 − 𝑢𝑡𝑥𝑥 with 𝜇(𝑢) =

∫︀
S 𝑢(𝑥, 𝑡)𝑑𝑥). In some sense 𝜇 equations

can be consideered as midway equations between original equations and their
short-wave limits.

The short-wave model for the Camassa–Holm equation

𝑚𝑡 + 2𝑢𝑥 − 2𝑢𝑥𝑚− 𝑢𝑚𝑥 = 0, 𝑚 = −𝑢𝑥𝑥
is a model for short capillary waves propagating under the action of gravity [16].
This equation is also known as the modified Hunter-Saxton (mHS) equation.
A remarkable feature of mHS is that it possesses cuspon solutions (solutions
that take the form of a train of cusp-shaped waves, i.e. both left and right
derivatives are infinities).

The short-wave model for the Degasperis-Procesi equation

𝑚𝑡 + 3𝑢𝑥 − 𝑢𝑚𝑥 − 3𝑢𝑥𝑚 = 0, 𝑚 = −𝑢𝑥𝑥

is a model describing the unidirectional propagation of nonlinear shallow water
waves. This equation is also called the Ostrovsky–Vakhnenko equation (OV)
equation. The exact soliton-type solutions of OV equation we constructed by
using the Riemann–Hilbert formalism in [30]. These solutions are multi-valued
functions having the form of a loop (1-soliton) or many loops (multi-solitons).

The 𝜇-CH equation

𝑚𝑡 + (𝑢𝑚)𝑥 + 𝑢𝑥𝑚 = 0, 𝑚 := 𝜇(𝑢)− 𝑢𝑥𝑥,

was first introduced in [89] by Khesin, Lenells and Misio lek. It is interesting to
note that this equation is integrable in the sense that it admits Lax-pair and
bi-Hamiltonian structure, and also describes a geodesic flow on diffeomorphism
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group of S with certain metric. Its integrability, well-posedness, blow-up and
peakons were discussed in [89].

The 𝜇-DP equation

𝑚𝑡 + 𝑢𝑚𝑥 + 3𝑢𝑥𝑚 = 0, 𝑚 = 𝜇(𝑢)− 𝑢𝑥𝑥

was introduced by Lenells, Misiolek and Tiglay in [95]. Its integrability, well-
posedness, blow-up and existence of peakons were also investigated in [95].

Another natural extension of the mCH equation is a two-component inte-
grable modified CH (2-mCH) equation:

𝑚𝑡 + ((𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥)𝑚)𝑥 = 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, (1.6a)

𝑛𝑡 + ((𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥)𝑛)𝑥 = 0, 𝑚 := 𝑣 − 𝑣𝑥𝑥. (1.6b)

It was proposed by Song, Qu and Qiao in [113].
In [113], it is shown that the equation (1.6) arises from non-streching in-

variant curve flows in the 𝑛-dimensional unit sphere 𝑆𝑛(1). This system of
equations is known to possess infinitely many conservation laws as well as a
Lax formulation:

Φ𝑥(𝑥, 𝑡, 𝜆) = U(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆), Φ𝑡(𝑥, 𝑡, 𝜆) = V(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆)

where the coefficient matrices U and V are defined in terms of a solution of the
2-mCH equation:

U =
1

2

(︃
−1 𝜆𝑚

−𝜆𝑛 1

)︃
,

V =

(︃
4𝜆−2 + (𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥) −2(𝑢−𝑢𝑥)

𝜆 − 𝜆𝑚(𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥)
2(𝑣+𝑣𝑥)

𝜆 + 𝜆𝑛(𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥) −(𝑢− 𝑢𝑥)(𝑣 + 𝑣𝑥)

)︃
.

The local well-posedness for the associated Cauchy problem in the Besov
spaces, explicit expresses of its single peakon and two peakon solutions and
blow-up scenario were studied in [119].
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All the above described equations belong to the class of integrable equations.
It is important to emphasise that there exist also non-integrable peakon equa-
tions. The prototypical example was first introduced in the work of Degasperis,
Holm and Hone [58], who defined a family of equations

𝑢𝑡 − 𝑢𝑥𝑥𝑡 + (𝑏+ 1)𝑢𝑢𝑥 = 𝑏𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, 𝑏 ∈ R,

that reduce to CH and DP equations for 𝑏 = 2, 𝑏 = 3 respectively, while for
other values of 𝑏 are non-integrable which was shown in [59].

The literature review demonstrates a great interest of scientists that work in
various fields of mathematics and physics to integrable nonlinear equations, in
particularly, to Camassa–Holm equation and its generalizations. This confirms
the relevance of the topic chosen in the Thesis.
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Chapter 2

The Riemann–Hilbert approach to the
modified Camassa–Holm equation with
nonzero boundary conditions

The results of this Chapter are published in [18].

We consider the initial value problem for the mCH equation (1.5):

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞, (2.1a)

𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞, (2.1b)

assuming that 𝑢0(𝑥) → 1 as 𝑥 → ±∞, and we search for a solution that
preserves this behavior: 𝑢(𝑥, 𝑡) → 1 as 𝑥 → ±∞ for all 𝑡 > 0. Then, in
analogy with the CH equation and other CH-type equations, one can expect
that the Cauchy problem (2.1) supports smooth soliton solutions.

Introducing a new function 𝑢̃ by

𝑢(𝑥, 𝑡) = 𝑢̃(𝑥− 𝑡, 𝑡) + 1, (2.2)

the mCH equation reduces to

𝑚̃𝑡 + (𝜔̃𝑚̃)𝑥 = 0, (2.3a)

𝑚̃ := 𝑢̃− 𝑢̃𝑥𝑥 + 1, (2.3b)

𝜔̃ := 𝑢̃2 − 𝑢̃2𝑥 + 2𝑢̃. (2.3c)

44



In what follows we will study equation (2.3) on zero background: 𝑢̃→ 0 as 𝑥→
±∞. More precisely, we develop the Riemann–Hilbert (RH) problem approach
to equation (2.3a) on zero background, aiming at obtaining a representation
of the solution of the Cauchy problem for (2.3) in terms of the solution of an
associated RH problem formulated in the complex plane of a spectral parameter.

In Subsection 2.1 we introduce the Jost solutions of the Lax pair equations
written in a form appropriate for controlling their analytical properties as func-
tion of the spectral parameter. In Subsection 2.2 we formulate the Riemann–
Hilbert problem in two settings: (i) in the original setting, it (implicitly) de-
pends on the physical variables (𝑥, 𝑡) as parameters and (ii) in a transformed
setting, introducing new variables (𝑦, 𝑡) in terms of which the RH problem has
an explicit parameter dependence. The data for the later RH problem are
uniquely determined by the initial data for the mCH equation, which gives rise
to a procedure for solving the Cauchy problem (2.1). In Subsection 2.3 we show
that starting with the solution of a RH problem with appropriate dependence
on the parameters, we always arrive at a solution to the mCH equation, even
if the data for this RH problem are not associated with some particular initial
data for the mCH equation. Finally, in Subsection 2.4, using the RH prob-
lem formalism, we construct smooth as well as non-smooth soliton solutions to
the mCH equation. Throughout the text, we emphasize the differences in the
implementation of the RH approach to the CH and mCH equations.

2.1 Lax pairs and eigenfunctions

2.1.1 Lax pairs

In order to deduce the Lax pair for equation (2.3a), we take as starting point
the Lax pair for the mCH equation (1.5) [108]

Φ𝑥 = UΦ, Φ𝑡 = VΦ
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where Φ ≡ Φ(𝑥, 𝑡, 𝜆), U ≡ U(𝑥, 𝑡, 𝜆), and V ≡ V(𝑥, 𝑡, 𝜆), the coefficients U and
V being defined by

U =
1

2

(︃
−1 𝜆𝑚

−𝜆𝑚 1

)︃
,

V =

(︃
𝜆−2 + 𝑢2−𝑢2

𝑥

2 −𝜆−1(𝑢− 𝑢𝑥)− 𝜆(𝑢2−𝑢2
𝑥)𝑚

2

𝜆−1(𝑢+ 𝑢𝑥) + 𝜆(𝑢2−𝑢2
𝑥)𝑚

2 −𝜆−2 − 𝑢2−𝑢2
𝑥

2

)︃
,

with 𝑚 := 𝑢− 𝑢𝑥𝑥. This leads us to the pair of equations

Φ𝑥 = 𝑈Φ, (2.4a)

Φ𝑡 = 𝑉 Φ, (2.4b)

where the coefficients 𝑈 ≡ 𝑈(𝑥, 𝑡, 𝜆) and 𝑉 ≡ 𝑉 (𝑥, 𝑡, 𝜆) are now defined by

𝑈 =
1

2

(︃
−1 𝜆𝑚̃

−𝜆𝑚̃ 1

)︃
, (2.5a)

𝑉 =

(︃
𝜆−2 + 𝜔̃

2 −𝜆−1(𝑢̃− 𝑢̃𝑥 + 1)− 𝜆𝜔̃𝑚̃
2

𝜆−1(𝑢̃+ 𝑢̃𝑥 + 1) + 𝜆𝜔̃𝑚̃
2 −𝜆−2 − 𝜔̃

2

)︃
. (2.5b)

Here, 𝑚̃ := 𝑢̃− 𝑢̃𝑥𝑥 + 1 and 𝜔̃ := 𝑢̃2 − 𝑢̃2𝑥 + 2𝑢̃ as in (2.3b) and (2.3c), with 𝑢̃
as in (2.2). It can be directly verified that (2.3a) is the compatibility condition
for the system (2.4)-(2.5). Thus, this system (2.4)-(2.5) constitutes a Lax pair
for (2.3a).

The RH formalism for integrable nonlinear equations is based on using appro-
priately defined eigenfunctions, i.e., solutions of the Lax pair, whose behavior
as functions of the spectral parameter is well-controlled in the extended com-
plex plane. Notice that the coefficient matrices 𝑈 and 𝑉 are traceless, which
provides that the determinant of a matrix solution to (2.4) (composed from two
vector solutions) is independent of 𝑥 and 𝑡.

Also notice that 𝑈 and 𝑉 have singularities (in the extended complex 𝜆-
plane) at 𝜆 = 0 and 𝜆 = ∞. In order to control the behavior of solutions to
(2.4) as functions of the spectral parameter 𝜆 (which is crucial for the Riemann–
Hilbert method), we follow a strategy similar to that adopted for the CH equa-
tion [25, 26].
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Namely, in order to control the large 𝜆 behavior of solutions of (2.4), we will
transform this Lax pair into an appropriate form (see [9, 25, 26]).

Proposition 2.1.1. Equation (2.3a) admits a Lax pair of the form

Φ̂𝑥 +𝑄𝑥Φ̂ = 𝑈̂Φ̂, (2.6a)

Φ̂𝑡 +𝑄𝑡Φ̂ = 𝑉 Φ̂, (2.6b)

whose coefficients 𝑄 ≡ 𝑄(𝑥, 𝑡, 𝜆), 𝑈̂ ≡ 𝑈̂(𝑥, 𝑡, 𝜆), and 𝑉 ≡ 𝑉 (𝑥, 𝑡, 𝜆) are 2×2

matrices having the following properties:

(i) 𝑄 is diagonal and is unbounded as 𝜆→∞.

(ii) 𝑈̂ = O(1) and 𝑉 = O(1) as 𝜆→∞.

(iii) The diagonal parts of 𝑈̂ and 𝑉 decay as 𝜆→∞.

(iv) 𝑈̂ → 0 and 𝑉 → 0 as 𝑥→ ±∞.

Proof. We first note that 𝑈 in (2.5a) can be written as

𝑈(𝑥, 𝑡, 𝜆) =
𝑚̃(𝑥, 𝑡)

2

(︃
−1 𝜆

−𝜆 1

)︃
+
𝑚̃(𝑥, 𝑡)− 1

2

(︃
1 0

0 −1

)︃
, (2.7)

where 𝑚̃(𝑥, 𝑡) − 1 → 0 as 𝑥 → ±∞. The first (non-decaying, as 𝑥 → ±∞)
term in (2.7) can be diagonalized by introducing

Φ̂(𝑥, 𝑡, 𝜆) := 𝐷(𝜆)Φ(𝑥, 𝑡, 𝜆),

where

𝐷(𝜆) :=

(︃
1 − 𝜆

1+
√
1−𝜆2

− 𝜆
1+
√
1−𝜆2

1

)︃
,

where the square root is chosen so that
√

1− 𝜆2 ∼ i𝜆 as 𝜆 → ∞. This
transforms (2.4a) into

Φ̂𝑥 +
𝑚̃
√

1− 𝜆2
2

𝜎3Φ̂ = 𝑈̂Φ̂, (2.8a)
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where 𝑈̂ ≡ 𝑈̂(𝑥, 𝑡, 𝜆) is given by

𝑈̂ =
𝜆(𝑚̃− 1)

2
√

1− 𝜆2

(︃
0 1

−1 0

)︃
+

𝑚̃− 1

2
√

1− 𝜆2
𝜎3. (2.8b)

Similarly, the 𝑡-equation (2.4b) of the Lax pair is transformed into

Φ̂𝑡 +
√︀

1− 𝜆2
(︂
−1

2
𝑚̃𝜔̃ − 1

𝜆2

)︂
𝜎3Φ̂ = 𝑉 Φ̂, (2.8c)

where 𝑉 ≡ 𝑉 (𝑥, 𝑡, 𝜆) is given by

𝑉 =
1

2
√

1− 𝜆2
(︂
𝜆𝜔̃(𝑚̃− 1) +

2𝑢̃

𝜆

)︂(︃
0 −1

1 0

)︃
+
𝑢̃𝑥
𝜆

(︃
0 1

1 0

)︃

− 1√
1− 𝜆2

(︂
𝑢̃+

1

2
(𝑚̃− 1)𝜔̃

)︂
𝜎3.

(2.8d)

Now notice that equations (2.8a) and (2.8c) have the desired form (2.6), if we
define 𝑄 by

𝑄(𝑥, 𝑡, 𝜆) := 𝑝(𝑥, 𝑡, 𝜆)𝜎3, (2.9a)

with

𝑝(𝑥, 𝑡, 𝜆) := −1

2

√︀
1− 𝜆2

∫︁ +∞

𝑥

(𝑚̃(𝜉, 𝑡)−1)d𝜉+

√
1− 𝜆2

2
𝑥−
√

1− 𝜆2
𝜆2

𝑡. (2.9b)

Indeed, 𝑝 has derivatives

𝑝𝑥 =
𝑚̃
√

1− 𝜆2
2

,

𝑝𝑡 =
√︀

1− 𝜆2
(︂
−1

2
𝑚̃𝜔̃ − 1

𝜆2

)︂
.

The first formula is clear, while the second follows from (2.3a).

2.1.2 Eigenfunctions

The Lax pair in the form (2.8) allows us to determine dedicated solutions having
a well-controlled behavior as functions of the spectral parameter 𝜆 for large
values of 𝜆 via associated integral equations. Indeed, introducing

̃︀Φ = Φ̂e𝑄 (2.10)

48



(understanding ̃︀Φ as a 2×2 matrix), equations (2.8a) and (2.8c) can be rewritten
as ⎧⎨⎩̃︀Φ𝑥 + [𝑄𝑥, ̃︀Φ] = 𝑈̂ ̃︀Φ,̃︀Φ𝑡 + [𝑄𝑡, ̃︀Φ] = 𝑉 ̃︀Φ, (2.11)

where [ · , · ] stands for the commutator. We now determine particular (Jost)
solutions ̃︀Φ± ≡ ̃︀Φ±(𝑥, 𝑡, 𝜆) of (2.11) as solutions of the associated Volterra
integral equations:

̃︀Φ±(𝑥, 𝑡, 𝜆) = 𝐼 +

∫︁ 𝑥

±∞
e𝑄(𝜉,𝑡,𝜆)−𝑄(𝑥,𝑡,𝜆)𝑈̂(𝜉, 𝑡, 𝜆)̃︀Φ±(𝜉, 𝑡, 𝜆)e𝑄(𝑥,𝑡,𝜆)−𝑄(𝜉,𝑡,𝜆)d𝜉,

(2.12)
that is, taking into account the definition (2.9) of 𝑄,

̃︀Φ+(𝑥, 𝑡, 𝜆) = 𝐼 −
∫︁ +∞

𝑥

e

√
1−𝜆2

2

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3𝑈̂(𝜉, 𝑡, 𝜆)̃︀Φ+(𝜉, 𝑡, 𝜆)e−

√
1−𝜆2

2

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3d𝜉,

̃︀Φ−(𝑥, 𝑡, 𝜆) = 𝐼 +

∫︁ 𝑥

−∞
e

√
1−𝜆2

2

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3𝑈̂(𝜉, 𝑡, 𝜆)̃︀Φ−(𝜉, 𝑡, 𝜆)e−

√
1−𝜆2

2

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3d𝜉

(2.13)

(𝐼 is the identity matrix). Hereafter, let Φ̂± := ̃︀Φ±e−𝑄 denote the corresponding
Jost solutions of (2.8).

Introducing a new spectral parameter 𝑘 by

𝜆2 = 4𝑘2 + 1,

the exponentials in (2.13) become e±i𝑘
∫︀ 𝜉

𝑥
𝑚̃(𝜉,𝑡)d𝜉 𝜎3. Moreover, introducing the

new space variable

𝑦(𝑥, 𝑡) := 𝑥−
∫︁ +∞

𝑥

(𝑚̃(𝜉, 𝑡)− 1)d𝜉, (2.14)

𝑄 takes (by a slight abuse of notations) the form𝑄(𝑦, 𝑡, 𝑘) = −i𝑘
(︀
𝑦 − 2𝑡

4𝑘2+1

)︀
𝜎3,

which coincides with that in the case of the Camassa–Holm equation [25, 26].

Remark 2.1.2. Recall that the pair of renowned integrable equations — the
Korteweg–de Vries (KdV) equation and the modified Korteweg–de Vries (mKdV)
equation — shares the same 𝑄, which, in those cases, has the form 𝑄(𝑥, 𝑡, 𝑘) =
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(i𝑘𝑥 + 4i𝑘3𝑡)𝜎3. Therefore, the above consideration gives an additional reason
to naming equation (1.5) as the modified Camassa–Holm (mCH) equation.

Remark 2.1.3. The change of variables (2.14) is, in fact, a part of the Liouville
transformation [85] relating the spatial equations from the Lax pairs for the
mKdV equation and the mCH equation and thus establishing the correspon-
dence between the flows in the mCH hierarchy and the mKdV hierarchy. Being
combined with the Liouville transformation relating the CH hierarchy and the
Korteweg-de Vries (KdV) hierarchy [92], it allows establishing a Miura-type
map form the mCH equation to the CH equation [85]. However, since this map
is not univalent and involves nonlinear manipulations with dependent variables,
it is difficult to use it when studying various properties of solutions of partic-
ular problems for the mCH equation (for instance, the long time behavior of
solutions of the Cauchy problem with particular boundary conditions). This
motivated us to introduce, in the present paper, a more direct approach to our
Cauchy problem for the mCH equation, which doesn’t rely on a map to the CH
equation but deals directly with the Lax pair equations for mCH.

An important difference between the Lax pairs for the CH equation and
the mCH equation is that in the latter case, the dependence of the associated
coefficient matrix 𝑈̂(𝑥, 𝑡, 𝑘) (by a slight abuse of notations we keep the same
notation 𝑈̂) on the spectral parameter 𝑘 is not rational (because of 𝜆(𝑘)):

𝑈̂(𝑥, 𝑡, 𝑘) =
𝑚̃− 1

2

(︃
1

2i𝑘

(︃
1 0

0 −1

)︃
+
𝜆(𝑘)

2i𝑘

(︃
0 1

−1 0

)︃)︃
,

which would complicate the construction of the RH problem, requiring either
the introduction of a branch cut in the 𝑘 plane or the formulation of the RH
problem on the Riemann sphere associated with 𝜆2 = 4𝑘2 + 1.

In order to avoid these complications, we introduce a new (uniformizing)
spectral parameter 𝜇 such that both 𝜆 and 𝑘 are rational w.r.t. 𝜇:

𝜆 = −1

2

(︂
𝜇+

1

𝜇

)︂
, 𝑘 =

1

4

(︂
𝜇− 1

𝜇

)︂
. (2.15)
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More precisely, we define 𝜇 = −𝜆 − i
√

1− 𝜆2, so that 𝑘 = − i
2

√
1− 𝜆2 and√

1− 𝜆2 = i
2
𝜇2−1
𝜇 = 2i𝑘. In terms of 𝜇 we have

𝑝(𝑥, 𝑡, 𝜇) = − i(𝜇2 − 1)

4𝜇

(︂∫︁ +∞

𝑥

(𝑚̃(𝜉, 𝑡)− 1)d𝜉 − 𝑥+
8𝜇2

(𝜇2 + 1)2
𝑡

)︂
, (2.16)

𝑈̂(𝑥, 𝑡, 𝜇) =
i(𝜇2 + 1)(𝑚̃− 1)

2(𝜇2 − 1)

(︃
0 1

−1 0

)︃
− i𝜇(𝑚̃− 1)

𝜇2 − 1

(︃
1 0

0 −1

)︃
, (2.17)

and, accordingly, equations (2.13) become

̃︀Φ±(𝑥, 𝑡, 𝜇) = 𝐼+

∫︁ 𝑥

±∞
e

i(𝜇2−1)
4𝜇

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3𝑈̂(𝜉, 𝑡, 𝜇)̃︀Φ±(𝜉, 𝑡, 𝜇)e−

i(𝜇2−1)
4𝜇

∫︀ 𝜉

𝑥
𝑚̃(𝜂,𝑡)d𝜂 𝜎3d𝜉.

(2.18)
We are now able, by analogy with the case of the CH equation [25, 26], to

analyze the analytic and asymptotic properties of the solutions ̃︀Φ± of (2.18) as
functions of 𝜇, using Neumann series expansions. Let 𝐴(1) and 𝐴(2) denote the
columns of a 2× 2 matrix 𝐴 =

(︀
𝐴(1) 𝐴(2)

)︀
. Using these notations we have the

following properties:

• ̃︀Φ(1)
− and ̃︀Φ(2)

+ are analytic in C+ = {𝜇 ∈ C | Im𝜇 > 0};

• ̃︀Φ(1)
+ and ̃︀Φ(2)

− are analytic in C− = {𝜇 ∈ C | Im𝜇 < 0};

• ̃︀Φ(1)
− , ̃︀Φ(2)

+ , ̃︀Φ(1)
+ , and ̃︀Φ(2)

− are continuous up to the real line except at 𝜇 = ±1.

Further, we first observe that 𝑈̂(𝜇) ≡ 𝑈̂(𝑥, 𝑡, 𝜇), 𝑉 (𝜇) ≡ 𝑉 (𝑥, 𝑡, 𝜇) satisfy the
same symmetries:

𝑈̂(𝜇̄) = 𝜎1𝑈̂(𝜇)𝜎1, 𝑈̂(−𝜇) = 𝜎2𝑈̂(𝜇)𝜎2, 𝑈̂(𝜇−1) = 𝜎1𝑈̂(𝜇)𝜎1,

(2.19a)

𝑉 (𝜇̄) = 𝜎1𝑉 (𝜇)𝜎1, 𝑉 (−𝜇) = 𝜎2𝑉 (𝜇)𝜎2, 𝑉 (𝜇−1) = 𝜎1𝑉 (𝜇)𝜎1,

(2.19b)

with 𝜇 ̸= ±1, and also 𝜇 ̸= 0 for the symmetry 𝜇 ↦→ 𝜇−1. Moreover, 𝑝(𝜇) ≡
𝑝(𝑥, 𝑡, 𝜇) satisfies the following symmetries:

𝑝*(𝜇) = −𝑝(𝜇) = 𝑝(−𝜇) = 𝑝(𝜇−1). (2.20)

It follows that
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• ̃︀Φ± also satisfy the same symmetries as in (2.19a):

̃︀Φ±(𝜇̄) = 𝜎1̃︀Φ±(𝜇)𝜎1, ̃︀Φ±(−𝜇) = 𝜎2̃︀Φ±(𝜇)𝜎2, ̃︀Φ±(𝜇−1) = 𝜎1̃︀Φ±(𝜇)𝜎1.

(2.21)
That means ̃︀Φ(1)

± (𝜇) = 𝜎1̃︀Φ(2)*
± (𝜇) = 𝜎3𝜎1̃︀Φ(2)

± (−𝜇) = 𝜎1̃︀Φ(2)
± (𝜇−1) for± Im𝜇 ≤

0, 𝜇 ̸= ±1.

In (2.11) the coefficients are traceless matrices, from which it follows that

• det ̃︀Φ± ≡ 1.

Regarding the values of ̃︀Φ± at particular points in the 𝜇-plane, (2.18) implies
the following:

• ( ̃︀Φ(1)
−
̃︀Φ(2)
+ ) → 𝐼 as 𝜇 → ∞ with Im𝜇 ≥ 0, and also for 𝜇 = 0 (by the

symmetry (2.21)).

• ( ̃︀Φ(1)
+
̃︀Φ(2)
− )→ 𝐼 as 𝜇→∞ with Im𝜇 ≤ 0, and also for 𝜇 = 0.

• As 𝜇 → 1, ̃︀Φ±(𝑥, 𝑡, 𝜇) = i
2(𝜇−1)𝛼±(𝑥, 𝑡)

(︀ −1 1
−1 1

)︀
+ O(1) with 𝛼±(𝑥, 𝑡) ∈ R

(understood column-wise, in the corresponding half-planes).

• As 𝜇 → −1, ̃︀Φ±(𝑥, 𝑡, 𝜇) = − i
2(𝜇+1)𝛼±(𝑥, 𝑡) ( 1 1

−1 −1 ) + O(1) with the same
𝛼±(𝑥, 𝑡) as the previous ones (by symmetry (2.21)).

2.1.3 Spectral data

Introduce the scattering matrix 𝑠(𝜇) as a matrix relating ̃︀Φ+ and ̃︀Φ− on the
real line:

̃︀Φ+(𝑥, 𝑡, 𝜇) = ̃︀Φ−(𝑥, 𝑡, 𝜇)e−𝑝(𝑥,𝑡,𝜇)𝜎3𝑠(𝜇)e𝑝(𝑥,𝑡,𝜇)𝜎3, 𝜇 ∈ R, 𝜇 ̸= ±1. (2.22)

By (2.21), 𝑠(𝜇) can be written in terms of two scalar spectral functions, 𝑎(𝜇)

and 𝑏(𝜇):

𝑠(𝜇) =

(︃
𝑎(𝜇) 𝑏(𝜇)

𝑏(𝜇) 𝑎(𝜇)

)︃
, 𝜇 ∈ R, (2.23)
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satisfying the symmetries 𝑎(𝜇) = 𝑎(−𝜇) = 𝑎(𝜇−1) and 𝑏(𝜇) = −𝑏(−𝜇) =

𝑏(𝜇−1) for 𝜇 ∈ R.
The spectral functions 𝑎(𝜇) and 𝑏(𝜇) are uniquely determined by 𝑢(𝑥, 0)

through the solutions ̃︀Φ±(𝑥, 0, 𝜇) of equations (2.18). On the other hand, using
the representations

𝑎(𝜇) = det
(︁̃︀Φ(1)
− ̃︀Φ(2)

+

)︁
, 𝑏(𝜇) = e2𝑝 det

(︁̃︀Φ(2)
+

̃︀Φ(2)
−
)︁
,

the analytic properties of ̃︀Φ± stated above imply corresponding properties of
𝑎(𝜇) and 𝑏(𝜇):

• 𝑎(𝜇) can be analytically continued into C+, being continuous up to the real
line, except at 𝜇 = ±1. Moreover, 𝑎(0) = 1, 𝑎(𝜇)→ 1 as 𝜇→∞, and 𝑎(𝜇)

satisfies the symmetries

𝑎(𝜇) = 𝑎(−𝜇̄) = 𝑎(−𝜇−1) for Im𝜇 ≥ 0.

• 𝑏(𝜇) is continuous for 𝜇 ∈ R ∖ {−1, 1}. Moreover, 𝑏(0) = 0 and 𝑏(𝜇)→ 0 as
𝜇→ ±∞.

• As 𝜇→ 1, 𝑎(𝜇) = 𝛾 i
2(𝜇−1) + O(1) and 𝑏(𝜇) = 𝛾 i

2(𝜇−1) + O(1) with the same
𝛾 ∈ R, as follows from (2.22).

• As 𝜇 → −1, 𝑎(𝜇) = 𝛾 i
2(𝜇+1) + O(1) and 𝑏(𝜇) = −𝛾 i

2(𝜇+1) + O(1) with the
same 𝛾 as the previous one, by symmetry.

• |𝑎(𝜇)|2 − |𝑏(𝜇)|2 = 1 for 𝜇 ∈ R, 𝜇 ̸= ±1.

Remark 2.1.4. The case 𝛾 ̸= 0 is generic. On the other hand, in the non-generic
case 𝛾 = 0, we then have 𝑎(±1) = 𝑎1 and 𝑏(±1) = ±𝑏1 with some 𝑎1 ∈ R and
𝑏1 ∈ R such that 𝑎21 = 1 + 𝑏21. It then follows from (2.22) that the coefficients
𝛼+(𝑥, 𝑡) and 𝛼−(𝑥, 𝑡) appearing in the expansions of ̃︀Φ at 𝜇 = ±1 are related
by

𝛼+(𝑥, 𝑡) = (𝑎1 − 𝑏1)𝛼−(𝑥, 𝑡). (2.24)

53



2.2 Riemann–Hilbert problem

2.2.1 RH problem parameterized by (𝑥, 𝑡)

The analytic properties of ̃︀Φ± stated above allow rewriting the scattering rela-
tion (2.22) as a jump relation for a piece-wise meromorphic (w.r.t. 𝜇), 2 × 2-
matrix valued function (depending on 𝑥 and 𝑡 as parameters). Indeed, define
𝑀 ≡𝑀(𝑥, 𝑡, 𝜇) by

𝑀(𝑥, 𝑡, 𝜇) =

⎧⎪⎨⎪⎩
(︁ ̃︀Φ(1)

− (𝑥,𝑡,𝜇)

𝑎(𝜇)
̃︀Φ(2)
+ (𝑥, 𝑡, 𝜇)

)︁
, Im𝜇 > 0,(︁̃︀Φ(1)

+ (𝑥, 𝑡, 𝜇)
̃︀Φ(2)
− (𝑥,𝑡,𝜇)

𝑎(𝜇̄)

)︁
, Im𝜇 < 0.

(2.25)

Define also
𝑟(𝜇) :=

𝑏(𝜇)

𝑎*(𝜇)
, 𝜇 ∈ R. (2.26)

Then the limiting values 𝑀±(𝑥, 𝑡, 𝜇), 𝜇 ∈ R of 𝑀 as 𝜇 is approached from C±

are related by

𝑀−(𝑥, 𝑡, 𝜇) = 𝑀+(𝑥, 𝑡, 𝜇)𝐽(𝑥, 𝑡, 𝜇), 𝜇 ∈ R, 𝜇 ̸= ±1, (2.27a)

where
𝐽(𝑥, 𝑡, 𝜇) = e−𝑝(𝑥,𝑡,𝜇)𝜎3𝐽0(𝜇)e𝑝(𝑥,𝑡,𝜇)𝜎3 (2.27b)

with

𝐽0(𝜇) =

(︃
1 −𝑟(𝜇)

𝑟*(𝜇) 1− 𝑟(𝜇)𝑟*(𝜇)

)︃
. (2.27c)

Taking into account the properties of ̃︀Φ± and 𝑠(𝜇) we check that 𝑀(𝑥, 𝑡, 𝜇)

satisfies the following conditions:

• The jump condition (2.27) across R.

• The determinant condition det𝑀 ≡ 1.

• The normalization condition:

𝑀 → 𝐼 as 𝜇→∞ (2.28)

(and also 𝑀(0) = 𝐼 by symmetry, see (2.31)).
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• Singularity conditions:

𝑀(𝑥, 𝑡, 𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i𝛼+(𝑥,𝑡)
2(𝜇−1)

⎛⎝−𝑐 1

−𝑐 1

⎞⎠+ O(1), 𝜇→ 1, Im𝜇 > 0,

− i𝛼+(𝑥,𝑡)
2(𝜇+1)

⎛⎝ 𝑐 1

−𝑐 −1

⎞⎠+ O(1), 𝜇→ −1, Im𝜇 > 0,

(2.29)

with some 𝛼+(𝑥, 𝑡) ∈ R and (see Remark 2.1.4)

𝑐 :=

⎧⎨⎩0, if 𝛾 ̸= 0,

𝑎1+𝑏1
𝑎1

, if 𝛾 = 0,
(2.30a)

where 𝑎1 = 𝑎(1), 𝑏1 = 𝑏(1), and 𝛾 := −2i lim
𝜇→1

(𝜇 − 1)𝑎(𝜇). Notice that in

terms of 𝑟(±1), the generic case 𝛾 ̸= 0 corresponds to 𝑟(1) = −𝑟(−1) =

−1 whereas in the non-generic case, |𝑟(±1)| < 1 (see the case of the one-
dimensional Schrödinger operator [53], which constitutes the spectral problem
for the Korteweg–de Vries equation). Therefore, (2.30a) can be written as

𝑐 :=

⎧⎨⎩0, if 𝑟(1) = −1,

1 + 𝑟(1) = 1− 𝑟(−1), if |𝑟(1)| < 1.
(2.30b)

Both conditions in (2.29) are actually equivalent by the symmetries (2.31).

• Symmetries (which result from (2.21)):

𝑀(𝜇̄) = 𝜎1𝑀(𝜇)𝜎1, 𝑀(−𝜇) = 𝜎2𝑀(𝜇)𝜎2, 𝑀(𝜇−1) = 𝜎1𝑀(𝜇)𝜎1,

(2.31)
where 𝑀(𝜇) ≡ 𝑀(𝑥, 𝑡, 𝜇). The first symmetry can also be written as
𝜎1𝑀

(1)* = 𝑀 (2). Moreover, (2.31) implies the symmetries𝑀(−𝜇̄) = 𝑀(−𝜇−1) =

𝜎3𝑀(𝜇)𝜎3.

If 𝑎(𝜇) is allowed to have zeros in C+, the above conditions must be supple-
mented by residue conditions at these zeros. Assume that 𝑎(𝜇) has a finite
number of simple zeros {𝜇𝑗}𝑁1 in C+. Symmetries 𝑎(𝜇) = 𝑎(−𝜇̄) = 𝑎(−𝜇−1)
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imply that this set of zeros is invariant under the transformations 𝜇 ↦→ −𝜇̄
and 𝜇 ↦→ −𝜇−1: for each 𝑗 there exist 𝑗′ and 𝑗′′ such that −𝜇̄𝑗 = 𝜇𝑗′ and
−𝜇−1𝑗 = 𝜇𝑗′′.

• Residue conditions: 𝑀 (1)(𝑥, 𝑡, 𝜇) has simple poles at {𝜇𝑗}𝑁1 and 𝑀 (2)(𝑥, 𝑡, 𝜇)

has simple poles at {𝜇̄𝑗}𝑁1 . Moreover

Res𝜇𝑗
𝑀 (1)(𝑥, 𝑡, 𝜇) =

1

κ𝑗(𝑥, 𝑡)
𝑀 (2)(𝑥, 𝑡, 𝜇𝑗), (2.32a)

Res𝜇̄𝑗
𝑀 (2)(𝑥, 𝑡, 𝜇) =

1

κ𝑗(𝑥, 𝑡)
𝑀 (1)(𝑥, 𝑡, 𝜇̄𝑗). (2.32b)

Here κ𝑗(𝑥, 𝑡) = 𝑎̇(𝜇𝑗)𝛿𝑗e
−2𝑝(𝑥,𝑡,𝜇𝑗) with some constants 𝛿𝑗 ̸= 0. By symmetries

(2.31) both conditions in (2.32) are equivalent. Note also how the residue
changes under the transformations 𝜇 ↦→ −𝜇̄ and 𝜇 ↦→ −𝜇−1: if −𝜇̄𝑗 = 𝜇𝑗′

and −𝜇−1𝑗 = 𝜇𝑗′′ then κ𝑗 = κ𝑗′ = −𝜇−2𝑗 κ𝑗′′.

Proof of (2.32). Indeed, let 𝜇𝑗 be a simple root of 𝑎(𝜇), that is, 𝑎(𝜇𝑗) = 0 with
𝑎̇(𝜇𝑗) ̸= 0. Then, using 𝑎(𝜇) = det

(︁̃︀Φ(1)
− ̃︀Φ(2)

+

)︁
= det

(︁
Φ̂

(1)
− Φ̂

(2)
+

)︁
, we have

Φ̂
(2)
+ (𝑥, 𝑡, 𝜇𝑗) = 𝛿𝑗Φ̂

(1)
− (𝑥, 𝑡, 𝜇𝑗), (2.33a)̃︀Φ(2)

+ (𝑥, 𝑡, 𝜇𝑗) = 𝛿𝑗e
−2𝑝(𝑥,𝑡,𝜇𝑗)̃︀Φ(1)

− (𝑥, 𝑡, 𝜇𝑗) (2.33b)

with some constant 𝛿𝑗 ̸= 0. Hence,

Res𝜇𝑗
𝑀 (1)(𝑥, 𝑡, 𝜇) = Res𝜇𝑗

̃︀Φ(1)
− (𝑥, 𝑡, 𝜇)

𝑎(𝜇)
=
̃︀Φ(1)
− (𝑥, 𝑡, 𝜇𝑗)

𝑎̇(𝜇𝑗)
=

̃︀Φ(2)
+ (𝑥, 𝑡, 𝜇𝑗)

𝑎̇(𝜇𝑗)𝛿𝑗e−2𝑝(𝑥,𝑡,𝜇𝑗)
.

Denoting κ𝑗(𝑥, 𝑡) := 𝑎̇(𝜇𝑗)𝛿𝑗e
−2𝑝(𝑥,𝑡,𝜇𝑗) we get (2.32a). The residue relation

(2.32b) then follows by the symmetry 𝜇 ↦→ 𝜇* = 𝜇̄. Indeed, applying this
symmetry to (2.32a) and multiplying by 𝜎1 we get

Res𝜇̄𝑗
𝜎1𝑀

(1)*(𝑥, 𝑡, 𝜇) =
1

κ𝑗(𝑥, 𝑡)
𝜎1𝑀

(2)*(𝑥, 𝑡, 𝜇̄𝑗),

which reduces to (2.32b) in view of the relation 𝜎1𝑀 (1)* = 𝑀 (2) (see (2.31)).
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In the framework of the Riemann–Hilbert approach to nonlinear evolu-
tion equations, we interpret the jump relation (2.27a), normalization condi-
tion (2.28), singularity conditions (2.29), and residue conditions (2.32) as a
Riemann–Hilbert problem, with the jump matrix and residue parameters de-
termined by the initial data for the nonlinear problem. We proceed as in the
case of the Camassa–Holm equation:

1) In order to have the data for the RH problem to depend explicitly on the
parameters, we use the space variable 𝑦(𝑥, 𝑡) := 𝑥−

∫︀ +∞
𝑥 (𝑚̃(𝜉, 𝑡)− 1)d𝜉 we

have introduced in (2.14).

2) In order to determine an efficient way for retrieving the solution of the mCH
equation from the solution of the RH problem, we pay a special attention to
the behavior of the Jost solutions of the Lax pair equations at 𝜇 = ±i, i.e.,
at those values of 𝜇 that correspond to 𝜆 = 0, when the 𝑥-equation (2.4a),
(2.5a) of the Lax pair becomes trivial (independent of the solution of the
nonlinear equation in question).

2.2.2 Eigenfunction near 𝜇 = i

In the case of the Camassa–Holm equation [26] as well as other CH-type non-
linear integrable equations studied so far, see, e.g., [29, 30], the analysis of the
behavior of the respective Jost solutions at dedicated points in the complex
plane of the spectral parameter (see Item 2) above) requires a dedicated gauge
transformation of the Lax pair equations.

It is remarkable that in the case of the mCH equation, we don’t need to
use such a transformation; all we need is to regroup the terms in the Lax pair
(2.8a), (2.8c).

Namely, let us rewrite (2.8a) in terms of 𝜇 (keeping the same notation Φ̂ for
the solution):

Φ̂𝑥 +
i(𝜇2 − 1)

4𝜇
𝜎3Φ̂ = 𝑈̂0Φ̂, (2.34a)
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where

𝑈̂0(𝑥, 𝑡, 𝜇) :=
i(𝜇2 + 1)(𝑚̃− 1)

2(𝜇2 − 1)

(︃
0 1

−1 0

)︃
−
(︂

i𝜇(𝑚̃− 1)

𝜇2 − 1
+

i(𝜇2 − 1)𝑚̃

4𝜇
− i(𝜇2 − 1)

4𝜇

)︂
𝜎3,

(2.34b)
so that 𝑈̂0(𝑥, 𝑡,±i) ≡ 0. Accordingly, rewrite (2.8c) as

Φ̂𝑡 −
2i(𝜇2 − 1)𝜇

(𝜇2 + 1)2
𝜎3Φ̂ = 𝑉0Φ̂, (2.34c)

where

𝑉0(𝑥, 𝑡, 𝜇) :=
i(𝜇2 − 1)

4𝜇
(𝑢̃2 − 𝑢̃2𝑥 + 2𝑢̃)𝑚̃𝜎3 + 𝑉 (𝑥, 𝑡, 𝜇). (2.34d)

Further, introduce (compare with (2.16))

𝑝0(𝑥, 𝑡, 𝜇) :=
i(𝜇2 − 1)

4𝜇
𝑥− 2i(𝜇2 − 1)𝜇

(𝜇2 + 1)2
𝑡, (2.35)

then 𝑄0 := 𝑝0𝜎3, and ̃︀Φ0 := Φ̂e𝑄0 so that equations (2.34a) and (2.34c) become⎧⎨⎩̃︀Φ0𝑥 + [𝑄0𝑥, ̃︀Φ0] = 𝑈̂0
̃︀Φ0,̃︀Φ0𝑡 + [𝑄0𝑡, ̃︀Φ0] = 𝑉0̃︀Φ0.

(2.36)

Define the Jost solutions ̃︀Φ0± of (2.36) as the solutions of the integral equations

̃︀Φ0±(𝑥, 𝑡, 𝜇) = 𝐼 +

∫︁ 𝑥

±∞
e−

i(𝜇2−1)
4𝜇 (𝑥−𝜉)𝜎3𝑈̂0(𝜉, 𝑡, 𝜇)̃︀Φ0±(𝜉, 𝑡, 𝜇)e

i(𝜇2−1)
4𝜇 (𝑥−𝜉)𝜎3d𝜉.

(2.37)
If Φ̂0± := ̃︀Φ0±e−𝑝0𝜎3 we observe that Φ̂0±(𝑥, 𝑡, 𝜇) and Φ̂±(𝑥, 𝑡, 𝜇) satisfy the
same differential equations (2.34) and thus they are related by matrices 𝐶±(𝜇)

independent of 𝑥 and 𝑡:
Φ̂± = Φ̂0±𝐶±(𝜇).

It follows that

̃︀Φ±(𝑥, 𝑡, 𝜇) = ̃︀Φ0±(𝑥, 𝑡, 𝜇)e−𝑝0(𝑥,𝑡,𝜇)𝜎3𝐶±(𝜇)e𝑝(𝑥,𝑡,𝜇)𝜎3. (2.38)

Thus, 𝐶±(𝜇) = e(𝑝0(±∞,𝑡,𝜇)−𝑝(±∞,𝑡,𝜇))𝜎3.
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Since 𝑝(𝑥, 𝑡, 𝜇) − 𝑝0(𝑥, 𝑡, 𝜇) = − i(𝜇2−1)
4𝜇

∫︀ +∞
𝑥 (𝑚̃(𝜉, 𝑡) − 1)d𝜉 we find that

𝐶+(𝜇) ≡ 𝐼 whereas 𝐶−(𝜇) = e
i(𝜇2−1)

4𝜇

∫︀ +∞
−∞ (𝑚̃(𝜉,𝑡))−1)d𝜉 𝜎3.

Since 𝑈̂0(𝑥, 𝑡, i) ≡ 0, it follows from (2.37) that ̃︀Φ0±(𝑥, 𝑡, i) ≡ 𝐼 and thus

̃︀Φ+(𝑥, 𝑡, i) = e
1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉 𝜎3 and ̃︀Φ−(𝑥, 𝑡, i) = e−
1
2

∫︀ 𝑥

−∞(𝑚̃(𝜉,𝑡)−1)d𝜉 𝜎3.

