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Abstract

This Thesis aims at the development of the Inverse Scattering Transform (IST),
in the form of a Riemann-Hilbert problem, for the modified Camassa—Holm

(mCH) equation

my + ((u2 - ui)m)m =0, mi=u — Upy
on the line with non-zero boundary conditions.

In the first part (Chapter 2 and 3), we develop the Riemann-Hilbert (RH)
formalism to the Cauchy problem on the whole z-line in the case when the
solution is assumed to approach a non-zero constant as |x| — oco. In this case,
the spectral problem for the associated Lax pair has a continuous spectrum,
which allows formulating the inverse spectral problem as a Riemann—Hilbert
factorization problem with jump conditions across the real axis. We obtain a
representation for the solution of the Cauchy problem for the mCH equation
and also a description of certain soliton-type solutions, both regular and non-
regular. Moreover, we apply the nonlinear steepest descent method to study
the large-time asymptotics of the solution of this Cauchy problem.

In the second part (Chapter 4), we develop the Riemann—Hilbert formalism
for the Cauchy problem on the whole x-line in the case when the solution is
assumed to approach two different constants as + — +o0o and r — —oo0. We
present detailed properties of spectral functions associated with the initial data
for the Cauchy problem for the mCH equation and obtain a representation
for the solution of this problem in terms of the solution of an associated RH

problem.



Zusammenfassung

Das Ziel der Dissertation ist die inverse Streutransformation (IST) in der Form
eines Riemann—Hilbert-Problems (RHP) fiir die modifizierte Camassa—Holm
(mCH) Gleichung

my + ((u2 - ufj)m)x =0, mi=u — Upy

auf der Achse mit nichttrivialen Randverhalten zu entwickeln.

Im ersten Teil (Kapitel 2 und 3) entwickeln wir den Riemann-Hilbert-Formalismus
fiir das Cauchy-Problem auf der ganzen x-Achse fiir den Fall, dass die Losung
zu einer von Null verschiedenen Konstante fiir |x| — oo konvergiert. In diesem
Fall hat das Spektralproblem fiir das zugehorige Lax-Paar ein kontinuierliches
Spektrum. Das erlaubt das inverse Spektralproblem als ein Riemann—Hilbert-
Faktorisierungsproblem mit Sprungbedingung iiber die reelle Achse zu for-
mulieren. Wir erhalten eine Darstellung fiir die Losung des Cauchy-Problems
fiir die mCH-Gleichung und auch eine Beschreibung bestimmter Solitonen-
Typ-Losungen, sowohl regulédrer als auch nicht regularer. Dariiber hinaus ver-
wenden wir die nichtlineare Methode des steilsten Abstiegs, um die Langzeit-
Asymptotik zu untersuchen.

Im zweiten Teil (Kapitel 4) entwickeln wir den Riemann—Hilbert-Formalismus
fiir das Cauchy-Problem auf der ganzen x-Achse fiir den Fall, dass die Losung
zu zwei verschiedenen Konstanten fiir x — 400 und x — —oo konvergiert. Wir
prisentieren detaillierte Eigenschaften der Spektralfunktionen, die mit den An-
fangsdaten fiir das Cauchy-Problem der mCH-Gleichung assoziiert sind, und er-
halten eine Darstellung fiir die Losung dieses Problems in Bezug auf die Losung

eines zugehorigen RHPs.



Extended Abstract

I. Karpenko, “The modified Camassa-Holm equation with nonvanishing bound-
ary conditions by a Riemann-Hilbert approach,” — Scholarly manuscript.

PhD Thesis in Mathematics (specialty code: 111). B. Verkin Institute for
Low Temperature Physics and Engineering of the National Academy of Sciences

of Ukraine and University of Vienna.

This Thesis aims at the development of the inverse scattering transform
(IST), in the form of a Riemann-Hilbert problem, for the modified Camassa-
Holm (mCH) equation:

i+ (6 = w2ym), = . SRR

in order to study the long-time behavior of solutions.

Two main problem settings are as follows:

(i) The Cauchy problem on the whole z-line in the case when the solution is

assumed to approach a non-zero constant as |z| — oo.

(ii) The Cauchy problem on the whole z-line in the case when the solution is

assumed to approach two different constants as © — 400 and z — —o0.

In Chapter 2, we consider the Cauchy problem for the modified Camassa—

Holm equation on the line:

mt+((u2—ui)m)x=0, m=U— Uy, t>0, —oo<x<-+00,

u(z,0) = up(x), —00 < < +00,



assuming that

up(x) =1 as = — oo

and that the time evolution preserves this behavior: u(x,t) — 1 as x — fo0
for all £ > 0. A non-zero background provides that the spectral problem in
the associated Lax pair equations has a continuous spectrum, which allows us
to formulate the inverse spectral problem as a Riemann-Hilbert factorization
problem with jump conditions across the real axis (constituting the continuous
spectrum).

Our development of the Riemann—Hilbert problem formalism is based on
the adaptation of a general idea — the use of dedicated (Jost) solutions of
the associated Lax pair equations as "building blocks" for a matrix-valued
Riemann—Hilbert problem, which is formulated in the complex plane of the
spectral parameter and parameterized by the spatial and temporal variable of
the nonlinear equation in question — to the case of the mCH equation taking
into account particular features of its Lax pair equations.

The Lax pair originally proposed and conventionally used in studies of the

mCH equation has the form of 2 X 2 matrix linear differential equations:
O, (z,t,\) = U(z,t,\)P(x,t, ), Oy(x,t, A) = V(x, t, \)P(x,t, \)

where the coeflicient matrices U and V are defined in terms of a solution of the

mCH equation:

1 —1 Am )\*2 + w’—u? u—uy Mu—u2)m
U=3 ! V= 22 2 A 2 2 2 .
2 —m 1 (utus) + Au”—uz)m _)\—2 o ut—uy

A 2 2

Two specific features of the z-equation associated with the mCH equation (in-
volving U and constituting the spectral problem, with the spectral parameter \)
that affect analytic properties of the Jost solutions are as follows: (a) A\ enters
U through a product with the “momentum” m(x,t), which, in the framework
of the inverse problem, is an unknown function; (b) as |x| — oo, m(z,t) ap-
proaches a non-zero constant. In particular, these features affect the problem

of control of the large-A behavior of the Jost solutions. In our development of
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the RH formalism, this problem is addressed by (i) transforming (by applying
a dedicated gauge transformation) the Lax pair equations to an appropriate
form, with selected diagonal parts that dominate, in a certain sense, for large
A; (ii) introducing a new spatial-type variable, in view of having an explicit de-
scription of the large-A behavior of the Jost solutions in terms of space and time
parameters; (iii) introducing a new (uniformising) spectral parameter u (related
to A by A = —%(,u + %L)), which allows us to avoid non-rational dependence of
the coefficients in the Lax pair equations on the spectral parameter.

Moreover, we take advantage of a consequence of property (a) that for A = 0,
U becomes “solution-independent” (independent of w), which suggests an effi-
cient way for “extracting” the solution of the Cauchy problem from the so-
lution of the RH problem taking the details of the behavior of the latter as
A — 0. With this respect, the mCH equation turns out to be remarkably differ-
ent from other Camassa-Holm-type equations (including the original Camassa-
Holm equation): in order to control the Jost solutions at A = 0, there is no need
of a separate gauge transformation of the original Lax pair, but the required
form of the Lax pair comes from regrouping the terms of that appropriate for
large A.

Using the developed formalism, we obtain a parametric representation of the
solution of the Cauchy problem for the mCH equation on a constant background
in terms of the solution of the associated RH problem, the data for which (the
jump matrix and the parameters of the residue conditions, if any) are uniquely
determined by the initial data for the Cauchy problem.

Particularly, this formalism allows us to characterize regular as well as non-
regular one-soliton solutions associated with the RH problems with trivial jump
condition and appropriately prescribed residue conditions. In this way, we
specify two families of non-regular soliton solutions of the mCH equation: (i)
peakon-type solutions, which are continuous together with their first derivative
but having unbounded derivatives of order greater than 2 at the peak points;

(ii) loop-shaped, multi-valued solutions, which are conventional, signal-valued



solitons in the modified variables that becomes multivalued when going back
to the original variables, x and ¢.

Theorem. The mCH equation has a family of one-soliton solutions, reqular
as well as non-reqular, u(x,t) = ue’g(x,t), parametrized by two parameters,

6 >0 and 6 € (0, 5). These solitons u(x,t) = u(y(x —t,t),t) + 1 are given,

in parametric form, by

2(y,t) + 2cos® 0 - z(y, t) + cos® 0
(22(y, t) + 22(y, 1) + cos? 0)?

2(y,t) +1+sind

z(y,t) + 1 —sinf’

s : _ 2sin6
2(y,t) = 20 sin 0 eV e 2o’

a(y,t) = 4tan? 6>

z(y,t),

z(y,t) =y +2In

Depending on the value of the parameter 0, the solutions have qualitatively

different properties:

(i) For 8 € (0,%), one-soliton solutions are smooth in the original ((x,t))

variables.

(ii) For 6 =

ables.

, one-soliton solutions have finite smoothness in the (x,t) vari-

wl

(iii) For 6 € (5, 5), one-soliton solutions are regular in the (y,t) variables but

can be viewed as multivalued and loop-shaped in the (x,t) variables.