Consequently,
𝑎(i) = e−

1
2

∫︀ +∞
−∞ (𝑚̃(𝜉,𝑡)−1)d𝜉

and

𝑀(𝑥, 𝑡, i) =

(︃
e

1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉 0

0 e−
1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉

)︃
. (2.39a)

Then, by symmetry,

𝑀(𝑥, 𝑡,−i) =

(︃
e−

1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉 0

0 e
1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉

)︃
. (2.39b)

Remark 2.2.1. The symmetries (2.31) imply that 𝑀(i) = 𝑀(i) = 𝜎3𝑀(i)𝜎3

where 𝑀(i) ≡ 𝑀(𝑥, 𝑡, i), and thus 𝑀(i) is a diagonal matrix with real entries
which, due to the determinant equality det𝑀 ≡ 1, has the form

𝑀(𝑥, 𝑡, i) =

(︃
𝜙(𝑥, 𝑡) 0

0 𝜙−1(𝑥, 𝑡)

)︃
(2.40a)

with some 𝜙(𝑥, 𝑡) ∈ R. Then, referring again to (2.31), it follows that

𝑀(𝑥, 𝑡,−i) =

(︃
𝜙−1(𝑥, 𝑡) 0

0 𝜙(𝑥, 𝑡)

)︃
(2.40b)

with the same 𝜙(𝑥, 𝑡). Therefore, the matrix structure of 𝑀(𝑥, 𝑡,±i) as in
(2.39) follows from the general properties of the solution of a Riemann–Hilbert
problem (specified by jump, normalization, residue, singularity, and symmetry
conditions). This is in contrast with the case of the Camassa–Holm equation
[25, 26], where a specific matrix structure of the solution of the associated
RH problem, evaluated at a dedicated point (𝑘 = i

2 for the CH equation),
constitutes an additional requirement for the solution. In that case, the proof
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of the uniqueness of the solution of the RH problem relies essentially on this
additional property.

In what follows we will use (2.39) in order to extract the solution of the
mCH equation from the solution of the associated RH problem.

2.2.3 RH problem in the (𝑦, 𝑡) scale

Introducing the new space variable 𝑦(𝑥, 𝑡) by (2.14), 𝑀̂(𝑦, 𝑡, 𝜇) so that𝑀(𝑥, 𝑡, 𝜇) =

𝑀̂(𝑦(𝑥, 𝑡), 𝑡, 𝜇), the jump condition (2.27a) becomes

𝑀̂−(𝑦, 𝑡, 𝜇) = 𝑀̂+(𝑦, 𝑡, 𝜇)𝐽(𝑦, 𝑡, 𝜇), 𝜇 ∈ R, 𝜇 ̸= ±1, (2.41a)

where
𝐽(𝑦, 𝑡, 𝜇) := e−𝑝(𝑦,𝑡,𝜇)𝜎3𝐽0(𝜇)e𝑝(𝑦,𝑡,𝜇)𝜎3 (2.41b)

with 𝐽0(𝜇) defined by (2.27c) and

𝑝(𝑦, 𝑡, 𝜇) := − i(𝜇2 − 1)

4𝜇

(︂
−𝑦 +

8𝜇2

(𝜇2 + 1)2
𝑡

)︂
. (2.41c)

so that 𝐽(𝑥, 𝑡, 𝜇) = 𝐽(𝑦(𝑥, 𝑡), 𝑡, 𝜇) and 𝑝(𝑥, 𝑡, 𝜇) = 𝑝(𝑦(𝑥, 𝑡), 𝑡, 𝜇), where the
jump 𝐽(𝑥, 𝑡, 𝜇) and the phase 𝑝(𝑥, 𝑡, 𝜇) are defined in (2.27b) and (2.16), re-
spectively.

Accordingly, in this scale, the residue conditions (2.32) become explicit as
well:

Res𝜇𝑗
𝑀̂ (1)(𝑦, 𝑡, 𝜇) =

1

κ̂𝑗(𝑦, 𝑡)
𝑀̂ (2)(𝑦, 𝑡, 𝜇𝑗),

Res𝜇̄𝑗
𝑀̂ (2)(𝑦, 𝑡, 𝜇) =

1

κ̂𝑗(𝑦, 𝑡)
𝑀̂ (1)(𝑦, 𝑡, 𝜇𝑗),

(2.42)

with κ̂𝑗(𝑦, 𝑡) = 𝑎̇(𝜇𝑗)𝛿𝑗e
−2𝑝(𝑦,𝑡,𝜇𝑗). Further we denote 𝜌𝑗 := 𝑎̇(𝜇𝑗)𝛿𝑗.

Noticing that the normalization condition (2.28), the symmetries (2.31), and
the singularity conditions (2.29) at 𝜇 = ±1 hold when using the new scale (𝑦, 𝑡),
we arrive at the basic RH problem.

Basic RH problem. Given 𝑟(𝜇) for 𝜇 ∈ R, 𝑐 ∈ R, and {𝜇𝑗, 𝜌𝑗}𝑁1 a set
of points 𝜇𝑗 ∈ C+ and complex numbers 𝜌𝑗 ̸= 0 invariant by 𝜇 ↦→ −𝜇̄ and
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𝜇 ↦→ −𝜇−1 (that is, −𝜇𝑗 = 𝜇𝑗′ and −𝜇−1𝑗 = 𝜇𝑗′′ with 𝜌𝑗 = 𝜌𝑗′ = −𝜇−2𝑗 𝜌𝑗′′), find
a piece-wise (w.r.t. R) meromorphic, 2 × 2-matrix valued function 𝑀̂(𝑦, 𝑡, 𝜇)

satisfying the following conditions:

• The jump condition (2.41) across R (with 𝐽0(𝜇) defined by (2.27c)).

• The residue conditions (2.42) with κ̂𝑗(𝑦, 𝑡) = 𝜌𝑗e
−2𝑝(𝑦,𝑡,𝜇𝑗).

• The normalization condition 𝑀̂(𝑦, 𝑡, 𝜇)→ 𝐼 as 𝜇→∞.

• The symmetries

𝑀̂(𝜇̄) = 𝜎1𝑀̂(𝜇)𝜎1, 𝑀̂(−𝜇) = 𝜎2𝑀̂(𝜇)𝜎2, 𝑀̂(𝜇−1) = 𝜎1𝑀̂(𝜇)𝜎1

(2.43)
where 𝑀̂(𝜇) ≡ 𝑀̂(𝑦, 𝑡, 𝜇). These symmetries imply that
𝑀̂(−𝜇−1) = 𝜎3𝑀̂(𝜇)𝜎3 = 𝑀̂(−𝜇̄).

• The singularity conditions

𝑀̂(𝑦, 𝑡, 𝜇) =
i𝛼̂+(𝑦, 𝑡)

2(𝜇− 1)

(︃
−𝑐 1

−𝑐 1

)︃
+ O(1) as 𝜇→ 1, Im𝜇 > 0,

(2.44a)

𝑀̂(𝑦, 𝑡, 𝜇) = − i𝛼̂+(𝑦, 𝑡)

2(𝜇+ 1)

(︃
𝑐 1

−𝑐 −1

)︃
+ O(1) as 𝜇→ −1, Im𝜇 > 0,

(2.44b)

where 𝛼̂+(𝑦, 𝑡) ∈ R is not specified. These two singularity conditions are
actually equivalent by symmetries (2.43).

Data of this RH problem associated with 𝑢0(𝑥). Specific data for this
RH problem can be derived from initial data of the Cauchy problem (2.1)
satisfying 𝑢0(𝑥)→ 1 as 𝑥→ ±∞.

• We first get 𝑠(𝜇) through (2.22) at 𝑡 = 0 (using the solutions of (2.18) taken
at 𝑡 = 0).
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• Spectral data 𝑎(𝜇), 𝑏(𝜇), and 𝑟(𝜇) follow through (2.23) and (2.26).

• Then {𝜇𝑗}𝑁1 are the zeros of 𝑎(𝜇) in C+.

• The real constant 𝑐 is defined through (2.30).

• The constants {𝛿𝑗}𝑁1 are defined by (2.33b) at 𝑡 = 0 (using the solutions of
(2.12) at 𝑡 = 0).

• Finally, the {𝜌𝑗}𝑁1 are defined by 𝜌𝑗 = 𝑎̇(𝜇𝑗)𝛿𝑗.

Further, the basic RH problem associated with the Cauchy problem (2.1) for
the mCH equation is the basic RH problem with data associated with initial
data satisfying 𝑢0(𝑥)→ 1, as we just specified.

Remark 2.2.2. An important difference between the cases of the CH and mCH
equations is that in the former case, there is a possibility to reduce the matrix
RH problems to vector ones which have no singularity at a point on the contour:
this can be done by multiplying the respective 𝑀̂ by the vector (1, 1) from the
left. This trick will obviously not work in our current case, since the matrix
structure (see (2.44)) of the singularity at 𝜇 = 1 is different from that at
𝜇 = −1.

2.2.4 Uniqueness of the solution of the basic RH problem

Assume that the RH problem (2.41)–(2.44) has a solution 𝑀̂ . In order to prove
that this solution is unique, we first observe that det 𝑀̂ ≡ 1.

Indeed, the conditions for 𝑀̂ imply that det 𝑀̂ has neither a jump across
R no singularities at 𝜇𝑗. Moreover, det 𝑀̂ tends to 1 as 𝜇 → ∞, and the
only possible singularities of det 𝑀̂ are simple poles at 𝜇 = ±1. Then, by
Liouville’s theorem, det 𝑀̂ ≡ 1 + 𝜑1

𝜇−1 + 𝜑2

𝜇+1 with some 𝜑𝑗. But then, the
symmetry 𝑀̂(𝜇−1) = 𝜎1𝑀̂(𝜇)𝜎1 from (2.43) implies that 𝜑1 = 𝜑2 = 0 and thus
det 𝑀̂ ≡ 1.

Now suppose that 𝑀̂1 and 𝑀̂2 are two solutions of the RH problem, and
consider 𝑃 := 𝑀̂1(𝑀̂2)

−1. Obviously, 𝑃 has neither a jump across R no sin-
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gularities at 𝜇𝑗. Moreover, 𝑃 tends to 𝐼 as 𝜇 → ∞, and the only possible
singularities of 𝑃 are simple poles at 𝜇 = ±1.

Consider, for example, the development of 𝑀̂𝑗, 𝑗 = 1, 2 as 𝜇 → −1 with
Im𝜇 > 0:

𝑀̂𝑗(𝑦, 𝑡, 𝜇) = − i𝛽𝑗(𝑦, 𝑡)

2(𝜇+ 1)

(︃
𝑐 1

−𝑐 −1

)︃
+

(︃
𝑛𝑗(𝑦, 𝑡) 𝑚𝑗(𝑦, 𝑡)

𝑓𝑗(𝑦, 𝑡) 𝑔𝑗(𝑦, 𝑡)

)︃
+O(𝜇+1), 𝜇 ∈ C+.

By det 𝑀̂𝑗 ≡ 1 it follows that

(𝑀̂𝑗(𝑦, 𝑡, 𝜇))−1 = − i𝛽𝑗(𝑦, 𝑡)

2(𝜇+ 1)

(︃
−1 −1

𝑐 𝑐

)︃
+

(︃
𝑔𝑗(𝑦, 𝑡) −𝑚𝑗(𝑦, 𝑡)

−𝑓𝑗(𝑦, 𝑡) 𝑛𝑗(𝑦, 𝑡)

)︃
+O(𝜇+1).

Moreover, using these expressions to calculate the expansion of 𝑀̂𝑗𝑀̂
−1
𝑗 as

𝜇→ −1 the vanishing of the term of order (𝜇+ 1)−1 reads as

𝑛𝑗(𝑦, 𝑡) + 𝑓𝑗(𝑦, 𝑡) = 𝑐(𝑚𝑗(𝑦, 𝑡) + 𝑔𝑗(𝑦, 𝑡)), 𝑗 = 1, 2. (2.45)

Hence, (2.45) implies that

𝑃 (𝑦, 𝑡, 𝜇) = − i𝜓(𝑦, 𝑡)

2(𝜇+ 1)

(︃
1 1

−1 −1

)︃
+ O(1) as 𝜇→ −1, 𝜇 ∈ C+,

for some 𝜓(𝑦, 𝑡). Then, by the symmetry 𝑃 (𝜇−1) = 𝜎3𝑃 (𝜇)𝜎3, we have

𝑃 (𝑦, 𝑡, 𝜇) = − i𝜓(𝑦, 𝑡)

2(𝜇− 1)

(︃
1 −1

1 −1

)︃
+ O(1) as 𝜇→ 1, 𝜇 ∈ C+,

and, according to the Liouville theorem and the normalization condition,

𝑃 = − i

2
𝜓(𝑦, 𝑡)

(︃
1

𝜇− 1

(︃
1 −1

1 −1

)︃
+

1

𝜇+ 1

(︃
1 1

−1 −1

)︃)︃
+ 𝐼.

Evaluating this at 𝜇 = i we have

𝑃 (𝑦, 𝑡, i) = − i

2
𝜓(𝑦, 𝑡)

(︃
−i 1

−1 i

)︃
+ 𝐼. (2.46)

But, according to (2.40a), both matrices 𝑀̂1(i) and 𝑀̂2(i) are diagonal. Hence
𝑃 (𝑦, 𝑡, i) is also diagonal and (2.46) implies that 𝜓(𝑦, 𝑡) ≡ 0. Consequently,
𝑃 (𝑦, 𝑡, 𝜇) ≡ 𝐼 so that 𝑀̂1 ≡ 𝑀̂2.
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2.2.5 Recovering 𝑢(𝑥, 𝑡) from the solution of the RH problem

We will show how to recover the solution of the Cauchy problem (2.1) from
the solution of the basic RH problem whose data are associated with the initial
data 𝑢0(𝑥). We begin with some preliminary observations.

Going back to the construction of 𝑀(𝑥, 𝑡, 𝜇) from the Jost solutions, see
Section 2.2.2, we can use (2.39a) in order to express the solution 𝑢(𝑥, 𝑡) of the
mCH equation in terms of 𝑀(𝑥, 𝑡, 𝜇) evaluated at 𝜇 = i. Indeed, introduce
(compare with the case of the CH equation [26])

𝜇̃1(𝑥, 𝑡) := 𝑀11(𝑥, 𝑡, i) +𝑀21(𝑥, 𝑡, i) = e
1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉,

𝜇̃2(𝑥, 𝑡) := 𝑀12(𝑥, 𝑡, i) +𝑀22(𝑥, 𝑡, i) = e−
1
2

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉.

Using the new space variable 𝑦(𝑥, 𝑡) := 𝑥−
∫︀ +∞
𝑥 (𝑚̃(𝜉, 𝑡)− 1)d𝜉 we have intro-

duced in (2.14), the above equations yield

𝜇̃1(𝑥, 𝑡)

𝜇̃2(𝑥, 𝑡)
= e

∫︀ +∞
𝑥

(𝑚̃(𝜉,𝑡)−1)d𝜉 = e𝑥−𝑦(𝑥,𝑡) (2.47)

and thus
𝑥 = 𝑦(𝑥, 𝑡) + ln

𝜇̃1(𝑥, 𝑡)

𝜇̃2(𝑥, 𝑡)
. (2.48)

Also notice that
𝜇̃1(𝑥, 𝑡)𝜇̃2(𝑥, 𝑡) = 1. (2.49)

Proposition 2.2.3. Let 𝑀̂(𝑦, 𝑡, 𝜇) be the solution of the RH problem (2.41)–
(2.44) whose data are associated with the initial data 𝑢0(𝑥). Define 𝜇̂1(𝑦, 𝑡) :=

𝑀̂11(𝑦, 𝑡, i) + 𝑀̂21(𝑦, 𝑡, i) and 𝜇̂2(𝑦, 𝑡) := 𝑀̂12(𝑦, 𝑡, i) + 𝑀̂22(𝑦, 𝑡, i). The solution
𝑢(𝑥, 𝑡) of the Cauchy problem (2.1) has 𝑥-derivative given by the parametric
representation

𝑢𝑥(𝑥+ 𝑡, 𝑡) =
1

2
𝜕𝑡 ln

𝜇̂1(𝑦, 𝑡)

𝜇̂2(𝑦, 𝑡)
, (2.50a)

𝑥(𝑦, 𝑡) = 𝑦 + ln
𝜇̂1(𝑦, 𝑡)

𝜇̂2(𝑦, 𝑡)
. (2.50b)
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Proof. In what follows we will express 𝑢̃𝑥 in the variables (𝑦, 𝑡). To express a
function 𝑓(𝑥, 𝑡) in (𝑦, 𝑡) we will use the notation 𝑓(𝑦, 𝑡) := 𝑓(𝑥(𝑦, 𝑡), 𝑡), e.g.,

𝑢̂(𝑦, 𝑡) := 𝑢̃(𝑥(𝑦, 𝑡), 𝑡), 𝑢̂𝑥(𝑦, 𝑡) := 𝑢̃𝑥(𝑥(𝑦, 𝑡), 𝑡),

𝑚̂(𝑦, 𝑡) := 𝑚̃(𝑥(𝑦, 𝑡), 𝑡), 𝜔̂(𝑦, 𝑡) := 𝜔̃(𝑥(𝑦, 𝑡), 𝑡).

Differentiation of the identity 𝑥(𝑦(𝑥, 𝑡), 𝑡) = 𝑥 w.r.t. 𝑡 gives

𝜕𝑡 (𝑥(𝑦(𝑥, 𝑡), 𝑡)) = 𝑥𝑦(𝑦, 𝑡)𝑦𝑡(𝑥, 𝑡) + 𝑥𝑡(𝑦, 𝑡) = 0. (2.51)

From (2.14) it follows that

𝑥𝑦(𝑦, 𝑡) =
1

𝑚̂(𝑦, 𝑡)
(2.52)

and 𝑦𝑡(𝑥, 𝑡) = −
∫︀ +∞
𝑥 𝑚̃𝑡(𝜉, 𝑡)d𝜉. By (2.3a), the latter equality becomes

𝑦𝑡(𝑥, 𝑡) =

∫︁ +∞

𝑥

(𝜔̃𝑚̃)𝜉 (𝜉, 𝑡)d𝜉 = −𝜔̃𝑚̃(𝑥, 𝑡).

Substituting this and (2.52) into (2.51) we obtain

𝑥𝑡(𝑦, 𝑡) = 𝜔̂(𝑦, 𝑡). (2.53)

Further, differentiating (2.53) w.r.t. 𝑦 we get

𝑥𝑡𝑦(𝑦, 𝑡) = 𝜔̂𝑥𝑥𝑦(𝑦, 𝑡) = 2𝑢̂𝑥(𝑢̂− 𝑢̂𝑥𝑥 + 1)
1

𝑚̂
(𝑦, 𝑡) = 2𝑢̂𝑥(𝑦, 𝑡). (2.54)

Therefore, we arrive at a parametric representation of 𝑢̃𝑥(𝑥, 𝑡):

𝑢̃𝑥(𝑥(𝑦, 𝑡), 𝑡) ≡ 𝑢̂𝑥(𝑦, 𝑡) =
1

2
𝜕𝑡𝑥(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 +
ln 𝜇̂1(𝑦, 𝑡)

ln 𝜇̂2(𝑦, 𝑡)
,

which yields (2.50). For the direct determination of 𝑢 from the solution of the
RH problem, see Remark 2.3.8 below.

Remark 2.2.4. In the case of the Camassa–Holm equation, the relation between
the new and original space variables (2.48) is the same whereas the derivative
(2.53) gives directly the solution 𝑢 of the nonlinear equation (in the (𝑦, 𝑡) vari-
ables) in question.
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2.3 From a solution of the RH problem to a solution of
the mCH equation

Henceforth we consider a RH problem (2.41)–(2.44) with data not necessarily
related to initial data for the mCH equation. This section aims to show that
starting from the solution 𝑀̂(𝑦, 𝑡, 𝜇) of such a RH problem one can construct
a solution (at least, locally) of the mCH equation by manipulations similar
to those of Section 2.2.5. For this purpose, we will show that starting from
𝑀̂(𝑦, 𝑡, 𝜇) one can define 2 × 2-matrix valued functions Ψ̂(𝑦, 𝑡, 𝜇) satisfying
Lax pair equations

Ψ̂𝑦 =
^̂
𝑈Ψ̂,

Ψ̂𝑡 =
^̂
𝑉 Ψ̂,

whose coefficients ^̂
𝑈 and ^̂

𝑉 are obtained from 𝑀̂(𝑦, 𝑡, 𝜇), and whose compati-
bility condition is the mCH equation (written in the (𝑦, 𝑡) variables).

First, let us reformulate the original Lax pair equations (2.8) in the (𝑦, 𝑡)

variables. Introducing Ψ̂(𝑦, 𝑡) = Φ̂(𝑥(𝑦, 𝑡), 𝑡) and taking into account (2.53)
and (2.52), the Lax pair (2.8) in the variables (𝑦, 𝑡) takes the form:

Ψ̂𝑦 + i𝑘𝜎3Ψ̂ =
𝑚̃− 1

𝑚̃

𝜆

4i𝑘

(︃
1
𝜆 1

−1 − 1
𝜆

)︃
Ψ̂,

Ψ̂𝑡 −
2i𝑘

𝜆2
𝜎3Ψ̂ =

(︃
𝑢̃

2i𝑘

(︃
−1 − 1

𝜆
1
𝜆 1

)︃
+
𝑢̃𝑥
𝜆

(︃
0 1

1 0

)︃)︃
Ψ̂,

where 𝑘 := − i
2

√
1− 𝜆2.

Consequently, using 𝜇 as spectral parameter (see (2.15)), we have

Proposition 2.3.1. The Lax pair (2.8) has the following form in the variables
(𝑦, 𝑡, 𝜇):

Ψ̂𝑦 +
i(𝜇2 − 1)

4𝜇
𝜎3Ψ̂ = ̃︀𝑈Ψ̂,

Ψ̂𝑡 −
2i(𝜇2 − 1)𝜇

(𝜇2 + 1)2
𝜎3Ψ̂ = ̃︀𝑉 Ψ̂,

(2.55)
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where

̃︀𝑈(𝑦, 𝑡, 𝜇) =
i𝑓(𝑦, 𝑡)

𝜇− 1

(︃
1 −1

1 −1

)︃
+

i𝑓(𝑦, 𝑡)

𝜇+ 1

(︃
1 1

−1 −1

)︃
+ i𝑓(𝑦, 𝑡)

(︃
0 −1

1 0

)︃
,

(2.56a)

̃︀𝑉 (𝑦, 𝑡, 𝜇) =
i𝑞(𝑦, 𝑡)

𝜇− 1

(︃
1 −1

1 −1

)︃
+

i𝑞(𝑦, 𝑡)

𝜇+ 1

(︃
1 1

−1 −1

)︃

+
1

𝜇− i

(︃
0 𝑔1(𝑦, 𝑡)

𝑔2(𝑦, 𝑡) 0

)︃
+

1

𝜇+ i

(︃
0 𝑔2(𝑦, 𝑡)

𝑔1(𝑦, 𝑡) 0

)︃
,

(2.56b)

with 𝑓 , 𝑞, 𝑔1, and 𝑔2 as follows:

𝑓 = −𝑚̂− 1

2𝑚̂
, 𝑞 = 𝑢̂, 𝑔1 = −𝑢̂− 𝑢̂𝑥, 𝑔2 = 𝑢̂− 𝑢̂𝑥. (2.57)

Our goal in this section is to show that giving a solution 𝑀̂(𝑦, 𝑡, 𝜇) to the
RH problem (2.41)–(2.44), where the data 𝑟(𝜇) for 𝜇 ∈ R, 𝑐 ∈ R, and {𝜇𝑗, 𝜌𝑗}𝑁1
are not a priori associated with some initial data 𝑢0(𝑥), one can “extract” from
𝑀̂(𝑦, 𝑡, 𝜇) a solution to the mCH equation. The idea is as follows:

(a) Starting from 𝑀̂(𝑦, 𝑡, 𝜇), define Ψ̂(𝑦, 𝑡, 𝜇) = 𝑀̂(𝑦, 𝑡, 𝜇)e−𝑝(𝑦,𝑡,𝜇)𝜎3 and show
that Ψ̂(𝑦, 𝑡, 𝜇) satisfies the system of differential equations:

Ψ̂𝑦 =
^̂
𝑈Ψ̂,

Ψ̂𝑡 =
^̂
𝑉 Ψ̂,

(2.58)

where ^̂
𝑈 and ^̂

𝑉 have the same (rational) dependence on 𝜇 as in (2.55) and
(2.56), with coefficients given in terms of 𝑀̂(𝑦, 𝑡, 𝜇) evaluated at appropri-
ate values of 𝜇.

(b) Show that the compatibility condition for (2.58), which is the equality ^̂
𝑈𝑡−

^̂
𝑉𝑦 + [

^̂
𝑈,

^̂
𝑉 ] = 0, reduces to the mCH equation.
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Proposition 2.3.2. Let 𝑀̂(𝑦, 𝑡, 𝜇) be the solution of the RH problem (2.41)–
(2.44). Define

Ψ̂(𝑦, 𝑡, 𝜇) := 𝑀̂(𝑦, 𝑡, 𝜇)e−𝑝(𝑦,𝑡,𝜇)𝜎3, (2.59)

where 𝑝(𝑦, 𝑡, 𝜇) := − i(𝜇2−1)
4𝜇

(︁
−𝑦 + 8𝜇2

(𝜇2+1)2 𝑡
)︁
. Then Ψ̂(𝑦, 𝑡, 𝜇) satisfies the dif-

ferential equation
Ψ̂𝑦 =

^̂
𝑈Ψ̂

with ^̂
𝑈 = − i(𝜇2−1)

4𝜇 𝜎3 + ̃︀𝑈 , where ̃︀𝑈 is as in (2.56a) with 𝑓 given by

𝑓(𝑦, 𝑡) := −𝜂(𝑦, 𝑡)

2
,

𝜂(𝑦, 𝑡) being extracted from the large 𝜇 expansion of 𝑀̂(𝑦, 𝑡, 𝜇):

𝑀̂(𝑦, 𝑡, 𝜇) = 𝐼 +
1

𝜇

(︃
𝜉(𝑦, 𝑡) 𝜂(𝑦, 𝑡)

𝜂(𝑦, 𝑡) −𝜉(𝑦, 𝑡)

)︃
+ O(𝜇−2), 𝜇→∞.

Proof. First, notice that Ψ̂(𝑦, 𝑡, 𝜇) satisfies the jump condition

Ψ̂−(𝑦, 𝑡, 𝜇) = Ψ̂+(𝑦, 𝑡, 𝜇)𝐽0(𝜇)

with the jump matrix 𝐽0 independent of 𝑦. Hence, Ψ̂𝑦(𝑦, 𝑡, 𝜇) satisfies the same
jump condition. Consequently, Ψ̂𝑦Ψ̂

−1 = 𝑀̂𝑦𝑀̂
−1 − 𝑝𝑦𝑀̂𝜎3𝑀̂

−1 has no jump
and thus it is a meromorphic function, with possible singularities at 𝜇 = ∞,
𝜇 = 0, and 𝜇 = ±1. Let us evaluate Ψ̂𝑦Ψ̂

−1 near these points.
(i) As 𝜇→∞, we have 𝑝𝑦 = i𝜇

4 + O(𝜇−1) and thus

Ψ̂𝑦Ψ̂
−1 = − i𝜇

4
𝜎3 −

i

4
[𝑀̂ (∞), 𝜎3] + O(𝜇−1),

where 𝑀̂ (∞) ≡ 𝑀̂ (∞)(𝑦, 𝑡) comes from the large 𝜇 asymptotics of 𝑀̂ :

𝑀̂ = 𝐼 +
𝑀̂ (∞)

𝜇
+ O(𝜇−2), 𝜇→∞.

Symmetries (2.43) imply that 𝜎2𝑀̂ (∞)𝜎2 = −𝑀̂ (∞) and 𝜎1𝑀̂ (∞)𝜎1 = 𝑀̂ (∞), so
that

𝑀̂ (∞) =

(︃
𝜉 𝜂

𝜂 −𝜉

)︃
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with some 𝜉(𝑦, 𝑡) ∈ iR and 𝜂(𝑦, 𝑡) ∈ R. Consequently,

Ψ̂𝑦Ψ̂
−1 = − i𝜇

4
𝜎3 −

i

2

(︃
0 −𝜂
𝜂 0

)︃
+ O(𝜇−1), 𝜇→∞. (2.60)

Then, by symmetry,

Ψ̂𝑦Ψ̂
−1 =

i

4𝜇
𝜎3 +

i

2

(︃
0 −𝜂
𝜂 0

)︃
+ O(𝜇), 𝜇→ 0. (2.61)

(ii) Pushing the expansion (2.44a) of 𝑀̂(𝜇) a step further, and proceeding
as in Section 2.2.4 to get (2.45) we have

Ψ̂𝑦Ψ̂
−1 =

i𝛽1
𝜇− 1

(︃
1 −1

1 −1

)︃
+ O(1), 𝜇→ 1, (2.62)

with some 𝛽1(𝑦, 𝑡) ∈ R. By symmetry,

Ψ̂𝑦Ψ̂
−1 =

i𝛽1
𝜇+ 1

(︃
1 1

−1 −1

)︃
+ O(1), 𝜇→ −1. (2.63)

Combining (2.60), (2.61), (2.62), and (2.63), we obtain that the function

Ψ̂𝑦Ψ̂
−1 +

i(𝜇2 − 1)

4𝜇
𝜎3 −

i𝛽1
𝜇− 1

(︃
1 −1

1 −1

)︃
− i𝛽1
𝜇+ 1

(︃
1 1

−1 −1

)︃
+

i

2

(︃
0 −𝜂
𝜂 0

)︃
is holomorphic in the whole complex 𝜇-plane and, moreover, vanishes as 𝜇 →
∞. Then, by Liouville’s theorem, it vanishes identically.

Further, again by symmetry, 𝑀̂(𝑦, 𝑡, i) is diagonal (see Remark 2.2.1), which
implies that the following sum is diagonal as well:

i𝛽1
i− 1

(︃
1 −1

1 −1

)︃
+

i𝛽1
i + 1

(︃
1 1

−1 −1

)︃
− i

2

(︃
0 −𝜂
𝜂 0

)︃
.

It follows that 𝜂
2 = −𝛽1, and thus we arrive at the equality Ψ̂𝑦 =

^̂
𝑈Ψ̂ with

^̂
𝑈 = − i(𝜇2−1)

4𝜇 𝜎3 + ̃︀𝑈 , where ̃︀𝑈 is as in (2.56a) with 𝑓 = 𝛽1.
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Proposition 2.3.3. The function Ψ̂(𝑦, 𝑡, 𝜇) defined by (2.59) satisfies the dif-
ferential equation

Ψ̂𝑡 =
^̂
𝑉 Ψ̂ (2.64)

with ^̂
𝑉 = 2i(𝜇2−1)𝜇

(𝜇2+1)2 𝜎3 + ̃︀𝑉 , where ̃︀𝑉 is as in (2.56b) with coefficients 𝑞, 𝑔1, and
𝑔2 determined by evaluating 𝑀̂(𝑦, 𝑡, 𝜇) as 𝜇→ 1 and 𝜇→ i.

Proof. Similarly to Proposition 2.3.2, we notice that Ψ̂𝑡Ψ̂
−1 = 𝑀̂𝑡𝑀̂

−1 −
𝑝𝑡𝑀̂𝜎3𝑀̂

−1 has no jump and thus it is a meromorphic function, with possi-
ble singularities at 𝜇 = ∞, 𝜇 = 0, 𝜇 = ±1, and 𝜇 = ±i, the latter being due
to the singularity of 𝑝𝑡 at 𝜇 = ±i:

𝑝𝑡(𝜇) = ± 1

(𝜇∓ i)2
− i

𝜇∓ i
+ O(1), 𝜇→ ±i. (2.65)

Evaluating Ψ̂𝑡Ψ̂
−1 near these points, we have the following.

(i) As 𝜇→∞, we have 𝑝𝑡(𝜇) = O(𝜇−1) and thus

Ψ̂𝑡Ψ̂
−1(𝜇) = O(𝜇−1), 𝜇→∞. (2.66)

Then, by symmetry,

Ψ̂𝑡Ψ̂
−1(𝜇) = O(𝜇), 𝜇→ 0. (2.67)

(ii) Expanding 𝑀̂(𝜇) at 𝜇 = 1, and proceeding as above to get (2.62), we
have

Ψ̂𝑡Ψ̂
−1(𝜇) =

i𝛽2
𝜇− 1

(︃
1 −1

1 −1

)︃
+ O(1), 𝜇→ 1, (2.68)

with some 𝛽2(𝑦, 𝑡) ∈ R. By symmetry,

Ψ̂𝑡Ψ̂
−1(𝜇) =

i𝛽2
𝜇+ 1

(︃
1 1

−1 −1

)︃
+ O(1), 𝜇→ −1. (2.69)

(iii) Evaluating 𝑀̂(𝜇) as 𝜇→ i, we first notice that, due to symmetries,

𝑀̂(𝜇) =

(︃
𝑎1 0

0 𝑎−11

)︃
+

(︃
0 𝑎2

𝑎3 0

)︃
(𝜇− i) + O((𝜇− i)2), 𝜇→ i, (2.70)
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with some 𝑎𝑗 ≡ 𝑎𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3. Taking into account (2.65), we have

Ψ̂𝑡Ψ̂
−1(𝜇) = − 1

(𝜇− i)2
𝜎3+

1

𝜇− i

(︃
i𝜎3 +

(︃
0 2𝑎2𝑎1

−2𝑎3𝑎
−1
1 0

)︃)︃
+O(1), 𝜇→ i.

(2.71)
Then, by symmetry,

Ψ̂𝑡Ψ̂
−1(𝜇) =

1

(𝜇+ i)2
𝜎3+

1

𝜇+ i

(︃
i𝜎3 +

(︃
0 −2𝑎3𝑎

−1
1

2𝑎2𝑎1 0

)︃)︃
+O(1), 𝜇→ −i.

(2.72)

Combining (2.66), (2.68), and (2.69), (2.71), and (2.72), we obtain that the
function

Ψ̂𝑡Ψ̂
−1(𝜇)− 2i(𝜇2 − 1)𝜇

(𝜇2 + 1)2
𝜎3 −

1

𝜇− 1
i𝛽2

(︃
1 −1

1 −1

)︃
− 1

𝜇+ 1
i𝛽2

(︃
1 1

−1 −1

)︃

− 1

𝜇− i

(︃
0 𝛾1

𝛾2 0

)︃
− 1

𝜇+ i

(︃
0 𝛾2

𝛾1 0

)︃
with 𝛾1 = 2𝑎2𝑎1 and 𝛾2 = −2𝑎3𝑎

−1
1 is holomorphic in the whole complex 𝜇-

plane and, moreover, vanishes as 𝜇 → ∞. Then, by Liouville’s theorem, it
vanishes identically. Thus we arrive at the equality Ψ̂𝑡 =

^̂
𝑉 Ψ̂ with ^̂

𝑉 (𝜇) =
2i(𝜇2−1)𝜇
(𝜇2+1)2 𝜎3 + ̃︀𝑉 (𝜇), where ̃︀𝑉 (𝜇) is as in (2.56b) with 𝑞 = 𝛽2, 𝑔1 = 𝛾1, and
𝑔2 = 𝛾2.

The next step is to demonstrate that the compatibility condition

^̂
𝑈𝑡 − ^̂

𝑉𝑦 + [
^̂
𝑈,

^̂
𝑉 ] = 0 (2.73)

yields the mCH equation in the (𝑦, 𝑡) variables, which is as follows:

Proposition 2.3.4. The mCH equation (2.3a) in the (𝑦, 𝑡) variables reads as
follows:

(𝑚̂−1)𝑡(𝑦, 𝑡) = 2𝑢̂𝑥(𝑦, 𝑡), (2.74a)

𝑚̂(𝑦, 𝑡) := 𝑢̂(𝑦, 𝑡)− 𝑢̂𝑥𝑥(𝑦, 𝑡) + 1, (2.74b)

where 𝑓(𝑦, 𝑡) := 𝑓(𝑥(𝑦, 𝑡), 𝑡) for any function 𝑓(𝑥, 𝑡) and 𝑥𝑦(𝑦, 𝑡) = 𝑚̂−1(𝑦, 𝑡).
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Proof. Substituting 𝑚̃𝑡 = −(𝜔̃𝑚̃)𝑥 from (2.3a) and 𝑥𝑡 = 𝜔̂ from (2.53) into the
equality

𝑚̂𝑡(𝑦, 𝑡) = 𝑚̃𝑥(𝑥(𝑦, 𝑡), 𝑡)𝑥𝑡(𝑦, 𝑡) + 𝑚̃𝑡(𝑥(𝑦, 𝑡), 𝑡)

and using that 𝜔̃𝑥 = 2𝑚̃𝑢̃𝑥 we get

𝑚̂𝑡(𝑦, 𝑡) = 𝑚̃𝑥(𝑥(𝑦, 𝑡), 𝑡)𝜔̂(𝑦, 𝑡)− 𝑚̃𝑥(𝑥(𝑦, 𝑡), 𝑡)𝜔̂(𝑦, 𝑡)− 2𝑚̃2(𝑥(𝑦, 𝑡), 𝑡)𝑢̂𝑥(𝑦, 𝑡)

= −2𝑢̂𝑥𝑚̂
2(𝑦, 𝑡)

and thus (2.74a) follows.

Remark 2.3.5. Notice that (2.74b) can be written as

𝑚̂(𝑦, 𝑡) = 𝑢̂(𝑦, 𝑡)− (𝑢̂𝑥)𝑦 (𝑦, 𝑡)𝑚̂(𝑦, 𝑡) + 1. (2.75)

Now, evaluating the compatibility equation (2.73) at the singular points for
^̂
𝑈 and ^̂

𝑉 , we get algebraic and differential equations amongst the coefficients
of ^̂
𝑈 and ^̂

𝑉 , i.e., amongst 𝛽1, 𝛽2, 𝛾1, and 𝛾2, that can be reduced to (2.74a).

Proposition 2.3.6. Let 𝛽1(𝑦, 𝑡), 𝛽2(𝑦, 𝑡), 𝛾1(𝑦, 𝑡), and 𝛾2(𝑦, 𝑡) be the functions
determined in terms of 𝑀̂(𝑦, 𝑡, 𝜇) as in Propositions 2.3.2 and 2.3.3. Then they
satisfy the following equations:

𝛽1𝑡 +
𝛾1 + 𝛾2

2
= 0; (2.76a)

𝛽2 −
𝛾2 − 𝛾1

2
= 0; (2.76b)

(𝛾1 − 𝛾2)𝑦 − (1 + 2𝛽1)(𝛾1 + 𝛾2) = 0; (2.76c)

(𝛾2 + 𝛾1)𝑦 + 4𝛽1 − (1 + 2𝛽1)(𝛾1 − 𝛾2) = 0. (2.76d)

Proof. Recall 𝛽1 and 𝛽2 are given by (2.62) and (2.68), respectively. Moreover,
𝛾1 := 2𝑎2𝑎1 and 𝛾2 := −2𝑎3𝑎

−1
1 , where 𝑎1, 𝑎2, and 𝑎3 are defined by (2.70).

(i) Evaluating the l.h.s. of (2.73) as 𝜇→∞, the main term (of order O(1))
is (︂

𝛽1𝑡 +
𝛾1 + 𝛾2

2

)︂
𝜎2,

from which (2.76a) follows.
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(ii) Evaluating the l.h.s. of (2.73) as 𝜇→ 0, the main term (of order O(𝜇−1))
is

−1

𝜇

(︂
𝛽2 +

𝛾1 − 𝛾2
2

)︂
𝜎1,

from which (2.76b) follows.
(iii) Evaluating the l.h.s. of (2.73) as 𝜇 → 1, the diagonal part of the main

term (of order O((𝜇− 1)−1)) is

i

𝜇− 1
(𝛽1𝑡 − 𝛽2𝑦 − 𝛽1(𝛾1 + 𝛾2))𝜎3,

from which (2.76c) follows, taking into account (2.76a) and (2.76b).
(iv) Evaluating the l.h.s. of (2.73) as 𝜇→ i, the main term (of order O((𝜇−

i)−1)) is

1

𝜇− i

[︃(︃
0 −𝛾1𝑦
−𝛾2𝑦 0

)︃
+ (1 + 2𝛽1)

(︃
0 𝛾1

−𝛾2 0

)︃
− 2𝛽1

(︃
0 1

1 0

)︃]︃
,

from which (2.76d) follows.

Proposition 2.3.7. Let 𝑚̂(𝑦, 𝑡), 𝑢̂(𝑦, 𝑡), and 𝑥(𝑦, 𝑡) be defined in terms of 𝛽1,
𝛽2, 𝛾1, and 𝛾2 as follows:

𝑚̂ = (1 + 2𝛽1)
−1, 𝑢̂ = 𝛽2 =

𝛾2 − 𝛾1
2

, 𝑥𝑦 = 1 + 2𝛽1. (2.77)

Then the four equations (2.76) reduce to (2.74a) and (2.75).

Proof. Indeed, defining 𝑢̂ and 𝑥(𝑦, 𝑡) as prescribed in (2.77), equation (2.76c)
implies that 𝑢̂𝑥 = 𝑢̂𝑦𝑥

−1
𝑦 can be expressed as

𝑢̂𝑥 = −𝛾1 + 𝛾2
2

.

Then, taking into account the definition of 𝑚̂ in (2.77), equation (2.76a) takes
the form of the equation (2.74a). Finally, using the notations introduced above,
equation (2.75) can be written as

1

1 + 2𝛽1
=
𝛾2 − 𝛾1

2
+

(𝛾1 + 𝛾2)𝑦
2

1

1 + 2𝛽1
+ 1,

which is just equation (2.76d).
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Remark 2.3.8. Formulas 𝑢̂ = 𝛾2−𝛾1
2 and 𝑢̂𝑥 = −𝛾1+𝛾2

2 provide an alternative way
to obtain 𝑢̂ as well as 𝑢̂𝑥 from the solution 𝑀̂ of the RH problem. Indeed,
according to Proposition 2.3.3, 𝑢̂ and 𝑢̂𝑥 (as functions of (𝑦, 𝑡)) can be obtained
using the coefficients 𝑎𝑗(𝑦, 𝑡) (see (2.70)) of the development of 𝑀̂(𝑦, 𝑡, 𝑘) as
𝜇→ i (thus avoiding the differentiations used in Section 2.2.5):

𝑢̂(𝑦, 𝑡) = −𝑎2𝑎1 − 𝑎3𝑎−11 , 𝑢̂𝑥(𝑦, 𝑡) = −𝑎2𝑎1 + 𝑎3𝑎
−1
1 , (2.78)

where 𝑎𝑗(𝑦, 𝑡) are determined by (2.70). Recall also the representation for 𝑚̂
in terms of 𝑀̂ evaluated as 𝜇→∞, see Proposition 2.3.2:

𝑚̂(𝑦, 𝑡) =
1

1 + 2𝛽1(𝑦, 𝑡)
=

1

1− 𝜂(𝑦, 𝑡)
,

𝜂(𝑦, 𝑡) := lim
𝜇→∞

𝜇𝑀̂12(𝑦, 𝑡, 𝜇).
(2.79)

Considered together with the expression for the change of variables (2.50b),
which can be written as (we indeed have 𝜇̂1 = 𝑎1 and 𝜇̂2 = 𝑎−11 )

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln 𝑎1(𝑦, 𝑡), (2.80)

equations (2.78) and (2.79) give a parametric representation of the solution of
the mCH equation (2.3a).

2.4 Solitons

In the Riemann–Hilbert variant of the inverse scattering transform method,
pure soliton solutions can be obtained from the solutions of the RH problem
assuming that the jump is trivial (𝐽 ≡ 𝐼), which reduces the construction to
solving a system of linear algebraic equations generated by the residue condi-
tions.

In order to construct the simplest, one-soliton solution, we consider the
RH problem (2.41)–(2.44) with specific data, in particular 𝑟(𝜇) ≡ 0, so that
𝐽 ≡ 𝐼. Regarding the other data, we require that 𝑀̂ (1) has a simple pole on
the unit circle, at 𝜇1 = ei𝜃, 𝜃 ∈ (0, 𝜋2 ). It follows that 𝑀̂ (1) has also a simple
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pole at 𝜇2 = −e−i𝜃 = −𝜇̄1 = −𝜇−11 . According to the symmetries (2.43) the
coefficients κ̂𝑗(𝑦, 𝑡) = 𝜌𝑗e

−2𝑝(𝑦,𝑡,𝜇𝑗), 𝑗 = 1, 2 in the residue conditions (2.42)
must satisfy the relations κ̂1 = κ̂2 = −𝜇−21 κ̂2, that is, 𝜌1 = 𝜌2 = −𝜇−21 𝜌2

which imply 𝜌1 = ie−i𝜃𝛿 for some 𝛿 ∈ R. Further we denote κ̂(𝑦, 𝑡) := κ̂1(𝑦, 𝑡)

and 𝜌 := 𝜌1 ∈ C. So 𝜌 satisfies

𝜌 = −e2i𝜃𝜌. (2.81)

Thus we arrive at the following Riemann–Hilbert problem:

Soliton RH problem. Given 𝜃 ∈ (0, 𝜋2 ) and 𝛿 ̸= 0 two real parameters,
together with 𝑐 ∈ R, find a piece-wise (w.r.t. R) meromorphic, 2 × 2-matrix
valued function 𝑀̂(𝑦, 𝑡, 𝜇) satisfying the following conditions:

• The jump condition 𝐽 ≡ 𝐼 across R.

• The residue conditions (2.42) at 𝜇1 = ei𝜃 and 𝜇̄1 = e−i𝜃:

Resei𝜃 𝑀̂
(1)(𝑦, 𝑡, 𝜇) =

1

κ̂(𝑦, 𝑡)
𝑀̂ (2)(𝑦, 𝑡, ei𝜃), (2.82a)

Rese−i𝜃 𝑀̂ (2)(𝑦, 𝑡, 𝜇) =
1

κ̂(𝑦, 𝑡)
𝑀̂ (1)(𝑦, 𝑡, e−i𝜃), (2.82b)

where κ̂(𝑦, 𝑡) = ie−i𝜃𝛿e−2𝑝(𝑦,𝑡,e
i𝜃) with 𝑝(𝑦, 𝑡, ei𝜃) = sin 𝜃

2 (−𝑦 + 2
cos2 𝜃𝑡), and

κ̂ = −e2i𝜃κ̂.

• The normalization condition 𝑀̂(𝑦, 𝑡,∞) = 𝐼.

• The symmetries (2.43).

• The singularity conditions (2.44) at 𝜇 = ±1.

The residue conditions at 𝜇2 and 𝜇̄2 follow from (2.82) using the symmetries
(2.43):

Res−e−i𝜃 𝑀̂ (1)(𝑦, 𝑡, 𝜇) =
1

κ̂(𝑦, 𝑡)
𝑀̂ (2)(𝑦, 𝑡,−e−i𝜃), (2.83a)

Res−ei𝜃 𝑀̂
(2)(𝑦, 𝑡, 𝜇) =

1

κ̂(𝑦, 𝑡)
𝑀̂ (1)(𝑦, 𝑡,−ei𝜃). (2.83b)
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To summarize, the soliton RH problem of parameters (𝜃, 𝛿) is the RH prob-
lem (2.41)–(2.44) with trivial jump condition and residue conditions data {𝜇𝑗, 𝜌𝑗}21
where 𝜇1 = −𝜇̄2 = ei𝜃 and 𝜌1 = 𝜌2 = ie−i𝜃𝛿.

Remark 2.4.1. Assume that the data of the soliton RH problem are associated
with the spectral data corresponding to some initial data 𝑢0(𝑥), see Section
2.1.3. In particular, 𝑏(𝜇) ≡ 0 and 𝑎(𝜇) has two zeros in C+, each of multi-
plicity one, 𝜇1 = ei𝜃 and 𝜇2 = −e−i𝜃, both on the unit circle. The coefficient
κ̂ in the residue condition for 𝑀 (1) at 𝜇1 is given by κ̂ = 𝜌 e−2𝑝(𝑦,𝑡,e

i𝜃) with
𝜌 = 𝑎̇(ei𝜃)𝛿, where the constant 𝛿 relates two Jost functions: Φ̂

(2)
+ (𝑥, 𝑡, 𝜇1) =

𝛿Φ̂
(1)
− (𝑥, 𝑡, 𝜇1). Using the symmetries (2.21) and the relation 𝜇̄1 = 𝜇−11 we find

that 𝜎1Φ̂±(e−i𝜃)𝜎1 = Φ̂±(ei𝜃) = Φ̂±(ei𝜃) and thus 𝛿 is real. Moreover, from the
symmetry relation 𝑎(𝜇−1) = 𝑎(𝜇̄) it follows that 𝑎̇(ei𝜃) = −e2i𝜃𝑎̇(ei𝜃), and thus
𝜌 = 𝑎̇(ei𝜃)𝛿 satisfies (2.81). To conclude, in that case, 𝛿 = −iei𝜃𝑎̇(ei𝜃)𝛿.

Proposition 2.4.2. Let 𝜃 ∈ (0, 𝜋2 ) and 𝛿 ̸= 0 be two real parameters. Then,
the soliton RH problem of parameters (𝜃, 𝛿) has a solution 𝑀̂ ≡ 𝑀̂𝜃,𝛿 provided
that 𝑐 = 1:

𝑀̂(𝑦, 𝑡, 𝜇) = 𝐼 +
i

2

𝛼̂+(𝑦, 𝑡)

𝜇− 1

(︃
−1 1

−1 1

)︃
− i

2

𝛼̂+(𝑦, 𝑡)

𝜇+ 1

(︃
1 1

−1 −1

)︃

+

(︃
i𝜅̂1(𝑦,𝑡)e

i𝜃

𝜇−ei𝜃 + i𝜅̂1(𝑦,𝑡)e
−i𝜃

𝜇+e−i𝜃

−i𝜅̂2(𝑦,𝑡)e
−i𝜃

𝜇−e−i𝜃 + i𝜅̂2(𝑦,𝑡)e
i𝜃

𝜇+ei𝜃

i𝜅̂2(𝑦,𝑡)e
i𝜃

𝜇−ei𝜃 + −i𝜅̂2(𝑦,𝑡)e
−i𝜃

𝜇+e−i𝜃

−i𝜅̂1(𝑦,𝑡)e
−i𝜃

𝜇−e−i𝜃 + −i𝜅̂1(𝑦,𝑡)e
i𝜃

𝜇+ei𝜃

)︃
, (2.84)

where

𝜅̂−12 (𝑦, 𝑡) = − ^̂κ(𝑦, 𝑡)− cos2 𝜃

4^̂κ(𝑦, 𝑡) sin2 𝜃
− 1

sin 𝜃
, (2.85a)

𝜅̂1(𝑦, 𝑡) = − cos 𝜃

2^̂κ(𝑦, 𝑡) sin 𝜃
𝜅̂2(𝑦, 𝑡), (2.85b)

𝛼̂+(𝑦, 𝑡) = 2𝜅̂2(𝑦, 𝑡). (2.85c)

Here,

^̂κ(𝑦, 𝑡) := 𝛿 e−2𝑝(𝑦,𝑡,e
i𝜃) with 𝑝(𝑦, 𝑡, ei𝜃) =

sin 𝜃

2

(︂
−𝑦 +

2

cos2 𝜃
𝑡

)︂
. (2.85d)
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Proof. Since 𝑀̂(𝜇) ≡ 𝑀̂(𝑦, 𝑡, 𝜇) is solution of the soliton RH problem whose
jump condition is trivial, it is a rational function, whose pole structure is speci-
fied by the singularity conditions (2.44) at 𝜇 = ±1 and by the residue conditions
(2.82) at 𝜇 = ±e±i𝜃:

𝑀̂(𝜇) = 𝐼+
i

2

𝛼̂+

𝜇− 1

(︃
−𝑐 1

−𝑐 1

)︃
− i

2

𝛼̂+

𝜇+ 1

(︃
𝑐 1

−𝑐 −1

)︃
+

(︃
𝑐1

𝜇−ei𝜃 + 𝑐3
𝜇+e−i𝜃

𝑐1
𝜇−e−i𝜃 + 𝑐3

𝜇+ei𝜃

𝑐2
𝜇−ei𝜃 + 𝑐4

𝜇+e−i𝜃
𝑐2

𝜇−e−i𝜃 + 𝑐4
𝜇+ei𝜃

)︃
(2.86)

with some 𝛼̂+(𝑦, 𝑡), 𝑐𝑗(𝑦, 𝑡), 𝑐𝑗(𝑦, 𝑡), and 𝑐. We will specify the coefficients
using the symmetries (2.43). The symmetry 𝑀̂ (1)(−𝜇) = 𝜎3𝜎1𝑀̂

(2)(𝜇) shows
that 𝑐 = 1, 𝑐1 = 𝑐4, 𝑐2 = −𝑐3, 𝑐3 = 𝑐2, and 𝑐4 = −𝑐1. On the other hand,
the symmetry 𝑀̂ (1)(−𝜇̄) = 𝜎3𝑀̂ (1)(𝜇) shows that 𝑐3 = −𝑐1 and 𝑐4 = 𝑐2. Thus
(2.86) takes the form

𝑀̂(𝜇) = 𝐼+
i

2

𝛼̂+

𝜇− 1

(︃
−1 1

−1 1

)︃
− i

2

𝛼̂+

𝜇+ 1

(︃
1 1

−1 −1

)︃
+

(︃
𝑐1

𝜇−ei𝜃 + −𝑐1
𝜇+e−i𝜃

𝑐2
𝜇−e−i𝜃 + 𝑐2

𝜇+ei𝜃

𝑐2
𝜇−ei𝜃 + 𝑐2

𝜇+e−i𝜃
𝑐1

𝜇−e−i𝜃 + −𝑐1
𝜇+ei𝜃

)︃
.

The symmetry 𝑀̂ (1)(−𝜇−1) = 𝜎3𝑀̂
(1)(𝜇) shows that 𝑐3 = 𝑐1e

−2i𝜃 and 𝑐4 =

−𝑐2e−2i𝜃, so that 𝑐𝑗 = −𝑐𝑗e−2i𝜃 for 𝑗 = 1, 2, that is, 𝑐𝑗(𝑦, 𝑡) = iei𝜃𝜅̂𝑗(𝑦, 𝑡) with
𝜅̂𝑗(𝑦, 𝑡) ∈ R. Thus we get (2.84).

Then, using 𝑀̂(0) = 𝜎1𝑀̂(∞)𝜎1 = 𝐼, it follows that 𝛼̂+ = 2𝜅̂2, that is,
(2.85c). Introducing ^̂κ(𝑦, 𝑡) := 𝛿 e−2𝑝(𝑦,𝑡,e

i𝜃) so that κ̂(𝑦, 𝑡) = ie−i𝜃 ^̂κ(𝑦, 𝑡) and
substituting (2.84) into the residue condition (2.82a) at ei𝜃, we find (2.85b) on
the first row and then (2.85a) on the second one.

Remark 2.4.3. Assume that the data of our soliton RH problem are derived
from the spectral data corresponding to some initial data 𝑢0(𝑥), as in Remark
2.4.1. Then, it directly follows that 𝑐 = 1. Since 𝑏(𝜇) ≡ 0 we indeed have (see
Remark 2.1.4 and (2.30)) 𝜌 = 0, 𝑏1 = 0, and 𝑎21 = 1; thus 𝑐 = 1.

According to Section 2.3, a solution of the soliton RH problem gives rise to
a solution (at least, locally, in the (𝑦, 𝑡) variables) of the mCH equation. Thus,
Proposition 2.4.2 provides a family of one-soliton solutions parameterized by
two real parameters 𝜃 ∈ (0, 𝜋2 ) and 𝛿 ̸= 0.
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Proposition 2.4.4. The one-soliton solution 𝑢̂ ≡ 𝑢̂𝜃,𝛿 of parameters (𝜃, 𝛿) has
the following form in the (𝑦, 𝑡)-scale:

𝑢̂(𝑦, 𝑡) = 4 tan2 𝜃
𝑧2(𝑦, 𝑡) + 2 cos2 𝜃 · 𝑧(𝑦, 𝑡) + cos2 𝜃

(𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + cos2 𝜃)2
𝑧(𝑦, 𝑡), (2.87a)

where
𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 esin 𝜃(𝑦−

2
cos2 𝜃

𝑡). (2.87b)

Proof. Let 𝑧(𝑦, 𝑡) be defined by

𝑧(𝑦, 𝑡) := 2^̂κ(𝑦, 𝑡) sin 𝜃. (2.88)

Then, 𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 esin 𝜃(𝑦−
2

cos2 𝜃
𝑡). Thus, 𝑧 is real-valued. Moreover, 𝑧(𝑦, 𝑡) >

0 if 𝛿 > 0 and 𝑧(𝑦, 𝑡) < 0 if 𝛿 < 0. Using (2.85a), (2.85b), and (2.88) we get
the following expressions of 𝜅̂2 and 𝜅̂1:

𝜅̂2 = − 2𝑧 sin 𝜃

𝑧2 + 2𝑧 + cos2 𝜃
and 𝜅̂1 = −cos 𝜃

𝑧
𝜅̂2 =

2 sin 𝜃 cos 𝜃

𝑧2 + 2𝑧 + cos2 𝜃
. (2.89)

In order to obtain the formula for the soliton solution 𝑢̂ ≡ 𝑢̂(𝑦, 𝑡), we use the
relation

𝑢̂ = −𝑎2𝑎1 − 𝑎3𝑎−11 (2.90)

from (2.78). To compute 𝑎1 ≡ 𝑎1(𝑦, 𝑡) we observe that 𝑎1 = 𝑀̂11(i). We thus
obtain

𝑎1 = 1− 𝛼̂+

2
− i𝜅1

1 + e2i𝜃

2(1− sin 𝜃)
= 1− 𝜅̂2 + 𝜅̂1

cos 𝜃

1− sin 𝜃
,

using the relation 𝛼̂+

2 = 𝜅̂2 from (2.85c). Using the expressions of 𝜅̂1 and 𝜅̂2

from (2.89) we get

𝑎1 =
𝑧 + 1 + sin 𝜃

𝑧 + 1− sin 𝜃
. (2.91a)

To compute 𝑎2 ≡ 𝑎2(𝑦, 𝑡) and 𝑎3 ≡ 𝑎3(𝑦, 𝑡) we observe that 𝑎2 = 𝜕𝜇𝑀̂12(i) and
𝑎3 = 𝜕𝜇𝑀̂21(i). Using in addition the expression of 𝜅̂2 from (2.89) we obtain

𝑎2 =
sin 𝜃

1 + sin 𝜃
𝜅̂2 = − 2𝑧 sin2 𝜃

(1 + sin 𝜃)(𝑧2 + 2𝑧 + cos2 𝜃)
, (2.91b)

𝑎3 =
sin 𝜃

1− sin 𝜃
𝜅̂2 = − 2𝑧 sin2 𝜃

(1− sin 𝜃)(𝑧2 + 2𝑧 + cos2 𝜃)
. (2.91c)

Then, substituting (2.91) into (2.90), we arrive at (2.87a).
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It follows from (2.87a) that if 𝛿 > 0, then for any 𝑡 ≥ 0, 𝑢̂(𝑦, 𝑡) is a smooth
function of 𝑦 having a single peak and (exponentially) approaching 0 as 𝑦 →
±∞. On the other hand, if 𝛿 < 0, then 𝑢̃ has two singular points corresponding
to 𝑧 = −1± sin 𝜃.

Now let us discuss the change of variable (𝑦, 𝑡) ↦→ (𝑥, 𝑡), which can be
specified explicitly. This change of variable is associated with 𝑢̃𝜃,𝛿, that is, it is
given by (2.50b) where 𝜇̂1 and 𝜇̂2 are defined in terms of 𝑀̂ ≡ 𝑀̂𝜃,𝛿.

Proposition 2.4.5. The change of variable 𝑥(𝑦, 𝑡) associated with the soliton
𝑢̃𝜃,𝛿 takes the following form:

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln
𝑧(𝑦, 𝑡) + 1 + sin 𝜃

𝑧(𝑦, 𝑡) + 1− sin 𝜃
. (2.92)

Proof. As we have shown in Section 2.3, 𝑥(𝑦, 𝑡) can be given by (2.80):

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln 𝑎1(𝑦, 𝑡), (2.93)

where 𝑎1(𝑦, 𝑡) = 𝑀̂11(𝑦, 𝑡, i). Substituting (2.91a) into (2.93), we obtain (2.92).

Corollary 2.4.6. Let 𝑥(𝑦, 𝑡) be the change of variable associated with 𝑢̃𝜃,𝛿. Its
regularity properties are as follows.

(a) If 𝛿 < 0, then 𝑥( · , 𝑡) is singular: there exist values of 𝑦 at which 𝑥(𝑦, 𝑡) is
infinite.

(b) If 𝛿 > 0, then 𝑥( · , 𝑡) : R → R is a regular map. Moreover, it has the
following additional properties:

(i) If 𝜃 ∈ (0, 𝜋3 ), then 𝑥( · , 𝑡) : R→ R is a diffeomorphism for any 𝑡 ≥ 0.

(ii) If 𝜃 = 𝜋
3 , then 𝑥( · , 𝑡) : R→ R is a bijection, but the derivative of the

inverse map has a singularity, and only one.

(iii) If 𝜃 ∈ (𝜋3 ,
𝜋
2 ), then 𝑥( · , 𝑡) is not monotonous. More precisely, there

are three intervals of monotonicity.
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The possible singularities of 𝑥(𝑦, 𝑡) are those for 𝑢̂(𝑦, 𝑡): they correspond
to 𝑧 = −1 ± sin 𝜃. Therefore, if 𝛿 > 0, then 𝑧(𝑦, 𝑡) > 0 and thus there are
no singularities, whereas if 𝛿 < 0, then 𝑥(𝑦, 𝑡) is singular at those 𝑦 where
𝑧 = −1± sin 𝜃.

We now consider the case 𝛿 > 0 (and thus 𝑧(𝑦, 𝑡) > 0). The derivative
𝜕𝑦𝑥(𝑦, 𝑡) ≡ 𝑥𝑦(𝑦, 𝑡) is given by

𝑥𝑦(𝑦, 𝑡) = 𝑅(𝑧(𝑦, 𝑡)), where 𝑅(𝑧) =
𝑧2 + 2𝑧 cos 2𝜃 + cos2 𝜃

𝑧2 + 2𝑧 + cos2 𝜃
. (2.94)

It follows that 𝑅(0) = 𝑅(∞) = 1. Moreover, we have the following:

1) If 𝜃 ∈ (0, 𝜋3 ), then 𝑅(𝑧) > 0 for all 𝑧 ≥ 0.

2) If 𝜃 = 𝜋
3 , then 𝑧 = 1

2 is a double zero of 𝑅(𝑧).

3) If 𝜃 ∈ (𝜋3 ,
𝜋
2 ), then

a) 𝑅(𝑧) > 0 for 𝑧 ∈ [0,− cos 2𝜃−
√
− sin 𝜃 · sin 3𝜃)∪(− cos 2𝜃+

√
− sin 𝜃 · sin 3𝜃,+∞),

b) 𝑅(𝑧) < 0 for 𝑧 ∈ (− cos 2𝜃−
√
− sin 𝜃 · sin 3𝜃,− cos 2𝜃+

√
− sin 𝜃 · sin 3𝜃).

It follows that for 𝜃 ∈ (0, 𝜋3 ) the solution is smooth (both in the (𝑦, 𝑡) and
the (𝑥, 𝑡) variables). On the other hand, for 𝜃 = 𝜋

3 the solution 𝑢̃(𝑥, 𝑡) =

𝑢̂(𝑦(𝑥, 𝑡), 𝑡) is given in parametric form by

𝑢̂(𝑦, 𝑡) = 48𝑧(𝑦, 𝑡)
4𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + 1

(4𝑧2(𝑦, 𝑡) + 8𝑧(𝑦, 𝑡) + 1)2
, (2.95a)

𝑧(𝑦, 𝑡) = 𝛿
√

3 e
√
3
2 𝑦e−4

√
3𝑡, (2.95b)

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln
𝛿
√

3 e
√
3
2 𝑦e−4

√
3𝑡 + 1 +

√
3
2

𝛿
√

3 e
√
3
2 𝑦e−4

√
3𝑡 + 1−

√
3
2

. (2.95c)

In particular, in the latter case (2.94) and (2.95a) give

𝑥𝑦 =
2𝑧2

2𝑧2 + 6𝑧 + 3
and 𝑢̂𝑦 = −24

√
3
𝑧3(𝑧 + 1)(2𝑧 + 1)

(2𝑧2 + 6𝑧 + 3)3
,

where 𝑧 := 𝑧 − 1
2 . Thus 𝑥𝑦 has a double zero at 𝑧 = 0, which corresponds to

the crest of the solution, whereas, at the same point, 𝑢̂𝑦 has a triple zero, so
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that 𝑢̃𝑥 = 𝑢̂𝑦/𝑥𝑦 = 0. Consequently, 𝑢̃(𝑥, 𝑡) is still continuous, with a continu-
ous first derivative 𝑢̃𝑥 that vanish at the crest, but the higher order derivatives
become unbounded at this point, e.g., 𝑢̃𝑥𝑥 ∼ −3

2 𝑧
−2 as 𝑧 → 0. This unusual

(finite) smoothness property of the soliton corresponding to the parameters sep-
arating (infinitely) smooth solitons from multivalued solutions (associated with
the breaking of bijectivity of 𝑥( · , 𝑡) : R → R) was first reported by Matsuno
[100], where the soliton solutions were constructed using a direct method.

Thus we arrive at the following description of the one-soliton solutions (con-
sistent with [100]*see (3.4) and (3.14)):

Theorem 2.4.7. The mCH equation in the form (2.3) has a family of one-
soliton solutions, regular as well as non-regular, 𝑢̃(𝑥, 𝑡) ≡ 𝑢̃𝜃,𝛿(𝑥, 𝑡), param-
eterized by two parameters, 𝛿 > 0 and 𝜃 ∈ (0, 𝜋2 ). These solitons 𝑢̃(𝑥, 𝑡) ≡
𝑢̂(𝑦(𝑥, 𝑡), 𝑡) are given, in parametric form, by

𝑢̂(𝑦, 𝑡) = 4 tan2 𝜃
𝑧2(𝑦, 𝑡) + 2 cos2 𝜃 · 𝑧(𝑦, 𝑡) + cos2 𝜃

(𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + cos2 𝜃)2
𝑧(𝑦, 𝑡), (2.96a)

𝑥(𝑦, 𝑡) = 𝑦 + 2 ln
𝑧(𝑦, 𝑡) + 1 + sin 𝜃

𝑧(𝑦, 𝑡) + 1− sin 𝜃
, (2.96b)

𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 e𝑦 sin 𝜃e−
2 sin 𝜃
cos2 𝜃

𝑡. (2.96c)

They have different properties depending on the value of the parameter 𝜃:

(i) For 𝜃 ∈ (0, 𝜋3 ), the one-soliton solution 𝑢̃(𝑥, 𝑡) is smooth in the (𝑥, 𝑡)

variables.

(ii) For 𝜃 = 𝜋
3 , then 𝑢̃(𝑥, 𝑡) is given by (2.95) and has finite smoothness: 𝑢

and 𝑢𝑥 are continuous with 𝑢̃𝑥(𝑥, 𝑡) = 0 at the crest when 𝑧(𝑦(𝑥, 𝑡), 𝑡) = 1
2,

but near the crest the higher derivatives become unbounded as 𝑧 → 1
2.

(iii) If 𝜃 ∈ (𝜋3 ,
𝜋
2 ), then 𝑢̃(𝑥, 𝑡) = 𝑢̂(𝑦, 𝑡) is regular in (𝑦, 𝑡), multivalued in

(𝑥, 𝑡), and loop-shaped.
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2.5 Conclusions to Chapter 2

In this Section, we have considered the Cauchy problem for the modified Camassa–
Holm equation on the whole line in the case when the solution is assumed to
approach a non-zero constant at the both infinities of the space variable. A
non-zero background provides that the spectral problem in the associated Lax
pair equations has a continuous spectrum, which allows us to formulate the in-
verse spectral problem as a Riemann–Hilbert factorization problem with jump
conditions across the real axis.

We have developed the Riemann–Hilbert approach to this problem, which is
based on the Jost solutions of the Lax pair and the scattering relations between
them. Two specific features of the 𝑥-equation associated with the mCH equation
that affect analytic properties of the Jost solutions are as follows: (a) 𝜆 enters
U through a product with the “momentum” 𝑚(𝑥, 𝑡), which, in the framework
of the inverse problem, is an unknown function; (b) as |𝑥| → ∞, 𝑚(𝑥, 𝑡)

approaches a non-zero constant. In particular, these features affect the problem
of control of the large-𝜆 behavior of the Jost solutions. In our development of
the RH formalism, this problem is addressed by (i) transforming the Lax pair
equations to an appropriate form, with selected diagonal parts that dominate,
in a certain sense, for large 𝜆; (ii) introducing a new spatial-type variable,
in view of having an explicit description of the large-𝜆 behavior of the Jost
solutions in terms of space and time parameters; (iii) introducing a new spectral
parameter 𝜇 (related to 𝜆 by 𝜆 = −1

2(𝜇 + 1
𝜇)), which allows us to avoid non-

rational dependence of the coefficients in the Lax pair equations on the spectral
parameter. Moreover, we take advantage of a consequence of property (a) that
for 𝜆 = 0, U becomes independent of 𝑢, which suggests an efficient way for
“extracting” the solution of the Cauchy problem from the solution of the RH
problem taking the details of the behavior of the latter as 𝜆→ 0.

Using this approach, we have obtained (i) a representation for the solution of
the Cauchy problem for the mCH equation in terms of the solution of the asso-
ciated Riemann–Hilbert factorization problem and (ii) a description of certain
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soliton-type solutions, both regular and non-regular. In particular, we have ob-
tained the peakon type solution which has a different behaviour in comparison
with the (original) Camass-Holm equation near the "peak": the solution itself
and its first spatial derivative are continuous bounded functions, and the older
derivatives become unbounded.
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Chapter 3

The modified Camassa–Holm equation
on a nonzero background: large-time
asymptotics for the Cauchy problem

The results of this Chapter are published in [87].

We study the large-time behavior of the solution of the Cauchy problem
for the mCH equation on a nonzero background (2.1), taking the formalism
developed in Chapter 2 as the starting point. Focusing on the solitonless case,
in Subection 3.1 we reduce the original (singular) RH problem representation
for the solution of (2.1) to the resolution of a regular RH problem. Then, in
Subsection 3.2, the latter problem is analyzed asymptotically, as 𝑡 → +∞.
We finally obtain the leading asymptotic terms for the solution of the Cauchy
problem (2.1), in the two sectors of the (𝑥, 𝑡) half-plane, 1 < 𝑥

𝑡 < 3 and
3
4 <

𝑥
𝑡 < 1 where the deviation from the background value is nontrivial. In

those sectors this deviation exhibits slowly decaying (of order 𝑡−1/2), modulated
(by 𝑥

𝑡 ) oscillations (Theorems 3.2.2 and 3.2.4), while in the remaining sectors
𝑥
𝑡 > 3 and 𝑥

𝑡 <
3
4 it decays rapidly to 1.

3.1 Reduction to a regular RH problem

Introducing a new function 𝑢̃ by

𝑢(𝑥, 𝑡) = 𝑢̃(𝑥− 𝑡, 𝑡) + 1, (3.1)
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the mCH equation (2.1a) reduces to

𝑚̃𝑡 + (𝜔̃𝑚̃)𝑥 = 0, (3.2a)

𝑚̃ := 𝑢̃− 𝑢̃𝑥𝑥 + 1, (3.2b)

𝜔̃ := 𝑢̃2 − 𝑢̃2𝑥 + 2𝑢̃, (3.2c)

where the solution 𝑢̃ is considered on zero background: 𝑢̃(𝑥, 𝑡) → 0 as 𝑥 →
±∞ for all 𝑡 ≥ 0. In accordance with (2.1), it is assumed that 𝑚̃0(𝑥) :=

(1 − 𝜕2𝑥)𝑢0(𝑥) = (1 − 𝜕2𝑥)𝑢̃0(𝑥) + 1 > 0 for all 𝑥 > 0. The Riemann–Hilbert
(RH) approach for the Cauchy problem for equation (3.2) has been developed
in Chapter 2. This resulted in a parametric representation for 𝑢̃(𝑥, 𝑡) in terms
of the solution of an appropriate RH problem proposed in Chapter 2, according
to the following algorithm:

(a) Given 𝑢0(𝑥), construct the “reflection coefficient” 𝑟(𝜇), 𝜇 ∈ R and, if ap-
plicable, the “discrete spectrum data” {𝜇𝑗, 𝜌𝑗}𝑁𝑗=1, by solving the Lax pair
equations associated with (3.2), whose coefficients are determined in terms
of 𝑢0(𝑥).

(b) Construct the jump matrix 𝐽(𝑦, 𝑡, 𝜇), 𝜇 ∈ R by

𝐽(𝑦, 𝑡, 𝜇) := e−𝑝(𝑦,𝑡,𝜇)𝜎3𝐽0(𝜇)e𝑝(𝑦,𝑡,𝜇)𝜎3 (3.3)

where
𝑝(𝑦, 𝑡, 𝜇) := − i(𝜇2 − 1)

4𝜇

(︂
−𝑦 +

8𝜇2

(𝜇2 + 1)2
𝑡

)︂
(3.4)

and 𝐽0(𝜇) is defined by

𝐽0(𝜇) :=

(︃
1− 𝑟(𝜇)𝑟*(𝜇) 𝑟(𝜇)

−𝑟*(𝜇) 1

)︃
. (3.5)

(c) Solve the following RH problem (parametrized by 𝑦 and 𝑡): Find a piece-
wise (w.r.t. R) meromorphic (in the complex variable 𝜇), 2 × 2-matrix
valued function 𝑀(𝑦, 𝑡, 𝜇) satisfying the following conditions:
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• The jump condition

𝑀+(𝑦, 𝑡, 𝜇) = 𝑀−(𝑦, 𝑡, 𝜇)𝐽(𝑦, 𝑡, 𝜇), 𝜇 ∈ R, 𝜇 ̸= ±1. (3.6)

• The residue conditions

Res𝜇𝑗
𝑀 (1)(𝑦, 𝑡, 𝜇) =

1

κ𝑗(𝑦, 𝑡)
𝑀 (2)(𝑦, 𝑡, 𝜇𝑗),

Res𝜇̄𝑗
𝑀 (2)(𝑦, 𝑡, 𝜇) =

1

κ𝑗(𝑦, 𝑡)
𝑀 (1)(𝑦, 𝑡, 𝜇𝑗),

(3.7)

with κ𝑗(𝑦, 𝑡) := 𝜌𝑗e
−2𝑝(𝑦,𝑡,𝜇𝑗).

• The normalization condition

𝑀(𝑦, 𝑡, 𝜇)→ 𝐼 as 𝜇→∞. (3.8)

• The symmetries

𝑀(𝜇) = 𝑀(𝜇̄−1) = 𝜎3𝑀(−𝜇̄)𝜎3 = 𝜎1𝑀(𝜇̄)𝜎1, (3.9)

where 𝑀(𝜇) ≡𝑀(𝑦, 𝑡, 𝜇).

• The singularity conditions

𝑀(𝑦, 𝑡, 𝜇) =
i𝛼+(𝑦, 𝑡)

2(𝜇− 1)

(︃
−𝑐 1

−𝑐 1

)︃
+ O(1) as 𝜇→ 1, Im𝜇 > 0,

(3.10a)

𝑀(𝑦, 𝑡, 𝜇) = − i𝛼+(𝑦, 𝑡)

2(𝜇+ 1)

(︃
𝑐 1

−𝑐 −1

)︃
+ O(1) as 𝜇→ −1, Im𝜇 > 0,

(3.10b)

where 𝑐 = 1 + 𝑟(1) (generically, 𝑐 = 0) whereas 𝛼+(𝑦, 𝑡) ∈ R is not
specified.

(d) Having found the solution 𝑀(𝑦, 𝑡, 𝜇) of this RH problem (which is unique,
if it exists), extract the real-valued functions 𝑎𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3 from the
expansion of 𝑀(𝑦, 𝑡, 𝜇) at 𝜇 = i:

𝑀(𝑦, 𝑡, 𝜇) =

(︃
𝑎1(𝑦, 𝑡) 0

0 𝑎−11 (𝑦, 𝑡)

)︃
+

(︃
0 𝑎2(𝑦, 𝑡)

𝑎3(𝑦, 𝑡) 0

)︃
(𝜇− i) (3.11)
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+ O((𝜇− i)2), 𝜇→ i.

(e) Obtain 𝑢̃(𝑥, 𝑡) in parametric form as follows:

𝑢̃(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡),

where

𝑢̂(𝑦, 𝑡) := −𝑎2(𝑦, 𝑡)𝑎1(𝑦, 𝑡)− 𝑎3(𝑦, 𝑡)𝑎−11 (𝑦, 𝑡),

𝑥(𝑦, 𝑡) := 𝑦 + 2 ln 𝑎1(𝑦, 𝑡).
(3.12)

Remark 3.1.1. To simplify notations in this paper, compared to Chapter 2, we
have removed the symbol “hat” over many functions (e.g., 𝑀(𝑦, 𝑡, 𝜇), 𝛼+(𝑦, 𝑡),
etc.). Another difference is that𝑀+ and𝑀− are exchanged in the jump relation
(3.6) so that here the jump is the inverse of that in Chapter 2: 𝐽0 = 𝐽−10 and
𝐽 = 𝐽−1.

Remark 3.1.2. The symmetries (3.9) are consistent with the symmetries of 𝑟(𝜇),
namely

𝑟(𝜇) = −𝑟(−𝜇) = 𝑟(𝜇−1), (3.13)

and with the invariance of the set {𝜇𝑗, 𝜌𝑗}𝑁𝑗=1:

−𝜇𝑗 = 𝜇𝑗′ and − 𝜇−1𝑗 = 𝜇𝑗′′ with 𝜌𝑗 = 𝜌𝑗′ = −𝜇−2𝑗 𝜌𝑗′′.

These symmetries and invariances follow from the construction of the RH prob-
lem above in terms of the dedicated (Jost) solutions of the Lax pair equations
associated with the mCH equation. Moreover, the symmetries (3.9) imply the
particular structure of the matrices in (3.11).

Remark 3.1.3. In the case of the Camassa–Holm (CH) equation, the condition
𝑚0(𝑥) := (1− 𝜕2𝑥)𝑢0(𝑥) > 0 for all 𝑥 provides the existence of a global solution
to the corresponding initial value problem (see, e.g., [42]). In the case of the
modified Camassa–Holm (mCH) equation, the situation is different: even if the
initial potential 𝑚0 does not change sign the solution 𝑢(𝑥, 𝑡) may blow-up in
finite time [78]. We believe that the Riemann–Hilbert approach for constructing
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solutions of PDEs, being intrinsically local in the corresponding variables (in
the case of the mCH equation, these variables are 𝑦 and 𝑡), is best suited to
present solutions (particularly, of initial value problems) that overcome finite
time blow-up (see, e.g., [70]*Chapter 3, Section 1, Corollary 3.1) and thus allow
us to study the large time behavior of solutions (namely here 𝑢̂(𝑦, 𝑡)) in sectors
of the (𝑦, 𝑡) half-plane. Then, as the following asymptotic analysis will show
(see (3.57b) and (3.69b)), in the solitonless case the correspondence between 𝑥
and 𝑦 is one-to-one for any large enough 𝑡, and therefore the solutions 𝑢(𝑥, 𝑡)

are also well-defined for any large 𝑡 in the (𝑥, 𝑡) half-plane.
On the other hand, it is the breaking of this one-to-one correspondence

𝑥 ↔ 𝑦 that provides a mechanism of wave breaking of the solution 𝑢(𝑥, 𝑡) in
situations where, however, the solution 𝑀(𝑦, 𝑡, 𝜇) of the RH problem (3.6)-
(3.10) exists for all 𝑦 and 𝑡. In particular, if the initial data are such that some
of the associated discrete spectral points {𝜇𝑗} have the form 𝜇𝑗 = ei𝜃𝑗 with
𝜋
3 < 𝜃𝑗 <

𝜋
2 , then the correspondence between 𝑥 and 𝑦 is no longer one-to-one

for any large enough 𝑡, see Chapter 2*Corollary 5.6.

In the general context of nonlinear integrable equations, the RH problem
formalism (i.e., the representation of the solution of the original problem — the
Cauchy problem for a nonlinear integrable PDE — in terms of the solution of an
associated RH problem) allows reducing the problem of the large time analysis
of the solution of the nonlinear PDE to that of the RH problem. Residue condi-
tions (if any) involved in the RH problem formulation generate a soliton-type,
non-decaying contribution to the asymptotics whereas the jump conditions are
responsible for the dispersive (decaying) part, details of which can be retrieved
applying an appropriate modification of the nonlinear steepest descent method
to the asymptotic analysis of a preliminarily regularized RH problem (i.e., a
RH problem involving the jump and normalization conditions only).

With this respect we notice that the residue conditions (3.7) can be handled
in a standard way:

(i) either adding to the contour small circles around each 𝜇𝑗 and 𝜇̄𝑗 and
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reducing the residue conditions to associated jump conditions across the
circles

(ii) or using the Blaschke–Potapov factors (see, e.g., [21]).

In both approaches, the original RH problem is reduced to a RH problem
without residue conditions.

As for the singularity conditions, we notice that in the case of the Camassa–
Holm equation, where such a condition is also involved in the matrix RH prob-
lem formalism, an efficient way to handle it is to reduce the matrix RH problem
to a vector one, multiplying from the left by the constant vector (1, 1). Indeed,
the singularity condition for the CH equation has the form of (3.10b), and thus
this multiplication “kill” the singularity, reducing the RH problem to a regular
one. With this respect, we notice that the matrix RH problem for the modified
Camassa–Holm equation is different: it also involves the singularity condition
(3.10a), which, obviously, cannot be removed using the same trick.

In the present paper, we focus on the study of the dispersive part of the
large-time asymptotics of solutions of Cauchy problems for the mCH equation.
Accordingly, we proceed with the solitonless case assuming that there are no
residue conditions (the consideration of a possible discrete spectrum can then
be done according to an already well developed technique, see, e.g., [21]).

In this section we reduce the original RH problem (which is still singular due
to conditions (3.10)) to a regular one, proceeding in two steps.

In Step 1, we reduce the RH problem with the singularity conditions (3.10) at
𝜇 = ±1 to a RH problem which is characterized by the following two conditions:

(i) the matrix entries are regular at 𝜇 = ±1, but the determinant of the
(matrix) solution vanishes at 𝜇 = ±1 (note that det𝑀(𝜇) ≡ 1 for the
solution of the original RH problem);

(ii) the solution is singular at 𝜇 = 0.

Then, in Step 2, the latter RH problem is reduced to a regular one, i.e., to
a RH problem with the jump and normalization conditions only.
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Proposition 3.1.4. Let 𝑀(𝑦, 𝑡, 𝜇) be a solution of the RH problem (3.6),
(3.8)–(3.10). Define 𝑀̃ by

𝑀̃(𝑦, 𝑡, 𝜇) :=

(︂
𝐼 − 1

𝜇
𝜎1

)︂
𝑀(𝑦, 𝑡, 𝜇). (3.14)

Then 𝑀̃(𝜇) ≡ 𝑀̃(𝑦, 𝑡, 𝜇) is the unique solution of the following RH problem:

(C1) 𝑀̃(𝜇) is analytic in C+ and C− and continuous up to R ∖ {0}.

(C2) 𝑀̃(𝜇) satisfies the jump condition (3.6) with the jump defined by (3.3)–
(3.5).

(C3) 𝑀̃(𝜇)→ 𝐼 as 𝜇→∞.

(C4) 𝑀̃(𝜇) = − 1
𝜇𝜎1 + O(1) as 𝜇→ 0.

(C5) det 𝑀̃(±1) = 0.

(C6) 𝑀̃(𝜇−1) = −𝜇𝑀̃(𝜇)𝜎1.

Proof. First, let’s check that 𝑀̃(𝑦, 𝑡, 𝜇) constructed from 𝑀(𝑦, 𝑡, 𝜇) satisfies
the conditions above. The limiting properties (C3) and (C4) as 𝜇→∞ and as
𝜇 → 0 are obviously satisfied (by construction) whereas (C2) results from the
fact that a multiplication from the left does not change the jump conditions.
Further, since det𝑀(𝑦, 𝑡, 𝜇) ≡ 1, it follows that det 𝑀̃(𝑦, 𝑡, 𝜇) = 1 − 1

𝜇2 and
thus det 𝑀̃(𝑦, 𝑡,±1) = 0. Moreover, as 𝜇→ 1 we have(︁
𝑀̃11(𝜇), 𝑀̃12(𝜇)

)︁
= (𝑀11(𝜇),𝑀12(𝜇))− 1

𝜇
(𝑀21(𝜇),𝑀22(𝜇))

= (𝑀11(𝜇)−𝑀21(𝜇),𝑀12(𝜇)−𝑀22(𝜇)) + O(1) = O(1)

due to (3.10a). Similarly, as 𝜇→ −1 we have(︁
𝑀̃11(𝜇), 𝑀̃12(𝜇)

)︁
= (𝑀11(𝜇) +𝑀21(𝜇),𝑀12(𝜇) +𝑀22(𝜇)) + O(1) = O(1)

due to (3.10b). Similarly for
(︀
𝑀̃21(𝜇), 𝑀̃22(𝜇)

)︀
. Thus 𝑀̃(𝑦, 𝑡, 𝜇) is non-singular

at 𝜇 = ±1. Finally, (C6) follows from the symmetry relation 𝑀(𝜇−1) =

𝜎1𝑀(𝜇)𝜎1 from (3.9).
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Now, let’s prove that the solution of the RH problem (C1)–(C6) above is
unique (if it exists). First, we notice that if 𝑀̃(𝑦, 𝑡, 𝜇) solves the RH problem
(C1)–(C6), then

det 𝑀̃(𝑦, 𝑡, 𝜇) = 1− 1

𝜇2
. (3.15)

Indeed, since det 𝐽(𝑦, 𝑡, 𝜇) ≡ 1 and det𝑀(𝑦, 𝑡, 𝜇) is bounded at 𝜇 = ∞, it
follows that det𝑀(𝜇) is a rational function. Moreover, from (C4) we have that
det𝑀(𝜇) = − 1

𝜇2 + 𝑐
𝜇 + O(1) as 𝜇 → 0, with some 𝑐 ≡ 𝑐(𝑦, 𝑡). Taking into

account (C3) we have that 𝜁(𝑦, 𝑡, 𝜇) := det𝑀(𝑦, 𝑡, 𝜇)−1+ 1
𝜇2 − 𝑐

𝜇 is a bounded
entire function of 𝜇, which, by Liouville’s theorem and (C3), vanishes for all
(𝑦, 𝑡). Finally, evaluating 𝜁(𝑦, 𝑡, 𝜇) at 𝜇 = ±1 and using (C5), it follows that
𝑐(𝑦, 𝑡) ≡ 0 and thus (3.15) follows.

Now let’s assume that ˜̃𝑀 is another solution of the RH problem (C1)–

(C6) and define 𝑁(𝜇) := 𝑀̃(𝜇) ˜̃𝑀
−1

(𝜇). Since 𝑀̃ and ˜̃𝑀 satisfy the same
jump conditions, 𝑁(𝜇) is a rational function, with possible singularities at

𝜇 = 0,−1, 1. In view of (3.15) and (C3), ˜̃𝑀
−1

(𝜇) = 𝜇2

𝜇2−1( 1𝜇𝜎1 + O(1)) = O(𝜇)

as 𝜇 → 0 and thus 𝑁(𝜇) is non-singular at 𝜇 = 0. In order to prove that
𝑁(𝜇) is non-singular at 𝜇 = ±1, we use relation (C6). In particular, we have
𝑀̃(1) = −𝑀̃(1)𝜎1 and thus 𝑀̃(𝜇) =

(︀
𝑔1 −𝑔1
𝑔2 −𝑔2

)︀
+ O(𝜇− 1) as 𝜇→ 1, with some

𝑔𝑗, 𝑗 = 1, 2. Consequently, ˜̃𝑀
−1

(𝜇) = 𝜇2

𝜇2−1
(︀(︀ −𝑔2 𝑔1
−𝑔2 𝑔1

)︀
+ O(𝜇− 1)

)︀
as 𝜇 → 1,

with some 𝑔𝑗, 𝑗 = 1, 2, which implies that 𝑁(𝜇) is bounded as 𝜇→ 1. Similarly
for 𝜇 → −1. Therefore, 𝑁(𝜇) is an entire function such that 𝑁(∞) = 𝐼 and
thus 𝑁(𝜇) ≡ 𝐼 by Liouville’s theorem.