In Chapter 3, taking the formalism developed in Section 2 as the starting
point, we obtain the leading large-t asymptotic terms for the solution of the
Cauchy problem for the modified Camassa—Holm equation on the whole line
in the case when the solution is assumed to approach a non-zero constant
at the both infinities of the space variable. We focus on the study of the
solitonless case assuming that there are no residue conditions (for the soliton
case, where the basic RH problem involves residue conditions, one can reduce
(using the Blaschke—Potapov factors) this RH problem to that having no residue

conditions).



For the sake of the large-t analysis, we reduce the original (singular) RH
problem representation for the solution of the mCH equation to the solution of
a regular RH problem (i.e., to a RH problem with the jump and normalization
conditions only). A notable feature of the modified Camassa-Holm equation
is that the associated basic RH problem has two singularity conditions (at
p = 1) with different matrix structures, which does not allow getting rid of
them by reducing the matrix RH problem to a vector one, as it can be done in
the case of the (original) Camassa-Holm equation. In our approach, we address
the reduction problem in two steps. First, we reduce the RH problem with
the singularity conditions at © = 41 to a RH problem which is characterized
by the following two conditions: (i) the matrix entries are regular at u = +1,
but the determinant of the (matrix) solution vanishes at 1 = £1 (notice that
det M () = 1 for the solution of the original RH problem); (ii) the solution is
singular at ¢ = 0. Then, we represent the solution of the latter RH problem
in terms of the solution of a regular one. In turn, the solution of the resulting
regular RH problem is analyzed asymptotically, as t — 400, using an appropri-
ate adaptation of the nonlinear steepest descent method. This finally allows us
to present the leading asymptotic terms for the solution u(x,t) of the Cauchy
problem, in two sectors of the (z,t) half-plane, 1 < £ < 3 and 2 < £ < 1,
where the deviation from the background value is nontrivial (in the remaining
sectors £ > 3 and £ < 2, u(x,t) decays to 1 rapidly).

Theorem. Let ug(x) be a smooth function which tends sufficiently fast to
1 as v — 400 and satisfies (1 —0*)ug(x) > 0 for all x. Assume the solitonless
case, i.e., assume that the appropriate spectral (scattering) function associated
with ug(x) has no zeros in the upper half-plane

Then the solution u(x,t) of the Cauchy problem has the following large-time
asymptotics in two sectors of the (x,t) half-plane specified by 1 < $ < 3 and
<<l



(i) For1 < (:=7% <3,

u(x,t) =1+ Ci/(%Q cos {CQ(C)L‘ + C3(0) Int + C’4(C)} + o(t_1/2);

(ii) For 3 <% <1,

(4) _ _ ’
ulw 1) =143 C%O cos { POt + P (Ot + P (O} rol772),
§=0,1

where C;, C’l-(j), Cy. CN’Z are functions of ¢ that can be specified in terms of the
scattering data, which in turn are uniquely determined by the initial data.
The error term is uniform in any sectors 1 +¢ < ( < 3 —¢ and % +e< (<
1 — ¢ resp., where € is a small positive number.
In Chapter 4, we consider the Cauchy problem for the modified Camassa—
Holm equation on the whole line in the case when the solution is assumed to

approach two different constants at plus and minus infinity of the space variable,

namely:
mt+((u2—ui)m)x20, m:i=u— Uy, t>0, —o0o<zx<+00,
u(z,0) = up(z), —00 <7 < 400,

assuming that
A, xr— —00
uo(x) —
Ay, . — 0
and that the time evolution preserves this behavior.

We develop the Riemann—Hilbert problem formalism for this Cauchy prob-
lem. For this purpose, we introduce appropriate transformations of the Lax pair
equations and the associated Jost solutions (“eigenfunctions”) and present de-
tailed analytic properties of the eigenfunctions and the corresponding spectral
functions (scattering coefficients), including the symmetries and the behavior at

the branch points. The construction of the Riemann—Hilbert problem exploits
the transformed Lax pair equations involving the functions k;(A) := , /A? — 4,
J
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j = 1,2 specified as having the branch cuts (—oo, —A%) U (A%, 00). Similarly to
the case of the constant background, the solution of the constructed Riemann -
Hilbert problem evaluated at A = 0 gives a parametric representation of the
solution of the Cauchy problem.

Theorem. Assume that u(x,t) is the solution of the Cauchy problem and
let M(y,t,x) be the solution of the associated RH problem, whose data are

determined by ug(x). Let

~ _ 0 &1(y7t) i d2(y7t) 0 2
My 1.2 = <d11<y,t> 0 > " A( 0 &3<y,t>> +OW)

be the development of M(y,t,\) as A — 0. Then the solution u(x,t) of the
Cauchy problem can be expressed, in a parametric form, in terms of a;(y,t),
j=1,2,3 as follows: u(z,t) = u(y(x,t),t), where

ﬁ(:%t) &l(yat)dQ(yvt) + dfl(yat)&3(y7t)n
z(y,t) =y — 2Ina, (y,t) + Adt.

Moreover, 1, (y,t) can also be algebraically expressed in terms of a;(y,t), j =

1,2, 3; namely, u,(x,t) = 4, (y(x,t),t), where
ax(ZU) t) = _dl (y7 t)dQ(yv t) + dl_l(y7 t)&3(y7 t)

Keywords: modified Camassa-Holm equation, Riemann-Hilbert problem,
Inverse Scattering Transform method, nonlinear steepest decent method, soli-

tons.
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AHoTamiga

Kaprenko I. M., “Meron 3agadi Pimana-I'inbbepra 115 MogudiKoBaHOIO
piBastHHA Kamacn-XosbMa 3 HEHYJILOBIMHI KPaiioBUMU yMOBaMK,” — KBaJlidikalliiiHa
HayKOBa Ipallgd Ha IIpaBaxX PYKOIINCY.

Huceprariist Ha 3/100yTTs HAYKOBOI'O CTYIIEHs JIOKTOpa (pisocodil 3a crerri-
asbiicTio 111 «maremarukay (raaysb 3uaib 11 «MaTeMaTHKa Ta CTATUCTUKAS ).

Disuko-rexHiuHMiT iHCTUTYT HU3LKNX Temmeparyp iMm. B.1. Bepkina HAH Ykpainmn.

[IpeameTom HOCIZKEHHs JucepTaliiiHol poboTH € po3podKa MeTo1a 00epHEHOT
sajaai poscitoantst (MO3P) y dopwmi 3a1a4i Pimana—Tisbepra st MmoaudikoBaHOTO

piBnsnus Kamacn-Xosnbma (MKX):

my + ((u2 — ui)m)x =0, m = U — Uy,

3 METOIO JIOCJIiJZKeHHsI BJIACTUBOCTEil PO3B’SI3KiB 1IOI'O PIBHSIHHS, 30KpeMa,
ACUMIITOTUKH 38 BEJINKUM YaCOM.

OCHOBHUMU TIOCTAHOBKAMMU 33/1a9i € HACTYIIHI:
(1) Bamaua Kormi Ha x-0ci y BUIIAJIKY, KO PO3B’sI30K MPSMYE JI0 HEHYIHOBOI
craJiol pn |x| — oo.
(i) Bagaua Kot Ha z-0ci y BUIAJKY, KOJIN PO3B’sI30K MPSIMYE JI0 JTBOX PI3HIX
CTaJINX 1IpU T — +00 Ta T — —O00.

Y Po3aini 2 posrisigaeTbes 3aj1ada Kot st MoaniKOBaHOIO PiBHSIHHSI

Kamacu-XoJsibma ma oci:
2 2 _ o
mt—l—((u —uw)m)x—O, m = u— Uy, t>0, —oo<uzx<-4o00,
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u(z,0) = up(x), — 00 < x < 400,

3a BUMOT'H, 1110

up(x) -1  wom x — £00

i o eBoJTIONA 3a JacoM 30epirae 1o moBemiaky: u(z,t) — 1 npuw x — £o00
st Beix ¢ > 0. PiBusanng MKX e monudikariiero 3 KyOiuHyI0 HeJiHIAHICTIO

opurinanbroro pisasiaas Kamacu-Xosbma (KX)
my+ (um), +u;m =0, m:=1u— Ug,.

PiBnarna MKX, gax i piBugaag KX, € IHTerpoBHUMH Y TOMY CEHCi, 110 BOHU

€ YMOBaMM CYMICHOCTI BIIIIOBIIHUX Hap JIHIHHUX JudepeHIiaj bHuX PiBHAHD

— TaK 3BaHUX piBHSIHB Hapu Jlakca. 3aBAsKu HEHYJIbOBOMY (DOHY, T-PIBHSHHS

3 mapu Jlakca g pisngaaag MKX Moxke posriisggaTics sK clieKTpaJabHa 3a/ada,
sdKa Mae€ HerepepsHUii criekTp. Lle 1o3B0sIsI€ chopMyTioBaTH 0OEpHEHY CHIEKTPAILHY
3aja1y (0OepHEeHy 3a/1ady PO3CIIOBaHHSI) K 3a/1a1y aHAITHIHOT (paKTOpu3ariil
Pimana-I'isibbepTa y KOMILJIEKCHI# IJIOIIUHI CIIEKTPaJIbHOI'O IIapaMeTpa, 3 YMOBOIO
cTpubKa Ha JiiicHiii oci (sika € HellepepBHUM CIIEKTPOM ).

BanpononoBanuii popmasiizm 3aa4i Pimana—Iip0epra 6a3yeTnhest Ha ajganTalil
3araJjibHOI 1761 — BUKOPHUCTAHHS CIIeliaJbHIX PO3B SI3KiB (I7IOCTa) acoIlIoBaHNX
piBHsIHHB apu Jlakca gK «OJIOKiBy 1151 1100Y10BM MaTpudHOI 3aaa4i PiMana—
['ibbepTa, 1110 OPMYIIIOETHCS K 3a/a49a aJlaJliTHIHOl (paKTOPU3allil y KOMILJIEKCHI
IJIONINHI CIIEKTPAJILHOTO TapaMeTpa i mapaMeTPU3yeThC TPOCTOPOBOIO Ta YACOBOIO
3MIHHUMU HEJIHIHHOTO PIBHAHHS — J0 BUTIQJIKY PiBHAHHA MK X, 3 ypaxyBaHHAM
ocobyimBoCTEll PIBHAHB acorifioBanol napu Jlakca.

Crannapraa napa Jlakca s piBHsHHsa MKX, Bijgoma B JiTepaTypi, Mae

dopmy 2 X 2 MATPUIHUX JIHITHEX JudepeHIliajlbHuX PIBHIHb:
O, (z,t,\) = U(z,t,\)P(x,t, N), Oy(x,t, A) = V(x, t, \)D(x,t, \)

Jie MaTputii-koedinienTn U ta V BU3HAUAIOTHCA y TepMiHAX PO3B’A3KY PiBHSAHHA

MKX:

—92 , uP—ul U—1Uy Au?—u2)m
U= % ! A ’ V= (u—l—ft\) +)\(u22—u2)m R 72_ u2—2u2
—A\m 1 5\ + 3 z - _ Tr
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Basznaqmnmo, 1Mo x-piBHsgHug 3 napu Jlakca (Briodae U Ta € CrekTpasibHOIO
3aJ1a9€10 31 CIEeKTPAJBHIM TIPAMETPOM A), Ma€ JBi 0COOOMBOCI, IO CYTTEBO
BILTHBAIOTH Ha aHAITHYHI BIacTHBOCTi poss’askis Mocra: (a) A BxomuTs y U ax
100yTOK 3 “MoMenTOM” m(x, ), AKuil y paMKax oOepHEHOI 3a1a4i € HeBIIOMOIO
dbyuKIieo; (0) ko x| — 0o, m(x,t) npsaMye 10 HEHYJIbOBOI cTaI0l. 30KpeMa,
11i 0COBJINBOCTI BIIMBAIOTD Ha [IPO6JIEMY KOHTPOJIIO IIOBEIHKE po3B’s13Kis [locra,
KOJIE A — 00. Mu Bupityemo 1o mpodJiemy HacTymHuM 9uHoM: (i) TpancdopmyemMo
(3acTocoByrOUN KATIOPYBaJIbHI IepeTBOPEHHST ) PiBHSIHHS napu Jlakca 10 3pyaHOl
dopmMmu, y sKiit giaroHaJibHI Y4IeHH JOMIHYIOTh, Y IIEBHOMY CEHCI, KO A — 00;
(ii) BBOJMMO HOBY IPOCTOPOBY 3MIHHY, IO JO3BOJISIE OTPUMATH SIBHUIL OIHIC
noseinKn poss askis Mocra Ko A — 0o y Tepminax (HOBOI) IPOCTOPOBOT
Ta dacoBol 3minaux; (iii) BBOAMMO HOBHil (yHiopMiZyroUmil) crekTpaIbHuil
napamerp £ (IOB's3aHuil 3 A HacTymHUM umHOM: A = —3(p + %)), STKII
JIO3BOJISIE YHUKHYTH HepallioHAJIbHOI 3aJIe2KHOCTI KOeIIEHTIB Yy PIBHAHHSIX
napu Jlakca BiJ| clieKTpabHOTO TTapaMeTpa.

Kpim Toro, Mu BUKOPHCTOBYEMO HACJIJIOK BJIACTUBOCTI (&), SIKHUil MOJISATAE
y ToMmy, mo npu A = 0 marpuiisg koedirienTiB U crae Hezansexkuoro Bijg u. La
BJIACTUBICTB JIO3BOJISIE IOOYIYBATH e(PEKTHBHUI aJTOPUTM OTPUMAaHHS PO3B’I3KY
zatadi Ko s pisnsanng MKX 3 po3s’a3ky acoriitoBanol 3atadi PI', posrianaioun
MOBEJIIHKY OCTAHHBOI'O TP A — (). 3a3HAaUNMO, 1110 IbOMY BiIHOIIIEHHI PiBHSIHHS
MKX cyTTeBo BijipisHsaeThest Bijt iHIIMX piBHsIHD THITY Kamacu-Xosma (BKIIOUHO
3 opurinanbanM pisasaaM KX): a1 KonTposmo poss’sskis Mocta mpa A = 0
He Tpeba BBOJAUTHU HOBE KaJiOpyBaJibHE IIepeTBOPeHHsI mouaTrkoBol napu Jlaxkca,
a JIOCTATHBO MePerpyIyBaT 4ieHn y mapi Jlakca, ska 3abecredye epeKTUBHUIT
KOHTPOJIb 11 PO3B’SI3KIiB IIpu A — 00.

Bukopucropyroun po3pobdsenuit ¢popmasiizM, MU OTPUMYEMO TTapaMeTpUIHe
300pakKeHHs po3B’a3Ky 3aga4i Ko jist piBHssHHS MKX Ha mocriitHomy dhoHi B
TepMiHax po3B’sa3Ky acoriifoBanol 3a1a4ai PT) mani jist sikol (MaTpuiis cTproKiB
i mapaMeTpu Jist yMOB Ha 3aJIUIIKN Y CHHTYJISIPHIX TOYKAX, SKIIO BOHU HAsIBHI )

O/THOBHAYHO BU3HAUYAIOTHCs IMOYATKOBUMU JaHIMU JUId 3a1a491 Korii.
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SarnporioHoBaHuit (hopmaJiizM JI03BOJIAE HAM OXapaKTepU3yBaTh K PerysspHi,
TakK 1 HeperyJIsipHi OJIHOCOJIITOHHI PO3B’SI3KH, IO BiJIIOBIal0Th 3ajiadaMm Pl 3
TPUBIAJbHIMU YMOBAMHU CTPUOKa Ta BiJIIOBIIHUM YMHOM 3aJaHUMU yMOBaMU
Ha 3aJIUIIKI. 30KpeMa, MOYKHA BUJILJINTU JBa TUIIN HEPEryJIAPHUX COJTITOHHUX
po3B’si3kiB piBHsgHHs MKX: (i) po3B’a3KM MKOHHOTO THILY, SIKi € (DYHKINISIMU
HellepePBHUMHI Pa30M 13 IEpIIOI0 IOXiIHOI0, ajie MalTh HEOOMerKeHi IOXiJHi
MOpsAKiB OLIbINX 3a 2 y Toumi miky; (ii) merrenoioHi 6araro3HavdHi PO3B’A3KN.

Teopema. PisHanns mKX mae odnocorimonni pose’azku (ceped akux € ax
PEYNAPHT, MAK | HEPELYAAPHI), AKT NAPAMEMPUIYIOMBCA DBOMA NAPAMEMPAMU,
6 >0 mab e (0, %), ma sadaromvca y napamempuunit gopmi gopmyaoto

u(xz,t) = u(y(x —t,t),t) + 1, de
2?(y,t) +2cos? 6 - 2(y,t) + cos®
(22(y,t) + 22(y,t) + cos? #)?

z(y,t) + 1 +sind
= 21In
wyt) =y + z(y,t) +1—sinf’

2sin 6

2(y,t) = 26sin 0 e?"M0e ol

(y,t) = 4tan” 0 2(y, 1),

3aneacro 610 3HaueHHA napamempy 6, po3s’azku Maromv AKICHO PI3HT 6AACNUBOCTII:

(i) Hpu 6 € (0, %), odrocorimonmi pose asku € 2aadkumu GYHKYIAMU GUTIOHUT
disuunur sminnux (x,t).
(ii) MIpu 0 = 3,

aminnux (x,t), y mowui niky.

00HOCONTHOHHT pose "A3KU MaAOMD CKT’LH’%GHy ma&mcmb Yy

(iii) IIpu 0 € (3,%), odnocorimonmi po3e a3ku € Peeyraprumu Pyrruismu
y sminnuz (y,t), ase cmaomo 6a2amosHANHUMUY (NeMAenodioHuMY) 1

aminnux (,t).