Remark 3.1.5. Assuming 𝑟(𝜇) = −𝑟(−𝜇) (see (3.13)), we have that 𝐽(𝜇) sat-
isfies the symmetries

𝐽(𝜇) = 𝜎3𝐽(−𝜇)𝜎3 = 𝜎1𝐽−1(𝜇)𝜎1,

which, due to uniqueness, imply for 𝑀̃ the same symmetries as for 𝑀 :

𝑀̃(𝜇) = 𝜎3𝑀̃(−𝜇̄)𝜎3 = 𝜎1𝑀̃(𝜇̄)𝜎1 (3.16)
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(taking also into account that the symmetries (3.16) are consistent with all
conditions in the RH problem in Proposition 3.1.4).

Step 2 in the reduction of the RH problem is formulated in the following
proposition (see [82, 115, 116] for the case of the nonlinear Schrödinger equation
with “finite density” boundary conditions).

Proposition 3.1.6 (regular RH problem). The solution 𝑀̃ of the RH problem
from Proposition 3.1.4 can be represented in terms of the solution of a regular
RH problem as follows:

𝑀̃(𝑦, 𝑡, 𝜇) =

(︂
𝐼 − 1

𝜇
Δ(𝑦, 𝑡)

)︂
𝑀𝑅(𝑦, 𝑡, 𝜇), (3.17)

where 𝑀𝑅(𝜇) ≡𝑀𝑅(𝑦, 𝑡, 𝜇) is the solution of the following RH problem:
Find 𝑀𝑅(𝜇) such that

(R1) 𝑀𝑅(𝜇) is analytic in C+ and C− and continuous up to the real axis.

(R2) 𝑀𝑅(𝜇) satisfies the jump condition (3.3)–(3.6).

(R3) 𝑀𝑅(𝜇)→ 𝐼 as 𝜇→∞.

Here Δ in (3.17) is expressed in terms of the solution 𝑀𝑅 of the RH problem
above by:

Δ(𝑦, 𝑡) = 𝜎1[𝑀
𝑅(𝑦, 𝑡, 0)]−1.

Proof. Let 𝑀𝑅(𝜇) be the solution of the regular RH problem (R1)-(R3) above.
Then 𝑀̃(𝑦, 𝑡, 𝜇) defined by (3.17) obviously (by construction) satisfies condi-
tions (C1)-(C4) of the RH problem from Proposition 3.1.4. In order to check
conditions (C5) and (C6), we use the matrix structure of Δ that follows from
the symmetries of 𝑀𝑅(𝜇).

(i) Since 𝑀𝑅(𝜇) and 𝑀(𝜇) satisfy the same jump condition, the uniqueness
of the solution of the regular RH problem implies that 𝑀𝑅(𝜇) satisfies the same
symmetries (see (3.9)) (generated by the symmetry 𝑟(𝜇) = −𝑟(−𝜇)):

𝑀𝑅(𝜇) = 𝜎3𝑀𝑅(−𝜇̄)𝜎3 = 𝜎1𝑀𝑅(𝜇̄)𝜎1. (3.18)
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Considering this for 𝜇 = 0 it follows that 𝑀𝑅(𝑦, 𝑡, 0) =
(︁

𝛼(𝑦,𝑡) i𝛽(𝑦,𝑡)
−i𝛽(𝑦,𝑡) 𝛼(𝑦,𝑡)

)︁
with

some 𝛼(𝑦, 𝑡) ∈ R and 𝛽(𝑦, 𝑡) ∈ R. Moreover, 𝛼2(𝑦, 𝑡) − 𝛽2(𝑦, 𝑡) ≡ 1 since
det𝑀𝑅(𝜇) ≡ 1. Consequently, Δ(𝑦, 𝑡) has the structure

Δ =

(︃
i𝛽 𝛼

𝛼 −i𝛽

)︃
with 𝛼2 − 𝛽2 = 1 (3.19)

and thus det(𝐼 −𝜇−1Δ(𝑦, 𝑡)) = 1− 𝛼2−𝛽2

𝜇2 = 1− 1
𝜇2 , which implies (C5). Notice

that Δ2 ≡ 𝐼.
(ii) Now consider the symmetry 𝜇 ↦→ 𝜇−1. From 𝑟(𝜇) = 𝑟(𝜇−1) it follows

that 𝐽(𝜇) = 𝜎1𝐽
−1(𝜇−1)𝜎1 and thus 𝑀̌(𝜇) := 𝜎1𝑀

𝑅(𝜇−1)𝜎1 satisfies the same
jump condition as𝑀𝑅(𝜇) does. Taking into account that 𝑀̌(∞) = 𝜎1𝑀

𝑅(0)𝜎1,
Liouville’s theorem implies that 𝑀̌−1(∞)𝑀̌(𝜇) ≡ 𝜎1[𝑀

𝑅(0)]−1𝑀𝑅(𝜇−1)𝜎1 =

𝑀(𝜇), or, in terms of Δ,

𝑀𝑅(𝜇−1) = Δ𝑀𝑅(𝜇)𝜎1. (3.20)

Now, combining (3.17) with (3.20) we can express 𝑀̃(𝜇−1) in terms of 𝑀̃(𝜇)

as follows:

𝑀̃(𝜇−1) = (𝐼 −Δ𝜇)𝑀𝑅(𝜇−1) = (𝐼 −Δ𝜇)Δ𝑀𝑅(𝜇)𝜎1 = 𝑄(𝜇)𝑀̃(𝜇)𝜎1 (3.21)

with
𝑄(𝜇) = (𝐼 −Δ𝜇)Δ

(︀
𝐼 −Δ𝜇−1

)︀−1
.

Using (3.19), direct calculations give 𝑄(𝜇) = −𝜇𝐼 and thus the symmetry
(3.20) takes the form of (C6) in Proposition 3.1.4.

From 𝑀𝑅 back to 𝑢̃

Now, we can obtain a parametric representation of the solution 𝑢̃(𝑥, 𝑡) of the
Cauchy problem (3.2) in terms of the solution 𝑀𝑅(𝑦, 𝑡, 𝜇) of the regular RH
problem from Proposition 3.1.6. First, using (3.14) and (3.17), we get 𝑀 from
𝑀𝑅:

𝑀(𝜇) =

(︂
𝐼 − 1

𝜇
𝜎1

)︂−1(︂
𝐼 − 1

𝜇
Δ

)︂
𝑀𝑅(𝜇). (3.22)
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Then, by (3.11) and (3.12) we find

𝑀(𝑦, 𝑡, 𝜇)⇝ {𝑎1(𝑦, 𝑡), 𝑎2(𝑦, 𝑡), 𝑎3(𝑦, 𝑡)}⇝ {𝑢̂(𝑦, 𝑡), 𝑥(𝑦, 𝑡)},

and finally 𝑢̃(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡).

3.2 Large-time asymptotics of the regular RH problem

In this section, we study the large-time asymptotics of the solution 𝑀𝑅(𝑦, 𝑡, 𝜇)

of the regular RH problem from Proposition 3.1.6 using the ideas and tools of
the nonlinear steepest descent method [54]. The method consists in successive
transformations of the original RH problem, in order to reduce it to an explicitly
solvable RH problem. The different steps include

(a) appropriate triangular factorizations of the jump matrix;

(b) “absorption” of the triangular factors with good large-time behavior;

(c) reduction, after rescaling, to a RH problem which is solvable in terms of
certain special functions;

(d) analysis of the approximation errors.

The information on 𝐿𝑝-RH problems and their applications to the asymptotics
can be found in [50, 55, 70, 122]. Here we focus on deriving the leading terms
of the large-time asymptotics, while for error estimates we refer to [93].

3.2.1 Transformations of the regular RH problem

Introduce
𝜃(𝜇, 𝜉) := 𝜃(𝑘(𝜇), 𝜉),

where

𝜉 :=
𝑦

𝑡
, 𝑘(𝜇) :=

1

4

(︂
𝜇− 1

𝜇

)︂
, 𝜃(𝑘, 𝜉) := 𝑘𝜉 − 2𝑘

1 + 4𝑘2
. (3.23)
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Hence, 𝑝(𝑦, 𝑡, 𝜇) = i𝑡𝜃(𝜇, 𝜉). The jump matrix 𝐽(𝑦, 𝑡, 𝜇) in (3.6) which is
defined by (3.3)–(3.5) allows two triangular factorizations:

𝐽(𝑦, 𝑡, 𝜇) =

(︃
1 𝑟(𝜇)e−2i𝑡𝜃

0 1

)︃(︃
1 0

−𝑟*(𝜇)e2i𝑡𝜃 1

)︃
, (3.24a)

𝐽(𝑦, 𝑡, 𝜇) = (3.24b)(︃
1 0

− 𝑟*(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)e

2i𝑡𝜃 1

)︃(︃
1− 𝑟(𝜇)𝑟*(𝜇) 0

0 1
1−𝑟(𝜇)𝑟*(𝜇)

)︃(︃
1 𝑟(𝜇)

1−𝑟(𝜇)𝑟*(𝜇)e
−2i𝑡𝜃

0 1

)︃
.

Following the basic idea of the nonlinear steepest descent method [54], the
factorizations (3.24) can be used in such a way that the (oscillating) jump ma-
trix on R for a modified RH problem reduces (see the RH problem for𝑀2 below)
to the identity matrix whereas the arising jumps outside R are exponentially
small as 𝑡 → +∞. The use of one or another form of the factorization is dic-
tated by the “signature table” for 𝜃, i.e., the distribution of signs of Im 𝜃(𝜇, 𝜉)

(that depends on 𝜉) in the 𝜇-complex plane.

a) The factorization (3.24a) is appropriate for the (open) intervals of R for
which Im 𝜃(𝜇) is positive for 𝜇 ∈ C+ close to these intervals (and negative
for 𝜇 ∈ C− close to the same intervals). We denote by Σ𝑎 ≡ Σ𝑎(𝜉) the union
of these intervals.

b) On the other hand the factorization (3.24b) is appropriate for the (open) in-
tervals of R for which Im 𝜃(𝜇) is negative for 𝜇 ∈ C+ close to these intervals.
We denote their union by Σ𝑏(𝜉) = R ∖ Σ𝑎(𝜉).

In turn, one can get rid of the diagonal factor in (3.24b) using the solution
of the following scalar RH problem: Find a scalar function 𝛿(𝜇, 𝜉) (𝜉 being a
parameter) analytic in 𝜇 ∈ C ∖ Σ𝑏(𝜉) and such that

𝛿+(𝜇, 𝜉) = 𝛿−(𝜇, 𝜉)(1− |𝑟(𝜇)|2), 𝜇 ∈ Σ𝑏(𝜉), (3.25a)

𝛿(𝜇, 𝜉)→ 1, 𝜇→∞. (3.25b)

The solution of the RH problem (3.25) is given by the Cauchy integral:

𝛿(𝜇, 𝜉) = exp

{︂
1

2𝜋i

∫︁
Σ𝑏(𝜉)

ln(1− |𝑟(𝑠)|2)
𝑠− 𝜇 d𝑠

}︂
. (3.26)
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Define 𝑀1(𝑦, 𝑡, 𝜇) := 𝑀𝑅(𝑦, 𝑡, 𝜇)𝛿−𝜎3(𝜇, 𝜉). Then 𝑀1 can be characterized
as the solution of the RH problem including the standard normalization condi-
tion 𝑀1(𝜇)→ 𝐼 as 𝜇→∞ and the jump condition

𝑀1+(𝑦, 𝑡, 𝜇) = 𝑀1−(𝑦, 𝑡, 𝜇)𝐽1(𝑦, 𝑡, 𝜇), 𝜇 ∈ R, (3.27)

where the jump matrix is factorized as

𝐽1(𝑦, 𝑡, 𝜇) =

(︃
1 𝑟(𝜇)𝛿2(𝜇, 𝜉)e−2i𝑡𝜃

0 1

)︃(︃
1 0

−𝑟*(𝜇)𝛿−2(𝜇, 𝜉)e2i𝑡𝜃 1

)︃
, 𝜇 ∈ Σ𝑎(𝜉)

(3.28a)

𝐽1(𝑦, 𝑡, 𝜇) = (3.28b)(︃
1 0

− 𝑟*(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)𝛿

−2
− (𝜇, 𝜉)e2i𝑡𝜃 1

)︃(︃
1 𝑟(𝜇)

1−𝑟(𝜇)𝑟*(𝜇)𝛿
2
+(𝜇, 𝜉)e−2i𝑡𝜃

0 1

)︃
, 𝜇 ∈ Σ𝑏(𝜉).

Now let us discuss the structure of Σ𝑎(𝜉) and Σ𝑏(𝜉). First, we notice that
𝜃(𝜉, 𝑘) is exactly the same as in the case of the CH equation [27]. Taking
into account the relation between 𝜇 and 𝑘 (see (3.23)), the “signature table”
for the CH equation near the real axis suggests that for the mCH equation
(the latter being, additionally, symmetric w.r.t. 𝜇 ↦→ 1/𝜇) while the ranges of
values of 𝜉 for which the “signature table” keeps the same structure are the
same. Namely, one can distinguish four ranges of values of 𝜉 for which Σ𝑎(𝜉)

and Σ𝑏(𝜉) have qualitatively different structures (which, consequently, implies
four qualitatively different types of large-time asymptotics):

(I) 𝜉 > 2,

(II) 0 < 𝜉 < 2,

(III) −1
4 < 𝜉 < 0,

(IV) 𝜉 < −1
4 .

Each range of values of 𝜉 is characterized by the structure of Σ𝑎(𝜉) (or Σ𝑏(𝜉)):
Σ𝑎(𝜉) is the union of disjoint intervals whose (finite) end points are (real) sta-
tionary points of 𝜃(𝜇, 𝜉), i.e., points 𝜇 ∈ R where d𝜃

d𝜇(𝜇, 𝜉) = 0, and similarly
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for Σ𝑏(𝜉). More precisely,

Σ𝑏(𝜉) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅, 𝜉 > 2,

(−𝜇0,− 1
𝜇0

) ∪ ( 1
𝜇0
, 𝜇0), 0 < 𝜉 < 2,

(−∞,−𝜇1) ∪ (−𝜇0,− 1
𝜇0

) ∪ (− 1
𝜇1
, 1
𝜇1

) ∪ ( 1
𝜇0
, 𝜇0) ∪ (𝜇1,+∞), −1

4 < 𝜉 < 0,

(−∞,+∞), 𝜉 < −1
4 .

(3.29)

Here the values of 𝜇0(𝜉) > 1 and 𝜇1(𝜉) > 1 are those associated (via 𝜅𝑗 =
1
4(𝜇𝑗 − 1

𝜇𝑗
), 𝑗 = 0, 1) with the (real) stationary points 𝜅0(𝜉) and 𝜅1(𝜉) of 𝜃(𝑘),

i.e., the end points in the case of the CH equation. They are determined by
the relation 𝜉 = 2−8𝜅2

(1+4𝜅2)2 (see [27]):

𝜅20(𝜉) =

√
1 + 4𝜉 − 1− 𝜉

4𝜉
, 𝜅21(𝜉) = −

√
1 + 4𝜉 + 1 + 𝜉

4𝜉

(𝜅0(𝜉) is relevant for ranges II and III whereas 𝜅1(𝜉) is relevant for range III
only). In analogy with the case of the CH equation, for 𝜉 in ranges I and IV,
the solution 𝑀2 of the RH problem (see below) decays rapidly (as 𝑡→ +∞) to
the identity matrix, which corresponds (in the case without discrete spectrum)
to rapid decay of the resulting 𝑢̂(𝑦, 𝑡). On the other hand, ranges II and III
are those where the large-time asymptotics in the case of the CH equation are
of Zakharov–Manakov type (trigonometric oscillations decaying as 𝑡−1/2), see
[21, 27]. Our main goal in the present paper is the derivation of analogous
asymptotic formulas, for ranges II and III, in the case of the mCH equation.

The next step in the transformation of the RH problem is the “absorption”
of the triangular factors in (3.28a) and (3.28b) into the solution of a deformed
RH problem, with an enhanced jump contour (having parts outside R). This
absorption requires the triangular factors in (3.28a) and (3.28b) to have ana-
lytic continuation at least into a band surrounding R. With this respect we
notice that, as in the case of other integrable equations (in particular, the CH
equation), the reflection coefficient 𝑟(𝜇) is defined, in general, for 𝜇 ∈ R only.

97



However, one can approximate 𝑟(𝜇) and 𝑟(𝜇)
1−𝑟(𝜇)𝑟*(𝜇) by some rational functions

with well-controlled errors (see, e.g., [93]). Alternatively, if we assume that the
initial data 𝑢̃(𝑥, 0) decays exponentially to 0 as 𝑥 → ±∞ (or that 𝑢̃(𝑥, 0) has
finite support in R), then 𝑟(𝜇) turns out to be analytic in a band containing
the real axis (or analytic in the whole plane) and thus there is no need to use
rational approximations in order to be able to perform this absorption (see the
transformation 𝑀1 ⇝ 𝑀2 below). Henceforth, in order to avoid technicalities
and to keep the presentation of our main result as simple as possible, we assume
that 𝑟(𝜇) (and thus 1−𝑟(𝜇)𝑟*(𝜇)) is analytic in a domain of the complex plane
containing the contours of the successive RH problems (and refer to [93] for
details related to the rational approximations).

For 0 < 𝜉 < 2 and for −1
4 < 𝜉 < 0, we define a contour Σ ≡ Σ(𝜉) consistent

with the signature table for 𝜃(𝜇, 𝜉), see Figures 3.1 and 3.2, respectively.

Figure 3.1: Signature table (dotted lines), contour Σ(𝜉) = ∪4𝑗=1Σ𝑗 (solid lines)
and domains Ω𝑗(𝜉) for 0 < 𝜉 < 2.
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Figure 3.2: Signature table (dotted lines), contour Σ(𝜉) = ∪4𝑗=1Σ𝑗 (solid lines)
and domains Ω𝑗(𝜉) for −1

4 < 𝜉 < 0.

Further, define 𝑀2 by 𝑀2(𝑦, 𝑡, 𝜇) := 𝑀1(𝑦, 𝑡, 𝜇)𝑃 (𝑦, 𝑡, 𝜇), where

𝑃 (𝑦, 𝑡, 𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐼, 𝜇 ∈ Ω0,⎛⎝ 1 0

𝑟*(𝜇)𝛿−2(𝜇, 𝜉)e2i𝑡𝜃 1

⎞⎠ , 𝜇 ∈ Ω1,⎛⎝1 − 𝑟(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)𝛿

2(𝜇, 𝜉)e−2i𝑡𝜃

0 1

⎞⎠ , 𝜇 ∈ Ω2,⎛⎝ 1 0

− 𝑟*(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)𝛿

−2(𝜇, 𝜉)e2i𝑡𝜃 1

⎞⎠ , 𝜇 ∈ Ω3,⎛⎝1 𝑟(𝜇)𝛿2(𝜇, 𝜉)e−2i𝑡𝜃

0 1

⎞⎠ , 𝜇 ∈ Ω4.

(3.30)

Then 𝑀2(𝑦, 𝑡, 𝜇) can be characterized as the solution of the RH problem with
the standard normalization condition 𝑀2(𝜇) → 𝐼 as 𝜇 → ∞ and the jump
condition

𝑀2+(𝑦, 𝑡, 𝜇) = 𝑀2−(𝑦, 𝑡, 𝜇)𝐽2(𝑦, 𝑡, 𝜇), 𝜇 ∈ Σ := ∪4𝑗=1Σ𝑗, (3.31)
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where Σ𝑗 := Ω0 ∩ Ω𝑗 and

𝐽2(𝑦, 𝑡, 𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ 1 0

−𝑟*(𝜇)𝛿−2(𝜇, 𝜉)e2i𝑡𝜃 1

⎞⎠ , 𝜇 ∈ Σ1,⎛⎝1 𝑟(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)𝛿

2(𝜇, 𝜉)e−2i𝑡𝜃

0 1

⎞⎠ , 𝜇 ∈ Σ2,⎛⎝ 1 0

𝑟*(𝜇)
1−𝑟(𝜇)𝑟*(𝜇)𝛿

−2(𝜇, 𝜉)e2i𝑡𝜃 1

⎞⎠ , 𝜇 ∈ Σ3,⎛⎝1 −𝑟(𝜇)𝛿2(𝜇, 𝜉)e−2i𝑡𝜃

0 1

⎞⎠ , 𝜇 ∈ Σ4.

(3.32)

The RH problem for𝑀2 is such that uniform decay (as 𝑡→ +∞) of the jump
matrix is violated only near the stationary phase points of 𝜃(𝜇). The large-time
analysis, with appropriate estimates, of such problems involves the “compari-
son” of the RH problem with that modified in small vicinities of the stationary
phase points, using rescaled spectral parameters as well as approximations of
the jump matrices in these vicinities [54].

In our large-time analysis for 𝑀2, we follow the strategy presented in [93].

Step (i). Add to Σ small circles 𝛾𝑗 (𝑗 = 0, 1) surrounding 𝜇𝑗, together with
their images −𝛾𝑗 (surrounding −𝜇𝑗) and ±𝛾−1𝑗 (surrounding ±1/𝜇𝑗) under the
mappings 𝜇 ↦→ −𝜇 and 𝜇 ↦→ 1/𝜇, respectively.

Step (ii). Inside the circles around 𝜇0 and 𝜇1, define (explicitly) a function
𝑚0(𝑦, 𝑡, 𝜇) which exactly satisfies the jump condition across Σ obtained from
(3.32) by replacing 𝑟(𝜇) with 𝑟(𝜇0) and 𝑟(𝜇1), respectively, and by replacing
𝛿2(𝜇, 𝜉)e−2i𝑡𝜃(𝜇,𝜉) with its large-time approximation.

Step (iii). Define 𝑚0(𝑦, 𝑡, 𝜇) inside the other small contours using the symme-
tries 𝑚0(𝜇) = 𝑚0(1/𝜇̄) and 𝑚0(𝜇) = 𝜎3𝑚0(−𝜇̄)𝜎3 (which are consistent with
the symmetries of 𝑀2(𝜇)).

100



Step (iv). Define 𝑚̂(𝜇) by

𝑚̂(𝑦, 𝑡, 𝜇) =

⎧⎨⎩𝑀2(𝑦, 𝑡, 𝜇)𝑚−10 (𝑦, 𝑡, 𝜇), inside ± 𝛾𝑗 and ± 𝛾−1𝑗 ,

𝑀2(𝑦, 𝑡, 𝜇), otherwise,

Then 𝑚̂(𝜇) satisfies the conditions of the RH problem⎧⎨⎩𝑚̂+(𝑦, 𝑡, 𝜇) = 𝑚̂−(𝑦, 𝑡, 𝜇)𝐽(𝑦, 𝑡, 𝜇), 𝜇 ∈ Σ̂ := Σ ∪𝑗 {±𝛾𝑗} ∪𝑗 {±𝛾−1𝑗 },
𝑚̂(𝑦, 𝑡, 𝜇)→ 𝐼, 𝜇→∞,

where

𝐽(𝑦, 𝑡, 𝜇) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚−10 (𝑦, 𝑡, 𝜇), 𝜇 ∈ ∪𝑗{±𝛾𝑗} ∪𝑗 {±𝛾−1𝑗 },
𝑚−10−(𝑦, 𝑡, 𝜇)𝐽2(𝑦, 𝑡, 𝜇)𝑚0+(𝑦, 𝑡, 𝜇), 𝜇 ∈ Σ ∩ {𝜇 | 𝜇 inside ∪𝑗 {±𝛾±1𝑗 }},
𝐽2(𝑦, 𝑡, 𝜇), otherwise.

On the other hand, the unique solution of this problem can be expressed in
terms of the solution Θ(𝜇) of the singular integral equation (see [93]*Lemma
2.9):

𝑚̂(𝑦, 𝑡, 𝜇) = 𝐼 +
1

2𝜋i

∫︁
Σ̂

Θ(𝑦, 𝑡, 𝑠)𝑤̂(𝑦, 𝑡, 𝑠)
d𝑠

𝑠− 𝜇. (3.33)

Here 𝑤̂(𝑦, 𝑡, 𝑠) := 𝐽(𝑦, 𝑡, 𝑠)−𝐼 and Θ ∈ 𝐼+𝐿2(Σ̂) is the solution of the integral
equation

Θ(𝜇)− 𝒞𝑤̂Θ(𝜇) = 𝐼,

where 𝒞𝑤̂ : 𝐿2(Σ̂) + 𝐿∞(Σ̂) → 𝐿2(Σ̂) is an integral operator defined with the
help of the singular Cauchy operator: 𝒞𝑤̂𝑓 := 𝒞−(𝑓𝑤̂), where 𝒞− = 1

2(−𝐼+𝑆Σ̂)

and 𝑆Σ̂ is the operator associated with Σ̂ and defined by the principal value of
the Cauchy integral:

(𝑆Σ̂𝑓)(𝜇) =
1

2𝜋i

∫︁
Σ̂

𝑓(𝑠)

𝑠− 𝜇𝑑𝑠, 𝜇 ∈ Σ̂.

Here 𝐿2(Σ̂) + 𝐿∞(Σ̂) denotes the space of all functions that can be written as
the sum of a function in 𝐿2(Σ̂) and a function in 𝐿∞(Σ̂).
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Step (v). Estimate the large-time behavior of 𝑚̂(𝑦, 𝑡, 𝜇) at 𝜇 = i and 𝜇 = 0

taking into account the following facts:

• The main contribution to the r.h.s. of (3.33) comes from the integrals over
the small contours, where 𝑤̂(𝑦, 𝑡, 𝜇) = 𝑚−10 (𝑦, 𝑡, 𝜇)− 𝐼:

𝑚̂(𝑦, 𝑡, 𝜇) = 𝐼 +
1

2𝜋i

∫︁
∪𝑗{±𝛾𝑗}∪𝑗{±𝛾−1

𝑗 }

𝑚−10 (𝑦, 𝑡, 𝑠)− 𝐼
𝑠− 𝜇 d𝑠+ o(𝑡−1/2). (3.34)

Henceforth the error estimates are uniform for 𝜀 < 𝜉 < 2− 𝜀 and −1
4 + 𝜀 <

𝜉 < −𝜀, for any small 𝜀 > 0. For detailed estimates, see [93].

• In turn, the main contribution to 𝑚−10 (𝑦, 𝑡, 𝜇)−𝐼 comes from the asymptotics
of the RH problem for parabolic cylinder functions (involved in the construc-
tion of 𝑚0(𝑦, 𝑡, 𝜇)), see [93]*Appendix B, which can be given explicitly.

3.2.2 Range 0 < 𝜉 < 2

This range is characterized by the presence of four real critical points: ±𝜇0 and
±𝜇−10 .

Construction of 𝑚0

First, we approximate i𝑡𝜃(𝜇, 𝜉) using (3.23), the relation

𝜅0 =
1

4

(︂
𝜇0 −

1

𝜇0

)︂
(3.35)

between 𝜇0 and 𝜅0, and the approximation for 𝜃(𝑘, 𝜉) near 𝜅0, see [27]:

𝜃(𝑘, 𝜉) ≈ 𝜃(𝜅0) + 8𝑓0(𝜅0)(𝑘 − 𝜅0)2,

where
𝑓0(𝜅0) =

𝜅0(3− 4𝜅20)

(1 + 4𝜅20)
3
, 𝜃(𝜅0) = − 16𝜅30

(1 + 4𝜅20)
2
. (3.36)

Here and below we use the symbol ≈ somewhat loosely to express that the left-
hand side is approximated by the right-hand side as a function of the spectral
parameter with an error term that we are able to control in the subsequent
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error estimates (see, e.g., (3.44) and (3.47)–(3.49)). We have −i𝑡𝜃(𝜇, 𝜉) ≈
−i𝑡𝜃(𝜅0)− i𝜇̂2

4 , where the scaled spectral variable 𝜇̂ is introduced by

𝜇− 𝜇0 =
𝜇̂

(1 + 𝜇−20 )
√

2𝑓0𝑡
. (3.37)

Now we approximate 𝛿(𝜇, 𝜉) near 𝜇 = 𝜇0. From (3.26) we have

𝛿(𝜇, 𝜉) = exp

{︃
1

2𝜋i

(︃∫︁ −1/𝜇0

−𝜇0

+

∫︁ 𝜇0

1/𝜇0

)︃
ln(1− |𝑟(𝑠)|2)

𝑠− 𝜇 d𝑠

}︃

=

(︂
𝜇− 𝜇0
𝜇− 1/𝜇0

)︂iℎ0
(︂
𝜇+ 1/𝜇0
𝜇+ 𝜇0

)︂iℎ0

e𝜒(𝜇), (3.38)

where

ℎ0 = − 1

2𝜋
ln(1− |𝑟(𝜇0)|2),

𝜒(𝜇) =
1

2𝜋i

(︃∫︁ −1/𝜇0

−𝜇0

+

∫︁ 𝜇0

1/𝜇0

)︃
ln

1− |𝑟(𝑠)|2
1− |𝑟(𝜇0)|2

d𝑠

𝑠− 𝜇

(notice that |𝑟(𝜇)| = |𝑟(−𝜇)| = |𝑟(1/𝜇)|). Therefore (cf. [27]),

𝛿(𝜇, 𝜉) ≈ (𝜇− 𝜇0)iℎ0

(︂
𝜇0 + 1/𝜇0

2𝜇0(𝜇0 − 1/𝜇0)

)︂iℎ0

e𝜒(𝜇0) = 𝜇̂iℎ0(128𝑓0𝜅
2
0𝑡)
− iℎ0

2 e𝜒(𝜇0)

and thus
𝛿(𝜇, 𝜉)e−i𝑡𝜃(𝜇,𝜉) ≈ 𝛿𝜇0

(𝜉, 𝑡)𝜇̂iℎ0e−
i𝜇̂2

4 , (3.39)

where
𝛿𝜇0

(𝜉, 𝑡) = e−i𝑡𝜃(𝜅0(𝜇0))e𝜒(𝜇0)(128𝑓0(𝜅0(𝜇0))𝜅
2
0(𝜇0)𝑡)

− iℎ0
2 . (3.40)

The approximation (3.39) suggests introducing 𝑚0(𝑦, 𝑡, 𝜇) (near 𝜇 = 𝜇0) as
follows:

𝑚0(𝑦, 𝑡, 𝜇) = 𝐷(𝜉, 𝑡)𝑚𝑋(𝜉, 𝜇̂)𝐷−1(𝜉, 𝑡), (3.41)

where 𝐷(𝜉, 𝑡) = 𝛿𝜎3
𝜇0

(𝑡) and 𝑚𝑋(𝜉, 𝜇̂) is the solution of the RH problem, in
the 𝜇̂-complex plane, whose solution is given in terms of parabolic cylinder
functions [93] (with 𝑞 = −𝑟(𝜇0)).

Since (see (3.37)) finite values of 𝜇 correspond to growing (with 𝑡) values
of 𝜇̂, the large-time asymptotics of 𝑚0(𝑦, 𝑡, 𝜇) for 𝜇 on the small contours
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surrounding ±𝜇0 and ± 1
𝜇0

involves the large-𝜇̂ asymptotics of 𝑚𝑋(𝜉, 𝜇̂), which
is given by (see [93]*Appendix B)

𝑚𝑋(𝜉, 𝜇̂) = 𝐼 +
i

𝜇̂

(︃
0 −𝛽𝜇0

(𝜉)

𝛽𝜇0
(𝜉) 0

)︃
+ O(𝜇̂−2) (3.42)

with
𝛽𝜇0

(𝜉) =
√︀
ℎ0e

i(𝜋
4−arg(−𝑟(𝜇0))+arg Γ(iℎ0)), (3.43)

where Γ is Euler’s gamma function. From (3.37), (3.41) and (3.42) we have

𝑚−10 (𝑦, 𝑡, 𝜇) = 𝐷(𝜉, 𝑡)(𝑚𝑋)−1(𝜉, 𝜇̂(𝜇))𝐷−1(𝜉, 𝑡)

= 𝐷(𝜉, 𝑡)

(︃
𝐼 − i

𝜇̂(𝜇)

(︃
0 −𝛽𝜇0

(𝜉)

𝛽𝜇0
(𝜉) 0

)︃)︃
𝐷−1(𝜉, 𝑡) + O(𝑡−1)

= 𝐼 +
𝐵(𝜉, 𝑡)√
𝑡(𝜇− 𝜇0)

+ O(𝑡−1), (3.44)

where

𝐵(𝜉, 𝑡) =

(︃
0 𝐵0(𝜉, 𝑡)

𝐵̄0(𝜉, 𝑡) 0

)︃
with 𝐵0(𝜉, 𝑡) =

i𝛿2𝜇0
(𝜉, 𝑡)𝛽𝜇0

(𝜉)

(1 + 𝜇−20 )
√︀

2𝑓0(𝜅0(𝜇0))
.

(3.45)
Here the estimate O(𝑡−1) is uniform for 𝜉 and 𝜇 such that 𝜀1 < 𝜉 < 2− 𝜀1 and
|𝜇− 𝜇0| = 𝜀2 for any small positive 𝜀𝑗, 𝑗 = 1, 2.

Asymptotics for 𝑚̂

In view of our algorithm for representing 𝑢 in terms of the solution of the
associated regular RH problem, see (3.22), (3.11), (3.12), and (3.1), we need
to know the asymptotics for 𝑚̂(𝑦, 𝑡, 0), 𝑚̂(𝑦, 𝑡, i), and 𝑚̂1(𝑦, 𝑡), where 𝑚̂1 is
extracted from the expansion 𝑚̂(𝑦, 𝑡, 𝜇) = 𝑚̂(𝑦, 𝑡, i)+𝑚̂1(𝑦, 𝑡)(𝜇−i)+O((𝜇−i)2)

as 𝜇 → i. By (3.44) and the residue theorem, the leading contributions of the
integral over 𝛾0 into (3.34) for these quantities are, respectively,

𝐵

𝜇0
√
𝑡
,

𝐵

(𝜇0 − i)
√
𝑡

and
𝐵

(𝜇0 − i)2
√
𝑡
. (3.46)
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In order to take into account the contributions of all small contours, we
extend the definition of 𝑚0 by symmetries (as indicated in Step (iii)). This
gives

𝑚̂(𝑦, 𝑡, 0) = 𝐼 +

(︂
𝐵

𝜇0
− 𝐵̄

𝜇0
− 1

𝜇20

𝐵̄

𝜇−10

+
1

𝜇20

𝐵

𝜇−10

)︂
1√
𝑡

+ o(𝑡−1/2)

= 𝐼 +
4𝑖 Im𝐵0(𝜉, 𝑡)

𝜇0
√
𝑡

(︃
0 1

−1 0

)︃
+ o(𝑡−1/2), (3.47)

𝑚̂(𝑦, 𝑡, i) = 𝐼 +

(︂
𝐵

𝜇0 − i
+

𝐵̄

−𝜇0 − i
− 1

𝜇20

𝐵̄

𝜇−10 − i
− 1

𝜇20

𝐵

−𝜇−10 − i

)︂
1√
𝑡

+ o(𝑡−1/2)

= 𝐼 +
2i Im𝐵0(𝜉, 𝑡)

𝜇0
√
𝑡

(︃
0 1

−1 0

)︃
+ o(𝑡−1/2), (3.48)

and

𝑚̂1(𝑦, 𝑡) =

(︂
𝐵

(𝜇0 − i)2
+

𝐵̄

(−𝜇0 − i)2
− 1

𝜇20

𝐵̄

(𝜇−10 − i)2
− 1

𝜇20

𝐵

(−𝜇−10 − i)2

)︂
1√
𝑡

+ o(𝑡−1/2)

=
4√
𝑡

(︃
0 Re 𝐵0

(𝜇0−i)2

Re 𝐵̄0

(𝜇0−i)2 0

)︃
+ o(𝑡−1/2). (3.49)

From 𝑚̂ back to 𝑀𝑅

In Section 3.2.2 we presented the large-time asymptotics of 𝑚̂(𝑦, 𝑡, 𝜇) (and thus
of 𝑀2(𝑦, 𝑡, 𝜇)) for the dedicated values of 𝜇. Since 𝑃 (𝑦, 𝑡, 0) = 𝐼 whereas
𝑃 (𝑦, 𝑡, 𝜇) tends to 𝐼 exponentially fast, as 𝑡 → +∞ for all 𝜇 close to i,
in order to obtain the leading terms of the asymptotics for 𝑀𝑅(𝑦, 𝑡, 𝜇) =

𝑀1(𝑦, 𝑡, 𝜇)𝛿𝜎3(𝜇, 𝜉) = 𝑀2(𝑦, 𝑡, 𝜇)𝑃−1(𝑦, 𝑡, 𝜇)𝛿𝜎3(𝜇, 𝜉), we need to know 𝛿(𝜇, 𝜉)

(3.26) for 𝜇 = 0 and 𝜇 near i.
Due to the symmetry |𝑟(𝜇)| = |𝑟(−𝜇)| we have

𝛿(0, 𝜉) = exp

{︂
1

2𝜋i

∫︁
Σ𝑏(𝜉)

ln(1− |𝑟(𝑠)|2)
𝑠

d𝑠

}︂
≡ 1. (3.50)

Let 𝐼0 and 𝐼1 be such that 𝛿(𝜇, 𝜉) = e𝐼0+𝐼1(𝜇−i)+... as 𝜇→ i. Then, using again
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the symmetry |𝑟(𝜇)| = |𝑟(−𝜇)|),

𝐼0 =
1

2𝜋i

∫︁
Σ𝑏(𝜉)

ln(1− |𝑟(𝑠)|2)
𝑠− i

d𝑠 =
1

𝜋

∫︁ 𝜇0

1/𝜇0

ln(1− |𝑟(𝑠)|2)
𝑠2 + 1

d𝑠.

On the other hand,

𝐼1 =
1

2𝜋i

∫︁ 𝜇0

1/𝜇0

ln(1− |𝑟(𝑠)|2)
(︂

1

(𝑠− i)2
+

1

(−𝑠− i)2

)︂
d𝑠

=
1

𝜋i

∫︁ 𝜇0

1/𝜇0

ln(1− |𝑟(𝑠)|2) 𝑠2 − 1

(𝑠2 + 1)2
d𝑠 ≡ 0,

the latter equality being due to the symmetry |𝑟(𝜇)| = |𝑟(𝜇−1)|. Thus, as
𝜇→ i,

𝛿(𝜇, 𝜉) = 𝛿(i, 𝜉) + O((𝜇− i)2) with 𝛿(i, 𝜉) = exp

{︂
1

𝜋

∫︁ 𝜇0

1/𝜇0

ln(1− |𝑟(𝑠)|2)
𝑠2 + 1

d𝑠

}︂
.

(3.51)
Therefore, if 𝑀𝑅(𝑦, 𝑡, 𝜇) = 𝑀𝑅(𝑦, 𝑡, i) +𝑀𝑅

1 (𝑦, 𝑡)(𝜇− i) + O((𝜇− i)2) we have
the following asymptotics for 𝑀𝑅(𝑦, 𝑡, 0), 𝑀𝑅(𝑦, 𝑡, i), and 𝑀𝑅

1 (𝑦, 𝑡):

𝑀𝑅(𝑦, 𝑡, 0) = 𝑚̂(𝑦, 𝑡, 0) = 𝐼 +
4i Im𝐵0(𝜉, 𝑡)

𝜇0
√
𝑡

(︃
0 1

−1 0

)︃
+ o(𝑡−1/2), (3.52a)

𝑀𝑅(𝑦, 𝑡, i) = 𝑚̂(𝑦, 𝑡, i)𝛿𝜎3(i, 𝜉) + O(e−𝜀𝑡) (3.52b)

=

(︃
𝐼 +

2i Im𝐵0(𝜉, 𝑡)

𝜇0
√
𝑡

(︃
0 1

−1 0

)︃)︃
𝛿𝜎3(i, 𝜉) + o(𝑡−1/2),

𝑀𝑅
1 (𝑦, 𝑡) = 𝑚̂1(𝑦, 𝑡)𝛿

𝜎3(i, 𝜉) + O(e−𝜀𝑡) (3.52c)

=
4√
𝑡

(︃
0 Re 𝐵0

(𝜇0−i)2

Re 𝐵̄0

(𝜇0−i)2 0

)︃
𝛿𝜎3(i, 𝜉) + o(𝑡−1/2),

where 𝐵0(𝜉, 𝑡) is given by (3.45) and 𝛿(i, 𝜉) is given by (3.51).

Large-time asymptotics of 𝑢

Combining the asymptotics (3.52) for 𝑀𝑅(𝑦, 𝑡, 𝜇) with (3.11), (3.12), (3.14),
and (3.17), we can obtain the leading term of the large-time asymptotics of
𝑢(𝑥, 𝑡).
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Introducing 𝜂 := 2 Im𝐵0

𝜇0

√
𝑡

, from (3.52a) we have:

Δ(𝑦, 𝑡) = 𝜎1[𝑀
𝑅(𝑦, 𝑡, 0)]−1 =

(︃
2i𝜂 1

1 −2i𝜂

)︃
+ o(𝑡−1/2). (3.53)

Therefore, for

𝑀(𝜇) =

(︂
𝐼 − 1

𝜇
𝜎1

)︂−1(︂
𝐼 − 1

𝜇
Δ

)︂
𝑀𝑅(𝜇) (3.54)

we have 𝑀(𝜇) = 𝐼1(𝜇)𝐼2(𝜇)𝑀𝑅(𝜇) + o(𝑡−1/2), where

𝐼1(𝜇) =

(︃
𝜇2

𝜇2−1
𝜇

𝜇2−1
𝜇

𝜇2−1
𝜇2

𝜇2−1

)︃
=

(︃
1
2 − i

2

− i
2

1
2

)︃
− i

2
𝐼(𝜇− i) + O((𝜇− i)2), (3.55a)

𝐼2(𝜇) =

(︃
1− 2i𝜂

𝜇 − 1
𝜇

− 1
𝜇 1 + 2i𝜂

𝜇

)︃
(3.55b)

=

(︃
1− 2𝜂 i

i 1 + 2𝜂

)︃
+

(︃
−2i𝜂 −1

−1 2i𝜂

)︃
(𝜇− i) + O((𝜇− i)2),

𝑀𝑅(𝜇) =

(︃
1 i𝜂

−i𝜂 1

)︃
𝛿𝜎3(i) +

(︃
0 𝛽1

𝛽2 0

)︃
𝛿𝜎3(i)(𝜇− i) + O((𝜇− i)2), (3.55c)

with
𝛽1 =

4√
𝑡

Re
𝐵0

(𝜇0 − i)2
, 𝛽2 =

4√
𝑡

Re
𝐵̄0

(𝜇0 − i)2
. (3.56)

Substituting (3.55) into (3.54) and keeping the terms of order 𝑡−1/2 we have

𝑀(𝜇) =

(︃
(1− 𝜂)𝛿(i) 0

0 (1 + 𝜂)𝛿−1(i)

)︃

+

(︃
0 (𝛽1 + 𝜂)𝛿−1(i)

(𝛽2 − 𝜂)𝛿(i) 0

)︃
(𝜇− i) + o((𝜇− i)𝑡−1/2)

and thus (see (3.11))

𝑎1 = (1−𝜂)𝛿(i)+o(𝑡−1/2), 𝑎2 = (𝛽1+𝜂)𝛿−1(i)+o(𝑡−1/2), 𝑎3 = (𝛽2−𝜂)𝛿(i)+o(𝑡−1/2).

It follows (see (3.12)) that

𝑢̂(𝑦, 𝑡) = −(𝛽1 + 𝛽2) + o(𝑡−1/2) =
8(1− 𝜇20)

(1 + 𝜇20)
2
√
𝑡

Re𝐵0 + o(𝑡−1/2), (3.57a)
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𝑥(𝑦, 𝑡) = 𝑦 + 2 ln((1− 𝜂)𝛿(i)) + o(𝑡−1/2) = 𝑦 + 𝑦0(𝜉) + O(𝑡−1/2), (3.57b)

where (see (3.51)) 𝑦0(𝜉) = 2
𝜋

∫︀ 𝜇0

1/𝜇0

ln(1−|𝑟(𝑠)|2)
𝑠2+1 d𝑠.