Y Pozgini 3, Bukopucropywodn gopmaJizMm, po3podiennii y Pozini 2, mu
OTPUMYEMO TI'OJIOBHI YJICHU ACUMITOTUKHU 38 BEJUKUM YacOM t JIJIsT PO3B SI3KY
zatadi Ko jiist mojindikoBanoro piBaganas Kamacu—XoJsbMa Ha cTajioMy He-
HyJIbOBOMY oHi. JlociizkeHHsT 30cepejizkeHe Ha, 0€3COJIITOHHOMY BHITQIKY,

TOOTO y TPUIIYIIEHH], 10 yMOBU Ha JIMIIKE BiJCyTHI (HeperyJsipHy 3ajady
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Pimana-I'iibbepra (sika BkiIOUae B cebe YMOBH Ha JIMIIKH) JIJI 3araJbHOTO
BUTIAJIKY MOYKHA 3BECTH PErYJISIPHOI, BUKOPUCTOBY 0N MHOKHIKHI Biistiiike—TloTtamnosa).
st acuMIITOTUYHOIO aHaJi3y po3B’si3ky 3ajadi Komri, koan ¢ — 00, Mu
3aCTOCOBYEMO HEJIIHIHIIT MeTo/1 HalicKopitoro ciycky. [lonepeanbo, Mu 38011MO
Buxinny 3aa4y Pl acomifioany 3 piBHsgHHAM MKX, gKa Mae crienndivni cuHTY-
asiprocTi ipu = +1, o 3Budaiinol 3aja4i PI' (To6To Takol, 1mo Mae TiibKu
YMOBY cTpubKa Ta yMOBY HOpMyBaHHs: ). [IpumiTHOIO 0c06/IMBICTIO MOM(DIKOBAHOTO
piBugnug Kamacu-XosbMa € Te, 110 acolliiioBana BuxijgHa 3ajada PI' mae ymosn
CUHLYJISIPHOCTI YV (4 = 1 Ta p = —1 3 pI3HUMU MATPUYHUMU CTPYKTYDPaMHu,
O He J03BOJIgE TMO30YTHCA X MIJIAXOM 3Bejlennsd Marpudnol 3agadi PIN o
BeKTOPHOT (1110 Ma€e Micrie y BHIIAJIKY 3BHUaiiHoro piBHstHHsT Kamacu-Xo/bMma).
Mu Bupimryemo 1110 npobJiemy y JBa Kpoku. Ha mepriomy Kpomi, 3aja4da PI' 3
yMOBaMU CUHTYJISIpPHOCTI V 4 = £1 3B0uThed j10 3aa4i PL) mo xapakTepusy-
€ThCsT TAKIMH JIBOMa yMoBaMu: (1) eJIleMeHTH MaTPUIHOTO PO3B’SI3KY PEryJisipHi
y p = %1, aje iforo BUSHAYHUK JOPIBHIOE HYJIIO Y X TOUYKAX (3a3HAUNMO, 110
det M (u) = 1 st poss’si3ky Buxiuol 3aaqi PTY); (ii) po3B’si30k € cUHTYJISIpHUM
npu 4 = 0. HacTynmHuM KpoKOM, 3HaXOJMUMO 300parkKeHHsI PO3B’S3KY IlEl
zasadi PI' gepe3 po3B’sizok BianosimHOI peryisipHol 3ajadi. Came po3B’si30K
oTpuManol peryiagpnol 3ajadi PI' mu amasizyemo acumnrornyno npm t —
+00, aJaIlTyI0uNl HEeJIHITHUN MeTo | HAllCKOPIIIOro ciycky. Y MiJCyMKY, MU
OTPUMYEMO TOJIOBHI aCUMIITOTHIHI “IeHN Jist po3B s13Ky u(x, t) 3aaqi Ko y

TUX CeKTOpaX HAMIBILIONMHY (T, 1), e BiaxuaeHHs B GOHY € HeTpUBIAJIbLHIM
3
49
Teopema. Hexatl ug(x) € enadka dynruyia maxa, wo (i) sona docmammsbo

(y pemTi cexropis, ¥ > 31 ¥ < 4, u(w,t) mBuaxo cnaae 10 1).
weudko npamye 0o 1, xoau v — 00, i 3adosoavrae nepienicmo (1—0)ug(x) >
0 dan 6ciz x ma (i) acoyitiosana 3 nero cnekmpanrvha Gyrkyis a(p) Hve mae
HYAL6 Y BEPTHIT HanienAowuHi (6e3conimonHutl 6unador)

Todi posé’asox u(x, t) sadaui Kowi mae Hacmynuy acumMnmomuumy nosedinky
30 BEAUKUM HacoM Y cekmopax (x,t) HaniéniowuHU, w0 3a0a10MbCA HEPIGHOCTNAMU

1<§<3ma§<%<1:
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(i) Ansa 1 < % <3,

w(a,t) =1+ C;%) cos {C’g(()t 4 Cy(O) Int + @(g)} +o(t V),

(ii) Jan 3 <2 <1,

(7) ‘ ‘ .
u(z,t) =1+ Z % Ccos {02(‘7)(()75 + C?Ej)(f) Int + QEJ)(C)}JFO(,;—U?)’
j=0,1

de Cj, CZ-(] ), Cy, C e pynryiamu 6id ¢ = T, WO GUSHAMAIOMBCA Y MEPMINAT
CNEKMPANLHUL DYHKYIT, AKL, Y CB0M0 “ep2y, 00HOZHAYHO BUSHAUAIOMBCA NOYAMKOBUMU
danumu ug(x).

[Ipr nbOMy OLIIHKH IMOXHOKK € PIBHOMIpHUMEU Y ceKTopax 1 +e6 < ( <3 —¢
Ta % + e < ( <1 — ¢ BignOBIIHO, Jie € € JOBUILHUM JOJATHUM YHCJIOM.

Y Po3aini 4 posrisiaaeTbes 3aada Kot st MoandiKoBaHOIO PiBHSIHHSI
Kamacu—XoJjiMa y BUITQJIKY, KOJIM PO3B’SI30K IIPSIMYE JI0 JIBOX PI3HUX KOHCTAHT,

KOJI IIPOCTOPOBa 3MIHHA MPAMYE J0 PI3HUX HECKIHYeHHOCTell J1iicHOl OCl:

mt—|—((u2—ui)m)x:0, m:=u— Uz, t>0—oo<x<-4o00,
u(x,0) = up(x), —00 < T < 400,

JIe
A, r— —00
up(z) —
Ay, x— 00

1 eBOJIIOILISI 38 YacoM 30epirae Ito MOBEeJiHKY:
A, T — —00

u(z,t) —
Ay, x— 00

JI1e BCIX t.
Mu pospobiisiemo bopmadiiam 3a1a4i Pimana-1'iib0epta s 1i€l 3a1a4i Koirri.
JI1s1 IIhOTO ITPOBOJISITHLCS [TIEPETBOPEHHs PiBHAHB Hapu Jlakca, siKi J03BOJISIIOTH

JleTaJIbHO JIOCJIINTH aHaJITHYHI BJACTHBOCTI BiIOBIIHIX po3B’sa3KiB Mocra Ta
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CHeKTpaJbHIX PYHKITIH, 30KpeMa, CUMEeTPil Ta MMOBEIIHKY B TOUKAX PO3TaJTy KeHHH.

[Tpu obyoBi 3a1a4i Pimana—I'iibbepra M1 BUKOPUCTOBYEMO TpaHCHOPMOBaHi

napu Jlakca, mo BkiodaoTh GyHKIHl kj(A) =, /A% — A%, j = 1,2, BusHaueni
K TaKi, 110 MalOTh TLIKK 3 PO3pi3aMi B3JI0BXK (—00, —A%) Ta (Aij, 00). [oxibHo
JIO BUTIAJIKY 3 IMTOCTITHIM (DOHOM, aHATI3YIOUH MTOBEIIHKY PO3B’I3KY MOOYI0BAHOI
3atadi Pimana—I'iab0epra npu A = 0, Mu OTpUMYEMO ITapaMeTpUIHe 300parKeHHd
po3B’s3Ky 3aja4i Korii.

Teopema. IIpunycmumo, wo 3adaywa Pimana—Iiavbepma, acoyitiosana 3

nowamrosumu danumu ug(xT), Mae po3e’a3ox M (y,t,x), axut mac po3kaad
. 0 ay(y.t is(y.1) 0
My, t,\) =1i{ _, a1y 1) + 1A 2(y.1) ) +O()\?)
aq (y? t) 0 0 a3(y7 t)

koau X — 0. Todi pose’azox u(x,t) sadawi Kowi mooice 6ymu 306pasicenui, iy
napamempuinuts gopmi, y mepminaxr a;(y,t), j = 1,2,3 nacmynrum wurom:
u(z,t) = u(y(x,t),t), de

ﬁ(?/? t) - &1(y9 t)dQ(y7 t) + dfl(ya t)&g(y, t))
z(y,t) =y — 2Ina,(y, t) + Ajt.