Recalling the definition (3.45) of 𝐵0 and introducing the real-valued func-
tions 𝜙𝛿(𝜉, 𝑡) and 𝜙𝛽(𝜉) (see (3.43) and (3.40)) by

𝛽𝜇0
(𝜉) =

√︀
ℎ0e

i𝜙𝛽(𝜉), 𝛿2𝜇0
(𝜉, 𝑡) = ei𝜙𝛿(𝜉,𝑡)

we have 𝐵0 =
√
ℎ0

(1+𝜇−2
0 )
√
2𝑓0

ei(
𝜋
2+𝜙𝛿(𝜉,𝑡))+𝜙𝛽(𝜉)) and thus

Re𝐵0(𝜉, 𝑡) =

√
ℎ0

(1 + 𝜇−20 )
√

2𝑓0
cos
{︁𝜋

2
+ 𝜙𝛿(𝜉, 𝑡) + 𝜙𝛽(𝜉)

}︁
. (3.58)

Substituting (3.58) into (3.57a) gives the asymptotics of the solution of the
Cauchy problem for the mCH equation (in the form (3.2)) expressed paramet-
rically, in the (𝑦, 𝑡) variables. Recalling the definitions of 𝑓0, 𝜙𝛿, 𝜙𝛽, 𝛽𝜇0

(see
(3.36), (3.40), (3.43)) and the relationship (3.35) between 𝜇0 and 𝜅0 we obtain
the following large-time asymptotics along the rays 𝑦

𝑡 = 𝜉 for 0 < 𝜉 < 2:

𝑢̂(𝑦, 𝑡) =
𝐶1(𝜉)√

𝑡
cos {𝐶2(𝜉)𝑡+ 𝐶3(𝜉) ln 𝑡+ 𝐶4(𝜉)}+ o(𝑡−1/2), (3.59)

where

𝐶1(𝜉) = −
(︂

8ℎ0𝜅0
3− 4𝜅20

)︂ 1
2

, (3.60a)

𝐶2(𝜉) =
32𝜅30

(1 + 4𝜅20)
2
, (3.60b)

𝐶3(𝜉) = −ℎ0, (3.60c)

𝐶4(𝜉) =
3𝜋

4
− 1

𝜋

(︃∫︁ −1/𝜇0

−𝜇0

+

∫︁ 𝜇0

1/𝜇0

)︃
ln

1− |𝑟(𝑠)|2
1− |𝑟(𝜇0)|2

d𝑠

𝑠− 𝜇0
(3.60d)

− ℎ0 ln
128𝜅30(3− 4𝜅20)

(1 + 4𝜅20)
3
− arg(−𝑟(𝜇0)) + arg Γ(iℎ0),

taking into account that ℎ0, 𝜅0, and 𝜇0 are defined as functions of 𝜉.
In order to express the asymptotics of 𝑢̃(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡) in the (𝑥, 𝑡)

variables, we notice that (3.57b) reads
𝑦

𝑡
=
𝑥

𝑡
− 𝑦0

𝑡
+ O(𝑡−3/2)
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and thus introducing 𝜁 := 𝑥
𝑡 gives 𝐶𝑗(𝜉) = 𝐶𝑗(𝜁) + O(𝑡−1), 𝑗 = 1, . . . , 4 and

𝐶2(𝜉)𝑡 = 𝐶2(𝜁)𝑡− d𝐶2

d𝜁
(𝜁)𝑦0(𝜁) + o(1).

It follows that the leading term of the asymptotics for 𝑢̃(𝑥, 𝑡) can be obtained
from the r.h.s. of (3.59), where

(i) 𝐶𝑗(𝜉) is replaced by 𝐶𝑗(𝜁) for 𝑗 = 1, 2, 3, and

(ii) 𝐶4(𝜉) is replaced by 𝐶4(𝜁) := 𝐶4(𝜁)− 𝐶 ′2(𝜁)𝑦0(𝜁).

In turn, calculating 𝐶 ′2(𝜁) in terms of 𝜅0(𝜁) and using (3.60b) and 𝜁 = 2−8𝜅2
0

(1+4𝜅2
0)

2 ,
we get 𝐶 ′2(𝜁) = −2𝜅0 and thus

𝐶4(𝜁) = 𝐶4(𝜁) +
4𝜅0(𝜁)

𝜋

∫︁ 𝜇0

1/𝜇0

ln(1− |𝑟(𝑠)|2)
𝑠2 + 1

d𝑠. (3.61)

The asymptotic analysis we have presented above can be summarized in the
following

Theorem 3.2.1. In the solitonless case, the solution 𝑢̃(𝑥, 𝑡) of the Cauchy
problem for the mCH equation in the form (3.2) has the following large-time
asymptotics along the rays 𝑥

𝑡 =: 𝜁 in the sector of the (𝑥, 𝑡) half-plane 0 < 𝜁 <

2:

𝑢̃(𝑥, 𝑡) =
𝐶1(𝜁)√

𝑡
cos
{︁
𝐶2(𝜁)𝑡+ 𝐶3(𝜁) ln 𝑡+ 𝐶4(𝜁)

}︁
+ o(𝑡−1/2) (3.62)

with 𝐶1, 𝐶2, 𝐶3 defined by (3.60a)-(3.60c), and 𝐶4 defined by (3.61)-(3.60d).

Moreover, in these definitions ℎ0 = − 1
2𝜋 ln(1−|𝑟(𝜇0)|2), 𝜅0(𝜁) =

(︁√
1+4𝜁−1−𝜁

4𝜁

)︁ 1
2

,
and 𝜇0(𝜁) > 1 is characterized by the relation 𝜅0(𝜁) = 1

4(𝜇0(𝜁)− 𝜇0(𝜁)−1).

By using the relation (3.1) between 𝑢̃ and 𝑢 we immediately obtain, as a
corollary, the large-time asymptotics for 𝑢(𝑥, 𝑡) in the sector 1 < 𝑥

𝑡 < 3.

Theorem 3.2.2 (1st oscillatory region). Let 𝑢0(𝑥) be a smooth function which
tends sufficiently fast to 1 as 𝑥→ ±∞ and satisfies (1− 𝜕2𝑥)𝑢0(𝑥) > 0 for all
𝑥. Assume we are in the solitonless case, i.e., assume that the spectral function
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associated with 𝑢0(𝑥) has no zeros in the upper half-plane and thus the “discrete
spectrum” is empty.

Then the solution 𝑢(𝑥, 𝑡) of the Cauchy problem (2.1) for the mCH equation
has the following large-time asymptotics in the sector of the (𝑥, 𝑡) half-plane
defined by 1 < 𝜁 := 𝑥

𝑡 < 3:

𝑢(𝑥, 𝑡) = 1+
𝐶1(𝜁 − 1)√

𝑡
cos
{︁
𝐶2(𝜁 − 1)𝑡+ 𝐶3(𝜁 − 1) ln 𝑡+ 𝐶4(𝜁 − 1)

}︁
+o(𝑡−1/2).

(3.63)
The error term is uniform in any sector 1 + 𝜀 < 𝜁 < 3− 𝜀 where 𝜀 is a small
positive number.

3.2.3 Range −1
4
< 𝜉 < 0

This range is characterized by the presence of eight real critical points: ±𝜇0,
±𝜇1, ±𝜇−10 , and ±𝜇−11 , see Figure 3.2. Similarly to the range 0 < 𝜉 < 2, we
proceed, first, by evaluating the contribution to (3.34) from 𝛾0 and −𝛾1 and
then by using the symmetries 𝜇 ↦→ −𝜇 and 𝜇 ↦→ 1/𝜇. Notice that choosing −𝛾1
surrounding−𝜇1 is suggested by the structure (3.29) of Σ𝑏(𝜉): the parts of Σ𝑏(𝜉)

ending at 𝜇0 and at −𝜇1 are located to the left of these points. This implies
that the construction of the local approximation near −𝜇1 follows exactly the
same lines as for 𝜇0, the only difference being in the contributions to the r.h.s.
of (3.38) from other critical points.

Namely, from (3.26) we have

𝛿(𝜇, 𝜉) =

(︂
𝜇− 𝜇0
𝜇− 𝜇−10

)︂iℎ0
(︂
𝜇+ 𝜇−10

𝜇+ 𝜇0

)︂iℎ0
(︂
𝜇− 𝜇−11

𝜇+ 𝜇−11

)︂iℎ1
(︂
𝜇+ 𝜇1
𝜇1 − 𝜇

)︂iℎ1

e𝜒(𝜇),

(3.64)
where ℎ𝑗 = − 1

2𝜋 ln(1− |𝑟(𝜇𝑗)|2), 𝑗 = 0, 1 and

𝜒(𝜇) =
1

2𝜋i

{︂
−
∫︁ −𝜇1

−∞
ln(𝜇− 𝑠)d ln(1− |𝑟(𝑠)|2) (3.65)

+

(︃∫︁ −𝜇−1
0

−𝜇0

+

∫︁ 𝜇0

𝜇−1
0

)︃
ln

1− |𝑟(𝑠)|2
1− |𝑟(𝜇0)|2

d𝑠

𝑠− 𝜇
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+

∫︁ 𝜇−1
1

−𝜇−1
1

ln
1− |𝑟(𝑠)|2
1− |𝑟(𝜇1)|2

d𝑠

𝑠− 𝜇 −
∫︁ +∞

𝜇1

ln(𝑠− 𝜇)d ln(1− |𝑟(𝑠)|2)
}︃
.

Thus, using 𝜅0(𝜇0), 𝑓0(𝜅0(𝜇0)), (see (3.35), (3.36)), and similarly for 𝜅1(𝜇1)
and 𝑓1(𝜅1(𝜇1))

𝛿(𝜇, 𝜉) ≈ 𝜇̂iℎ0(128𝑓0𝜅
2
0𝑡)
− iℎ0

2

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂iℎ1

e𝜒(𝜇0) with 𝜇̂ = (𝜇−𝜇0)
(︂

1 +
1

𝜇20

)︂√︀
2𝑓0𝑡.

for 𝜇 near 𝜇0 and

𝛿(𝜇, 𝜉) ≈ 𝜇̂iℎ1(−128𝑓1𝜅
2
1𝑡)
− iℎ1

2

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂iℎ0

e𝜒(−𝜇1) with 𝜇̂ = (𝜇+𝜇1)

(︂
1 +

1

𝜇21

)︂√︀
−2𝑓1𝑡

for 𝜇 near −𝜇1 (notice that 𝑓0(𝜅0) = 𝜅0(3−4𝜅2
0)

(1+4𝜅2
0)

3 > 0 whereas 𝑓1(𝜅1) = 𝜅1(3−4𝜅2
1)

(1+4𝜅2
1)

3 <

0). Consequently, the coefficients 𝛿𝜇0
(𝜉, 𝑡) and 𝛿𝜇1

(𝜉, 𝑡) to be used in the con-
struction of 𝑚0 (3.41) for 𝜇 near 𝜇0 and −𝜇1, respectively, are as follows:

𝛿𝜇0
(𝜉, 𝑡) = e−i𝑡𝜃(𝜅0)e𝜒(𝜇0)

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂iℎ1

(128𝑓0𝜅
2
0(𝜇0)𝑡)

− iℎ0
2 ,

𝛿𝜇1
(𝜉, 𝑡) = ei𝑡𝜃(𝜅1)e𝜒(−𝜇1)

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂iℎ0

(−128𝑓1𝜅
2
1(𝜇1)𝑡)

− iℎ1
2 ,

(3.66)

which implies (cf. (3.44))

𝑚−10 (𝑦, 𝑡, 𝜇) = 𝐼 +
𝐵𝜇0

(𝜉, 𝑡)√
𝑡(𝜇− 𝜇0)

+ O(𝑡−1), for 𝜇 inside 𝛾0,

𝑚−10 (𝑦, 𝑡, 𝜇) = 𝐼 +
𝐵𝜇1

(𝜉, 𝑡)√
𝑡(𝜇+ 𝜇1)

+ O(𝑡−1), for 𝜇 inside − 𝛾1,

where (cf.(3.45))

𝐵𝜇0
(𝜉, 𝑡) =

(︃
0 𝐵0(𝜉, 𝑡)

𝐵̄0(𝜉, 𝑡) 0

)︃
, 𝐵𝜇1

(𝜉, 𝑡) =

(︃
0 𝐵1(𝜉, 𝑡)

𝐵̄1(𝜉, 𝑡) 0

)︃
,

with

𝐵0(𝜉, 𝑡) =

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂2iℎ1 i𝛿2𝜇0
(𝜉, 𝑡)𝛽𝜇0

(𝜉)

(1 + 𝜇−20 )
√︀

2𝑓0(𝜅0)
,

𝐵1(𝜉, 𝑡) =

(︂
𝜅1 + 𝜅0
𝜅1 − 𝜅0

)︂2iℎ0 i𝛿2𝜇1
(𝜉, 𝑡)𝛽𝜇1

(𝜉)

(1 + 𝜇−21 )
√︀
−2𝑓1(𝜅1)

.

(3.67)
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Here 𝛽𝜇0
(𝜉) is given by (3.43) and

𝛽𝜇1
(𝜉) =

√︀
ℎ1e

i(𝜋
4−arg(−𝑟(−𝜇1))+arg Γ(iℎ1)).

In turn, due to the symmetries, the asymptotics for 𝑚̂(𝑦, 𝑡, 0), 𝑚̂(𝑦, 𝑡, i), and
𝑚̂1(𝑦, 𝑡) (and thus for 𝑀𝑅(𝑦, 𝑡, 0), 𝑀𝑅(𝑦, 𝑡, i), and 𝑀𝑅

1 (𝑦, 𝑡)) in the present
case (cf. (3.47)-(3.49) and (3.52)) involve two terms:

𝑀𝑅(𝑦, 𝑡, 0) = 𝐼 +
4i√
𝑡

(︂
Im𝐵0(𝜉, 𝑡)

𝜇0
− Im𝐵1(𝜉, 𝑡)

𝜇1

)︂(︃
0 1

−1 0

)︃
+ o(𝑡−1/2),

𝑀𝑅(𝑦, 𝑡, i) =

(︃
𝐼 +

2i√
𝑡

(︂
Im𝐵0(𝜉, 𝑡)

𝜇0
− Im𝐵1(𝜉, 𝑡)

𝜇1

)︂(︃
0 1

−1 0

)︃)︃
𝛿𝜎3(i, 𝜉) + o(𝑡−1/2),

𝑀𝑅
1 (𝑦, 𝑡) =

4√
𝑡

(︃
0 Re 𝐵0

(𝜇0−i)2 + Re 𝐵1

(𝜇1+i)2

Re 𝐵̄0

(𝜇0−i)2 + Re 𝐵̄1

(𝜇1+i)2 0

)︃
𝛿𝜎3(i, 𝜉) + o(𝑡−1/2),

where 𝛿(i, 𝜉) is now given by

𝛿(i, 𝜉) = exp

{︃
1

𝜋

(︃∫︁ 𝜇−1
1

0

+

∫︁ 𝜇0

𝜇−1
0

+

∫︁ +∞

𝜇1

)︃
ln(1− |𝑟(𝑠)|2)

𝑠2 + 1
d𝑠

}︃
. (3.68)

It follows that the asymptotics for the parametric representation of 𝑢̃, see
(3.57a) and (3.57b), takes the form

𝑢̂(𝑦, 𝑡) =
8√
𝑡

(︂
(1− 𝜇20)
(1 + 𝜇20)

2
Re𝐵0 +

(1− 𝜇21)
(1 + 𝜇21)

2
Re𝐵1

)︂
+ o(𝑡−1/2), (3.69a)

𝑥(𝑦, 𝑡) = 𝑦 + 𝑦01(𝜉) + O(𝑡−1/2), (3.69b)

where 𝑦01(𝜉) = 2
𝜋

(︁∫︀ 𝜇−1
1

0 +
∫︀ 𝜇0

𝜇−1
0

+
∫︀ +∞
𝜇1

)︁
ln(1−|𝑟(𝑠)|2)

𝑠2+1 d𝑠.
Recalling the definitions (3.67) of 𝐵𝑗, 𝑗 = 0, 1, and arguing as in the case

0 < 𝜉 < 2, we arrive at the asymptotics of 𝑢̂(𝑦, 𝑡) (cf. (3.59))

𝑢̂(𝑦, 𝑡) =
∑︁
𝑗=0,1

𝐶
(𝑗)
1 (𝜉)√
𝑡

cos
{︁
𝐶

(𝑗)
2 (𝜉)𝑡+ 𝐶

(𝑗)
3 (𝜉) ln 𝑡+ 𝐶

(𝑗)
4 (𝜉)

}︁
+ o(𝑡−1/2),

(3.70)
where

𝐶
(𝑗)
1 (𝜉) = −

(︃
8ℎ𝑗𝜅𝑗
|3− 4𝜅2𝑗 |

)︃ 1
2

, (3.71a)
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𝐶
(𝑗)
2 (𝜉) =

(−1)𝑗32𝜅3𝑗
(1 + 4𝜅2𝑗)

2
, (3.71b)

𝐶
(𝑗)
3 (𝜉) = −ℎ𝑗, (3.71c)

𝐶
(𝑗)
4 (𝜉) =

3𝜋

4
− 2i𝜒((−1)𝑗𝜇𝑗)− ℎ𝑗 ln

128𝜅3𝑗 |3− 4𝜅2𝑗 |
(1 + 4𝜅2𝑗)

3
(3.71d)

− arg(−𝑟((−1)𝑗𝜇𝑗)) + arg Γ(iℎ𝑗) + 2ℎ1−𝑗 ln
𝜅1 + 𝜅0
𝜅1 − 𝜅0

,

and 𝜒(𝜇) is given by (3.65).
Returning to the (𝑥, 𝑡) variables, 𝐶(𝑗)

4 (𝜉), 𝑗 = 0, 1 are to be replaced, simi-
larly to (3.61), by

𝐶
(𝑗)
4 (𝜁) = 𝐶

(𝑗)
4 (𝜁) +

(−1)𝑗4𝜅𝑗(𝜁)

𝜋

(︃∫︁ 𝜇−1
1

0

+

∫︁ 𝜇0

𝜇−1
0

+

∫︁ +∞

𝜇1

)︃
ln(1− |𝑟(𝑠)|2)

𝑠2 + 1
d𝑠,

(3.72)
which finally leads us to

Theorem 3.2.3. In the solitonless case, the solution 𝑢̃(𝑥, 𝑡) of the Cauchy
problem for the mCH equation in the form (3.2) has the following large-time
asymptotics along the rays 𝑥

𝑡 =: 𝜁 in the sector of the (𝑥, 𝑡) half-plane −1
4 <

𝜁 < 0:

𝑢̃(𝑥, 𝑡) =
∑︁
𝑗=0,1

𝐶
(𝑗)
1 (𝜁)√
𝑡

cos
{︁
𝐶

(𝑗)
2 (𝜁)𝑡+ 𝐶

(𝑗)
3 (𝜁) ln 𝑡+ 𝐶

(𝑗)
4 (𝜁)

}︁
+ o(𝑡−1/2)

with an error term uniform in any sector −1
4 + 𝜀 < 𝜁 < −𝜀 where 𝜀 is a small

positive number. The coefficients 𝐶(𝑗)
1 , 𝐶

(𝑗)
2 , 𝐶

(𝑗)
3 are defined by (3.71a)-(3.71c)

and 𝐶(𝑗)
4 is defined by (3.72)-(3.71d). In these definitions

ℎ𝑗 = − 1

2𝜋
ln(1− |𝑟(𝜇𝑗)|2),

𝜅0(𝜁) =

(︂√
1 + 4𝜁 − 1− 𝜁

4𝜁

)︂ 1
2

, 𝜅1(𝜁) =

(︂
−
√

1 + 4𝜁 + 1 + 𝜁

4𝜁

)︂ 1
2

,

and 𝜇𝑗(𝜁) > 1, 𝑗 = 0, 1 is characterized by the relation 𝜅𝑗(𝜁) = 1
4(𝜇𝑗(𝜁) −

𝜇𝑗(𝜁)−1).
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Using again (3.1) we obtain, as a corollary, the large-time asymptotics of
𝑢(𝑥, 𝑡) in the sector 3

4 <
𝑥
𝑡 < 1.

Theorem 3.2.4 (2nd oscillatory region). Let 𝑢0(𝑥) be a smooth function which
tends sufficiently fast to 1 as 𝑥→ ±∞ and satisfies (1− 𝜕2𝑥)𝑢0(𝑥) > 0 for all
𝑥. Assume we are in the solitonless case, i.e., assume that the spectral function
associated with 𝑢0(𝑥) has no zeros in the upper half-plane and thus the “discrete
spectrum” is empty.

Then the solution 𝑢(𝑥, 𝑡) of the Cauchy problem (2.1) for the mCH equation
has the following large-time asymptotics along the rays 𝑥

𝑡 =: 𝜁 in the sector of
the (𝑥, 𝑡) half-plane defined by 3

4 < 𝜁 < 1:

𝑢(𝑥, 𝑡) = 1+
∑︁
𝑗=0,1

𝐶
(𝑗)
1 (𝜁 − 1)√

𝑡
cos
{︁
𝐶

(𝑗)
2 (𝜁 − 1)𝑡+ 𝐶

(𝑗)
3 (𝜁 − 1) ln 𝑡+ 𝐶

(𝑗)
4 (𝜁 − 1)

}︁
+o(𝑡−1/2).

The error term is uniform in any sector 3
4 + 𝜀 < 𝜁 < 1 − 𝜀 where 𝜀 is small

and positive.

•0

ζ = 3

ζ = 1ζ = 3
4

rapid decay

1st oscillatory
region

2nd oscillatory
region

rapid decay

x

t

Figure 3.3: Asymptotics for 𝑢(𝑥, 𝑡) according to 𝜁 := 𝑥
𝑡 : the four regions.

Remark 3.2.5 (other regions). In the solitonless case, 𝑢(𝑥, 𝑡) decays rapidly to
1 in the sectors 𝑥

𝑡 > 3 and 𝑥
𝑡 <

3
4 , cf. [27]. This is due to the fact that for these

ranges of values of 𝑥
𝑡 , 𝜃(𝜇, 𝜉) has no real stationary points (lying on the contour

of the original RH problem).
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Remark 3.2.6 (transition zones). Transitions between the sectors (i.e., for 𝑥
𝑡

near 3
4 and 3) are characterized by the merging of real stationary points of

𝜃(𝜇, 𝜉), which implies that the error terms in Theorems 3.2.2 and 3.2.4 grow
as 𝜀→ 0 and thus the presented asymptotics becomes incorrect. On the other
hand, in analogy with the case of the Camassa–Holm equation (see [17]), using a
different scaling of the spectral parameter, one can obtain a correct asymptotics
in the transition zones in terms of Painlevé transcendents [20].

3.3 Soliton asymptotics

As for other soliton equations, the soliton solutions of the mCH equation are
associated with the residue conditions (2.42). Accordingly, these conditions
give rise to soliton asymptotics in a dedicated sector of the (𝑥, 𝑡) plane. They
can be handled by adding to the contour small circles around each 𝜇𝑗 and its
symmetry counterparts and thus reducing the residue conditions to associated
jump conditions across the circles and then proceeding as in the case without
residue conditions [21].

The one-soliton solution 𝑢 ≡ 𝑢𝜃,𝛿 with parameters (𝜃, 𝛿), where 𝜃 ∈ (0, 𝜋2 ),
has the following parametric representation:

𝑢(𝑥, 𝑡) = 𝑢̃(𝑥− 𝑡, 𝑡) + 1 = 𝑢̂(𝑦(𝑥− 𝑡, 𝑡), 𝑡) + 1, (3.73a)

where

𝑢̂(𝑦, 𝑡) = 4 tan2 𝜃
𝑧2(𝑦, 𝑡) + 2 cos2 𝜃 · 𝑧(𝑦, 𝑡) + cos2 𝜃

(𝑧2(𝑦, 𝑡) + 2𝑧(𝑦, 𝑡) + cos2 𝜃)2
𝑧(𝑦, 𝑡), (3.73b)

𝑥(𝑦, 𝑡) = 𝑡+ 𝑦 + 2 ln
𝑧(𝑦, 𝑡) + 1 + sin 𝜃

𝑧(𝑦, 𝑡) + 1− sin 𝜃
, (3.73c)

and
𝑧(𝑦, 𝑡) = 2𝛿 sin 𝜃 esin 𝜃(𝑦−

2
cos2 𝜃

𝑡). (3.73d)

Notice that if 𝜃 ∈ (𝜋3 ,
𝜋
2 ), then the 𝑥 to 𝑦 correspondence (3.73c) is not one-

to-one and thus in this case (3.73) represent a loop-type multi-valued function
of 𝑥. On the other hand, if 𝜃 ∈ (0, 𝜋3 ), then (3.73) represent a smooth function,
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which dominates the long-time behavior of the solution of problem (2.1) in an
associated sector. Similarly to [21] the following theorem holds:

Theorem 3.3.1 (soliton asymptotics). Assume that 𝑎(𝜇) associated with 𝑢0(𝑥)

has 2𝑛 simple zeros: 𝜇𝑗 = ei𝜃𝑗 with 0 < 𝜃1 < · · · < 𝜃𝑛 <
𝜋
3 and 𝜇𝑛+𝑙 = −𝜇̄𝑙

for 𝑙 = 1, . . . , 𝑛. Then the asymptotics of 𝑢 (understood as a global solution
of (2.1a) or a solution continued beyond possible blow-ups following the RH
formalism) in the sector 3 < 𝑥

𝑡 < 9 is given as follows:

1. In the sectors
⃒⃒⃒
𝑥
𝑡 − 1− 2

cos2 𝜃𝑗

⃒⃒⃒
< 𝜀 with any 𝜀 > 0 sufficiently small,

𝑢(𝑥, 𝑡) = 𝑢𝑗(𝑥, 𝑡) + O(𝑡−𝑙), 𝑗 = 1, . . . , 𝑛

with 𝑙 ≥ 1 depending on the rate of decay of 𝑢0(𝑥)− 1 as |𝑥| → ∞, where
𝑢𝑗 is given, parametrically, by (3.73) with 𝜃, 𝛿, and 𝑧 replaced by 𝜃𝑗, 𝛿𝑗,
and 𝑧𝑗 respectively, where

𝑧𝑗(𝑦, 𝑡) = 2𝛿𝑗 sin 𝜃𝑗 e
sin 𝜃𝑗

(︂
𝑦− 2

cos2 𝜃𝑗
𝑡+𝑦0𝑗

)︂

and 𝑦0𝑗 are constants determined by {𝜃𝑚, 𝛿𝑚}𝑛𝑚=𝑗+1.

2. Outside these sectors, 𝑢(𝑥, 𝑡) = O(𝑡−𝑙).

Remark 3.3.2. Since it is the RH problem parametrized by 𝑦 and 𝑡 that un-
dergoes the asymptotic analysis, and the soliton solutions (3.73b) are smooth
in (𝑦, 𝑡) variables, the asymptotic results of Theorem 3.3.1 hold true for the
mCH equation written in (𝑦, 𝑡) variables, see Chapter 2, even if 𝑎(𝜇) has zeros
at some 𝜇* = ei𝜃

* with 𝜃* ∈ (𝜋3 ,
𝜋
2 ). On the other hand, this allows deducing

a sufficient condition for wave breaking of solutions of problem (2.1a) (in (𝑥, 𝑡)

variables): If 𝑎(𝜇) has a zero 𝜇* = ei𝜃
* with 𝜃* ∈ (𝜋3 ,

𝜋
2 ), then wave breaking

occurs at a certain finite time. In this case, the mechanism of wave breaking
consists in breaking the one-to-one correspondence 𝑥↔ 𝑦 (cf. [32]).

Remark 3.3.3 (other regions). 𝑢(𝑥, 𝑡) decays rapidly to 1 in the sectors 𝑥
𝑡 > 9

and 𝑥
𝑡 <

3
4 , cf. [27]. This is due to the fact that for these ranges of values of 𝑥

𝑡 ,
𝜃(𝜇, 𝜉) has no real stationary points (lying on the contour of the original RH
problem).
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3.4 Conclusions to Chapter 3

In this Section, we have applied the nonlinear steepest descent method, based
on the Riemann–Hilbert formalism, to study the large-time asymptotics of the
solution of the Cauchy problem for the modified Camassa–Holm equation on
the whole line in the case when the solution is assumed to approach a non-
zero constant at the both infinities of the space variable. We have focused on
the study of the solitonless case assuming that there are no residue conditions
(for the soliton case, where the basic RH problem involves residue conditions,
one can reduce (using the Blaschke–Potapov factors) this RH problem to that
having no residue conditions).

For the sake of the large-𝑡 analysis, we have reduced the original (singular)
RH problem representation for the solution of the mCH equation to the solution
of a regular RH problem (i.e., to a RH problem with the jump and normalization
conditions only). A notable feature of the modified Camassa–Holm equation
is that the associated basic RH problem has two singularity conditions (at
𝜇 = ±1) with different matrix structures, which does not allow getting rid of
them by reducing the matrix RH problem to a vector one, as it can be done in
the case of the (original) Camassa–Holm equation. In our approach, we have
addressed the reduction problem in two steps. First, we have reduced the RH
problem with the singularity conditions at 𝜇 = ±1 to a RH problem which is
characterized by the following two conditions: (i) the matrix entries are regular
at 𝜇 = ±1, but the determinant of the (matrix) solution vanishes at 𝜇 = ±1

(notice that det𝑀(𝜇) ≡ 1 for the solution of the original RH problem); (ii)
the solution is singular at 𝜇 = 0. Then, we have represented the solution of
the latter RH problem in terms of the solution of a regular one. In turn, the
solution of the resulting regular RH problem was analyzed asymptotically, as
𝑡 → +∞, using an appropriate adaptation of the nonlinear steepest descent
method.

In such a way, we have obtained the results of the asymptotic analysis in
the solitonless case for the two sectors 3

4 <
𝑥
𝑡 < 1 and 1 < 𝑥

𝑡 < 3 (in the (𝑥, 𝑡)
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half-plane, 𝑡 > 0), where the leading asymptotic term of the deviation of the so-
lution from the background is nontrivial: this term is given by modulated (with
parameters depending on 𝑥

𝑡 ), decaying (as 𝑡−1/2) trigonometric oscillations.
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Chapter 4

The Riemann–Hilbert approach to the
modified Camassa–Holm equation with
step-like boundary conditions

The results of this Chapter are published in [88].

We consider the initial value problem for the mCH equation (4.1a):

𝑚𝑡 +
(︀
(𝑢2 − 𝑢2𝑥)𝑚

)︀
𝑥

= 0, 𝑚 := 𝑢− 𝑢𝑥𝑥, 𝑡 > 0, −∞ < 𝑥 < +∞, (4.1a)

𝑢(𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < +∞, (4.1b)

assuming that

𝑢0(𝑥)→

⎧⎨⎩𝐴1 as 𝑥→ −∞
𝐴2 as 𝑥→∞

, (4.2)

where 𝐴1 and 𝐴2 are some different constants, and that the solution 𝑢(𝑥, 𝑡)

preserves this behavior for all fixed 𝑡 > 0.
We develop the Riemann–Hilbert formalism to problem (4.1) with the step-

like initial data (4.2) assuming that 0 < 𝐴1 < 𝐴2 and that 𝑢(𝑥, 𝑡) approaches its
large-𝑥 limits sufficiently fast. We also assume that𝑚(𝑥, 0) = 𝑢0(𝑥)−𝑢0𝑥𝑥(𝑥) >

0 for all 𝑥; then it can be shown that 𝑚(𝑥, 𝑡) > 0 for all 𝑡 (see Appendix 4.1, for
the case of the CH equation, see [41, 43]). In Section 4.2, we introduce appropri-
ate transformations of the Lax pair equations and the associated Jost solutions
(“eigenfunctions”) and discuss analytic properties of the eigenfunctions and the
corresponding spectral functions (scattering coefficients), including the sym-
metries and the behavior at the branch points. Here the analysis is performed
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when fixing the branches of the functions 𝑘𝑗(𝜆) :=
√︁
𝜆2 − 1

𝐴2
𝑗
, 𝑗 = 1, 2 involved

in the Lax pair transformations as having the branch cuts (−∞,− 1
𝐴𝑗

)∪( 1
𝐴𝑗
,∞).

In Section 4.3, the introduced eigenfunctions are used in the construction of the
Riemann–Hilbert problems, whose solutions evaluated at 𝜆 = 0 (where 𝜆 is the
spectral parameter in the Lax pair equations) give parametric representations
of the solution of problem (4.1). The case 0 < 𝐴2 < 𝐴1 is briefly discussed in
Subsection 4.4.

4.1 Sign-preserving property of 𝑚

In order to control the analytic properties of the Jost solution the sign-
preserving property of 𝑚 plays a crucial role. The analogous result for the
Camassa–Holm equation can be found in [41, 43].

Assume that 𝑢(𝑥, 𝑡) − 𝐴1 ∈ 𝐻3(−∞, 𝑎) and 𝑢(𝑥, 𝑡) − 𝐴2 ∈ 𝐻3(𝑎,∞) for
any real 𝑎 and for any 𝑡 ∈ (0, 𝑇 ), where 𝑇 ≤ +∞ is the maximal existing
time. Then Morrey’s inequality implies that (𝑚𝑢𝑥)(𝑠, 𝑥) is uniformly bounded
for 0 < 𝑠 < 𝑡 < 𝑇 , 𝑥 ∈ R. Consider the Cauchy problem for 𝑞(𝑡, 𝑥):

d𝑞

d𝑡
= (𝑢2 − 𝑢2𝑥)(𝑞(𝑡, 𝑥), 𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ R, (4.3a)

𝑞(0, 𝑥) = 𝑥, 𝑥 ∈ R, (4.3b)

where 𝑢(𝑥, 𝑡) solves (4.1). Differentiating (4.3) with respect to 𝑥 leads to

d

d𝑡
𝑞𝑥(𝑡, 𝑥) = (2𝑚𝑢𝑥)(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥), (4.4a)

𝑞𝑥(0, 𝑥) = 1, 𝑥 ∈ R. (4.4b)

It follows that
𝑞𝑥(𝑡, 𝑥) = e2

∫︀ 𝑡

0
(𝑚𝑢𝑥)(𝑞(𝑠,𝑥),𝑠)d𝑠 > 0 (4.5)

and, moreover,
e𝑘(𝑡) ≤ 𝑞𝑥(𝑡, 𝑥) ≤ e𝐾(𝑡), 𝑡 ∈ [0, 𝑇 ) (4.6)
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for some 𝑘(𝑡) and 𝐾(𝑡).
Now observe that from (4.1a) and (4.3) it follows that d

d𝑡 [𝑚(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥)] =

0. Indeed,

𝑑

𝑑𝑡
[𝑚(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥)]

= [𝑚𝑡(𝑞(𝑡, 𝑥), 𝑡) +𝑚𝑥(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑡(𝑡, 𝑥)] (𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥) +𝑚(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑡𝑥(𝑡, 𝑥)

=
[︀
−(𝑢2 − 𝑢2𝑥)𝑥𝑚− (𝑢2 − 𝑢2𝑥)𝑚𝑥 +𝑚𝑥(𝑢2 − 𝑢2𝑥)

]︀
(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥)

+ 2(𝑚2𝑢𝑥)(𝑞(𝑡, 𝑥), 𝑡)𝑞𝑥(𝑡, 𝑥) = 0.

Thus, due to (4.3b) and (4.4b), we have

𝑚(𝑡, 𝑞(𝑡, 𝑥))𝑞𝑥(𝑡, 𝑥) = 𝑚(0, 𝑞(0, 𝑥))𝑞𝑥(0, 𝑥) = 𝑚(0, 𝑥).

Hence, if 𝑚(𝑥, 0) > 0, then 𝑚(𝑞(𝑡, 𝑥), 𝑡) > 0 for all 𝑡 ∈ [0, 𝑇 ), 𝑥 ∈ R. Since
𝑞𝑥(𝑡, 𝑥) > 0, we have that 𝑞(𝑡, 𝑥) is strictly increasing function. Moreover,
integrating (4.6) w.r.t. 𝑥, we also have lim𝑥→±∞ 𝑞(𝑡, 𝑥) = ±∞. Hence 𝑞(𝑥, 𝑡)
is one-to-one from R onto R and thus 𝑚(𝑡, 𝑥) > 0 for all 𝑡 ∈ [0, 𝑇 ), 𝑥 ∈ R.

4.2 Lax pairs and eigenfunctions

4.2.1 Lax pairs

The Lax pair for the mCH equation (4.1a) has the following form [108]:

Φ𝑥(𝑥, 𝑡, 𝜆) = 𝑈(𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆), (4.7a)

Φ𝑡(𝑥, 𝑡, 𝜆) = 𝑉 (𝑥, 𝑡, 𝜆)Φ(𝑥, 𝑡, 𝜆), (4.7b)

where the coefficients 𝑈 and 𝑉 are defined by

𝑈 =
1

2

(︃
−1 𝜆𝑚

−𝜆𝑚 1

)︃
, (4.7c)

𝑉 =

(︃
𝜆−2 + 𝑢2−𝑢2

𝑥

2 −𝜆−1(𝑢− 𝑢𝑥)− 𝜆(𝑢2−𝑢2
𝑥)𝑚

2

𝜆−1(𝑢+ 𝑢𝑥) + 𝜆(𝑢2−𝑢2
𝑥)𝑚

2 −𝜆−2 − 𝑢2−𝑢2
𝑥

2

)︃
, (4.7d)
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with 𝑚(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡). The RH formalism for integrable nonlinear
equations is based on using appropriately defined eigenfunctions, i.e., solutions
of the Lax pair, whose behavior as functions of the spectral parameter is well-
controlled in the extended complex plane. Notice that the coefficient matrices
𝑈 and 𝑉 are traceless, which provides that the determinant of a matrix solution
to (4.7) (composed of two vector solutions) is independent of 𝑥 and 𝑡.

Also notice that 𝑈 and 𝑉 have singularities (in the extended complex 𝜆-
plane) at 𝜆 = 0 and 𝜆 = ∞. In particular, 𝑈 is singular at 𝜆 = ∞, which
necessitates a special care when constructing solutions with controlled behavior
as 𝜆→∞. On the other hand, 𝑈 becomes 𝑢-independent at 𝜆 = 0 (a property
shared by many Camassa–Holm-typed equations, including the CH equation
itself), which suggests using the behavior of the constructed solutions as 𝜆→ 0

in order to “extract” the solution of the nonlinear equation in question from the
solution of an associated Riemann–Hilbert problem (whose construction, in the
direct problem, involves the dedicated solutions of the Lax pair equations).

Notations

• We introduce the following notations for various intervals of the real axis:

Σ𝑗 = (−∞,− 1

𝐴𝑗
] ∪ [

1

𝐴𝑗
,∞), Σ̇𝑗 = (−∞,− 1

𝐴𝑗
) ∪ (

1

𝐴𝑗
,∞),

Σ0 = [− 1

𝐴1
,− 1

𝐴2
] ∪ [

1

𝐴2
,

1

𝐴1
], Σ̇0 = (− 1

𝐴1
,− 1

𝐴2
) ∪ (

1

𝐴2
,

1

𝐴1
).

Notice that Σ1 ⊂ Σ2 since we assume 𝐴1 < 𝐴2.

• For 𝜆 ∈ Σ𝑗 we denote by 𝜆+ (𝜆−) the point of the upper (lower) side of
Σ𝑗 (i.e. 𝜆± = lim𝜖↓0 𝜆± i𝜖). Then we have −𝜆+ = (−𝜆)− and 𝜆+ = 𝜆−.

• 𝑘𝑗(𝜆) :=
√︁
𝜆2 − 1

𝐴2
𝑗
, 𝑗 = 1, 2 with the branch cut Σ𝑗 and the branch is

fixed by the condition 𝑘𝑗(0) = i
𝐴𝑗

.

Observe that Im 𝑘𝑗(𝜆) ≥ 0 on C, and 𝑘𝑗(𝜆) is real valued on the both sides
of Σ𝑗. Also notice that 𝑘𝑗(𝜆) = 𝜔+

𝑗 (𝜆)𝜔−𝑗 (𝜆), where 𝜔+
𝑗 (𝜆) =

√︁
𝜆− 1

𝐴𝑗
with

122



the branch cut [ 1
𝐴𝑗
,∞) and 𝜔+

𝑗 (0) = i√
𝐴𝑗

, and 𝜔−𝑗 (𝜆) =
√︁
𝜆+ 1

𝐴𝑗
with the

branch cut (−∞,− 1
𝐴𝑗

] and 𝜔−𝑗 (0) = 1√
𝐴𝑗

.

Observe the following symmetry relations:

𝑘𝑗(−𝜆) = 𝑘𝑗(𝜆), 𝜆 ∈ C ∖ Σ𝑗, (4.8a)

𝑘𝑗(𝜆+) = −𝑘𝑗((−𝜆)+), 𝜆 ∈ Σ𝑗, (4.8b)

𝑘𝑗(𝜆) = −𝑘𝑗(𝜆), 𝜆 ∈ C ∖ Σ𝑗, (4.8c)

𝑘𝑗(𝜆+) = 𝑘𝑗(𝜆+), 𝜆 ∈ Σ𝑗 (4.8d)

(here (4.8b) follows from (4.8a) and (4.8c)).
In order to control the large 𝜆 behavior of solutions of (4.7), we introduce

two gauge transformations associated with 𝑥 → (−1)𝑗∞ and 𝑚 → 𝐴𝑗 (in a
similar way as it was done in the case of the constant background in Chapter
2).

Proposition 4.2.1. Equation (4.1a) admits Lax pairs of the form (𝑗 = 1, 2)

Φ̂𝑗𝑥 +𝑄𝑗𝑥Φ̂𝑗 = 𝑈̂𝑗Φ̂𝑗, (4.9a)

Φ̂𝑗𝑡 +𝑄𝑗𝑡Φ̂𝑗 = 𝑉𝑗Φ̂𝑗, (4.9b)

whose coefficients 𝑄𝑗 ≡ 𝑄𝑗(𝑥, 𝑡, 𝜆), 𝑈̂𝑗 ≡ 𝑈̂𝑗(𝑥, 𝑡, 𝜆), and 𝑉𝑗 ≡ 𝑉𝑗(𝑥, 𝑡, 𝜆)

are 2 × 2 matrices given by (4.13) and (4.14), which are characterized by the
following properties:

(i) 𝑄𝑗 is diagonal and is unbounded as 𝜆→∞.

(ii) 𝑈̂𝑗 = O(1) and 𝑉𝑗 = O(1) as 𝜆→∞.

(iii) The diagonal parts of 𝑈̂𝑗 and 𝑉𝑗 decay as 𝜆→∞.

(iv) 𝑈̂𝑗 → 0 and 𝑉𝑗 → 0 as 𝑥→ (−1)𝑗∞.

Proof. Notice that 𝑈 in (4.7c) can be written as

𝑈(𝑥, 𝑡, 𝜆) =
𝑚(𝑥, 𝑡)

2𝐴𝑗

(︃
−1 𝜆𝐴𝑗

−𝜆𝐴𝑗 1

)︃
+
𝑚(𝑥, 𝑡)− 𝐴𝑗

2𝐴𝑗

(︃
1 0

0 −1

)︃
, (4.10)
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where 𝑚(𝑥, 𝑡) − 𝐴𝑗 → 0 as 𝑥 → (−1)𝑗∞. The first (non-decaying, as 𝑥 →
(−1)𝑗∞) term in (4.10) can be diagonalized by introducing

Φ̂𝑗(𝑥, 𝑡, 𝜆) := 𝐷𝑗(𝜆)Φ(𝑥, 𝑡, 𝜆), (4.11)

where

𝐷𝑗(𝜆) :=

√︂
1

2

√︃
1

i𝐴𝑗𝑘𝑗(𝜆)
− 1

(︃
𝜆𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆)
−1

−1
𝜆𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆)

)︃
(4.12)

with

𝐷−1𝑗 (𝜆) :=

√︂
1

2

√︃
1

i𝐴𝑗𝑘𝑗(𝜆)
− 1

(︃
𝜆𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆)
1

1
𝜆𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆)

)︃
.