Kpim mozo, . (y,t) makoorc mootce 6ymu an2ebpaino 300pastcenuti y mepminar

ai(y,t), j =1,2,3, a came: uy(x,t) = u,(y(z,t),1), de
ﬁx(yv t) = _dl (y7 t)dQ(ya t) + a’l_l(yv t)d3(y7 t)

Kmo4oBi caoBa: mojudikosane piBusnns Kamacu-Xoabma, 3a1a41a Pivana-
['i0epTa, MeTo 1 00epeHol 3a 1adi po3citoBaHtsd, HeJIHITHII MeTO 1 HAMTIIBUIIIIOTO

CIIyCKa, COJIITOHMU.
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Notation

o1 ... first Pauli matrix, oy := (9})
o9 .. second Pauli matrix, o := (9 ')
03 ... third Pauli matrix, o3 := (§ %)

f*(k) ... Schwarz conjugate of the function f(k): for k € C, f*(k) := f(k)

A ... spectral parameter

0 ... spectral parameter related to A by A = —% <u + %)
k ... spectral parameter related to A by A2 = 4k% + 1

C* ... upper complex half-plane, C* = {\ € C|Im()\) > 0}
C~ ... lower complex half-plane, C~ = {\ € C|Im(}\) < 0}
M* ... i-th column of the matrix M

>, .. closed interval, ¥; = (—o0, ] U [Ai 00)

>, ... open interval, ¥, = (— ) (AL o0)

Yo ... closed interval, [——- ] U [ : y

>y ... open interval, ¥y = ( Al’ /L) U (A%, A_l)

Ay ... point on the upper side of X;, A; = lim o A + ie

A ... point on the lower side of X;, A_ = lim,jo A —

kj(A\) ... branch of the square root k;(\) :== , /A% — Ai?, j = 1,2 with the branch cut X;,

fixed by the condition k;(0) = Alj
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Introduction

Rationale for the choice of the research topic

Plenty of scientists have been studying intensively the integrable nonlinear
equations for over the last 50 years, since they realised that the Inverse Scatter-
ing Transform method, which was invented for the integration of a particular
nonlinear equation - the Korteweg—de Vries equation [74], was not just an acci-
dental pretty mathematical trick, but could be effectively applied to the study
of a wide class of equations that are important models of nonlinear phenomena
in many branches of physics.

One of such equations is the Camassa—Holm (CH) equation [35] [36]
me+ (um), +u;m =0, m:=1u— Uy,.

It has been studied intensively over the last 28 years, due to its reach mathe-
matical structure. It is a model for the unidirectional propagation of shallow
water waves over a flat bottom [84], 4€], is bi-Hamiltonian [35], and is completely
integrable with algebro-geometric solutions [107]. The CH equation has both
globally strong solutions and blow-up solutions at finite time [41], 43|, 44] 145],
and also it has globally weak solutions in H*(R) [33], 47, 118]. The soliton-type
solutions of the CH equation vanishing at infinity [36] are weak solutions, hav-
ing the form of peaked waves (u(x,t) and u,(x,t) are bounded but u,(x,t) is
discontinuous), which are orbitally stable [48].

Interesting mathematical and physical properties of the CH equation raised
the question of studying its various modifications and generalizations, see, e.g.,

[120]. Novikov [105] applied the perturbative symmetry approach in order to
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classify integrable equations of the form
(1= 02) wr = F(u, Uy, Uy, Uy - - - ), u=u(z,t), 0,=0/0z,

assuming that F'is a homogeneous differential polynomial over C, quadratic
or cubic in u and its z-derivatives. In the list of equations presented in [105],
equation (32), which was the second equation with cubic nonlinearity, had the
form
my + ((u® — ui)m)m =0, m:=u— Ug.

This equation (in an equivalent form) was firstly introduced independently by
Fokas in [69] and Olver and Rosenau [106] in 1996 as a new integrable system.
Physically, it models unidirectional propagation of shallow water waves over a
flat bottom, and has a rich mathematical structure (in particular, there are bi-
Hamiltonian system and has a representation in the form of a Lax pair). An
Lax pair for this equation was given by Qiao [10§], so it is sometimes referred to
as the Fokas—Olver—-Rosenau—Qiao (FORQ) equation [79], but is mostly known
as the modified Camassa—Holm (mCH) equation.

In the Thesis, we develop the IST machinery to the mCH equation. The
specificity of our study is that we consider this equation in the case of with non-
vanishing boundary conditions at infinity, in particular, step-like ones. Such
problems are of particular interest because they can be used as models for
studying expanding, oscillatory dispersive shock waves [12].

The obtained results are interesting from theoretical point of view, as well

as for potential applications.

Aim and tasks of the research

The Thesis aims at the development of the inverse scattering transform
approach to the modified Camassa—Holm equation in view of its further appli-
cation for studying properties of solutions of the Cauchy problem for this equa-
tion with various boundary conditions, particularly, their long-time behavior.
Namely, we consider a non-zero constant background (Section 2 and Section 3)
and step-like background (Section 4). We also compare the implementation of
the RH approach to the mCH and CH equations.
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The object of study is the modified Camassa—Holm equation, which is a
nonlinear partial differential equation, and initial value problems for it.

The subject of study is the solutions of the initial value problems on the
axis for the modified Camassa—Holm equation in the case when these solutions
tend to non-zero constants when the spatial variable tends to one or another

infinity.

Research methods

In order to investigate our tasks we apply the Inverse Scattering Transform
(IST) method in form of the Riemann-Hilbert (RH) problem.

The scheme of the IST method is the following: (i) starting from a given
initial data ug(x), we obtain the scattering data by solving the direct problem;
(i) then we obtain the evolution of this scattering data by solving a certain
number of linear problems; (iii) finally, we obtain the solution of the Cauchy
problem for the nonlinear equation by solving the inverse scattering problem.

The last step in this procedure, the inverse scattering problem, can be ef-
fectively solved by reformulating it as a Riemann—Hilbert (RH) factorization
problem. A starting point here is a Lax pair representation. It is a pair of linear
differential equations that depend on additional spectral parameter and whose
compatibility condition is exactly the nonlinear differential equation. The RH
problem method boils down in choosing the solutions of the Lax pair equations
in a right way and then constructing a RH problem from these chosen solutions.

Then we analyze the long time asymptotics by using the so-called nonlinear
steepest descent method [54]. This method consists in successive transforma-
tions of the original RH problem, in order to reduce it to an explicitly solvable
problem. The consecutive steps include (i) appropriate triangular factoriza-
tions of the jump matrix; (ii) “absorption” of the triangular factors with good
large-time behavior; (iii) reduction, after rescaling, to a RH problem which is

solvable in terms of certain special functions.

Novelty of the results
All results presented in the works [18], [87] and [88] and included in the
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dissertation were obtained by the author independently. The results belong-
ing to other scientists are mentioned as necessary for the completeness of the
presentation and are accompanied by appropriate references., we develop the
inverse scattering transform method in the form of the Riemann—Hilbert prob-
lem for the Cauchy problems for modified Camassa—Holm equation with various

boundary conditions. In particularly, we obtain the following results:

(i) the representation of the solution of this Cauchy problem for the modified
Camassa—Holm equation on the whole line in the case when the solution
is assumed to approach a non-zero constant at the both infinities of the
space variable in the form of the solution associated with it Riemann—

Hilbert problems. This result was obtained for the first time. (Section
2)

(ii) the leading asymptotic terms for the solution of the Cauchy problem for
the modified Camassa—Holm equation on the whole line in the case when
the solution is assumed to approach a non-zero constant at the both in-

finities of the space variable. This result was obtained for the first time.
(Section 3)

(iii) the representation of the solution of this Cauchy problem for the modified
Camassa—Holm equation on the whole line in the case when the solution is
assumed to approach two different constants at plus and minus infinity of
the space variable in the form of the solution associated with it Riemann—
Hilbert problems. This result was obtained for the first time. (Section
4)

Personal contribution

The setting of the problem considered in Section 2 belongs to the scientific
advisor Dmitry Shepelsky, the setting of the problem considered in Section 3
belongs to the scientific advisor Dmitry Shepelsky and Anne Boutet de Monvel,
the setting of the problem considered in Section 4 belongs to the scientific

advisors Dmitry Shepelsky and Gerald Teschl. All results presented in the
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works [18], [87] and [88] and included in the Thesis were obtained by the author
independently. The results that belongs to other scientists are mentioned for

the completeness and are accompanied by appropriate references.

Approbation of the thesis results

The thesis results were discussed at the scientific seminar of the Department
of Mathematical Physics of B.Verkin Institute for Low Temperature Physics
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Chapter 1

The Inverse Scattering Transform
method and Camassa—Holm type
equations (literature review)

1.1 Integrable equations and the Inverse Scattering Trans-
form method

In 1965 Zabusky and Kruskal discovered that the pulse-like solitary wave so-
lution to the Korteweg-de Vries (KdV) equation had a property which was
previously unknown: namely, that this solution interacted "elastically" with
another such solution. They called these solutions solitons. Shortly after this
discovery, Gardner, Greene, Kruskal and Miura (1967), (1974) pioneered a new
method of mathematical physics (see [74, [75]). Specifically, they gave a method
of solution for the KdV equation by making use of the ideas of direct and in-
verse scattering. In 1968 Lax considerably generalized these ideas [91]. At
that time and shortly thereafter it was not clear if the method would apply
to other physically significant nonlinear evolution equations. However, in 1972
Zakharov and Shabat showed that the method was not a fluke. Applying the
direct and inverse scattering ideas they solved the initial value problem for
the nonlinear Schrodinger equation [I21]. In 1973, using these ideas Ablowitz,
Kaup, Newell and Segur did the same for the sin-Gordon equation [2]. And
then they developed a method to find a rather wide class of nonlinear evolution

equations solvable by these techniques [3| [4]. They called the procedure the
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Inverse Scattering Transform (IST).
In the most broad terms, the equation F'(us, u, Uy, Uz, ...) = 0 is called
integrable, if it is a compatibility condition of the system of linear equations

(the so-called Lax pair):

O, (z,t, k) =Ul(x,t, k)P(x,t, k)
Oy (x,t, k) =V (x,t, k)P(x,t, k)

(1.1)

where U and V' are known in terms of the solution of the equation and k €
C is an auxiliary (spectral) parameter. Exactly the Lax pair is a starting
point for studying various problems for integrable equations such as finding
the different types of exact solutions (via the so-called Backlund-Darboux type
transformations) and solving the initial and initial-boundary value problems.