The factor
√︁

1
2

√︁
1

i𝐴𝑗𝑘𝑗(𝜆)
− 1 provides det𝐷𝑗(𝜆) = 1 for all 𝜆, and the branch

of the square root is chosen so that the branch cut is [0,∞) and
√
−1 = i; then

√
𝑤𝑗 = −

√︀
𝑤𝑗. Observe that

√︁
1

i𝐴𝑗𝑘𝑗(𝜆)
− 1 is well defined as a function of 𝜆

on C ∖ Σ𝑗 as well as on the sides of Σ𝑗. Then (4.11) transforms (4.7a) into

Φ̂𝑗𝑥 +
i𝑘𝑗(𝜆)𝑚

2
𝜎3Φ̂𝑗 = 𝑈̂𝑗Φ̂𝑗, (4.13a)

where 𝑈̂𝑗 ≡ 𝑈̂𝑗(𝑥, 𝑡, 𝜆) is given by

𝑈̂𝑗 =
𝜆(𝑚− 𝐴𝑗)

2𝐴𝑗𝑘𝑗(𝜆)
𝜎2 +

𝑚− 𝐴𝑗

2i𝐴2
𝑗𝑘𝑗(𝜆)

𝜎3. (4.13b)

In turn, the 𝑡-equation (4.7b) of the Lax pair is transformed into

Φ̂𝑗𝑡 + i𝐴𝑗𝑘𝑗(𝜆)

(︂
− 1

2𝐴𝑗
𝑚(𝑢2 − 𝑢2𝑥)− 1

𝜆2

)︂
𝜎3Φ̂𝑗 = 𝑉𝑗Φ̂𝑗, (4.13c)

where 𝑉𝑗 ≡ 𝑉𝑗(𝑥, 𝑡, 𝜆) is given by

𝑉𝑗 = − 1

2𝐴𝑗𝑘𝑗(𝜆)

(︂
𝜆(𝑢2 − 𝑢2𝑥)(𝑚− 𝐴𝑗) +

2(𝑢− 𝐴𝑗)

𝜆

)︂
𝜎2 +

𝑢̃𝑥
𝜆
𝜎1

− 1

i𝐴𝑗𝑘𝑗(𝜆)

(︂
𝐴𝑗(𝑢− 𝐴𝑗) +

1

2𝐴𝑗
(𝑢2 − 𝑢2𝑥)(𝑚− 𝐴𝑗)

)︂
𝜎3.

(4.13d)

Now notice that equations (4.13a) and (4.13c) have the desired form (4.9),
if we define 𝑄𝑗 by

𝑄𝑗(𝑥, 𝑡, 𝜆) := 𝑝𝑗(𝑥, 𝑡, 𝜆)𝜎3, (4.14a)
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with

𝑝𝑗(𝑥, 𝑡, 𝜆) := i𝐴𝑗𝑘𝑗(𝜆)

(︃
1

2𝐴𝑗

∫︁ 𝑥

(−1)𝑗∞
(𝑚(𝜉, 𝑡)− 𝐴𝑗)d𝜉 +

𝑥

2
− 𝑡
(︀ 1

𝜆2
+
𝐴2

𝑗

2

)︀)︃
.

(4.14b)
Indeed, we obviously have 𝑝𝑗𝑥 =

i𝑘𝑗(𝜆)𝑚
2 ; on the other hand, the equality

𝑝𝑗𝑡 = i𝐴𝑗𝑘𝑗(𝜆)

(︂
− 1

2𝐴𝑗
𝑚(𝑢2 − 𝑢2𝑥)− 1

𝜆2

)︂
follows from (4.1a).

Remark 4.2.2. In Chapter 2, which deals with the mCH equation on a single
background, introducing a uniformizing spectral parameter (such that 𝜆 and
the respective 𝑘(𝜆) are rational with respect to it) allowed getting rid of square
roots and thus avoiding the problem of specifying particular branches. In the
present case, since we have to deal with two different functions, 𝑘1(𝜆) and
𝑘2(𝜆), associated with two different backgrounds, we keep the original spectral
parameter 𝜆 as the spectral variable in the RH problem formalism we are going
to develop.

4.2.2 Eigenfunctions

The Lax pair in the form (4.13) allows us to determine, via associated integral
equations, dedicated solutions having a well-controlled behavior as functions of
the spectral parameter 𝜆 for large values of 𝜆. Indeed, introducing

̃︀Φ𝑗 = Φ̂𝑗e
𝑄𝑗 (4.15)

(understanding ̃︀Φ𝑗 as a 2 × 2 matrix), equations (4.13a) and (4.13c) can be
rewritten as ⎧⎨⎩̃︀Φ𝑗𝑥 + [𝑄𝑗𝑥, ̃︀Φ𝑗] = 𝑈̂𝑗

̃︀Φ𝑗,̃︀Φ𝑗𝑡 + [𝑄𝑗𝑡, ̃︀Φ𝑗] = 𝑉𝑗̃︀Φ𝑗,
(4.16)

where [ · , · ] stands for the commutator. We now determine the Jost solutions̃︀Φ𝑗 ≡ ̃︀Φ𝑗(𝑥, 𝑡, 𝜆), 𝑗 = 1, 2 of (4.16) as the solutions of the associated Volterra
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integral equations:

̃︀Φ𝑗(𝑥, 𝑡, 𝜆) = 𝐼+

∫︁ 𝑥

(−1)𝑗∞
e𝑄𝑗(𝜉,𝑡,𝜆)−𝑄𝑗(𝑥,𝑡,𝜆)𝑈̂𝑗(𝜉, 𝑡, 𝜆)̃︀Φ𝑗(𝜉, 𝑡, 𝜆)e𝑄𝑗(𝑥,𝑡,𝜆)−𝑄𝑗(𝜉,𝑡,𝜆)d𝜉,

(4.17)
or, taking into account the definition (4.14) of 𝑄𝑗,

̃︀Φ𝑗(𝑥, 𝑡, 𝜆) = 𝐼+

∫︁ 𝑥

(−1)𝑗∞
e

i𝑘𝑗(𝜆)

2

∫︀ 𝜉

𝑥
𝑚(𝜏,𝑡)d𝜏𝜎3𝑈̂𝑗(𝜉, 𝑡, 𝜆)̃︀Φ𝑗(𝜉, 𝑡, 𝜆)e−

i𝑘𝑗(𝜆)

2

∫︀ 𝜉

𝑥
𝑚(𝜏,𝑡)d𝜏𝜎3d𝜉,

(4.18)
(𝐼 is the 2× 2 identity matrix).

Hereafter, Φ̂𝑗 := ̃︀Φ𝑗e
−𝑄𝑗 , 𝑗 = 1, 2 denote the corresponding Jost solutions

of (4.13) whereas Φ𝑗 := 𝐷−1𝑗 (𝜆)Φ̂𝑗 denote the corresponding Jost solutions of
(4.7).

We are now able to analyze the analytic and asymptotic properties of the
solutions ̃︀Φ𝑗 of (4.18) as functions of 𝜆, using Neumann series expansions. Let
𝐴(1) and 𝐴(2) denote the columns of a 2 × 2 matrix 𝐴 =

(︀
𝐴(1) 𝐴(2)

)︀
. Using

these notations we have the following properties:

• ̃︀Φ(𝑗)
𝑗 is analytic in C ∖ Σ𝑗 and has a continuous extension on the lower and

upper sides of Σ̇𝑗.

• ̃︀Φ(1)
𝑗 and ̃︀Φ(2)

𝑗 are well defined and continuous on the lower and upper sides
of Σ̇𝑗.

In (4.16) the coefficients are traceless matrices, from which it follows that
det Φ̃𝑗 is independent on 𝑥 and 𝑡, and hence

• det ̃︀Φ𝑗 ≡ 1.

Regarding the values of ̃︀Φ𝑗 at particular points in the 𝜆-plane, (4.18) implies
the following:

• ( ̃︀Φ(1)
1
̃︀Φ(2)
2 ) → 𝐼 as 𝜆 → ∞ (since the diagonal part of 𝑈̂𝑗 is O( 1𝜆) and the

off-diagonal part of 𝑈̂𝑗 is bounded).

• Φ̃𝑗 has singularities at 𝜆 = ± 1
𝐴𝑗

of order 1
2 (this will be discussed below, see

Subsection 4.2.8).
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4.2.3 “Background” solution

Introduce Φ0,𝑗(𝑥, 𝑡, 𝜆) := 𝐷−1𝑗 (𝜆)e−𝑄𝑗(𝑥,𝑡,𝜆). We see that Φ0,𝑗 satisfy the differ-
ential equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Φ0,𝑗𝑥 = 𝑚(𝑥,𝑡)

2𝐴𝑗

⎛⎝ −1 𝜆𝐴𝑗

−𝜆𝐴𝑗 1

⎞⎠Φ0,𝑗,

Φ0,𝑗𝑡 =
(︁
− 1

2𝐴𝑗
𝑚(𝑢2 − 𝑢2𝑥)− 1

𝜆2

)︁⎛⎝ −1 𝜆𝐴𝑗

−𝜆𝐴𝑗 1

⎞⎠Φ0,𝑗.

(4.19)

Comparing this with (4.9), Φ𝑗(𝑥, 𝑡, 𝜆) can be characterized as the solutions
of the integral equations:

Φ𝑗(𝑥, 𝑡, 𝜆) = Φ0,𝑗(𝑥, 𝑡, 𝜆)+

∫︁ 𝑥

(−1)𝑗∞
Φ0,𝑗(𝑥, 𝑡, 𝜆)Φ−10,𝑗(𝑦, 𝑡, 𝜆)

𝑚(𝑦, 𝑡)− 𝐴𝑗

2𝐴𝑗
𝜎3Φ𝑗(𝑦, 𝑡, 𝜆)𝑑𝑦.

(4.20)
Observe that Φ0,𝑗(𝑥, 𝑡, 𝜆)Φ−10,𝑗(𝑦, 𝑡, 𝜆) is entire w.r.t. 𝜆. Hence the “lack of

analyticity” (jumps) of Φ𝑗(𝑥, 𝑡, 𝜆) is generated by the “lack of analyticity” of
Φ0,𝑗(𝑥, 𝑡, 𝜆). Notice that det Φ𝑗 = det Φ0,𝑗 = 1.

4.2.4 Spectral functions

Introduce the scattering matrices 𝑠(𝜆±) for 𝜆 ∈ Σ̇1 as matrices relating Φ1 and
Φ2:

Φ1(𝑥, 𝑡, 𝜆±) = Φ2(𝑥, 𝑡, 𝜆±)𝑠(𝜆±), 𝜆 ∈ Σ̇1 (4.21)

with det 𝑠(𝜆±) = 1. In turn, Φ̃1 and Φ̃2 are related by

𝐷−11 (𝜆±)Φ̃1(𝑥, 𝑡, 𝜆±) = 𝐷−12 (𝜆±)Φ̃2(𝑥, 𝑡, 𝜆±)e−𝑄2(𝑥,𝑡,𝜆±)𝑠(𝜆±)e𝑄1(𝑥,𝑡,𝜆±), 𝜆 ∈ Σ̇1.

(4.22)
Introducing

𝑠(𝑥, 𝑡, 𝜆±) := e−𝑄2(𝑥,𝑡,𝜆±)𝑠(𝜆±)e𝑄1(𝑥,𝑡,𝜆±) (4.23)

we have

(𝐷−11 Φ̃1)(𝑥, 𝑡, 𝜆±) = (𝐷−12 Φ̃2)(𝑥, 𝑡, 𝜆±)𝑠(𝑥, 𝑡, 𝜆±), 𝜆 ∈ Σ̇1. (4.24)
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Notice that the scattering coefficients (𝑠𝑖𝑗) can be expressed as follows:

𝑠11 = det(Φ
(1)
1 ,Φ

(2)
2 ), (4.25a)

𝑠12 = det(Φ
(2)
1 ,Φ

(2)
2 ), (4.25b)

𝑠21 = det(Φ
(1)
2 ,Φ

(1)
1 ), (4.25c)

𝑠22 = det(Φ
(1)
2 ,Φ

(2)
1 ). (4.25d)

Accordingly,

𝑠1𝑗 = det((𝐷−11 Φ̃1)
(𝑗), (𝐷−12 Φ̃2)

(2)), (4.26a)

𝑠2𝑗 = det((𝐷−12 Φ̃2)
(1), (𝐷−11 Φ̃1)

(𝑗)). (4.26b)

Then (4.25a) implies that 𝑠11(𝜆) can be analytically extended to C ∖Σ2 and
defined on the upper and lower sides of Σ̇2. On the other hand, since Φ

(1)
1 is

analytic in C∖Σ1 and Φ
(1)
2 is defined on the upper and lower sides of Σ2, 𝑠21(𝜆)

can be extended by (4.25c) to the lower and upper sides of Σ̇2. It follows that
(4.21) and (4.22) restricted to the first column hold also on Σ0, namely,

Φ
(1)
1 (𝑥, 𝑡, 𝜆±) = 𝑠11(𝜆±)Φ

(1)
2 (𝑥, 𝑡, 𝜆±) + 𝑠21(𝜆±)Φ

(2)
2 (𝑥, 𝑡, 𝜆±), 𝜆 ∈ Σ̇0, (4.27)

and, respectively,

(𝐷−11 Φ̃
(1)
1 )(𝜆±) = 𝑠11(𝜆±)(𝐷−12 Φ̃

(1)
2 )(𝜆±) + 𝑠21(𝜆±)(𝐷−12 Φ̃

(2)
2 )(𝜆±), 𝜆 ∈ Σ̇0.

(4.28)

4.2.5 Symmetries

Let’s analyse the symmetry relations amongst the eigenfunctions and scattering
coefficients. In order to simplify the notations, we will omit the dependence on
𝑥 and 𝑡 (e.g., 𝑈(𝜆) ≡ 𝑈(𝑥, 𝑡, 𝜆)).

First symmetry: 𝜆←→ −𝜆.

Proposition 4.2.3. The following symmetries hold:

Φ
(1)
1 (𝜆) = −𝜎3Φ(1)

1 (−𝜆), 𝜆 ∈ C ∖ Σ1, (4.29a)

Φ
(2)
2 (𝜆) = 𝜎3Φ

(2)
2 (−𝜆), 𝜆 ∈ C ∖ Σ2. (4.29b)
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Proof. Observe that 𝜎3𝑈(𝜆)𝜎3 ≡ 𝑈(−𝜆) and 𝜎3𝑉 (𝜆)𝜎3 ≡ 𝑉 (−𝜆). Hence
𝜎3Φ

(𝑗)
𝑗 (−𝜆) solves (4.7) together with Φ

(𝑗)
𝑗 (𝜆). Comparing their asymptotic

behaviour as 𝑥→ (−1)𝑗∞ and using (4.8a), the symmetries (4.29) follow.

Corollary 4.2.4. We have

1.
𝑠11(−𝜆) = 𝑠11(𝜆), 𝜆 ∈ C ∖ Σ2. (4.30)

2.

Φ̃
(1)
1 (𝜆) = 𝜎3Φ̃

(1)
1 (−𝜆), 𝜆 ∈ C ∖ Σ1, (4.31a)

Φ̃
(2)
2 (𝜆) = −𝜎3Φ̃(2)

2 (−𝜆), 𝜆 ∈ C ∖ Σ2. (4.31b)

3.

(𝐷−11 Φ̃
(1)
1 )(−𝜆) = −𝜎3(𝐷−11 Φ̃

(1)
1 )(𝜆), 𝜆 ∈ C ∖ Σ1, (4.32a)

(𝐷−12 Φ̃
(2)
2 )(−𝜆) = 𝜎3(𝐷

−1
2 Φ̃

(2)
2 )(𝜆), 𝜆 ∈ C ∖ Σ2. (4.32b)

Proof. 1. Substitute (4.29) into (4.25a).

2. Observe that due to (4.8a), we have𝐷−1𝑗 (−𝜆) = −𝜎3𝐷−1𝑗 (𝜆)𝜎3 and𝑄𝑗(−𝜆) =

𝑄𝑗(𝜆). Combining this with (4.29) and using the connection between Φ𝑗

and Φ̃𝑗, we obtain (4.31).

3. Combine 𝐷−1𝑗 (−𝜆) = −𝜎3𝐷−1𝑗 (𝜆)𝜎3 and (4.31).

Proposition 4.2.5. The following symmetry holds

Φ𝑗(𝜆+) = −𝜎3Φ𝑗(−𝜆+)𝜎3, 𝜆 ∈ Σ̇𝑗. (4.33)

Proof. Since 𝜎3𝑈(𝜆)𝜎3 ≡ 𝑈(−𝜆) and 𝜎3𝑉 (𝜆)𝜎3 ≡ 𝑉 (−𝜆) and 𝑈 and 𝑉 do not
have jumps along Σ𝑗, it follows that if Φ𝑗(𝜆+) solves (4.7), so does 𝜎3Φ𝑗(−𝜆+).
Comparing their asymptotic behaviour as 𝑥 → (−1)𝑗∞ and using (4.8a), the
symmetry (4.33) follows.
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Corollary 4.2.6. We have

1.
𝑠(𝜆+) = 𝜎3𝑠(−𝜆+)𝜎3, 𝜆 ∈ Σ̇1 (4.34)

2.
Φ̃𝑗(𝜆+) = 𝜎3Φ̃𝑗(−𝜆+)𝜎3, 𝜆 ∈ Σ̇𝑗. (4.35)

3.
(𝐷−1𝑗 Φ̃𝑗)((−𝜆)−) = −𝜎3(𝐷−1𝑗 Φ̃𝑗)(𝜆+)𝜎3, 𝜆+ ∈ Σ̇𝑗. (4.36)

Proof. 1. Substitute (4.33) into (4.21).

2. Observe that due to (4.8a), we have 𝐷−1𝑗 (−𝜆+) = −𝜎3𝐷−1𝑗 (𝜆+)𝜎3 and
𝑄𝑗(−𝜆+) = 𝑄𝑗(𝜆+). Combining this with (4.33) and using the connection
between Φ𝑗 and Φ̃𝑗, we obtain (4.35).

3. Combine 𝐷−1𝑗 (−𝜆+) = −𝜎3𝐷−1𝑗 (𝜆+)𝜎3 and (4.35).

Second symmetry: 𝜆←→ −𝜆.

Proposition 4.2.7. The following symmetry holds

Φ𝑗(𝜆+) = 𝜎3Φ𝑗((−𝜆)+)𝜎2, 𝜆 ∈ Σ̇𝑗. (4.37)

Proof. Since 𝑈 and 𝑉 are single valued functions of 𝜆, we have 𝜎3𝑈(𝜆+)𝜎3 ≡
𝑈((−𝜆)+) and 𝜎3𝑉 (𝜆+)𝜎3 ≡ 𝑉 ((−𝜆)+) for 𝜆 ∈ Σ𝑗. Hence, if Φ𝑗(𝜆+) solves
(4.7), so does 𝜎3Φ𝑗((−𝜆+). Comparing their asymptotic behaviour as 𝑥 →
(−1)𝑗∞ and using (4.8b) and the equality

√︁
1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1
√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 =

− 𝜆+

𝑘𝑗(𝜆+)
for 𝜆+ ∈ Σ̇𝑗, the symmetry (4.37) follows.

Corollary 4.2.8. We have

1.
𝑠(𝜆+) = 𝜎2𝑠((−𝜆)+)𝜎2, 𝜆 ∈ Σ̇1. (4.38)
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2.
𝑠(𝜆+) = 𝜎1𝑠(𝜆−)𝜎1, 𝜆 ∈ Σ̇1. (4.39)

3.
Φ̃𝑗(𝜆+) = 𝜎2Φ̃𝑗((−𝜆)+)𝜎2, 𝜆 ∈ Σ̇𝑗. (4.40)

4.
(𝐷−1𝑗 Φ̃𝑗)((−𝜆)+) = 𝜎3(𝐷

−1
𝑗 Φ̃𝑗)(𝜆+)𝜎2, 𝜆 ∈ Σ̇𝑗. (4.41)

Proof. 1. Substitute (4.37) into (4.21).

2. Combine (4.38) with (4.34).

3. Observe that 𝑘𝑗(𝜆+) ∈ R and that due to (4.8b) and
√︁

1
i𝐴𝑗𝑘𝑗(𝜆+)

− 1
√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 =

− 𝜆+

𝑘𝑗(𝜆+)
, we have 𝐷𝑗(𝜆+)𝜎3𝐷

−1
𝑗 ((−𝜆)+) = 𝜎2 and 𝑄𝑗((−𝜆)+) = −𝑄𝑗(𝜆+)

for 𝜆 ∈ Σ̇𝑗. Combining this with (4.37) and using the connection between
Φ𝑗 and Φ̃𝑗, we obtain (4.40).

4. Combine 𝐷𝑗(𝜆+)𝜎3𝐷
−1
𝑗 ((−𝜆)+) = 𝜎2 and (4.40).

Third symmetry: 𝜆←→ 𝜆.

Proposition 4.2.9. The following symmetries hold

Φ
(𝑗)
𝑗 (𝜆) = −Φ

(𝑗)
𝑗 (𝜆), 𝜆 ∈ C ∖ Σ𝑗. (4.42)

Proof. Since 𝑈(𝜆) ≡ 𝑈(𝜆) and 𝑉 (𝜆) ≡ 𝑉 (𝜆), it follows that Φ
(𝑗)
𝑗 (𝜆) solves

(4.7a) together with Φ
(𝑗)
𝑗 (𝜆). Hence, comparing their asymptotic behaviour as

𝑥→ (−1)𝑗∞ and using (4.8c) and the equality
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1 = −
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1,
we obtain the symmetries (4.42).

Corollary 4.2.10. We have

1.
𝑠11(𝜆) = 𝑠11(𝜆), 𝜆 ∈ C ∖ Σ2. (4.43)
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2.
Φ̃

(𝑗)
𝑗 (𝜆) = Φ̃

(𝑗)
𝑗 (𝜆), 𝜆 ∈ C ∖ Σ𝑗. (4.44)

3.
(𝐷−1𝑗 Φ̃

(𝑗)
𝑗 )(𝜆) = −(𝐷−1𝑗 Φ̃

(𝑗)
𝑗 )(𝜆), 𝜆 ∈ C ∖ Σ𝑗. (4.45)

Proof. 1. Substitute (4.42) into (4.25a).

2. Observe that due to (4.8c) and
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1 = −
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1, we have

𝐷−1𝑗 (𝜆) = −𝐷−1𝑗 (𝜆) and 𝑄𝑗(𝜆) = 𝑄𝑗(𝜆). Hence combining this with
(4.42) and using the connection between Φ𝑗 and Φ̃𝑗, we obtain (4.44).

3. Combine 𝐷−1𝑗 (𝜆) = −𝐷−1𝑗 (𝜆) and (4.44).

Proposition 4.2.11. The following symmetry holds

Φ𝑗(𝜆+) = −Φ𝑗(𝜆+), 𝜆 ∈ Σ̇𝑗. (4.46)

Proof. As above, since 𝑈(𝜆) ≡ 𝑈(𝜆) and 𝑉 (𝜆) ≡ 𝑉 (𝜆) and 𝑈 and 𝑉 have
no jumps along Σ𝑗, we have 𝑈(𝜆−) ≡ 𝑈(𝜆+) and 𝑉 (𝜆−) ≡ 𝑉 (𝜆+). It follows
that if Φ𝑗(𝜆+) solves (4.7), so does Φ𝑗(𝜆+). Comparing their asymptotic be-

haviour as 𝑥 → (−1)𝑗∞ and using (4.8c) and the fact that
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1 =

−
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1, the symmetry (4.46) follows.

Corollary 4.2.12. We have

1.
𝑠(𝜆+) = 𝑠(𝜆+), 𝜆 ∈ Σ̇1. (4.47)

2.
Φ̃𝑗(𝜆+) = Φ̃𝑗(𝜆+), 𝜆 ∈ Σ̇𝑗. (4.48)

3.
(𝐷−1𝑗 Φ̃𝑗)(𝜆+) = −(𝐷−1𝑗 Φ̃𝑗)(𝜆+), 𝜆 ∈ Σ̇𝑗. (4.49)
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Proof. 1. Substitute (4.46) into (4.21).

2. Observe that due to (4.8c) and
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1 = −
√︁

1
i𝐴𝑗𝑘𝑗(𝜆)

− 1, we have

𝐷−1𝑗 (𝜆−) = −𝐷−1𝑗 (𝜆+) and 𝑄𝑗(𝜆−) = 𝑄𝑗(𝜆+) for 𝜆 ∈ Σ̇𝑗. Combining this
with (4.46) and using the connection between Φ𝑗 and Φ̃𝑗, we obtain the
result.

3. Combine 𝐷−1𝑗 (𝜆−) = −𝐷−1𝑗 (𝜆+) and 𝑄𝑗(𝜆−) = 𝑄𝑗(𝜆+) and (4.48).

Fourth symmetry 𝜆+ ←→ 𝜆+.

Proposition 4.2.13. The following symmetry holds

Φ𝑗(𝜆+) = iΦ𝑗(𝜆+)𝜎1, 𝜆 ∈ Σ̇𝑗. (4.50)

Proof. Since 𝑈(𝜆+) ≡ 𝑈(𝜆+) and 𝑉 (𝜆+) ≡ 𝑉 (𝜆+) for 𝜆 ∈ Σ𝑗, in follows that if
Φ𝑗(𝜆+) solves (4.7), so does Φ𝑗(𝜆+). Comparing their asymptotic behaviour as
𝑥→ (−1)𝑗∞ and using (4.8d) and the equalities

√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 · 𝜆+𝐴𝑗

1+i𝐴𝑗𝑘𝑗(𝜆+)
=

−i
√︁

1
i𝐴𝑗𝑘𝑗(𝜆+)

− 1 and
√︁

1
i𝐴𝑗𝑘𝑗(𝜆+)

− 1· 𝜆+𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆+)
= i
√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 for 𝜆 ∈ Σ̇𝑗,

the symmetry (4.50) follows.

Corollary 4.2.14. We have

1. 𝑠(𝜆+) = 𝜎1𝑠(𝜆+)𝜎1, 𝜆 ∈ Σ̇1, which, in terms of the matrix entries, reads
as follows:

𝑠11(𝜆+) = 𝑠22(𝜆+), (4.51a)

𝑠12(𝜆+) = 𝑠21(𝜆+). (4.51b)

2. |𝑠11(𝜆+)|2 − |𝑠21(𝜆+)|2 = 1 for 𝜆 ∈ Σ̇1.

3.
⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒
≤ 1 for 𝜆 ∈ Σ̇1.

Notice that
⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒
= 1 for 𝜆 ∈ Σ̇1 iff 𝑠11(𝜆+) =∞.
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4.

𝑠11(𝜆−) = 𝑠22(𝜆−), 𝜆 ∈ Σ̇1, (4.52a)

𝑠12(𝜆−) = 𝑠21(𝜆−), 𝜆 ∈ Σ̇1. (4.52b)

5.
Φ𝑗(𝜆+) = iΦ𝑗(𝜆−)𝜎1, 𝜆 ∈ Σ̇𝑗. (4.53)

6.

Φ
(1)
1 (𝜆+) = iΦ

(2)
1 (𝜆−), 𝜆 ∈ Σ̇1, (4.54a)

Φ
(2)
2 (𝜆+) = iΦ

(1)
2 (𝜆−), 𝜆 ∈ Σ̇2. (4.54b)

7.

𝑠11(𝜆+) = 𝑠22(𝜆−), 𝜆 ∈ Σ̇1, (4.55a)

𝑠11(𝜆+) = −i𝑠21(𝜆−), 𝜆 ∈ Σ̇0, (4.55b)

𝑠11(𝜆−) = i𝑠21(𝜆+), 𝜆 ∈ Σ̇0. (4.55c)

8.
⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒
= 1 for 𝜆 ∈ Σ̇0.

9.
Φ̃𝑗(𝜆+) = 𝜎1Φ̃𝑗(𝜆+)𝜎1, 𝜆 ∈ Σ̇𝑗. (4.56)

10.

Φ̃
(1)
1 (𝜆−) = 𝜎1Φ̃

(2)
1 (𝜆+), 𝜆 ∈ Σ1, (4.57a)

Φ̃
(2)
2 (𝜆−) = 𝜎1Φ̃

(1)
2 (𝜆+), 𝜆 ∈ Σ2. (4.57b)

11.
(𝐷−1𝑗 Φ̃𝑗)(𝜆+) = i(𝐷−1𝑗 Φ̃𝑗)(𝜆+)𝜎1, 𝜆 ∈ Σ̇𝑗. (4.58)

12.

𝐷−1𝑗 (𝜆−)Φ̃
(𝑗)
𝑗 (𝜆−) = (−i𝐷−1𝑗 (𝜆+)Φ̃𝑗(𝜆+)𝜎1)

(𝑗), 𝜆 ∈ Σ̇1, (4.59a)

𝐷−12 (𝜆−)Φ̃
(2)
2 (𝜆−) = (−i𝐷−12 (𝜆+)Φ̃2(𝜆+)𝜎1)

(2), 𝜆 ∈ Σ̇0, (4.59b)

𝐷−11 (𝜆−)Φ̃
(1)
1 (𝜆−) = 𝐷−11 (𝜆+)Φ̃

(1)
1 (𝜆+), 𝜆 ∈ Σ̇0. (4.59c)
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13.

(𝐷−11 Φ̃1)((−𝜆)+) = 𝜎3(𝐷
−1
1 Φ̃1)(𝜆+), 𝜆 ∈ Σ̇1, (4.60a)

(𝐷−12 Φ̃2)((−𝜆)+) = −𝜎3(𝐷−12 Φ̃2)(𝜆+), 𝜆 ∈ Σ̇2. (4.60b)

14.
𝑠11((−𝜆)+) = 𝑠11(𝜆+), 𝜆 ∈ Σ̇1. (4.61)

Proof. 1. Substitute (4.50) into (4.21).

2. This follows from the fact that det 𝑠(𝜆±) = 1 for all 𝜆 ∈ Σ1 and (4.51).

3. Dividing the previous equality by |𝑠11(𝜆+)|2, we obtain 1 −
⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒2
=⃒⃒

1
𝑠11(𝜆+)

⃒⃒2 ≥ 0. Hence
⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒
≤ 1.

4. Combine (4.51) and (4.47).

5. Combine (4.50) and (4.46).

6. Rewrite (4.53) columnwise.

7. Substituting (4.53) into (4.25a) leads to (4.55). Notice that in proving
(4.55b) and (4.55c) we use the fact that Φ

(1)
1 is analytic on Σ0.

8. Using the previous result for the first equality and (4.43) for the second
one, we get

⃒⃒
𝑠21(𝜆+)
𝑠11(𝜆+)

⃒⃒
=
⃒⃒−i𝑠11(𝜆−)

𝑠11(𝜆+)

⃒⃒
=
⃒⃒
𝑠11(𝜆+)
𝑠11(𝜆+)

⃒⃒
= 1.

9. Observe that
√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1· 𝜆+𝐴𝑗

1+i𝐴𝑗𝑘𝑗(𝜆+)
= −i

√︁
1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 and

√︁
1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1·

𝜆+𝐴𝑗

1−i𝐴𝑗𝑘𝑗(𝜆+)
= i
√︁
− 1

i𝐴𝑗𝑘𝑗(𝜆+)
− 1 imply𝐷−1𝑗 (𝜆+) = i𝐷−1𝑗 (𝜆+)𝜎1 and𝐷𝑗(𝜆+) =

−i𝜎1𝐷𝑗(𝜆+), and (4.8d) imply 𝑄𝑗(𝜆+) = −𝑄𝑗(𝜆+) for 𝜆 ∈ Σ̇𝑗. Combining
this with (4.50) and using the connection between Φ𝑗 and Φ̃𝑗, we obtain
(4.56).

10. Combine (4.56) and (4.48).

11. Combine 𝐷−1𝑗 (𝜆+) = i𝐷−1𝑗 (𝜆+)𝜎1 and (4.56).
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12. Use (4.58) combined with (4.49) for the first two equalities and the fact
that 𝑘1(𝜆) is analytic on Σ̇0 for the last one.

13. Combine (4.58) and (4.41).

14. (4.38) implies 𝑠22(𝜆+) = 𝑠11((−𝜆)+). Combine this with (4.51a).

4.2.6 Limits of the eigenfunctions and scattering coefficients from
below and above the branch cut

Recall that 𝑘𝑗(𝜆) is analytic in C ∖ Σ𝑗 and discontinuous across Σ𝑗.

Notations. It will be useful in what follows to introduce the following notations
(for 𝜆 ∈ Σ𝑗):

𝑘+𝑗 (𝜆) := 𝑘𝑗(𝜆+) = lim
𝜖↓0

𝑘𝑗(𝜆+ i𝜖), 𝑘−𝑗 (𝜆) := 𝑘𝑗(𝜆−) = lim
𝜖↓0

𝑘𝑗(𝜆− i𝜖).

Similarly,

Φ̃
(1)+
1 (𝜆) := Φ̃

(1)
1 (𝜆+) = lim

𝜖↓0
Φ̃

(1)
1 (𝜆+i𝜖), Φ̃

(1)−
1 (𝜆) := Φ̃

(1)
1 (𝜆−) = lim

𝜖↓0
Φ̃

(1)
1 (𝜆−i𝜖).

Observe that

𝑘−𝑗 (𝜆) = −𝑘+𝑗 (𝜆), 𝜆 ∈ Σ1, (4.62a)

𝑘−1 (𝜆) = 𝑘+1 (𝜆) = 𝑘1(𝜆), 𝜆 ∈ Σ0, (4.62b)

𝑘−2 (𝜆) = −𝑘+2 (𝜆), 𝜆 ∈ Σ0. (4.62c)

Combining (4.56) and (4.48) we have

Φ̃
(1)−
1 (𝜆) = 𝜎1Φ̃

(2)+
1 (𝜆), 𝜆 ∈ Σ1, (4.63a)

Φ̃
(2)−
2 (𝜆) = 𝜎1Φ̃

(1)+
2 (𝜆), 𝜆 ∈ Σ2. (4.63b)
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4.2.7 Discrete spectrum and zeros of scattering coefficients

Multiplying (4.7a) by

(︃
0 −1

1 0

)︃
we arrive at the spectral problem for a weighted

Dirac operator:

2

𝑚

(︃(︃
0 −1

1 0

)︃
Φ𝑥 +

1

2

(︃
0 1

1 0

)︃
Φ

)︃
= 𝜆Φ, 𝑥 ∈ (−∞,∞). (4.64)

Since lim𝑥→(−1)𝑗∞𝑚(𝑥, 𝑡) = 𝐴𝑗 ̸= 0, this operator can be viewed as a self-
adjoint operator in 𝐿2(−∞,∞) and thus its spectrum in real.

Observe that for 𝜆 ∈ Σ̇1, both 𝑘𝑗(𝜆), 𝑗 = 1, 2 are real-valued and hence the
eigenfunctions Φ𝑗 are bounded but not square integrable near (−1)𝑗∞. Since
they are related by a matrix independent on 𝑥 and 𝑡, Φ𝑗 are bounded and not
square integrable near ±∞. Hence Σ̇1 comprise the continuous spectrum.

For 𝜆 ∈ (−1/𝐴2, 1/𝐴2), Φ
(1)
1 decays (exponentially fast) as 𝑥 → −∞ and

Φ
(2)
2 decays (exponentially fast) as 𝑥 → +∞; hence the the eigenvalues in

(−1/𝐴2, 1/𝐴2) coincides with the zeros of 𝑠11(𝜆) = det(Φ
(1)
1 ,Φ

(2)
2 ).

Note that since |𝑠11(𝜆+)|2−|𝑠21(𝜆+)|2 = 1 for 𝜆 ∈ Σ̇1 (see Corollary 4.2.14),
we have 𝑠11(𝜆+) ̸= 0 for 𝜆 ∈ Σ̇1.

Let’s show that 𝑠11(𝜆+) ̸= 0 as well as 𝑠21(𝜆+) ̸= 0 for 𝜆 ∈ Σ̇0 (the similar
result for 𝜆− will then follow from the symmetry (4.47)). Indeed, we have
|𝑠21𝑠11

(𝜆±)| = 1 for 𝜆 ∈ Σ̇0 (see Corollary 4.2.14). Hence 𝑠11(𝜆0+)𝑠21(𝜆0+) = 0

iff 𝑠11(𝜆0+) = 0 and 𝑠21(𝜆0+) = 0 simultaneously. But 𝑠11(𝜆0+) = 0 implies
that Φ

(1)
1 (𝜆0+) and Φ

(2)
2 (𝜆0+) are dependent. Silarly, 𝑠21(𝜆0+) = 0 implies that

Φ
(1)
1 (𝜆0+) and Φ

(1)
2 (𝜆0+) are dependent. Hence Φ

(1)
2 (𝜆0+) and Φ

(2)
2 (𝜆0+) are

dependent, which contradicts the fact that det Φ0,2 ≡ 1 (the latter follows from
evaluating det Φ0,2(𝑥, 𝑡, 𝜆) as 𝑥 → ∞ and using the fact that the determinant
of a matrix composed by two vector solutions of (4.64) does not depend on 𝑥).

Assumption. We will assume that 𝑠11(𝜆) has a finite number of zeros on
R ∖ Σ2. Since 𝑠11 is analytic on C ∖ Σ2, the uniqueness theorem implies that
the sufficient condition is 𝑠11(± 1

𝐴2
) ̸= 0.
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Let {𝜆𝑘}𝑛𝑘=1 be the zeros of 𝑠11(𝜆). For such 𝜆𝑘 we have

Φ
(1)
1 (𝜆𝑘) = 𝑏𝑘Φ

(2)
2 (𝜆𝑘), 𝑏𝑘 := 𝑏(𝜆𝑘).

Proposition 4.2.15. The zeros of 𝑠11(𝜆) are simple.

Proof. We will denote by ′ the dirivative w.r.t. 𝜆.
Using the definition of 𝑠11(𝜆) we have

𝑠′11(𝜆) = det(Φ
(1)
1 ,Φ

(2)
2 )′(𝜆) = det((Φ′)(1)1 ,Φ

(2)
2 )(𝜆) + det(Φ

(1)
1 , (Φ′)(2)2 )(𝜆).

Since Φ
(𝑗)
𝑗 solves (4.7a), we have

(Φ′)(𝑗)𝑗𝑥 = 𝑈(Φ′)(𝑗)𝑗 +𝑚

(︃
0 1

−1 0

)︃
Φ

(𝑗)
𝑗 ,

and, using the fact that det(𝑈(Φ′)(1)1 ,Φ
(2)
2 ) = − det((Φ′)(1)1 , 𝑈Φ

(2)
2 ), we have

𝑑

𝑑𝑥
det((Φ′)(1)1 ,Φ

(2)
2 ) = det

(︃(︃
0 𝑚

−𝑚 0

)︃
Φ

(1)
1 ,Φ

(2)
2

)︃
,

and
𝑑

𝑑𝑥
det(Φ

(1)
1 , (Φ′)(2)2 ) = − det

(︃(︃
0 𝑚

−𝑚 0

)︃
Φ

(2)
2 ,Φ

(1)
1

)︃
.

Evaluating at 𝜆 = 𝜆𝑘 and using Φ
(1)
1 (𝜆𝑘) = 𝑏𝑘Φ

(2)
2 (𝜆𝑘), we get

𝑑

𝑑𝑥
det((Φ′)(1)1 ,Φ

(2)
2 )(𝜆𝑘) = 𝑏𝑘𝑚 det

(︃(︃
0 1

−1 0

)︃
Φ

(2)
2 (𝜆𝑘),Φ

(2)
2 (𝜆𝑘)

)︃
,

𝑑

𝑑𝑥
det(Φ

(1)
1 , (Φ′)(2)2 )(𝜆𝑘) = −𝑏𝑘𝑚 det

(︃(︃
0 1

−1 0

)︃
Φ

(2)
2 (𝜆𝑘),Φ

(2)
2 (𝜆𝑘)

)︃
.

Using the symmetry (4.42) and observing that 𝜆𝑘 ∈ R, we have

det(

(︃
0 1

−1 0

)︃
Φ

(2)
2 (𝜆𝑘),Φ

(2)
2 (𝜆𝑘)) = −(|(Φ2)22|2 + |(Φ2)12|2)(𝜆𝑘)
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and hence

𝑑

𝑑𝑥
det((Φ′)(1)1 ,Φ

(2)
2 )(𝜆𝑘) = 𝑏𝑘

∫︁ ∞
𝑥

𝑚(|(Φ2)22|2 + |(Φ2)12|2)𝑑𝜏,

𝑑

𝑑𝑥
det(Φ

(1)
1 , (Φ′)(2)2 )(𝜆𝑘) = 𝑏𝑘

∫︁ 𝑥

−∞
𝑚(|(Φ2)22|2 + |(Φ2)12|2)𝑑𝑥.

It follows that

𝑠′11(𝜆𝑘) = 𝑏𝑘

∫︁ ∞
−∞

𝑚(|(Φ2)22|2 + |(Φ2)12|2)𝑑𝑥,

and thus 𝑠′11(𝜆𝑘) ̸= 0.

Observe that due to the symmetry (4.30), if 𝑠11(𝜆𝑘) = 0, then 𝑠11(−𝜆𝑘) = 0

as well. Since, according to Proposition 4.2.15, all zeros of 𝑠11 are simple, it
follows that 𝑠11(0) ̸= 0. This fact will also be discussed in Subsection 4.3.2.

4.2.8 Behaviour at the branch points

Observe that 𝑘𝑗(± 1
𝐴𝑗

) = 0.

Proposition 4.2.16. Φ̃𝑗(𝑥, 𝑡, 𝜆) has the following behaviour at the branch
points

Φ̃𝑗(𝑥, 𝑡, 𝜆) =
i𝛼𝑗(𝑥, 𝑡)

𝜔+
𝑗 (𝜆)

(︃
1 1

−1 −1

)︃
+

(︃
𝑎𝑗(𝑥, 𝑡) 𝑏𝑗(𝑥, 𝑡)

𝑏𝑗(𝑥, 𝑡) 𝑎𝑗(𝑥, 𝑡)

)︃
+O(

√︃
𝜆− 1

𝐴𝑗
), 𝜆→ 1

𝐴𝑗
,

Φ̃𝑗(𝑥, 𝑡, 𝜆) =
𝛼𝑗(𝑥, 𝑡)

𝜔−𝑗 (𝜆)

(︃
1 −1

1 −1

)︃
+

(︃
𝑎𝑗(𝑥, 𝑡) −𝑏𝑗(𝑥, 𝑡)
−𝑏𝑗(𝑥, 𝑡) 𝑎𝑗(𝑥, 𝑡)

)︃
+O(

√︃
𝜆+

1

𝐴𝑗
), 𝜆→ − 1

𝐴𝑗
,

whith some real-valued 𝛼𝑗(𝑥, 𝑡), 𝑎𝑗(𝑥, 𝑡), and 𝑏𝑗(𝑥, 𝑡), 𝑗 = 1, 2.

Proof. Recall that 𝜔+
𝑗 (𝜆) =

√︁
𝜆− 1

𝐴𝑗
with a branch cut on [ 1

𝐴𝑗
,∞) and 𝜔+

𝑗 (0) =

i√
𝐴𝑗

, and 𝜔−𝑗 (𝜆) =
√︁
𝜆+ 1

𝐴𝑗
with a branch cut on (−∞,− 1

𝐴𝑗
] and 𝜔−𝑗 (0) =

1√
𝐴𝑗

.
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First, consider the behavior of the eigenfunctions near 1
𝐴𝑗

. Introduce ˜̃Φ𝑗(𝑥, 𝑡, 𝜆)

such that Φ̃𝑗(𝑥, 𝑡, 𝜆) = 𝑊+ ˜̃Φ𝑗(𝑥, 𝑡, 𝜆) with𝑊+ =

⎛⎝1 i
𝜔+
𝑗 (𝜆)

1 − i
𝜔+
𝑗 (𝜆)

⎞⎠. Then ˜̃Φ𝑗(𝑥, 𝑡, 𝜆)

solves the following integral equation:

˜̃Φ𝑗(𝑥, 𝑡, 𝜆) =
1

2

(︃
1 1

−i𝜔+
𝑗 (𝜆) i𝜔+

𝑗 (𝜆)

)︃
+

∫︁ 𝑥

(−1)𝑖∞
𝐴−1e

i
2𝑘𝑗(𝜆)

∫︀ 𝜉

𝑥
𝑚𝑑𝜏𝜎3𝑈̂𝑗𝐴

˜̃Φ𝑗e
− i

2𝑘𝑗(𝜆)
∫︀ 𝜉

𝑥
𝑚𝑑𝜏𝜎3.

The kernel of this equation and hence ˜̃Φ𝑗 has no singularity at 1
𝐴𝑗

. Hence

Φ̃𝑗(𝑥, 𝑡, 𝜆) =
i

𝜔+
𝑗 (𝜆)

(︃
˜̃𝑐𝑗

˜̃𝑑𝑗

−˜̃𝑐𝑗 − ˜̃𝑑𝑗

)︃
+

(︃
𝑎𝑗 𝑏𝑗

𝑐𝑗 𝑑𝑗

)︃
+ O

(︃√︃
𝜆− 1

𝐴𝑗

)︃
, 𝜆→ 1

𝐴𝑗
.