Integrable nonlinear PDEs with non-vanishing boundary conditions at in-
finity have received plenty of attention in the literature, see e.g. [I1], 15]. Par-
ticularly, initial value problems with initial data approaching different “back-
grounds” at different spatial infinities (so-called step-like initial data) have at-
tracted considerable attention because they can be used as models for studying
expanding, oscillatory dispersive shock waves (DSW), which are large scale,
coherent excitation in dispersive systems [I2]. The large-time evolution of
step-like initial data has been studied or models of uni-directional (Korteweg—
de Vries equation) wave propagation [63] as well as bi-directional (nonlinear
Schrodinger equation) wave propagation 23], 24].

In general, the IST method for solving initial value problems for integrable
nonlinear equations written as the compatibility conditions for linear equations
consists in the following (see Figure[L.I)): starting from a given data, solve the
direct problem, that is determine appropriate eigenfunction (solutions of the dif-
ferential x-equation in the Lax pair) having well-controlled analytic properties
as functions of the spectral parameter A and the associated spectral functions
of A; then, by virtue of the t-equations in the Lax pair, the associated functions
evolve in a simple, explicit way. Finally, using the explicit evolution of the spec-

tral functions, solve the inverse problem of finding the associated coefficient in
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Initial Data Direct Scattering Transform Scattering Data
S(0) at time t =0

Nonlinear

PDE

Scattering Data

Solution u(x,t)

Inverse Scattering Transform S (1‘) at time t > 0

Figure 1.1: The scheme of the IST method

the xz-equation, which, by the Lax pair equations, evolve according to the given

nonlinear equation and thus solve the Cauchy problem of this equation.

Given contour ¥ € C and ”jump
function” G(s) : ¥ — C™*™, find
a function M(z) : C\ ¥ C**"
such that:

e M(z) is analytic in C\ X;
o M, (s) =M_(s)G(s), s €3
Q- o M(oo)=1.

Figure 1.2: Riemann-Hilbert problem: boundary value problem in complex

analysis

The last step in this procedure, the inverse scattering problem, can be ef-
fectively solved by reformulating it as a Riemann—Hilbert (RH) factorizations
problem (see Figure : giving a contour in the complex plane and a matrix-
valued function defined on the contour, find a piecewise (relative to the contour)
analytic, matrix valued function, whose limiting values on the contour are re-

lated with the help of the given function. In applications to nonlinear equations,
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the given (jump) matrix depends also on parameters (which are physical vari-
ables in the nonlinear equation in question (e.g., space z and time t), and thus
the solution of the RH problem also depend on these parameters. If the jump
matrix is constructed, in an appropriate way, using the initial data for the
(nonlinear) partial differential equation (PDE), then, evaluating the solution of
the RH problem at a particular value of the spectral variable, it is possible to
obtain the solution of the original Cauchy problem for this PDE.

In a certain sense, a Riemann—Hilbert problem representation for (inte-
grable) nonlinear PDEs play the role of an integral representation in the case of
linear PDEs, via Fourier series or Green’s functions. For linear PDEs, integral

representations allow:

e obtaining existence and uniqueness results directly from the well-understood

integration theory;

e studying asymptotics via the method of stationary phase or the method

of steepest descent;
e cvaluating solutions numerically via simple quadrature.

In the case of integrable nonlinear PDEs, all these goals are achievable, to
some extent, through the development of the RH formalism [114]. Particularly,
the existence results can be obtained establishing a solution of the associated
RH problem and controlling its behaviour w.r.t. the spatial parameter.

The long time asymptotics can be efficiently analyzed by using the so-called
nonlinear steepest descent method [54]. This method consists in successive
transformations of the original RH problem, in order to reduce it to an explic-
itly solvable problem. The consecutive steps include (i) appropriate triangular
factorizations of the jump matrix; (ii) “absorption” of the triangular factors
with good large-time behavior; (iii) reduction, after rescaling, to a RH problem
which is solvable in terms of certain special functions.

Despite the fact that both the IST method and the nonlinear steepest de-

scent method are in a certain sense algorithmic, their adaptation to a particular
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nonlinear equation can be a difficult task that requires a lot of analytical work.
For example, the application of the IST method for initial problems with zero
background is very different from the application of the IST method for initial
problems with nonzero background. In particular, the properties of the corre-
sponding spectral functions, the associated Riemann—Hilbert problem, and the
adaptation of the nonlinear steepest descent method are significantly different.

On the other hand, the study of a specific problem can lead not only to
obtaining the results for that problem, but can also inspire the development
of new analytical methods and approaches that can be effectively applied to
a wide class of problems from other areas of mathematics (as it has already
happened, in particular, in the theory of orthogonal polynomials and random

matrices of large size).

1.2 The Camassa—Holm equation

The Camassa—Holm (CH) equation [35], 30]
Up — Ugpt + BUUL — 2UglUyy — Ulyyy = 0, (1.2)
which can also be written in terms of the momentum variable
my+ (um), +u;m =0, m:=u— Uy, (1.3)

has been studied intensively over the last 30 years, due to its rich mathe-
matical structure. It is a model for the unidirectional propagation of shallow
water waves over a flat bottom [84] 46], is bi-Hamiltonian [35], and is com-
pletely integrable with algebro-geometric solutions [I07]. The local and global
well-posedness of the Cauchy problem for the CH equation have been studied
extensively [43], 44], 49]. In particular, it has both globally strong solutions and
blow-up solutions at finite time [41] 43 [44] [45], and also it has globally weak
solutions in H(R) [33, 47, [118].

The soliton-type solutions of the CH equation vanishing at infinity [30]

are weak solutions, having the form of peaked waves (u(z,t) and u,(x,t) are
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bounded but u,(x,t) is discontinuous), which are orbitally stable [48]. They
can be expressed by u(x,t) = ce "=l ¢ € R. Such solutions are known as
peakons (peaked solutions).

On the other hand, adding to ((1.2)) a linear dispersion term bu, with b > 0

leads to a form of the CH equation
Up — Uggt + DUy + Uy — 2UpUpy — Ulgyy = 0, (1.4)

which supports conventional smooth solitons [42], 25| 26].

In the case of the Camassa—Holm equation, the inverse scattering transform
method (particularly, in the form of a Riemann—Hilbert factorization problem)
works for the version of this equation (considered for functions decaying at spa-
tial infinity) that includes an additional linear dispersion term [21], 25, 26, 27].
Equivalently, this problem can be rewritten as a Cauchy problem for equa-
tion (1.3)) considered on a constant, nonzero background. Indeed, the inverse
scattering transform method requires that the spatial equation from the Lax
pair associated to the CH equation have continuous spectrum. On the other
hand, the asymptotic analysis of the dispersionless CH equation ((1.3)) on zero
background (where the spectrum is purely discrete) requires a different tool (al-
though having a certain analogy with the Riemann—Hilbert method), namely,

the analysis of a coupling problem for entire functions [60, 61], 62].

1.3 Generalizations of the Camassa—Holm equation

Over the last few years various modifications and generalizations of the CH
equation have been introduced, see, e.g., [120] and references therein. Novikov
[T05] applied the perturbative symmetry approach in order to classify integrable

equations of the form
(1 — 8§) u = F(u, Uy, gy, Ugzgy - - - ), u=u(z,t), 0,=0/0z,

assuming that I’ is a homogeneous differential polynomial over C, quadratic or
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cubic in u and its x-derivatives (see also [L01]). Such equations are known as
Camassa—Holm type equations.

The adaptation of the inverse scattering transform method in the form of
a Riemann—Hilbert problem for CH type equations has its own characteristic
features. Particularly, the initial steps involve gauge transformations ® — P®

transforming the original Lax pair to the form

D, (2, t, ) = Qu(w, t, D (2, t,\) + Uz, t, \)®(x,t,\)
ét(x, t,\) = Qt(:c, t, )\)&)(CL‘, t,\) + V(x, t, /\)fi)(sc, t,\)

where

> near the singular points (w.r.t. the apectral parameter \), the dominating
terms have the form Q, and Q; with some diagonal matrix Q depending, in

general, on ¢t and x through the solution of the nonlinear equation in question;
> the remaining terms U and V tend to zero as & — 400.

Then, Q dictates a change of variables, such that the jump matrix in the mas-
ter RH problem associated to the Cauchy problem for the nonlinear equation
depends on new variables in an explicit way.

In the list of equations presented in [105], equation (32), which was the

second equation with cubic nonlinearity, had the form

me + ((u® — ui)m)x =0, Mm:=uU— Uy,. (1.5)

In an equivalent form, this equation was given by Fokas in [69] (see also [106] and
[73]). Shiff [110] considered equation ([1.5)) as a dual to the modified Korteweg—
de Vries equation (mKdV) and introduced the Lax pair for by rescaling
the entries of the spatial part of the Lax pair for the mKdV equation. An
alternative (in fact, gauge equivalent) Lax pair for was given by Qiao
[T08], so it is sometimes referred to as the Fokas—Olver-Rosenau-Qiao (FORQ)
equation [79], but is mostly known as the modified Camassa—Holm (mCH)

equation.
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Equation has a bi-Hamiltonian structure [106, [78]. In [85], a Liouville-
type transformation was presented relating the isospectral problems for the
mKdV equation and the mCH equation, and a Miura-type map form the mCH
equation to the CH equation was introduced.

Equation belongs to the class of peakon equations: it has solutions
in the form of localized, peaked traveling waves — peakons [78]. The solitary,

single peaked, wave solutions (peakons) of the mCH equation have the form
78]

1
u(z,t) = ge_|x_x(t)|, m(x,t) =pd(x —x(t)) with z(t) = 6p2t.

The dynamical stability of peakons is discussed in [I09] (see also [96] for the
stability of peakons of a generalized mCH equation). The local well-posedness
and wave-breaking mechanisms for the mCH equation and its generalizations,
particularly, the mCH equation with linear dispersion, are discussed in |78, [72]
97, 40, 139]. Algebro-geometric quasiperiodic solutions are studied in [79]. The
local well-posedness for classical solutions and global weak solutions to (1.5
in Lagrangian coordinates are discussed in [76]. In [38] the authors discuss
multipeakon solutions developing the inverse spectral method for the associ-
ated peakon system of ordinary differential equations. The Hamilton structure
and Liouville integrability of peakon systems are discussed in [8] and [37|. The
Backlund transformation for the mCH equation and the related nonlinear su-

perposition formula are presented in [117].

1.4 Other peakon equations

The peak-shaped solutions (peaked solutions or peakons) are particular so-
lutions admitted by certain nonlinear PDEs (so called "peakon equations").
These solutios take the form of a train of peak-shaped waves and interact like
a particle.

The peakons first appeared as solutions of the Camassa—Holm (CH) equa-
tion, and later in many other related PDEs, e.g. Degasperis-Procesi (DP),
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Novikov (N) and modified Camassa-Holm (mCH) equations.

The Degasperis-Procesi equation
my + umy, + 3u,m =0, Mm=1u— Uy,

was discovered aroud 1998 by Degasperis and Procesi [59]. It arises as a model
equation describing the shallow-water approximation in inviscid hydrodynamics
in the so-called “moderate amplitude regime”. The DP equation (b = 3) and

the CH (b = 2) equation arise as the only integrable cases in the “b-family”
my +mau+bmu, =0, M =u— Uy,

and both have quadratic nonlinearity. It possesses peakon solutions of the
same form as CH equation. Despite being similar in appearance to the CH
equation, the DP equation has a different underlying integrability structure,
and its peakon solutions are connected to approximation theory via the concepts
of the discrete cubic string, mixed Hermite-Padé approximations and Cauchy
biorthogonal polynomials [98], [99]. Another difference is that the DP equation
admits weak solutions that are not continuous (with jump singularities in u(x, t)
rather than in u,(z,1)).

The Novikov equation
my + (umy + 3uzm)u =0, m=u— Uy,

was obtained by Novikov [I05] in the search for a classification of integrable

generalized Camassa—Holm equations of the form
(1 — 8%) u = F(u, Uy, Upy, Ugzy - - - ), u=u(z,t), 0,=0/0x.

It differs in appearance from the DP equation only by the extra factor u, so
that the nonlinearity is cubic (like for mCH). The Novikov equation can exhibit
the phenomenon of wave-breaking and possesses peakon solutions with u(z,t)
ramaining continuous and discontinuous u,(x,t). Another remarkable feature
of the Novikov equation is that it can exhibit the phenomenon of wave-breaking
[10].
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Due to the rich mathematical structure and interesting properties of these
equation, it is natural to study their modifications and generalisation. In
pariticular, many researchers consider their short wave limits (the evolution
is involved in m; = —uy,,; in the case of original equations the evolution is
involved in m; = uy — U, ) and so-called p-equations (the evolution is involved
in my = p(u)y — Uge wWith p(u fS x,t)dzr). In some sense p equations
can be consideered as midway equatlons between original equations and their
short-wave limits.

The short-wave model for the Camassa—Holm equation

me + 2u; — 2u,m —um, =0, M= —Uy,

is a model for short capillary waves propagating under the action of gravity [16].
This equation is also known as the modified Hunter-Saxton (mHS) equation.
A remarkable feature of mHS is that it possesses cuspon solutions (solutions
that take the form of a train of cusp-shaped waves, i.e. both left and right
derivatives are infinities).

The short-wave model for the Degasperis-Procesi equation
me + 3u, — umy, — 3um =0, m = —Uy,

is a model describing the unidirectional propagation of nonlinear shallow water
waves. This equation is also called the Ostrovsky—Vakhnenko equation (OV)
equation. The exact soliton-type solutions of OV equation we constructed by
using the Riemann-Hilbert formalism in [30]. These solutions are multi-valued
functions having the form of a loop (1-soliton) or many loops (multi-solitons).

The pu-CH equation
my + (um), +u,m =0, m = pu(u) — Uy,

was first introduced in [89] by Khesin, Lenells and Misiotek. It is interesting to
note that this equation is integrable in the sense that it admits Lax-pair and

bi-Hamiltonian structure, and also describes a geodesic flow on diffeomorphism
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group of S with certain metric. Its integrability, well-posedness, blow-up and
peakons were discussed in [89].

The u-DP equation
my + umy + 3u;m =0, m = p(u) — ugy

was introduced by Lenells, Misiolek and Tiglay in [05]. Its integrability, well-
posedness, blow-up and existence of peakons were also investigated in [95].

Another natural extension of the mCH equation is a two-component inte-
grable modified CH (2-mCH) equation:

me+ (v —uz)(v+v,)m), =0, m:=1u— Uy, (1.6a)

ne+ ((u—ugp)(v+v)n), =0, m:i=v— vy (1.6b)

[t was proposed by Song, Qu and Qiao in [I13].

In [I13], it is shown that the equation arises from non-streching in-
variant curve flows in the n-dimensional unit sphere S™(1). This system of
equations is known to possess infinitely many conservation laws as well as a

Lax formulation:

O, (x,t,\) =U(z,t, \)P(z,t, \), Oy(x, t,\) = V(x,t, \)P(x,t, \)

where the coefficient matrices U and V are defined in terms of a solution of the

U— l -1 Am |
2\ =\ 1
v [ - w) ) 2ete)  m(u = ug) (v + o)
M + An(u — ug) (v + vy) —(u — uy) (v + vy) '

2-mCH equation:

The local well-posedness for the associated Cauchy problem in the Besov
spaces, explicit expresses of its single peakon and two peakon solutions and

blow-up scenario were studied in [119].
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All the above described equations belong to the class of integrable equations.
It is important to emphasise that there exist also non-integrable peakon equa-
tions. The prototypical example was first introduced in the work of Degasperis,

Holm and Hone [58], who defined a family of equations
Ut — Uggpt + (b + 1)““9@ = buxu:m‘ + Ulgzy, be Ra

that reduce to CH and DP equations for b = 2, b = 3 respectively, while for
other values of b are non-integrable which was shown in [59].

The literature review demonstrates a great interest of scientists that work in
various fields of mathematics and physics to integrable nonlinear equations, in
particularly, to Camassa—Holm equation and its generalizations. This confirms

the relevance of the topic chosen in the Thesis.
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Chapter 2

The Riemann—Hilbert approach to the
modified Camassa—Holm equation with
nonzero boundary conditions

The results of this Chapter are published in [1§].
We consider the initial value problem for the mCH equation ([1.5)):

me+ (W —ul)m) =0, m:i=u—1uy, t>0, —oco<z<+4oo, (2.la)

T

u(z,0) = up(x), — 00 <2 <400, (2.1b)

assuming that up(z) — 1 as © — Zo0, and we search for a solution that
preserves this behavior: u(x,t) — 1 as © — Zoo for all ¢ > 0. Then, in
analogy with the CH equation and other CH-type equations, one can expect
that the Cauchy problem supports smooth soliton solutions.

Introducing a new function u by
u(x,t) =a(zr —t,t) + 1, (2.2)

the mCH equation reduces to

my + (m), =0, (2.3a)
=1 — gy + 1, (2.3b)
Q=0 — U+ 24 (2.3¢)



In what follows we will study equation (2.3) on zero background: @ — 0 as z —
+00. More precisely, we develop the Riemann—Hilbert (RH) problem approach
to equation on zero background, aiming at obtaining a representation
of the solution of the Cauchy problem for in terms of the solution of an
associated RH problem formulated in the complex plane of a spectral parameter.

In Subsection we introduce the Jost solutions of the Lax pair equations
written in a form appropriate for controlling their analytical properties as func-
tion of the spectral parameter. In Subsection we formulate the Riemann—
Hilbert problem in two settings: (i) in the original setting, it (implicitly) de-
pends on the physical variables (x,t) as parameters and (ii) in a transformed
setting, introducing new variables (y, t) in terms of which the RH problem has
an explicit parameter dependence. The data for the later RH problem are
uniquely determined by the initial data for the mCH equation, which gives rise
to a procedure for solving the Cauchy problem (2.1)). In Subsection 2.3 we show
that starting with the solution of a RH problem with appropriate dependence
on the parameters, we always arrive at a solution to the mCH equation, even
if the data for this RH problem are not associated with some particular initial
data for the mCH equation. Finally, in Subsection [2.4] using the RH prob-
lem formalism, we construct smooth as well as non-smooth soliton solutions to
the mCH equation. Throughout the text, we emphasize the differences in the

implementation of the RH approach to the CH and mCH equations.