Using (4.48), we get ˜̃𝑐𝑗,
˜̃𝑑𝑗 ∈ R and 𝑎𝑗, 𝑏𝑗, 𝑐𝑗, 𝑑𝑗 ∈ R. Then, using (4.56), we

get ˜̃𝑐𝑗 = ˜̃𝑑𝑗 and 𝑎𝑗 = 𝑑𝑗, 𝑐𝑗 = 𝑏𝑗; thus

Φ̃𝑗(𝑥, 𝑡, 𝜆) =
i𝛼𝑗(𝑥, 𝑡)

𝜔+
𝑗 (𝜆)

(︃
1 1

−1 −1

)︃
+

(︃
𝑎𝑗 𝑏𝑗

𝑏𝑗 𝑎𝑗

)︃
+ O

(︃√︃
𝜆− 1

𝐴𝑗

)︃
, 𝜆→ 1

𝐴𝑗
.

In order to get the simiular result for − 1
𝐴𝑗

, we use 𝑊− =

⎛⎝ i
𝜔−
𝑗 (𝜆)

1

i
𝜔−
𝑗 (𝜆)

−1

⎞⎠
instead of 𝑊+, which leads to

Φ̃𝑗(𝑥, 𝑡, 𝜆) =
𝛽𝑗(𝑥, 𝑡)

𝜔−𝑗 (𝜆)

(︃
−1 1

−1 1

)︃
+

(︃
𝑎̂𝑗 𝑏̂𝑗

𝑏̂𝑗 𝑎̂𝑗

)︃
+ O(

√︃
𝜆+

1

𝐴𝑗
), 𝜆→ − 1

𝐴𝑗
.

Finally, using (4.35) and (4.40), we get 𝛼𝑗 = −𝛽𝑗 and 𝑎𝑗 = 𝑎̂𝑗 and 𝑏𝑗 =

−𝑏̂𝑗.

Evaluating 𝐷−1𝑗 (𝜆) near ± 1
𝐴𝑗

gives

Proposition 4.2.17. 𝐷−1𝑗 (𝜆) has the following behaviour at the branch points:

𝐷−1𝑗 (𝜆) =
e

3𝜋i
4

(2𝐴𝑗)
1
4𝜈+𝑗 (𝜆)

(︃
1 1

1 1

)︃
+

ie
3𝜋i
4 (2𝐴𝑗)

1
4𝜈+𝑗 (𝜆)

2

(︃
1 −1

−1 1

)︃
+O((𝜆− 1

𝐴𝑗
)
3
4 ), 𝜆→ 1

𝐴𝑗
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and

𝐷−1𝑗 (𝜆) =
i

(2𝐴𝑗)
1
4𝜈−𝑗 (𝜆)

(︃
−1 1

1 −1

)︃
+

i(2𝐴𝑗)
1
4𝜈−𝑗 (𝜆)

2

(︃
1 1

1 1

)︃
+O((𝜆+

1

𝐴𝑗
)
3
4 ), 𝜆→ − 1

𝐴𝑗
.

Here 𝜈+𝑗 (𝜆) = (𝜆 − 1
𝐴𝑗

)
1
4 with the branch cut ( 1

𝐴𝑗
,∞) and 𝜈+𝑗 (0) = e

𝜋i
4

(𝐴𝑗)
1
4
, and

𝜈−𝑗 (𝜆) = (𝜆+ 1
𝐴𝑗

)
1
4 with the branch cut (−∞,− 1

𝐴𝑗
) and 𝜈−𝑗 (0) = 1

(𝐴𝑗)
1
4

(observe

that (𝜈±𝑗 (𝜆))2 = 𝜔±𝑗 (𝜆)).

4.3 Riemann–Hilbert problems

4.3.1 RH problem parametrized by (𝑥, 𝑡)

Notations. We denote

𝜌(𝜆) :=
𝑠21(𝜆+)

𝑠11(𝜆+)
, 𝜆 ∈ Σ̇1 ∪ Σ̇0. (4.65)

Observe that Corollary 4.2.14 implies that

|𝜌(𝜆)| ≤ 1, 𝜆 ∈ Σ̇1, (4.66a)

|𝜌(𝜆)| = 1, 𝜆 ∈ Σ̇0. (4.66b)

Motivated by the analytic properties of eigenfunctions and scattering coeffi-
cients, we introduce the matrix-values function

𝑀(𝑥, 𝑡, 𝜆) =

(︃
(𝐷−11 Φ̃

(1)
1 )(𝑥, 𝑡, 𝜆)

𝑠11(𝜆)e𝑝1(𝑥,𝑡,𝜆)−𝑝2(𝑥,𝑡,𝜆)
, (𝐷−12 Φ̃

(2)
2 )(𝑥, 𝑡, 𝜆)

)︃
, 𝜆 ∈ C ∖ Σ2,

(4.67a)
meromorphic in C ∖ Σ2, where 𝑝𝑗, 𝑗 = 1, 2 are defined in (4.14b).

Observe that 𝐷−1𝑗 (𝜆)Φ̃𝑗(𝑥, 𝑡, 𝜆) = Φ𝑗(𝑥, 𝑡, 𝜆)e𝑄𝑗(𝑥,𝑡,𝜆) and thus 𝑀(𝑥, 𝑡, 𝜆)

can be written as

𝑀(𝑥, 𝑡, 𝜆) =

(︃
Φ

(1)
1 (𝑥, 𝑡, 𝜆)

𝑠11(𝜆)
,Φ

(2)
2 (𝑥, 𝑡, 𝜆)

)︃
e𝑝2(𝑥,𝑡,𝜆)𝜎3. (4.67b)

It follows that det𝑀 ≡ 1.
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Jump matrix

Since (𝐷−11 Φ̃
(1)
1 )(𝜆) is analytic in C ∖ Σ1, the limiting values 𝑀± of 𝑀 as 𝜆

approaches Σ2 from C± can be expressed as follows:

𝑀±(𝑥, 𝑡, 𝜆) := 𝑀(𝑥, 𝑡, 𝜆±) =

(︃
(𝐷−11 Φ̃

(1)
1 )(𝑥, 𝑡, 𝜆±)

𝑠11(𝜆±)e𝑝1(𝑥,𝑡,𝜆±)−𝑝2(𝑥,𝑡,𝜆±)
, (𝐷−12 Φ̃

(2)
2 )(𝑥, 𝑡, 𝜆±)

)︃
, 𝜆 ∈ Σ̇1,

𝑀±(𝑥, 𝑡, 𝜆) := 𝑀(𝑥, 𝑡, 𝜆±) =

(︃
(𝐷−11 Φ̃

(1)
1 )(𝑥, 𝑡, 𝜆)

𝑠11(𝜆±)e𝑝1(𝑥,𝑡,𝜆)−𝑝2(𝑥,𝑡,𝜆±)
, (𝐷−12 Φ̃

(2)
2 )(𝑥, 𝑡, 𝜆±)

)︃
, 𝜆 ∈ Σ̇0.

Proposition 4.3.1. 𝑀+ and 𝑀− are related as follows:

𝑀+(𝑥, 𝑡, 𝜆) = 𝑀−(𝑥, 𝑡, 𝜆)𝐽(𝑥, 𝑡, 𝜆), 𝜆 ∈ Σ̇1 ∪ Σ̇0,

where

𝐽(𝑥, 𝑡, 𝜆) =

(︃
0 i

i 0

)︃(︃
e−𝑝2(𝑥,𝑡,𝜆+) 0

0 e𝑝2(𝑥,𝑡,𝜆+)

)︃
𝐽0(𝜆)

(︃
e𝑝2(𝑥,𝑡,𝜆+) 0

0 e−𝑝2(𝑥,𝑡,𝜆+)

)︃
(4.68a)

with

𝐽0(𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝1− |𝜌(𝜆)|2 −𝜌(𝜆)

𝜌(𝜆) 1

⎞⎠ , 𝜆 ∈ Σ̇1,⎛⎝ 0 − 1
𝜌(𝜆)

𝜌(𝜆) 1

⎞⎠ , 𝜆 ∈ Σ̇0.

(4.68b)

Proof. (i) 𝜆 ∈ Σ̇1. Considering (4.24) columnwise, rearranging the columns
and using (4.59a) for 𝜆 ∈ Σ̇1, we obtain

𝑀+(𝑥, 𝑡, 𝜆) = 𝑀−(𝑥, 𝑡, 𝜆)i

(︃
𝑠21(𝑥,𝑡,𝜆+)𝑠11(𝑥,𝑡,𝜆−)
𝑠11(𝑥,𝑡,𝜆+)𝑠22(𝑥,𝑡,𝜆+)

𝑠11(𝑥,𝑡,𝜆−)
𝑠22(𝑥,𝑡,𝜆+)

1− 𝑠21(𝑥,𝑡,𝜆+)𝑠12(𝑥,𝑡,𝜆+)
𝑠11(𝑥,𝑡,𝜆+)𝑠22(𝑥,𝑡,𝜆+)

−𝑠12(𝑥,𝑡,𝜆+)
𝑠22(𝑥,𝑡,𝜆+)

)︃
. (4.69)

Since e𝑝1(𝑥,𝑡,𝜆−)−𝑝2(𝑥,𝑡,𝜆−) = e𝑝2(𝑥,𝑡,𝜆+)−𝑝1(𝑥,𝑡,𝜆+), from (4.47) and (4.51a) we have
𝑠11(𝜆−)
𝑠22(𝜆+)

= 𝑠11(𝜆−)
𝑠22(𝜆+)

= 1. Moreover, using the definition (4.65) of 𝜌(𝜆) and (4.51),
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we have 𝜌(𝜆) = 𝑠12(𝜆+)
𝑠22(𝜆+)

. Hence we can rewrite the jump condition (4.69) as
(4.68a) with (4.68b).

(ii) 𝜆 ∈ Σ̇0. Considering (4.28) columnwise, rearranging the columns and
using (4.59b) and (4.59c) for 𝜆+ ∈ Σ̇0, we obtain

𝑀+(𝑥, 𝑡, 𝜆) = 𝑀−(𝑥, 𝑡, 𝜆)i

(︃
𝑠21(𝑥,𝑡,𝜆+)
𝑠11(𝑥,𝑡,𝜆+)

1

0 −𝑠11(𝑥,𝑡,𝜆+)
𝑠21(𝑥,𝑡,𝜆+)

)︃
. (4.70)

Then, using the definition of 𝜌(𝜆) together with (4.55c) and (4.55b), we can
rewrite the jump condition (4.70) as (4.68a) with (4.68b).

Remark 4.3.2. Notice that
det 𝐽 ≡ 1 (4.71)

and that 𝐽0(𝜆) (and hence 𝐽) is continuous at ± 1
𝐴1

if |𝜌(± 1
𝐴1

)| = 1 and 𝜌(± 1
𝐴1

+

0) = 𝜌(± 1
𝐴1
− 0), and discontinuous otherwise.

Normalization condition at 𝜆→∞.

Proposition 4.3.3. As 𝜆→∞:

𝑀(𝑥, 𝑡, 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 i

i −1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C+,

√︁
1
2

⎛⎝1 i

i 1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C−.

(4.72)

Proof. Expanding 𝐷−1𝑗 (𝜆) (4.12) as 𝜆→∞, we get

𝐷−1𝑗 (𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 i

i −1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C+,

√︁
1
2

⎛⎝1 i

i 1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C−.
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Recalling that ( ̃︀Φ(1)
1
̃︀Φ(2)
2 )→ 𝐼 as 𝜆→∞, we have, for 𝜆 ∈ C+,

(𝐷−11 Φ̃
(1)
1 )(𝜆) =

√︂
1

2

(︃
−1

i

)︃
+ O(

1

𝜆
), 𝜆→∞,

(𝐷−12 Φ̃
(2)
2 )(𝜆) =

√︂
1

2

(︃
i

−1

)︃
+ O(

1

𝜆
), 𝜆→∞.

Substituting this into (4.26a), we get 𝑠11(𝜆) = 1 + O( 1𝜆), 𝜆→∞.
Similarly, for 𝜆 ∈ C− we have

(𝐷−11 Φ̃
(1)
1 )(𝜆) =

√︂
1

2

(︃
1

i

)︃
+ O(

1

𝜆
), 𝜆→∞,

(𝐷−12 Φ̃
(2)
2 )(𝜆) =

√︂
1

2

(︃
i

1

)︃
+ O(

1

𝜆
), 𝜆→∞,

and 𝑠11(𝜆) = 1 + O( 1𝜆), 𝜆→∞. Then the claim follows.

Remark 4.3.4. In order to have a standard normalisation as 𝜆 → ∞, we can
introduce

𝑀̃(𝑥, 𝑡, 𝜆) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 −i

−i −1

⎞⎠𝑀(𝑥, 𝑡, 𝜆), 𝜆 ∈ C+,

√︁
1
2

⎛⎝−1 −i

−i −1

⎞⎠𝑀(𝑥, 𝑡, 𝜆)i𝜎1, 𝜆 ∈ C−.

(4.73)

Then we have 𝑀̃ → 𝐼 at 𝜆→∞. On the other hand, 𝑀̃ acquires an additional
jump across 𝜆 ∈ R ∖ Σ2:

𝑀̃+(𝑥, 𝑡, 𝜆) = 𝑀̃−(𝑥, 𝑡, 𝜆)𝐽(𝑥, 𝑡, 𝜆), 𝜆 ∈ R ∖
{︀
∪𝑗=1,2 {𝐴−1𝑗 } ∪ {−𝐴−1𝑗 }

}︀
with

𝐽(𝑥, 𝑡, 𝜆) =

⎧⎨⎩𝐽Σ𝑗
(𝑥, 𝑡, 𝜆), 𝜆 ∈ Σ̇𝑗, 𝑗 = 0, 1

𝐽R∖Σ2
(𝑥, 𝑡, 𝜆), 𝜆 ∈ R ∖ Σ2,

where 𝐽Σ𝑗
(𝑥, 𝑡, 𝜆) = e−𝑝2(𝑥,𝑡,𝜆+)𝜎3𝐽0(𝜆)e𝑝2(𝑥,𝑡,𝜆+)𝜎3, 𝑗 = 0, 1 and 𝐽R∖Σ2

(𝑥, 𝑡, 𝜆) =

−i𝜎1.
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Remark 4.3.5. Using (4.26b), we obtain 𝑠21(𝜆) = O( 1𝜆) as 𝜆→∞. Notice that
𝜌(𝜆) = 𝑠21(𝜆+)

𝑠11(𝜆+)
= 𝑠21(𝜆+)

𝑠11(𝜆+)
e−2𝑝2(𝑥,𝑡,𝜆+); since 𝑝2(𝑥, 𝑡, 𝜆+) is purely imaginary for

𝜆 ∈ Σ2, e−2𝑝2(𝑥,𝑡,𝜆+) is bounded and thus 𝜌(𝜆) = O( 1𝜆) as 𝜆→∞. Consequently,

𝐽0(𝜆) =

(︃
1 0

0 1

)︃
+ O(

1

𝜆
), 𝜆→ ±∞

and

𝐽(𝑥, 𝑡, 𝜆) =

(︃
0 i

i 0

)︃
+ O(

1

𝜆
), 𝜆→ ±∞.

Symmetries

From the symmetry properties of the eigenfunctions and scattering functions
(4.32), (4.45), (4.36), and (4.49) it follows that

𝑀(−𝜆) = −𝜎3𝑀(𝜆)𝜎3, 𝑀(𝜆) = −𝑀(𝜆), 𝜆 ∈ C ∖ Σ2, (4.74a)

𝑀((−𝜆)−) = −𝜎3𝑀(𝜆+)𝜎3, 𝑀(𝜆−) = −𝑀(𝜆+), 𝜆 ∈ Σ̇1. (4.74b)

where 𝑀(𝜆) ≡𝑀(𝑥, 𝑡, 𝜆).

Singularities at ± 1
𝐴𝑗

.

Let 𝐴(𝑖𝑗) denote the elements of a 2× 2 matrix 𝐴 =

(︃
𝐴(11) 𝐴(12)

𝐴(21) 𝐴(22)

)︃
.
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Proposition 4.3.6. 𝑀(𝑥, 𝑡, 𝜆) has the following behaviour at the branch points

𝑀(𝑥, 𝑡, 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
3𝜋i
4

𝜈+2 (𝜆)

⎛⎝0 ϒ2

0 Λ2

⎞⎠+ O(1), 𝜆→ 1
𝐴2
,

i
𝜈−2 (𝜆)

⎛⎝0 ϒ2

0 −Λ2

⎞⎠+ O(1), 𝜆→ − 1
𝐴2
,

𝑐+e
3𝜋i
4

𝜈+1 (𝜆)

⎛⎝ϒ1 0

Λ1 0

⎞⎠+ O(1), 𝜆→ 1
𝐴1
, 𝜆 ∈ C+,

𝑐+e
3𝜋i
4

𝜈+1 (𝜆)

⎛⎝ϒ1 0

Λ1 0

⎞⎠+ O(1), 𝜆→ 1
𝐴1
, 𝜆 ∈ C−,

𝑐+i

𝜈−1 (𝜆)

⎛⎝−ϒ1 0

Λ1 0

⎞⎠+ O(1), 𝜆→ − 1
𝐴1
, 𝜆 ∈ C+,

𝑐+i

𝜈−1 (𝜆)

⎛⎝−ϒ1 0

Λ1 0

⎞⎠+ O(1), 𝜆→ − 1
𝐴1
, 𝜆 ∈ C−,

(4.75)

where 𝜈±𝑗 (𝜆) are defined in Proposition 4.2.17, and ϒ𝑗 = −(2𝐴𝑗)
1
4𝛼𝑗(𝑥, 𝑡) +

(𝑎𝑗(𝑥,𝑡)+𝑏𝑗(𝑥,𝑡))

(2𝐴𝑗)
1
4

, Λ𝑗 = (2𝐴𝑗)
1
4𝛼𝑗(𝑥, 𝑡)+

(𝑎𝑗(𝑥,𝑡)+𝑏𝑗(𝑥,𝑡))

(2𝐴𝑗)
1
4

with 𝛼𝑗(𝑥, 𝑡), 𝑎𝑗(𝑥, 𝑡), 𝑏𝑗(𝑥, 𝑡) ∈
R, 𝑗 = 1, 2 as in Proposition 4.2.16.

Moreover, 𝑐+(𝑥, 𝑡) = 0 if 𝛽1(𝑥, 𝑡) ̸= 0 and 𝑐+(𝑥, 𝑡) = 1
𝑠11(𝑥,𝑡,

1
𝐴2

)
if 𝛽1(𝑥, 𝑡) =

0, where 𝛽1(𝑥, 𝑡) is defined in (4.76b).

Proof. Combining Proposition 4.2.16 with Proposition 4.2.17 we get

𝐷−1𝑗 (𝜆)Φ̃𝑗(𝑥, 𝑡, 𝜆) =
e

3𝜋i
4

𝜈+𝑗 (𝜆)

(︃
−(2𝐴𝑗)

1
4𝛼𝑗

(︃
1 1

−1 −1

)︃
+
𝑎𝑗 + 𝑏𝑗

(2𝐴𝑗)
1
4

(︃
1 1

1 1

)︃)︃

+O

(︂
(𝜆− 1

𝐴𝑗
)1/4
)︂

as 𝜆→ 1
𝐴𝑗

, where 𝛼𝑗 = 𝛼𝑗(𝑥, 𝑡), 𝑎𝑗 = 𝑎𝑗(𝑥, 𝑡) and 𝑏𝑗 = 𝑏𝑗(𝑥, 𝑡).

First, consider the behaviour of 𝑀 near 1
𝐴2

. Since 𝐷−11 (𝜆)Φ̃
(1)
1 (𝑥, 𝑡, 𝜆) is
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analytic at 1
𝐴2

, we have

𝐷−11 (
1

𝐴2
)Φ̃

(1)
1 (𝑥, 𝑡,

1

𝐴2
) = i

(︃
𝑎(𝑥, 𝑡)

𝑐(𝑥, 𝑡)

)︃
with

𝑎(𝑥, 𝑡) =

⃒⃒⃒⃒
⃒
√︃
𝐴2 + |

√︀
𝐴2

2 − 𝐴2
1|

|
√︀
𝐴2

2 − 𝐴2
1|

⃒⃒⃒⃒
⃒
(︃

𝐴1

𝐴2 + |
√︀
𝐴2

2 − 𝐴2
1|

Φ̃
(11)
1 (𝑥, 𝑡,

1

𝐴2
) + Φ̃

(21)
1 (𝑥, 𝑡,

1

𝐴2
)

)︃
and

𝑐(𝑥, 𝑡) =

⃒⃒⃒⃒
⃒
√︃
𝐴2 + |

√︀
𝐴2

2 − 𝐴2
1|

|
√︀
𝐴2

2 − 𝐴2
1|

⃒⃒⃒⃒
⃒
(︃

𝐴1

𝐴2 + |
√︀
𝐴2

2 − 𝐴2
1|

Φ̃
(21)
1 (𝑥, 𝑡,

1

𝐴2
) + Φ̃

(11)
1 (𝑥, 𝑡,

1

𝐴2
)

)︃
.

Then, using (4.26a), we get the following expansion of 𝑠11(𝑥, 𝑡, 𝜆) at 1
𝐴2

:

𝑠11(𝑥, 𝑡, 𝜆) =
ie

3𝜋i
4

𝜈+2 (𝜆)
𝛽2(𝑥, 𝑡) + O(1), 𝜆→ 1

𝐴2

with 𝛽2(𝑥, 𝑡) =

(︂
(2𝐴2)

1
4𝛼2(𝑥, 𝑡)(𝑎(𝑥, 𝑡) + 𝑐(𝑥, 𝑡)) + (𝑎2(𝑥,𝑡)+𝑏2(𝑥,𝑡))(𝑎(𝑥,𝑡)−𝑐(𝑥,𝑡))

(2𝐴2)
1
4

)︂
.

Notice that the symmetry (4.44) implies that Φ̃
(11)
1 (𝑥, 𝑡, 1

𝐴2
) and Φ̃

(21)
1 (𝑥, 𝑡, 1

𝐴2
)

are real-valued and thus 𝑎(𝑥, 𝑡) ∈ R and 𝑐(𝑥, 𝑡) ∈ R.
Recall the assumption 𝑠11(

1
𝐴2

) ̸= 0, which implies 𝑠11( 1
𝐴2

) ̸= 0. Thus there
are two possibilities: either 𝛽2(𝑥, 𝑡) ̸= 0 or 𝛽2(𝑥, 𝑡) = 0 and 𝑠11( 1

𝐴2
) =: 𝛾 ̸= 0.

In the both cases,

𝑀(𝑥, 𝑡, 𝜆) =
e

3𝜋i
4

𝜈+2 (𝜆)

⎛⎝0 −(2𝐴2)
1
4𝛼2(𝑥, 𝑡) + (𝑎2(𝑥,𝑡)+𝑏2(𝑥,𝑡))

(2𝐴2)
1
4

0 (2𝐴2)
1
4𝛼2(𝑥, 𝑡) + (𝑎2(𝑥,𝑡)+𝑏2(𝑥,𝑡))

(2𝐴2)
1
4

⎞⎠+ O(1), 𝜆→ 1

𝐴2
.

Now consider the behaviour of 𝑀 as 𝜆 approaches 1
𝐴1

from the upper half-
plane. Since 𝐷−12 (𝜆)Φ̃

(2)
2 (𝑥, 𝑡, 𝜆) has no singularity at 1

𝐴1
, we have

𝐷−12 (
1

𝐴1+

)Φ̃
(2)
2 (𝑥, 𝑡,

1

𝐴1+

) =

(︃
𝑏+(𝑥, 𝑡)

𝑑+(𝑥, 𝑡)

)︃
with

𝑏+ =

⃒⃒⃒⃒
⃒
√︃
−i𝐴1 − |

√︀
𝐴2

2 − 𝐴2
1|

|
√︀
𝐴2

2 − 𝐴2
1|

⃒⃒⃒⃒
⃒
(︃

𝐴2

𝐴1 − i|
√︀
𝐴2

2 − 𝐴2
1|

Φ̃
(12)
2 (𝑥, 𝑡,

1

𝐴1+

) + Φ̃
(22)
2 (𝑥, 𝑡,

1

𝐴1+

)

)︃
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and

𝑑+ =

⃒⃒⃒⃒
⃒
√︃
−i𝐴1 − |

√︀
𝐴2

2 − 𝐴2
1|

|
√︀
𝐴2

2 − 𝐴2
1|

⃒⃒⃒⃒
⃒
(︃

𝐴2

𝐴1 − i|
√︀
𝐴2

2 − 𝐴2
1|

Φ̃
(22)
2 (𝑥, 𝑡,

1

𝐴1+

) + Φ̃
(12)
2 (𝑥, 𝑡,

1

𝐴1+

)

)︃
.

Then, using (4.26a), we get the following expansion of 𝑠11(𝑥, 𝑡, 𝜆) at 1
𝐴1

in the
upper half-plane:

𝑠11(𝑥, 𝑡, 𝜆) =
e

3𝜋i
4

𝜈+1 (𝜆)
𝛽1(𝑥, 𝑡) + O(1), 𝜆→ 1

𝐴1
, 𝜆 ∈ C+ (4.76a)

with

𝛽1(𝑥, 𝑡) = −(2𝐴2)
1
4𝛼1(𝑥, 𝑡)(𝑏+(𝑥, 𝑡)+𝑑+(𝑥, 𝑡))+

(𝑎1(𝑥, 𝑡) + 𝑏1(𝑥, 𝑡))(𝑑+(𝑥, 𝑡)− 𝑏+(𝑥, 𝑡))

(2𝐴1)
1
4

.

(4.76b)
As above, we have two possibilities: either 𝛽1(𝑥, 𝑡) ̸= 0 (generic case) or
𝛽1(𝑥, 𝑡) = 0 and 𝑠11( 1

𝐴1+
) = 𝛾+1 ̸= 0. This gives

𝑀(𝑥, 𝑡, 𝜆) =
𝑐+e

3𝜋i
4

𝜈+1 (𝜆)

⎛⎝−(2𝐴1)
1
4𝛼1(𝑥, 𝑡) + (𝑎1(𝑥,𝑡)+𝑏1(𝑥,𝑡))

(2𝐴1)
1
4

0

(2𝐴1)
1
4𝛼1(𝑥, 𝑡) + (𝑎1(𝑥,𝑡)+𝑏1(𝑥,𝑡))

(2𝐴1)
1
4

0

⎞⎠+O(1), 𝜆→ 1

𝐴1
, 𝜆 ∈ C+,

where 𝑐+ = 0 if 𝛽1(𝑥, 𝑡) ̸= 0, and 𝑐+ = 1
𝑠11(

1
𝐴1 +

)
if 𝛽1(𝑥, 𝑡) = 0.

The other the statements follow from the symmetry considerations.

Remark 4.3.7. 1. 𝜌(𝜆) = 𝑠21(𝜆+)
𝑠11(𝜆+)

e−2𝑝2(𝑥,𝑡,𝜆+) = O(1) as 𝜆 → 1
𝐴2

. Indeed,
in the proof of the Proposition 4.3.6, we have seen that 𝑠11(𝑥, 𝑡, 𝜆) =
ie

3𝜋i
4

𝜈+2 (𝜆)
𝛽2(𝑥, 𝑡) + O(1) as 𝜆 → 1

𝐴2
. Analogously, due to (4.26b), we have

𝑠21(𝑥, 𝑡, 𝜆) = − ie
3𝜋i
4

𝜈+2 (𝜆)
𝛽2(𝑥, 𝑡) + O(1) as 𝜆→ 1

𝐴2
. Moreover, by our assump-

tions, 𝑠11( 1
𝐴2

) ̸= 0, and hence the claim follows.

2. 𝜌(𝜆) = O(1) as 𝜆→ 1
𝐴1

. Indeed, we already know that 𝑠11(𝜆) = e
3𝜋i
4

𝜈+1 (𝜆)
𝛽1(𝑥, 𝑡)+

O(1) as 𝜆 → 1
𝐴1

, 𝜆 ∈ C+. Analogously, (4.26b) together with (4.58) im-

plies that if 𝛽1 ̸= 0 we have 𝑠21(𝜆) = ie
3𝜋i
4

𝜈+1 (𝜆)
𝛽1(𝑥, 𝑡)+O(1), 𝜆→ 1

𝐴1
, 𝜆 ∈ C+.

Moreover, by our assumptions, 𝑠11( 1
𝐴1+

) ̸= 0, and hence the claim follows.
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Residue conditions.

By (4.23), zeros of 𝑠11(𝜆) coincide with zeros 𝑠11(𝜆); hence, by Proposition
4.2.15, they are real and simple. Moreover, the symmetry (4.30) implies that
−𝜆𝑘 is a zero of 𝑠11(𝜆) together with 𝜆𝑘; we will denote the set of zeros of 𝑠11(𝜆)

by {𝜆𝑘,−𝜆𝑘}𝑛1 , where 𝜆𝑘 ∈ (0, 1
𝐴2

).

Proposition 4.3.8. 𝑀 (1) has simple poles at {𝜆𝑘,−𝜆𝑘}𝑛1 . Moreover,

Res±𝜆𝑘
𝑀 (1)(𝑥, 𝑡, 𝜆) =

𝑏𝑘
𝑠′11(𝜆𝑘)

e2𝑝2(𝜆𝑘)𝑀 (2)(𝑥, 𝑡,±𝜆𝑘), (4.77)

Moreover, 𝑏𝑘
𝑠′11(𝜆𝑘)

e2𝑝2(𝜆𝑘) ∈ R.

Proof. Recall that Φ
(1)
1 (𝜆𝑘) = 𝑏𝑘Φ

(2)
2 (𝜆𝑘) with 𝑏𝑘 = 𝑏(𝜆𝑘) ∈ R due the symme-

try (4.42). Then (𝐷−11 Φ̃
(1)
1 )(𝜆𝑘) and (𝐷−12 Φ̃

(2)
2 )(𝜆𝑘) are related as

(𝐷−11 Φ̃
(1)
1 )(𝜆𝑘)

𝑠11(𝜆𝑘)e𝑝1(𝜆𝑘)−𝑝2(𝜆𝑘)
=

𝑏𝑘
𝑠11(𝜆𝑘)

e2𝑝2(𝜆𝑘)(𝐷−12 Φ̃
(2)
2 )(𝜆𝑘),

and hence (4.77) follows. Moreover, differentiating (4.43) and using the fact
that 𝜆𝑘 ∈ R, we get 𝑠′11(𝜆𝑘) ∈ R, and thus 𝑏𝑘

𝑠′11(𝜆𝑘)
e2𝑝2(𝜆𝑘) ∈ R.

Differentiating (4.30), we get 𝑠′11(𝜆𝑘) = −𝑠′11(−𝜆𝑘). On the other hand,
(4.29) implies that 𝑏(−𝜆𝑘) = −𝑏(𝜆𝑘). Combining these facts, we obtain (4.77)
with the minus sign.

Remark 4.3.9. In terms of 𝑀̃ (4.73), the residue conditions take the following
form:

𝑀̃ (1)(𝑥, 𝑡, 𝜆) =
1

𝜆− 𝜆𝑘
𝑏𝑘

𝑠′11(𝜆𝑘)
e2𝑝2(𝜆𝑘)𝑀̃ (2)(𝑥, 𝑡, 𝜆𝑘+) + O(1), 𝜆→ 𝜆𝑘, 𝜆 ∈ C+,

(4.78a)

𝑀̃ (2)(𝑥, 𝑡, 𝜆) =
1

𝜆− 𝜆𝑘
𝑏𝑘

𝑠′11(𝜆𝑘)
e2𝑝2(𝜆𝑘)𝑀̃ (1)(𝑥, 𝑡, 𝜆𝑘−) + O(1), 𝜆→ 𝜆𝑘, 𝜆 ∈ C−.

(4.78b)
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RH problem parameterized by (𝑥, 𝑡).

In the framework of the Riemann–Hilbert approach to nonlinear evolution equa-
tions, one interprets the jump relation, normalization condition, singularity con-
ditions, and residue conditions as a Riemann–Hilbert problem, with the jump
matrix and residue parameters determined by the initial data for the nonlinear
problem in question. The considerations above imply that 𝑀(𝑥, 𝑡, 𝜆) can be
characterized as the solution of the following Riemann–Hilbert problem:

Find a 2 × 2 meromorphic matrix 𝑀(𝑥, 𝑡, 𝜆) that satisfies the following
conditions:

• Jump condition (4.68).

• Normalization condition (4.72).

• Singularity conditions: the singularities of 𝑀(𝑥, 𝑡, 𝜆) at ± 1
𝐴𝑗

are of order not
bigger than 1

4 .

• Residue conditions (if any): given {𝜆𝑘, 𝜅𝑘}𝑁1 with 𝜆𝑘 ∈ (0, 1
𝐴2

) and 𝜅𝑘 ∈ R ∖
{0}, 𝑀 (1)(𝑥, 𝑡, 𝜆) has simple poles at {𝜆𝑘,−𝜆𝑘}𝑁1 , with the residues satisfying
the equations

Res±𝜆𝑘
𝑀 (1)(𝑥, 𝑡, 𝜆) = 𝜅𝑘e

2𝑝2(𝜆𝑘)𝑀 (2)(𝑥, 𝑡,±𝜆𝑘). (4.79)

Remark 4.3.10. The solution of the RH problem above, if exists, satisfies the
following properties:

1. det𝑀 ≡ 1 (follows from the fact that det 𝐽 ≡ 1).

2. Symmetries

𝑀(−𝜆) = −𝜎3𝑀(𝜆)𝜎3, 𝑀(𝜆) = −𝑀(𝜆), 𝜆 ∈ C ∖ Σ2,

(4.80a)

𝑀((−𝜆)−) = −𝜎3𝑀(𝜆+)𝜎3, 𝑀(𝜆−) = −𝑀(𝜆+), 𝜆 ∈ Σ̇1.

(4.80b)
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where 𝑀(𝜆) ≡ 𝑀(𝑥, 𝑡, 𝜆) (follows from the respective symmetries of the
jump matrix and the residue conditions, assuming the uniqueness of the
solution).

Remark 4.3.11. We do not need to specify the singularities at the branch points
± 1

𝐴𝑗
in order to formulate RH problem. It is enough to require them to be of

order not bigger than 1
4 .

As for other Camassa–Holm-type equations, a principal drawback of the RH
formalism presented above is that the jump condition (4.68) involves not only
the scattering functions uniquely determined by the initial data for problem
(4.1), but the solution itself, via 𝑝2(𝑥, 𝑡, 𝜆) involving 𝑚(𝑥, 𝑡) (4.14b). In order
to have the data for a RH problem to be explicitly determined by the initial
data only, we introduce the space variable 𝑦(𝑥, 𝑡) := 𝑥 − 1

𝐴2

∫︀ +∞
𝑥 (𝑚(𝜉, 𝑡) −

𝐴2)d𝜉 − 𝐴2
2𝑡, which will play the role of a parameter (together with 𝑡) for the

RH problem, see Section 4.3.3 below.
In order to determine an efficient way for retrieving the solution of the mCH

equation from the solution of the RH problem, we will use the behavior of the
Jost solutions of the Lax pair equations evaluated at 𝜆 = 0, for which the 𝑥-
equation (4.7a) of the Lax pair becomes trivial (independent of the solution of
the mCH equation).

4.3.2 Eigenfunctions near 0.

In the case of the Camassa–Holm equation [26] as well as other CH-type non-
linear integrable equations studied so far, see, e.g., [30], the analysis of the
behavior of the respective Jost solutions at a dedicated point in the complex
plane of the spectral parameter (in our case, at 𝜆 = 0) requires a dedicated
gauge transformation of the Lax pair equations.

It is remarkable that in the case of the mCH equation, in order to control
the behavior of the eigenfunctions at 𝜆 = 0, we don’t need to introduce an
additional transformation; all we need is to regroup the terms in the Lax pair
(4.13).
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Namely, we rewrite (4.13) as follows:

Φ̂𝑗𝑥 +
i𝐴𝑗𝑘𝑗(𝜆)

2
𝜎3Φ̂𝑗 = 𝑈̂ 0

𝑗 Φ̂𝑗, (4.81a)

where 𝑈̂ 0
𝑗 ≡ 𝑈̂ 0

𝑗 (𝑥, 𝑡, 𝜆) is given by

𝑈̂ 0
𝑗 =

(𝑚− 𝐴𝑗)

2

𝜆

i𝑘𝑗(𝜆)

(︃
𝜆 1

𝐴𝑗

− 1
𝐴𝑗
−𝜆

)︃
, (4.81b)

and

Φ̂𝑗𝑡 + i𝐴𝑗𝑘𝑗(𝜆)

(︃
−
𝐴2

𝑗

2
− 1

𝜆2

)︃
𝜎3Φ̂𝑗 = 𝑉 0

𝑗 Φ̂𝑗, (4.81c)

where 𝑉 0
𝑗 ≡ 𝑉 0

𝑗 (𝑥, 𝑡, 𝜆) is given by

𝑉 0
𝑗 = 𝑉𝑗 + i𝐴𝑗𝑘𝑗(𝜆)

(︃
(𝑢2 − 𝑢2𝑥)𝑚

2𝐴𝑗
−
𝐴2

𝑗

2

)︃
𝜎3. (4.81d)

Further, introduce (compare with (4.14b))

𝑝0𝑗(𝑥, 𝑡, 𝜆) :=
i𝐴𝑗𝑘𝑗(𝜆)

2

(︃
𝑥− 2

(︃
𝐴2

𝑗

2
+

1

𝜆2

)︃
𝑡

)︃
. (4.82)

Then, introducing 𝑄0
𝑗 := 𝑝0𝑗𝜎3 and ̃︀Φ0

𝑗 := Φ̂𝑗e
𝑄0

𝑗 , equations (4.81a) and (4.81c)
reduce to ⎧⎨⎩̃︀Φ0

𝑗𝑥 + [𝑄0
𝑗𝑥,
̃︀Φ0
𝑗 ] = 𝑈̂ 0

𝑗
̃︀Φ0
𝑗 ,̃︀Φ0

𝑗𝑡 + [𝑄0
𝑗𝑡,
̃︀Φ0
𝑗 ] = 𝑉 𝑗

0
̃︀Φ0
𝑗 .

(4.83)

Define the Jost solutions ̃︀Φ0
𝑗 of (4.83) as the solutions of the integral equations

̃︀Φ0
𝑗(𝑥, 𝑡, 𝜆) = 𝐼 +

∫︁ 𝑥

(−1)𝑗∞
e

−i𝐴𝑗𝑘𝑗(𝜆)

2 (𝑥−𝜉)𝜎3𝑈̂ 0
𝑗 (𝜉, 𝑡, 𝜆)̃︀Φ0

𝑗(𝜉, 𝑡, 𝜆)e
i𝐴𝑗𝑘𝑗(𝜆)

2 (𝑥−𝜉)𝜎33d𝜉.

(4.84)
Further, defining Φ̂0

𝑗 := ̃︀Φ0
𝑗e
−𝑝0𝑗𝜎3, we observe that Φ̂0

𝑗(𝑥, 𝑡, 𝜆) and Φ̂𝑗(𝑥, 𝑡, 𝜆)

satisfy the same differential equations (4.13) and thus they are related by ma-
trices 𝐶𝑗(𝜆) independent of 𝑥 and 𝑡:

Φ̂𝑗 = Φ̂0
𝑗𝐶𝑗(𝜆).
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Consequently,

̃︀Φ𝑗(𝑥, 𝑡, 𝜆) = ̃︀Φ0
𝑗(𝑥, 𝑡, 𝜆)e−𝑝

0
𝑗 (𝑥,𝑡,𝜆)𝜎3𝐶𝑗(𝜆)e𝑝𝑗(𝑥,𝑡,𝜆)𝜎3. (4.85)

Since 𝑝𝑗(𝑥, 𝑡, 𝜆)− 𝑝0𝑗(𝑥, 𝑡, 𝜆) =
i𝑘𝑗(𝜆)

2

∫︀ (−1)𝑗∞
𝑥 (𝑚(𝜉, 𝑡)− 𝐴𝑗)d𝜉 and

̃︀Φ𝑗(𝑥, 𝑡, 𝜆) = ̃︀Φ0
𝑗(𝑥, 𝑡, 𝜆)e

i𝑘𝑗(𝜆)

2

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉𝜎3,

passing to the limits 𝑥→ (−1)𝑗∞, we get 𝐶𝑗(𝜆) = 𝐼.
Noticing that 𝑈̂ 0

𝑗 (𝑥, 𝑡, 0) ≡ 0, it follows from (4.84) that ̃︀Φ0
𝑗(𝑥, 𝑡, 0) ≡ 𝐼

and thus ̃︀Φ𝑗(𝑥, 𝑡, 0) = e
− 1

2𝐴𝑗

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉𝜎3. Combining this with 𝐷−1𝑗 (0) =(︃
0 𝑖

𝑖 0

)︃
gives

(𝐷−1𝑗
̃︀Φ𝑗)(𝑥, 𝑡, 0) = i

(︃
0 e

1
2𝐴𝑗

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉

e
− 1

2𝐴𝑗

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉 0

)︃
Consequently,

𝑠11(0) = e−
1

2𝐴1

∫︀ 𝑥

−∞(𝑚(𝜉,𝑡)−𝐴1)d𝜉− 1
2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉

(hence 𝑠11(0) ̸= 0) and

𝑀(𝑥, 𝑡, 0) = i

(︃
0 e−

1
2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉

e
1

2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉 0

)︃
. (4.86)

Remark 4.3.12. Considering 𝑀(𝑥, 𝑡, 𝜆) as the solution of the RH problem in
Section 4.3.1, the matrix structure of 𝑀(𝑥, 𝑡, 0) as in (4.86), i.e.,

𝑀(𝑥, 𝑡, 0) = i

(︃
0 𝑎1(𝑥, 𝑡)

𝑎−11 (𝑥, 𝑡) 0

)︃
(4.87)

with some 𝑎(𝑥, 𝑡) ∈ R, which follows from the symmetry properties (4.80a)
of the solution taking into account that det𝑀 ≡ 1 (provided the solution is
unique).

In order to extract the solution of the mCH equation from the solution of
the associated RH problem, it turns to be useful to find the next term in the
expansion of 𝑀(𝑥, 𝑡, 𝜆) at 𝜆 = 0.
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First, expanding 𝐷−1𝑗 (𝜆) near 0, we have

𝐷−1𝑗 (𝜆) =

(︃
0 𝑖

𝑖 0

)︃
+ 𝜆

(︃
i
𝐴𝑗

2 0

0 i
𝐴𝑗

2

)︃
+ O(𝜆2).

On the other hand, e
i𝑘𝑗(𝜆)

2

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉𝜎3 = e
− 1

2𝐴𝑗

∫︀ 𝑥

(−1)𝑗∞(𝑚(𝜉,𝑡)−𝐴𝑗)d𝜉𝜎3+O(𝜆2), 𝜆→
0. Then, expanding ̃︀Φ0

𝑗(𝑥, 𝑡, 𝜆) at 0 using the Neumann series, we have

̃︀Φ0
𝑗(𝑥, 𝑡, 𝜆) = 𝐼 + 𝜆

(︃
0 −

∫︀ 𝑥

(−1)𝑗∞ 𝑒
𝑥−𝜉 𝑚−𝐴𝑗

2 d𝜉∫︀ 𝑥

(−1)𝑗∞ 𝑒
−(𝑥−𝜉)𝑚−𝐴𝑗

2 d𝜉 0

)︃
+ O(𝜆2).

In particular,

𝑠11(𝜆) = e−
1

2𝐴1

∫︀ 𝑥

−∞(𝑚(𝜉,𝑡)−𝐴1)d𝜉− 1
2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉 + O(𝜆2).

Finally, we have

𝑀(𝑥, 𝑡, 𝜆) = i

(︃
0 𝑎1(𝑥, 𝑡)

𝑎−11 (𝑥, 𝑡) 0

)︃
+ i𝜆

(︃
𝑎2(𝑥, 𝑡) 0

0 𝑎3(𝑥, 𝑡)

)︃
+ O(𝜆2), (4.88)

where

𝑎1(𝑥, 𝑡) = e−
1

2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉, (4.89a)

𝑎2(𝑥, 𝑡) = (

∫︁ 𝑥

−∞
𝑒−(𝑥−𝜉)

𝑚− 𝐴1

2
d𝜉 +

𝐴1

2
)e

1
2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉, (4.89b)

𝑎3(𝑥, 𝑡) = (

∫︁ ∞
𝑥

𝑒(𝑥−𝜉)
𝑚− 𝐴2

2
d𝜉 +

𝐴2

2
)e−

1
2𝐴2

∫︀∞
𝑥

(𝑚(𝜉,𝑡)−𝐴2)d𝜉. (4.89c)

Notice that the matrix structure of terms in the r.h.s. of (4.88) is consistent
with the symmetry properties (4.80a) of 𝑀 .

Proposition 4.3.13. 𝑢(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) can be algebraically expressed in
terms of the coefficients 𝑎𝑗(𝑥, 𝑡), 𝑗 = 1, 3 in the development (4.88) of 𝑀(𝑥, 𝑡, 𝜆)

as follows:

𝑢(𝑥, 𝑡) = 𝑎1(𝑥, 𝑡)𝑎2(𝑥, 𝑡) + 𝑎−11 (𝑥, 𝑡)𝑎3(𝑥, 𝑡), (4.90a)

𝑢𝑥(𝑥, 𝑡) = −𝑎1(𝑥, 𝑡)𝑎2(𝑥, 𝑡) + 𝑎−11 (𝑥, 𝑡)𝑎3(𝑥, 𝑡). (4.90b)

154



Proof. Introduce 𝑣(𝑥, 𝑡) := 𝑎1(𝑥, 𝑡)𝑎2(𝑥, 𝑡) + 𝑎−11 (𝑥, 𝑡)𝑎3(𝑥, 𝑡). Using (4.89) it
follows that

𝑣(𝑥, 𝑡) =
𝐴1 + 𝐴2

2
+

∫︁ 𝑥

−∞
𝑒−(𝑥−𝜉)

𝑚− 𝐴1

2
d𝜉 +

∫︁ ∞
𝑥

𝑒(𝑥−𝜉)
𝑚− 𝐴2

2
d𝜉 (4.91)

and thus, differentiating w.r.t. 𝑥,

𝑣𝑥(𝑥, 𝑡) =
𝐴2 − 𝐴1

2
−
∫︁ 𝑥

−∞
𝑒−(𝑥−𝜉)

𝑚− 𝐴1

2
d𝜉 +

∫︁ ∞
𝑥

𝑒(𝑥−𝜉)
𝑚− 𝐴2

2
d𝜉. (4.92)

Since we assume that lim𝑥→(−1)𝑗∞𝑚(𝑥, 𝑡) = 𝐴𝑖, from (4.91) it follows that
𝑣 − 𝑣𝑥𝑥 = 𝑚 and that

lim
𝑥→(−1)𝑗∞

𝑣(𝑥, 𝑡) = 𝐴𝑖, lim
𝑥→(−1)𝑖∞

𝑣𝑥(𝑥, 𝑡) = 0;

thus 𝑣 ≡ 𝑢. Finally, we notice that the expression in the r.h.s. of (4.92) can be
written as the r.h.s. of (4.90b) taking into account (4.89).

4.3.3 RH problem in the (𝑦, 𝑡) scale

As we already mentioned, the jump condition (4.68) involves not only the scat-
tering functions uniquely determined by the initial data for problem (4.1), but
the solution itself, via 𝑚(𝑥, 𝑡), which enters the definition of 𝑝2(𝑥, 𝑡, 𝜆) (4.14b).
In order to have the data for the RH problem to be explicitly determined by
the initial data only, we introduce the new space variable 𝑦(𝑥, 𝑡) by

𝑦(𝑥, 𝑡) = 𝑥− 1

𝐴2

∫︁ +∞

𝑥

(𝑚(𝜉, 𝑡)− 𝐴2)d𝜉 − 𝐴2
2𝑡, (4.93)

Then, introducing 𝑀̂(𝑦, 𝑡, 𝜆) so that 𝑀(𝑥, 𝑡, 𝜆) = 𝑀̂(𝑦(𝑥, 𝑡), 𝑡, 𝜆), the depen-
dence of the jump matrix in (4.68) on 𝑦 and 𝑡 as parameters becomes explicit:
the jump condition for 𝑀̂(𝑦, 𝑡, 𝜆) has the form

𝑀̂+(𝑦, 𝑡, 𝜆) = 𝑀̂−(𝑦, 𝑡, 𝜆)𝐽(𝑦, 𝑡, 𝜆), 𝜆 ∈ Σ̇1 ∪ Σ̇0. (4.94a)

Here

𝐽(𝑦, 𝑡, 𝜆) :=

(︃
0 i

i 0

)︃(︃
e−𝑝2(𝑦,𝑡,𝜆+) 0

0 e𝑝2(𝑦,𝑡,𝜆+)

)︃
𝐽0(𝜆)

(︃
e𝑝2(𝑦,𝑡,𝜆+) 0

0 e−𝑝2(𝑦,𝑡,𝜆+)

)︃
,

(4.94b)
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where 𝐽0(𝜆) is defined by (4.68b) and 𝑝2 is explicitly given in terms of 𝑦 and 𝑡:

𝑝2(𝑦, 𝑡, 𝜆) :=
i𝐴2𝑘2(𝜆)

2

(︂
𝑦 − 2𝑡

𝜆2

)︂
. (4.94c)

Similarly, the residue conditions (4.79) become explicit as well:

Res±𝜆𝑘
𝑀̂ (1)(𝑦, 𝑡, 𝜆) = 𝜅𝑘e

2𝑝2(𝑦,𝑡,𝜆𝑘)𝑀̂ (2)(𝑦, 𝑡,±𝜆𝑘), (4.95)

with 𝜅𝑘 = 𝑏𝑘
𝑠′11(𝜆𝑘)

.
Noticing that the normalization condition (4.72) and the singularity condi-

tions at 𝜆 = ± 1
𝐴𝑗

hold in the new scale (𝑦, 𝑡), we arrive at the basic RH problem
characterizing problem (4.1a).

Basic RH problem. Given 𝜌(𝜆) for 𝜆 ∈ Σ̇1 ∪ Σ̇0, and {𝜆𝑘, 𝜅𝑘}𝑁1 with 𝜆𝑘 ∈
(0, 1

𝐴2
) and 𝜅𝑘 ∈ R ∖ {0}, associated with the initial data 𝑢0(𝑥) in (4.1), find

a piece-wise (w.r.t. Σ̇2) meromorphic, 2 × 2-matrix valued function 𝑀̂(𝑦, 𝑡, 𝜆)

satisfying the following conditions:

• Jump condition (4.94) across Σ̇1 ∪ Σ̇0 (with 𝐽0(𝜆) defined by (4.68b)).

• Residue conditions (4.95).

• Normalization condition:

𝑀̂(𝑦, 𝑡, 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 i

i −1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C+,

√︁
1
2

⎛⎝1 i

i 1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C−.

(4.96)

• Singularity conditions: the singularities of 𝑀̂(𝑦, 𝑡, 𝜆) at ± 1
𝐴𝑗

are of order not
bigger than 1

4 .

Evaluating the solution of this problem as 𝜆→ 0, we are able to present the
solution 𝑢 to the initial value problem (4.1) in a parametric form, see below. As
for the data for the RH problem, the scattering matrix 𝑠(𝜆) (and hence 𝑠11(𝜆),
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𝑠21(𝜆), and 𝜌(𝜆)) as well as the discrete data {𝜆𝑘, 𝜅𝑘}𝑛1 are determined by 𝑢0(𝑥)

via the solutions of (4.17) considered for 𝑡 = 0.
The uniqueness of the solution of the basic RH problem follows using stan-

dard arguments based on the application of Liouville’s theorem to the ratio
𝑀̂1(𝑀̂2)

−1 of two potential solutions, 𝑀̂1 and 𝑀̂2. Particularly, the singularity
condition implies that the possible singularities of 𝑀̂1(𝑀̂2)

−1 are of order no
bigger that 1/2 and that these singularities, being isolated, are removable.

The uniqueness, in particular, implies the symmetries

𝑀̂(−𝜆) = −𝜎3𝑀̂(𝜆)𝜎3, 𝑀̂(𝜆) = −𝑀(𝜆), 𝜆 ∈ C ∖ Σ2, (4.97a)

𝑀̂((−𝜆)−) = −𝜎3𝑀̂(𝜆+)𝜎3, 𝑀̂(𝜆−) = −𝑀̂(𝜆+), 𝜆 ∈ Σ̇1. (4.97b)

where 𝑀̂(𝜆) ≡ 𝑀̂(𝑦, 𝑡, 𝜆), which follows from the corresponding symmetries of
𝐽(𝑦, 𝑡, 𝜆).

4.3.4 Recovering 𝑢(𝑥, 𝑡) from the solution of the basic RH problem

Comparing the RH problem (4.68), (4.72), (4.79) parametrized by 𝑥 and 𝑡 with
the RH problem (4.94)–(4.96) parametrized by 𝑦 and 𝑡 and using (4.89)–(4.93)
we arrive at our main representation result.

Theorem 4.3.14. Assume that 𝑢(𝑥, 𝑡) is the solution of the Cauchy problem
(4.1) and let 𝑀̂(𝑦, 𝑡, 𝑥) be the solution of the associated RH problem (4.94)–
(4.96), whose data are determined by 𝑢0(𝑥). Let

𝑀̂(𝑦, 𝑡, 𝜆) = i

(︃
0 𝑎̂1(𝑦, 𝑡)

𝑎̂−11 (𝑦, 𝑡) 0

)︃
+ i𝜆

(︃
𝑎̂2(𝑦, 𝑡) 0

0 𝑎̂3(𝑦, 𝑡)

)︃
+ O(𝜆2) (4.98)

be the development of 𝑀̂(𝑦, 𝑡, 𝑥) at 𝜆 = 0. Then the solution 𝑢(𝑥, 𝑡) of the
Cauchy problem (4.1) can be expressed, in a parametric form, in terms of
𝑎̂𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3: 𝑢(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂(𝑦, 𝑡) = 𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡), (4.99a)

𝑥(𝑦, 𝑡) = 𝑦 − 2 ln 𝑎̂1(𝑦, 𝑡) + 𝐴2
2𝑡. (4.99b)
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Additionally, 𝑢̂𝑥(𝑦, 𝑡) can also be algebraically expressed in terms of 𝑎̂𝑗(𝑦, 𝑡),
𝑗 = 1, 2, 3: 𝑢𝑥(𝑥, 𝑡) = 𝑢̂𝑥(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂𝑥(𝑦, 𝑡) = −𝑎̂1(𝑦, 𝑡)𝑎̂2(𝑦, 𝑡) + 𝑎̂−11 (𝑦, 𝑡)𝑎̂3(𝑦, 𝑡). (4.99c)

Alternatively, one can express 𝑢̂𝑥(𝑦, 𝑡) in terms of the first term in (4.98)
only. The price to pay is that this expression involves the derivatives of this
term.

Proposition 4.3.15. The 𝑥-derivative of the solution 𝑢(𝑥, 𝑡) of the Cauchy
problem (4.1) has the parametric representation

𝑢̂𝑥(𝑦, 𝑡) = − 1

𝐴2
𝜕𝑡𝑦 ln 𝑎̂1(𝑦, 𝑡), (4.100a)

𝑥(𝑦, 𝑡) = 𝑦 − 2 ln 𝑎̂1(𝑦, 𝑡) + 𝐴2
2𝑡. (4.100b)

Proof. Differentiating the identity 𝑥(𝑦(𝑥, 𝑡), 𝑡) = 𝑥 w.r.t. 𝑡 gives

0 =
𝑑

𝑑𝑡
(𝑥(𝑦(𝑥, 𝑡), 𝑡)) = 𝑥𝑦(𝑦, 𝑡)𝑦𝑡(𝑥, 𝑡) + 𝑥𝑡(𝑦, 𝑡). (4.101)

From (4.93) it follows that

𝑥𝑦(𝑦, 𝑡) =
𝐴2

𝑚̂(𝑦, 𝑡)
, (4.102)

where 𝑚̂(𝑦, 𝑡) = 𝑚(𝑥(𝑦, 𝑡), 𝑡), and

𝑦𝑡(𝑥, 𝑡) = − 1

𝐴2
(𝑢2 − 𝑢2𝑥)𝑚.

Substituting this and (4.102) into (4.101) we obtain

𝑥𝑡(𝑦, 𝑡) = 𝑢̂2(𝑦, 𝑡)− 𝑢̂2𝑥(𝑦, 𝑡). (4.103)

Further, differentiating (4.103) w.r.t. 𝑦 we get

𝑥𝑡𝑦(𝑦, 𝑡) = (𝑢̂2(𝑦, 𝑡)− 𝑢̂2𝑥(𝑦, 𝑡))𝑥𝑥𝑦(𝑦, 𝑡) = 2𝐴2𝑢̂𝑥(𝑦, 𝑡) (4.104)

and thus

𝑢𝑥(𝑥(𝑦, 𝑡), 𝑡) ≡ 𝑢̂𝑥(𝑦, 𝑡) =
1

2𝐴2
𝜕𝑡𝑦𝑥(𝑦, 𝑡) = − 1

𝐴2
𝜕𝑡𝑦 ln 𝑎̂1(𝑦, 𝑡).
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4.4 The case 𝐴2 < 𝐴1

Notice that in this case Σ2 ⊂ Σ1 and Σ0 = [− 1
𝐴2
,− 1

𝐴1
] ∪ [ 1

𝐴1
, 1
𝐴2

].
We define Φ𝑖 and Φ̃𝑖 as in (4.20) and (4.18), and introduce the scattering

matrices 𝑠(𝜆±), this time for 𝜆 ∈ Σ̇2, as matrices relating Φ1 and Φ2 (for brevity
we keep for it the same notation 𝑠):

Φ1(𝑥, 𝑡, 𝜆±) = Φ2(𝑥, 𝑡, 𝜆±)𝑠(𝜆±), 𝜆 ∈ Σ̇2 (4.105a)

with det 𝑠(𝜆±) = 1. In turn, Φ̃1 and Φ̃2 are related by

𝐷−11 (𝜆±)Φ̃1(𝑥, 𝑡, 𝜆±) = 𝐷−12 (𝜆±)Φ̃2(𝑥, 𝑡, 𝜆±)e−𝑄2(𝑥,𝑡,𝜆±)𝑠(𝜆+)e𝑄1(𝑥,𝑡,𝜆±), 𝜆 ∈ Σ̇2.

(4.106a)

The scattering coefficients 𝑠𝑖𝑗 can be expressed as in (4.25). However, in this
case, (4.25a) implies that 𝑠11(𝜆) can be analytically extended to C ∖ Σ1 and
defined on the upper and lower parts of Σ̇1, and, since Φ

(2)
2 is analytic in C∖Σ2

and Φ
(2)
1 is defined on the upper and lower sides of Σ1, 𝑠12(𝜆) can be extended

by (4.25c) to the lower and upper sides of Σ̇1. Thus the following relations hold
also on Σ̇0:

Φ
(2)
2 (𝑥, 𝑡, 𝜆±) = 𝑠11(𝜆±)Φ

(2)
1 (𝑥, 𝑡, 𝜆±)− 𝑠12(𝜆±)Φ

(1)
1 (𝑥, 𝑡, 𝜆±), 𝜆 ∈ Σ̇0.

(4.107a)

and, respectively,

(𝐷−1
2 Φ

(2)
2 )(𝑥, 𝑡, 𝜆±) = 𝑠11(𝑥, 𝑡, 𝜆±)(𝐷

−1
1 Φ

(2)
1 )(𝑥, 𝑡, 𝜆±)− 𝑠12(𝑥, 𝑡, 𝜆±)(𝐷

−1
1 Φ

(1)
1 )(𝑥, 𝑡, 𝜆±), 𝜆 ∈ Σ̇0,

(4.108a)

where 𝑠(𝑥, 𝑡, 𝜆±) := e−𝑄2(𝑥,𝑡,𝜆±)𝑠(𝜆±)e𝑄1(𝑥,𝑡,𝜆±).

4.4.1 Symmetries

The symmetries are similar to the case 𝐴1 < 𝐴2. In particular,

(1)
|𝑠11(𝜆+)|2 − |𝑠12(𝜆+)|2 = 1, 𝜆 ∈ Σ̇2. (4.109)
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(2) ⃒⃒𝑠12(𝜆+)

𝑠11(𝜆+)

⃒⃒
≤ 1, 𝜆 ∈ Σ̇2 (4.110)

(3)

𝑠11(𝜆+) = 𝑠22(𝜆−), 𝜆 ∈ Σ̇2, (4.111a)

𝑠11(𝜆+) = i𝑠12(𝜆−), 𝜆 ∈ Σ̇0, (4.111b)

𝑠11(𝜆−) = −i𝑠12(𝜆+), 𝜆 ∈ Σ̇0. (4.111c)

(4) ⃒⃒𝑠12(𝜆+)

𝑠11(𝜆+)

⃒⃒
= 1, 𝜆 ∈ Σ̇0 (4.112)

(5)
(𝐷−1𝑗 Φ̃𝑗)((−𝜆)−) = −𝜎3(𝐷−1𝑗 Φ̃𝑗)(𝜆+)𝜎3, 𝜆+ ∈ Σ̇𝑗. (4.113)

(6)
(𝐷−1𝑗 Φ̃

(𝑗)
𝑗 )(𝜆) = −(𝐷−1𝑗 Φ̃

(𝑗)
𝑗 )(𝜆), 𝜆 ∈ C ∖ Σ𝑗, (4.114)

(7)

(𝐷−11 Φ̃
(1)
1 )(−𝜆) = −𝜎3(𝐷−11 Φ̃

(1)
1 )(𝜆), 𝜆 ∈ C ∖ Σ1, (4.115a)

(𝐷−12 Φ̃
(2)
2 )(−𝜆) = 𝜎3(𝐷

−1
2 Φ̃

(2)
2 )(𝜆), 𝜆 ∈ C ∖ Σ2. (4.115b)

(8)

𝐷−1𝑗 (𝜆−)Φ̃
(𝑗)
𝑗 (𝜆−) = (−i𝐷−1𝑗 (𝜆+)Φ̃𝑗(𝜆+)𝜎1)

(𝑗), 𝜆 ∈ Σ̇2, (4.116a)

𝐷−11 (𝜆−)Φ̃
(1)
1 (𝜆−) = (−i𝐷−11 (𝜆+)Φ̃1(𝜆+)𝜎1)

(1), 𝜆 ∈ Σ̇0, (4.116b)

𝐷−12 (𝜆−)Φ̃
(2)
2 (𝜆−) = 𝐷−12 (𝜆+)Φ̃

(2)
2 (𝜆+), 𝜆 ∈ Σ̇0. (4.116c)

4.4.2 Discrete spectrum

It can be shown in a similar way as for the case 𝐴1 < 𝐴2 that discrete spectrum
is located on (− 1

𝐴1
, 1
𝐴1

) (assuming that spectral singularities do not arise in the
branch points).
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4.4.3 RH problem parametrized by (𝑥, 𝑡)

Notations. In this case it is convenient to introduce 𝜌 as

𝜌(𝜆) =
𝑠12(𝜆+)

𝑠11(𝜆+)
, 𝜆 ∈ Σ̇2 ∪ Σ̇0. (4.117)

Observe that (4.110) and (4.112) imply that

|𝜌(𝜆)| ≤ 1, 𝜆 ∈ Σ̇2, (4.118a)

|𝜌(𝜆)| = 1, 𝜆 ∈ Σ̇0. (4.118b)

Recalling the analytic properties of eigenfunctions and scattering coefficients,
we introduce the matrix-valued function

𝑁(𝑥, 𝑡, 𝜆) =

(︃
(𝐷−11 Φ̃

(1)
1 )(𝑥, 𝑡, 𝜆),

(𝐷−12 Φ̃
(2)
2 )(𝑥, 𝑡, 𝜆)

𝑠11(𝜆)e𝑝1(𝑥,𝑡,𝜆)−𝑝2(𝑥,𝑡,𝜆)

)︃
, 𝜆 ∈ C ∖ Σ2,

(4.119)
meromorphic in C ∖ Σ2, where 𝑝𝑗, 𝑗 = 1, 2, are defined in (4.14b). Since
𝐷−1𝑗 (𝜆)Φ̃𝑗(𝑥, 𝑡, 𝜆) = Φ𝑗(𝑥, 𝑡, 𝜆)e𝑄𝑗(𝑥,𝑡,𝜆), 𝑁(𝑥, 𝑡, 𝜆) can be written as

𝑁(𝑥, 𝑡, 𝜆) =

(︃
Φ

(1)
1 (𝑥, 𝑡, 𝜆),

Φ
(2)
2 (𝑥, 𝑡, 𝜆)

𝑠11(𝜆)

)︃
e𝑝1(𝑥,𝑡,𝜆)𝜎3.

Proceeding as in case 𝐴1 < 𝐴2, we conclude that 𝑁(𝑥, 𝑡, 𝜆) can be charac-
terized as the solution of the following Riemann–Hilbert problem:

Find a 2× 2 meromorphic matrix 𝑁(𝑥, 𝑡, 𝜆) that satisfies the following con-
ditions:

• The jump condition

𝑁+(𝑥, 𝑡, 𝜆) = 𝑁−(𝑥, 𝑡, 𝜆)𝐺(𝑥, 𝑡, 𝜆), 𝜆 ∈ Σ̇2 ∪ Σ̇0, (4.120a)

where

𝐺(𝑥, 𝑡, 𝜆) =

(︃
0 i

i 0

)︃(︃
e−𝑝1(𝜆+) 0

0 e𝑝1(𝜆+)

)︃
𝐺0(𝜆)

(︃
e𝑝1(𝜆+) 0

0 e−𝑝1(𝜆+)

)︃
(4.120b)
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with

𝐺0(𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ 1 −𝜌(𝜆)

𝜌(𝜆) 1− |𝜌(𝜆)|2

⎞⎠ , 𝜆 ∈ Σ̇2,⎛⎝ 1 −𝜌(𝜆)

1
𝜌(𝜆) 0

⎞⎠ , 𝜆 ∈ Σ̇0.

(4.120c)

• The normalization condition:

𝑁(𝑥, 𝑡, 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 i

i −1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C+,

√︁
1
2

⎛⎝1 i

i 1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C−,

(4.121)

• Singularity conditions: the singularities of 𝑁(𝑥, 𝑡, 𝜆) at ± 1
𝐴𝑗

are of order not
bigger than 1

4 .

• Residue conditions (if any): given {𝜆̌𝑘, 𝜅̌𝑘}𝑁̌1 with 𝜆̌𝑘 ∈ (0, 1
𝐴1

) and 𝜅̌𝑘 ∈ R ∖
{0}, 𝑁 (2)(𝑥, 𝑡, 𝜆) has simple poles at {𝜆̌𝑘,−𝜆̌𝑘}𝑁̌1 , with the residues satisfying
the equations

Res±𝜆̌𝑘
𝑁 (2)(𝑥, 𝑡, 𝜆) = 𝜅̌𝑘e

−2𝑝1(𝜆̌𝑘)𝑁 (2)(𝑥, 𝑡,±𝜆̌𝑘). (4.122)

Remark 4.4.1. The solution of the RH problem above, if exists, satisfies the
following properties:

1. det𝑁 ≡ 1.

2. Symmetries :

𝑁(−𝜆) = −𝜎3𝑁(𝜆)𝜎3, 𝑁(𝜆) = −𝑁(𝜆), 𝜆 ∈ C ∖ Σ1,

(4.123a)

𝑁((−𝜆)−) = −𝜎3𝑁(𝜆+)𝜎3, 𝑁(𝜆−) = −𝑁(𝜆+), 𝜆 ∈ Σ̇2.

(4.123b)
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where 𝑁(𝜆) ≡ 𝑁(𝑥, 𝑡, 𝜆) (follows from the respective symmetries of the
jump matrix and the residue conditions, assuming the uniqueness of the
solution).

4.4.4 Eigenfunctions near 𝜆 = 0

Introducing Φ̃0,𝑗 as in (4.84) and proceeding as in case 𝐴1 < 𝐴2, the following
development of 𝑁(𝑥, 𝑡, 𝜆) near 𝜆 = 0 holds:

𝑁(𝑥, 𝑡, 𝜆) = i

(︃
0 𝑏1(𝑥, 𝑡)

𝑏−11 (𝑥, 𝑡) 0

)︃
+ i𝜆

(︃
𝑏2(𝑥, 𝑡) 0

0 𝑏3(𝑥, 𝑡)

)︃
+ O(𝜆2), (4.124)

where

𝑏1(𝑥, 𝑡) = e
1

2𝐴1

∫︀ 𝑥

−∞(𝑚(𝜉,𝑡)−𝐴1)d𝜉, (4.125a)

𝑏2(𝑥, 𝑡) = (

∫︁ 𝑥

−∞
𝑒−(𝑥−𝜉)

𝑚− 𝐴1

2
d𝜉 +

𝐴1

2
)e−

1
2𝐴1

∫︀ 𝑥

−∞(𝑚(𝜉,𝑡)−𝐴1)d𝜉, (4.125b)

𝑏3(𝑥, 𝑡) = (

∫︁ ∞
𝑥

𝑒(𝑥−𝜉)
𝑚− 𝐴2

2
d𝜉 +

𝐴2

2
)e

1
2𝐴1

∫︀ 𝑥

−∞(𝑚(𝜉,𝑡)−𝐴1)d𝜉. (4.125c)

Proposition 4.4.2. 𝑢(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) can be algebraically expressed in terms
of the coefficients 𝑏𝑗(𝑥, 𝑡), 𝑗 = 1, 3 in the development (4.124) of 𝑁(𝑥, 𝑡, 𝜆) as
follows:

𝑢(𝑥, 𝑡) = 𝑏1(𝑥, 𝑡)𝑏2(𝑥, 𝑡) + 𝑏−11 (𝑥, 𝑡)𝑏3(𝑥, 𝑡), (4.126a)

𝑢𝑥(𝑥, 𝑡) = −𝑏1(𝑥, 𝑡)𝑏2(𝑥, 𝑡) + 𝑏−11 (𝑥, 𝑡)𝑏3(𝑥, 𝑡). (4.126b)

4.4.5 RH problem in the (𝑦, 𝑡) scale

Introducing the new space variable 𝑦(𝑥, 𝑡) by

𝑦(𝑥, 𝑡) = 𝑥+
1

𝐴1

∫︁ 𝑥

−∞
(𝑚(𝜉, 𝑡)− 𝐴1)d𝜉 − 𝐴2

1𝑡 (4.127)

and introducing 𝑁̂(𝑦, 𝑡, 𝜆) so that 𝑁(𝑥, 𝑡, 𝜆) = 𝑁̂(𝑦(𝑥, 𝑡), 𝑡, 𝜆), the jump con-
dition (4.120a) becomes

𝑁̂+(𝑦, 𝑡, 𝜆) = 𝑁̂−(𝑦, 𝑡, 𝜆)𝐺̂(𝑦, 𝑡, 𝜆), 𝜆 ∈ Σ̇2 ∪ Σ̇0, (4.128a)
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where

𝐺̂(𝑦, 𝑡, 𝜆) :=

(︃
0 i

i 0

)︃(︃
e−𝑝1(𝑦,𝑡,𝜆+) 0

0 e𝑝1(𝑦,𝑡,𝜆+)

)︃
𝐺0(𝜆)

(︃
e𝑝1(𝑦,𝑡,𝜆+) 0

0 e−𝑝1(𝑦,𝑡,𝜆+)

)︃
,

(4.128b)
𝐺0(𝜆) is defined by (4.120c),

𝑝1(𝑦, 𝑡, 𝜆) :=
i𝐴1𝑘1(𝜆)

2

(︂
𝑦 − 2𝑡

𝜆2

)︂
. (4.128c)

Thus 𝐺(𝑥, 𝑡, 𝜆) = 𝐺̂(𝑦(𝑥, 𝑡), 𝑡, 𝜆) and 𝑝1(𝑥, 𝑡, 𝜆) = 𝑝1(𝑦(𝑥, 𝑡), 𝑡, 𝜆), where the
jump 𝐺(𝑥, 𝑡, 𝜆) and the phase 𝑝1(𝑥, 𝑡, 𝜆) are defined in (4.120b) and (4.14b),
respectively.

Accordingly, the residue conditions (4.122) become

Res±𝜆̌𝑘
𝑁̂ (2)(𝑦, 𝑡, 𝜆) = 𝜅̌𝑘e

−2𝑝1(𝑦,𝑡,𝜆𝑘)𝑁̂ (1)(𝑦, 𝑡,±𝜆̌𝑘), (4.129)

with 𝜅̌𝑘 = 1
𝑏̌𝑘𝑠′11(𝜆̌𝑘)

.
Noticing that the normalization condition (4.121), the symmetries (4.123),

and the singularity conditions at 𝜆 = ± 1
𝐴𝑗

hold in the new scale (𝑦, 𝑡), we arrive
at the basic RH problem.

Basic RH problem. Given 𝜌(𝜆) for 𝜆 ∈ Σ̇2 ∪ Σ̇0, and {𝜆̌𝑘, 𝜅̌𝑘}𝑁̌1 with 𝜆̌𝑘 ∈
(0, 1

𝐴1
) and 𝜅̌𝑘 ∈ R ∖ {0}, associated with the initial data 𝑢0(𝑥) in (4.1), find

a piece-wise (w.r.t. Σ̇1) meromorphic, 2 × 2-matrix valued function 𝑁̂(𝑦, 𝑡, 𝜆)

satisfying the following conditions:

• The jump condition (4.128) across Σ̇2∪ Σ̇0 (with 𝐺0(𝜆) defined by (4.120c)).

• The residue conditions (4.129).

• The normalization condition:

𝑁̂(𝑦, 𝑡, 𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︁
1
2

⎛⎝−1 i

i −1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C+,

√︁
1
2

⎛⎝1 i

i 1

⎞⎠+ O( 1𝜆), 𝜆→∞, 𝜆 ∈ C−.

(4.130)
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• Singularity conditions: 𝑁̂(𝑦, 𝑡, 𝜆) may have singularities at ± 1
𝐴𝑗

of order 1
4 .

• Symmetries :

𝑁̂(−𝜆) = −𝜎3𝑁̂(𝜆)𝜎3, 𝑁̂(𝜆) = −𝑁(𝜆), 𝜆 ∈ C ∖ Σ2, (4.131a)

𝑁̂((−𝜆)−) = −𝜎3𝑁̂(𝜆+)𝜎3, 𝑁̂(𝜆−) = −𝑁̂(𝜆+), 𝜆 ∈ Σ̇1. (4.131b)

where 𝑁̂(𝜆) ≡ 𝑁̂(𝑦, 𝑡, 𝜆).

4.4.6 Recovering 𝑢(𝑥, 𝑡) from the solution of the RH problem

Theorem 4.4.3. Assume that 𝑢(𝑥, 𝑡) is the solution of the Cauchy problem
(4.1) and let 𝑁̂(𝑦, 𝑡, 𝑥) be the solution of the associated RH problem (4.128)–
(4.130), whose data are determined by 𝑢0(𝑥). Let

𝑁̂(𝑦, 𝑡, 𝜆) = i

(︃
0 𝑏̂1(𝑦, 𝑡)

𝑏̂−11 (𝑦, 𝑡) 0

)︃
+ i𝜆

(︃
𝑏̂2(𝑦, 𝑡) 0

0 𝑏̂3(𝑦, 𝑡)

)︃
+ O(𝜆2) (4.132)

be the development of 𝑁̂(𝑦, 𝑡, 𝑥) at 𝜆 = 0. Then the solution 𝑢(𝑥, 𝑡) of the
Cauchy problem (4.1) can be expressed, in a parametric form, in terms of
𝑏̂𝑗(𝑦, 𝑡), 𝑗 = 1, 2, 3: 𝑢(𝑥, 𝑡) = 𝑢̂(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂(𝑦, 𝑡) = 𝑏̂1(𝑦, 𝑡)𝑏̂2(𝑦, 𝑡) + 𝑏̂−11 (𝑦, 𝑡)𝑏̂3(𝑦, 𝑡), (4.133a)

𝑥(𝑦, 𝑡) = 𝑦 − 2 ln 𝑏̂1(𝑦, 𝑡) + 𝐴2
2𝑡. (4.133b)

Additionally, 𝑢̂𝑥(𝑦, 𝑡) can also be algebraically expressed in terms of 𝑏̂𝑗(𝑦, 𝑡),
𝑗 = 1, 2, 3: 𝑢𝑥(𝑥, 𝑡) = 𝑢̂𝑥(𝑦(𝑥, 𝑡), 𝑡), where

𝑢̂𝑥(𝑦, 𝑡) = −𝑏̂1(𝑦, 𝑡)𝑏̂2(𝑦, 𝑡) + 𝑏̂−11 (𝑦, 𝑡)𝑏̂3(𝑦, 𝑡). (4.133c)

Proposition 4.4.4. Let 𝑀̂(𝑦, 𝑡, 𝜇) be the solution of the RH problem (4.128)–
(4.131) whose data are associated with the initial data 𝑢0(𝑥). Define 𝜇̂1(𝑦, 𝑡) :=

𝑀̂11(𝑦, 𝑡, 0) + 𝑀̂21(𝑦, 𝑡, 0) and 𝜇̂2(𝑦, 𝑡) := 𝑀̂12(𝑦, 𝑡, 0) + 𝑀̂22(𝑦, 𝑡, 0). The solu-
tion 𝑢(𝑥, 𝑡) of the Cauchy problem (4.1) has 𝑥-derivative given by the paramet-
ric representation

𝑢𝑥(𝑥(𝑦, 𝑡), 𝑡) =
1

2𝐴1
𝜕𝑡𝑦 ln

𝜇̂1(𝑦, 𝑡)

𝜇̂2(𝑦, 𝑡)
, (4.134a)
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𝑥(𝑦, 𝑡) = 𝑦 + ln
𝜇̂1(𝑦, 𝑡)

𝜇̂2(𝑦, 𝑡)
+ 𝐴2

1𝑡. (4.134b)

Proof. In what follows we will express 𝑢𝑥 in the variables (𝑦, 𝑡). To express a
function 𝑓(𝑥, 𝑡) in (𝑦, 𝑡) we will use the notation 𝑓(𝑦, 𝑡) := 𝑓(𝑥(𝑦, 𝑡), 𝑡), e.g.,

𝑢̂(𝑦, 𝑡) := 𝑢(𝑥(𝑦, 𝑡), 𝑡), 𝑢̂𝑥(𝑦, 𝑡) := 𝑢𝑥(𝑥(𝑦, 𝑡), 𝑡), 𝑚̂(𝑦, 𝑡) := 𝑚(𝑥(𝑦, 𝑡), 𝑡).

Differentiation of the identity 𝑥(𝑦(𝑥, 𝑡), 𝑡) = 𝑥 w.r.t. 𝑡 gives

𝜕𝑡 (𝑥(𝑦(𝑥, 𝑡), 𝑡)) = 𝑥𝑦(𝑦, 𝑡)𝑦𝑡(𝑥, 𝑡) + 𝑥𝑡(𝑦, 𝑡) = 0. (4.135)

From (4.127) it follows that

𝑥𝑦(𝑦, 𝑡) =
𝐴1

𝑚̂(𝑦, 𝑡)
(4.136)

and
𝑦𝑡(𝑥, 𝑡) = − 1

𝐴1
(𝑢2 − 𝑢2𝑥)𝑚.

Substituting this and (4.136) into (4.135) we obtain

𝑥𝑡(𝑦, 𝑡) = 𝑢̂2(𝑦, 𝑡)− 𝑢̂2𝑥(𝑦, 𝑡). (4.137)

Further, differentiating (4.137) w.r.t. 𝑦 we get

𝑥𝑡𝑦(𝑦, 𝑡) = (𝑢̂2(𝑦, 𝑡)− 𝑢̂2𝑥(𝑦, 𝑡))𝑥𝑥𝑦(𝑦, 𝑡) = 2𝐴1𝑢̂𝑥(𝑦, 𝑡). (4.138)

Therefore, we arrive at a parametric representation of 𝑢𝑥(𝑥, 𝑡):

𝑢𝑥(𝑥(𝑦, 𝑡), 𝑡) ≡ 𝑢̂𝑥(𝑦, 𝑡) =
1

2𝐴1
𝜕𝑡𝑦𝑥(𝑦, 𝑡),

𝑥(𝑦, 𝑡) = 𝑦 + ln
𝜇̂1(𝑦, 𝑡)

𝜇̂2(𝑦, 𝑡)
+ 𝐴2

1𝑡,

which yields (4.134).

4.5 Remarks

We have presented the Riemann–Hilbert problem approach for the modified
Camassa–Holm equation on the line with step-like boundary conditions. In the
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proposed formalism, we have taken the branch cut of 𝑘𝑗(𝜆) along the half-lines
Σ𝑗 (outer cuts), which is convenient since we extract the solution of the mCH
equation exploiting the development of the solution of the RH problem at a
point laying in the domain of analyticity. Notice that it is possible to formulate
RH problem taking the branch cut of 𝑘𝑗(𝜆) to be the segments (− 1

𝐴𝑗
, 1
𝐴𝑗

) (inner
cuts). In the case with inner cuts, the properties of Jost solutions are more
conventional (two of the columns are analytic in the upper half-plane and other
two in the lower half-plane), but, on the other hand, possible eigenvalues are
located on the jump.

We have focused on the representation results while assuming the existence
of a solution of problem (4.1) in certain functional classes. To the best of our
knowledge, the question of existence is still open. One of the ways to answering
it is to appeal to functional analytic PDE techniques to obtain well-posedness
in appropriate functional classes. However, very little is known for the cases
of nonzero boundary conditions, particularly, for backgrounds having different
behavior at different infinities. Since 1980s, existence problems for integrable
nonlinear PDE with step-like initial conditions have been addressed using the
classical Inverse Scattering Transform method [86]. A more recent progress in
this direction (in the case of the Korteweg-de Vries equation) has been reported
in [64, 66, 77] (see also [65]). Another way to show existence is to infer it from
the RH problem formalism (see, e.g., [71] for the case of defocusing nonlinear
Schrödinger equation), where a key point consists in establishing a solution of
the associated RH problem and controlling its behavior w.r.t. the spatial pa-
rameter. For Camassa–Holm-type equations, where the RH problem formalism
involves the change of the spatial variable, it is natural to study the existence of
solution in both (𝑥, 𝑡) and (𝑦, 𝑡) scales. More precisely, the solvability problem
splits into two problems: (i) the solvability of the RH problem parametrized by
(𝑦, 𝑡) and (ii) the bijectivity of the change of the spatial variable. Particularly,
it is possible that it is the change of variables that can be responsible of the
wave breaking [32, 18]. The solvability problem for problem (4.1) in the current
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setting will be addressed elsewhere.

4.6 Conclusions to Chapter 4

We have presented the Riemann–Hilbert problem approach for the modified
Camassa–Holm equation on the line with step-like boundary conditions. In the
proposed formalism, we have taken the branch cut of 𝑘𝑗(𝜆) along the half-lines
Σ𝑗 (outer cuts), which is convenient since we extract the solution of the mCH
equation exploiting the development of the solution of the RH problem at a
point laying in the domain of analyticity. Notice that it is possible to formulate
RH problem taking the branch cut of 𝑘𝑗(𝜆) to be the segments (− 1

𝐴𝑗
, 1
𝐴𝑗

) (inner
cuts). In the case with inner cuts, the properties of Jost solutions are more
conventional (two of the columns are analytic in the upper half-plane and other
two in the lower half-plane), but, on the other hand, possible eigenvalues are
located on the jump. Based on the results of the research,

• We have developed the the inverse scattering transform approach in the
form of Riemann–Hilbert problem for this problem in two cases: when the
right background is larger than the left and when the left background is
larger than the right.

• We have introduced ppropriate transformations of the Lax pair equations
that allow us to study in detail the analytic properties of the corresponding
Jost solutions and spectral functions.

• We have constructed the associated Jost solutions (“eigenfunctions”), and
discussed the analytic and asymptotic properties of the eigenfunctions and
the corresponding spectral functions (scattering coefficients), including the
behavior at the branch points.

• We have investigated the symmetries of spectral functions.

• We have obtained the parametric representation of the solution of the
Cauchy problem in form in terms of the solution of an associated RH
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problem.

The developed approach can be an effective basis for the investigation of the
large-time behavior of solutions of the Cauchy problems adapting the nonlinear
steepest descent method.
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Conclusions

The Thesis aims at the development of the inverse scattering transform ap-
proach to the initial value problems for the modified Camassa–Holm equation
with various boundary conditions, in particular, (i) when the solution is as-
sumed to approach a non-zero constant at the both infinities of the space vari-
able, and (ii) when the solution is assumed to approach two different constants
at plus and minus infinity of the space variable. The specificity of our study
is that we consider this equation in the case of with non-vanishing boundary
conditions at infinity. Such problems are of particular interest because they can
be used as models for studying expanding, oscillatory dispersive shock waves.

The method of inverse scattering problem for the modified Camassa–Holm
equation on constant non-zero and step-like backgrounds was developed for the
first time. In addition, for the problem on a constant non-zero background, the
large time asymptotics were obtained for the first time.

For the modified Camassa–Holm equation on the whole line in the case when
the solution is assumed to approach a non-zero constant at the both infinities
of the space variable we have obtained the following main results:

• We have developed the the inverse scattering transform approach in the
form of Riemann–Hilbert problem for this problem. In particular, we have
introduced the appropriate (gauge) transformation for the Lax pair equa-
tions, which reduces the original Lax pair to a “convenient” form; we have
introduced the associated Jost solutions and the corresponding scatter-
ing coefficients, and analyzed their analytic and asymptotic properties;
we have introduced a new (uniformising) spectral parameter which allows
us to avoid non-rational dependence of the coefficients in the Lax pair
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equations on the spectral parameter.

• We have observed the features that distinguish the mCH equation from
other CH type equations. In particular, one does not need to use a new
gauge transformation to control the Jost solutions at 𝜆 = 0, , but the
required form of the Lax pair comes from regrouping the terms of that
appropriate for large 𝜆.

• We have obtained the parametric representation of the solution of the
Cauchy problem in form in terms of the solution of an associated RH
problem.

• We have described regular and non-regular one-soliton solutions associ-
ated with the RH problems with trivial jump condition and appropriately
prescribed residue conditions. In this way, we have specified two fami-
lies of non-regular soliton solutions of the mCH equation: (i) peakon-type
solutions, which are continuous together with their first derivative but hav-
ing unbounded derivatives of order greater than 2 at the peak points; (ii)
loop-shaped, multi-valued solutions, which are conventional, signal-valued
solitons in the modified variables that becomes multivalued when going
back to the original variables, 𝑥 and 𝑡.

• We have reduced the original RH problem associated with the mCH equa-
tion that has two singularity conditions at 𝜇 = ±1 to a regular RH problem
(i.e., to a RH problem with the jump and normalization conditions only).

• Using the nonlinear steepest descent method, we have obtained the leading
asymptotic terms for the solution 𝑢(𝑥, 𝑡) of the Cauchy problem, in the
two sectors of the (𝑥, 𝑡) half-plane, 1 < 𝑥

𝑡 < 3 and 3
4 < 𝑥

𝑡 < 3 < 1,
where the deviation from the background value is nontrivial: this term is
given by modulated (with parameters depending on 𝑥

𝑡 ), decaying (as 𝑡−1/2)
trigonometric oscillations.

For the modified Camassa–Holm equation on the whole line in the case when
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the solution is assumed to approach two different constants at plus and minus
infinity of the space variable we have obtained the following main results:

• We have developed the the inverse scattering transform approach in the
form of Riemann–Hilbert problem for this problem in two cases: when the
right background is larger than the left and when the left background is
larger than the right.

• We have introduced ppropriate transformations of the Lax pair equations
that allow us to study in detail the analytic properties of the corresponding
Jost solutions and spectral functions.

• We have constructed the associated Jost solutions (“eigenfunctions”), and
discussed the analytic and asymptotic properties of the eigenfunctions and
the corresponding spectral functions (scattering coefficients), including the
behavior at the branch points.

• We have investigated the symmetries of spectral functions.

• We have obtained the parametric representation of the solution of the
Cauchy problem in form in terms of the solution of an associated RH
problem.

All results of the dissertation are presented with full proofs. They are of a
theoretical nature and can be used in further research initial boundary value
problems for equations of the Camassi-Holm type, which are promising models
of physical processes of different nature.
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