2.1 Lax pairs and eigenfunctions
2.1.1 Lax pairs

In order to deduce the Lax pair for equation ([2.3a)), we take as starting point
the Lax pair for the mCH equation (1.5)) [108]

d, =Ud, &, =Vd
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where ® = ®(x,t,\), U= U(z,t,\), and V = V(x,t, \), the coefficients U and
V being defined by

Uzl -1  m |
2\ = m 1

NP () — A
V=14 Au? —uZ)m -2 _ Wy ’
AU+ uy) + S AT -
with m := u — uy,. This leads us to the pair of equations
e, =U9, (2.4a)
O, =V, (2.4b)

where the coefficients U = U(z,t,\) and V = V(x,t, \) are now defined by

1{ -1 Am

U=- , 2.5ba
2 (—)\Th 1 ) ( )

v_< PR —Al(a—axﬂ)—MTm)
s~ Adrin 2 _ '

AT (U A+ Uy 4 1) + 2 A =3

Here, m := @ — @izp + 1 and @ := @* — @2 + 24 as in (2.3b)) and (2.3d), with @
as in (2.2)). It can be directly verified that (2.3a]) is the compatibility condition

for the system (2.4)-(2.5)). Thus, this system (22.4])-(2.5)) constitutes a Lax pair
for (238).

The RH formalism for integrable nonlinear equations is based on using appro-

(2.5D)

priately defined eigenfunctions, i.e., solutions of the Lax pair, whose behavior
as functions of the spectral parameter is well-controlled in the extended com-
plex plane. Notice that the coefficient matrices U and V' are traceless, which
provides that the determinant of a matrix solution to (2.4) (composed from two
vector solutions) is independent of x and ¢.

Also notice that U and V' have singularities (in the extended complex A-
plane) at A = 0 and A = co. In order to control the behavior of solutions to
(2.4) as functions of the spectral parameter A (which is crucial for the Riemann—
Hilbert method), we follow a strategy similar to that adopted for the CH equa-
tion [25, 26].
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Namely, in order to control the large A behavior of solutions of ({2.4]), we will

transform this Lax pair into an appropriate form (see [9] 25, 26] ).

Proposition 2.1.1. Fquation (2.33) admits a Lax pair of the form

d, +Q, 0 =Ud, (2.6a)
O+ QP =V, (2.6b)

whose coefficients Q = Q(z,t, ), U= U(x, t,\), and V= V(az, t,\) are 2 x 2

matrices having the following properties:

(i) @ is diagonal and is unbounded as A — oo.

(i) U = O(1) and V = O(1) as A — co.

(iii) The diagonal parts of U and V decay as A — .
(iv) U =0 and V — 0 as © — +oo.

Proof. We first note that U in (2.5a)) can be written as

R R (A S

where m(z,t) — 1 — 0 as © — Foo. The first (non-decaying, as * — +00)

term in (2.7) can be diagonalized by introducing

A

B(w,t,\) := DON)D(x, ¢, \),

where

1 A
- ()
V12

where the square root is chosen so that v/1 — A2 ~ i\ as A — oo. This

transforms ([2.4al) into

R W1l -\ . A
b, + VTN b = U, (2.8a)
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where U = U(x,t, \) is given by

~ ANm—=1) [ 0 1 m—1
U=——= + ———03. 2.8b
2\/T— N2 (—1 0) 2WT— N (2:50)
Similarly, the t-equation (2.4b)) of the Lax pair is transformed into
- —( 1 1 s
(I)t —|— 1 — )\2 <—§ma} — ﬁ) 0'3@ = V(I), (28(3)

where V = V(x,t,\) is given by

. 1 20\ [0 —1 i, {0 1
V=——"0-— () 0(m—-1)+=— + =
2\/1—A2<w<m ) A) (1 0) A (1 0)

1 1
= (at+z(m-1)2) o,
Nigy (u + 2(m )w) o
Now notice that equations (2.8a) and (2.8c) have the desired form ({2.6)), if we
define () by

(2.8d)

Q(x,t, \) := p(z,t,\)os, (2.9a)
with
1 oo VI=A2 1=\
p(z,t,A) == —5\/1 — )\2/ (m(&,t)—1)dE+ 5 T2 t. (2.9b)
Indeed, p has derivatives
myv1 — \?
Poe = —5—)
2
—( 1 1
The first formula is clear, while the second follows from ([2.3al). O

2.1.2 Eigenfunctions

The Lax pair in the form ({2.8)) allows us to determine dedicated solutions having
a well-controlled behavior as functions of the spectral parameter A\ for large

values of A via associated integral equations. Indeed, introducing
d = Pe? (2.10)
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(understanding dasa2x? matrix), equations and can be rewritten
as

s +[Qr, 9] = U,

O+ [Qr, @] = VO,
where [, -] stands for the commutator. We now determine particular (Jost)
solutions . = E)i(x,t,)\) of as solutions of the associated Volterra

integral equations:

(2.11)

T

(AISi(l',t, )\) =71 _|_/ eQ(f,t,)\) Q( It)\ (g t )\)(I):I:(f ¢ )\) Q(z, t,A)fQ(f,t,A)dé},
+o0
(2.12)
that is, taking into account the definition of @),

~ +00 T

(ot ) =1— [ FERMD G (e b NG, (6,1, e 0T ge

213_(a:,t,A):1+/ M LN (¢ 1 B (€, 1, N)e T e
(2.13)

(I is the identity matrix). Hereafter, let $, := & e denote the corresponding
Jost solutions of ([2.8]).

Introducing a new spectral parameter £ by
N =4k? 41,

the exponentials in - ) become et* J; (€€ os. Moreover, introducing the

new space variable

y(z,t) =1 — / +Oo(m(g, £) — 1)de, (2.14)

() takes (by a slight abuse of notations) the form Q(y, t, k) = —ik (y — #’;1) 03,

which coincides with that in the case of the Camassa—Holm equation [25], 26].

Remark 2.1.2. Recall that the pair of renowned integrable equations — the
Korteweg—de Vries (KdV) equation and the modified Korteweg—de Vries (mKdV)

equation — shares the same @), which, in those cases, has the form Q(x,t, k) =
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(ikx + 4ik3t)os. Therefore, the above consideration gives an additional reason

to naming equation (|1.5)) as the modified Camassa—Holm (mCH) equation.

Remark 2.1.3. The change of variables is, in fact, a part of the Liouville
transformation [85] relating the spatial equations from the Lax pairs for the
mKdV equation and the mCH equation and thus establishing the correspon-
dence between the flows in the mCH hierarchy and the mKdV hierarchy. Being
combined with the Liouville transformation relating the CH hierarchy and the
Korteweg-de Vries (KdV) hierarchy [92], it allows establishing a Miura-type
map form the mCH equation to the CH equation [85]. However, since this map
is not univalent and involves nonlinear manipulations with dependent variables,
it is difficult to use it when studying various properties of solutions of partic-
ular problems for the mCH equation (for instance, the long time behavior of
solutions of the Cauchy problem with particular boundary conditions). This
motivated us to introduce, in the present paper, a more direct approach to our
Cauchy problem for the mCH equation, which doesn’t rely on a map to the CH
equation but deals directly with the Lax pair equations for mCH.

An important difference between the Lax pairs for the CH equation and
the mCH equation is that in the latter case, the dependence of the associated
coefficient matrix U(x,t, k) (by a slight abuse of notations we keep the same

notation UU) on the spectral parameter k is not rational (because of A(k)):

A Cm—1(1 (1 0\ AR [0 1
-2 (4032 )

which would complicate the construction of the RH problem, requiring either

the introduction of a branch cut in the k plane or the formulation of the RH
problem on the Riemann sphere associated with \? = 4k? + 1.
In order to avoid these complications, we introduce a new (uniformizing)

spectral parameter i such that both A and k are rational w.r.t. u:

D) ) e
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More precisely, we define 1 = —X — iv/1 — A2, so that k = —34/1 — A2 and
V1= X\ = %% = 2ik. In terms of u we have

NI

plz,t,p) = —W—_D </+oo(ﬁ1(§,t) —1)dé —x + 8—/31)275) ,  (2.16)

A i(p?+1)(m—1 0 1 iu(m—1) {1 0
2(p* — 1) ~1 0 2—1 \o —1
and, accordingly, equations (2.13]) become
bt ) = I+ / e LMD (€ ¢ D (€ 8, phe T SN g,
+o0

(2.18)

We are now able, by analogy with the case of the CH equation [25, 26], to
analyze the analytic and asymptotic properties of the solutions CTDi of as
functions of p, using Neumann series expansions. Let A1) and A® denote the
columns of a 2 X 2 matrix A = (A(l) A(2)). Using these notations we have the

following properties:
e " and éf) are analytic in C* = {y € C | Imp > 0};

. &)(f) and ®? are analytic in C~ = {peC|Imu <0}

~

° 59, EIVDEFQ), CIDS:), and ®? are continuous up to the real line except at u = =+1.
Further, we first observe that U(p) = Uz, t, 1), V(u) = V(x,t, p) satisfy the

same symmetries:

Up) = onU(wor,  U(=p) = ooU(wos,  U(p™") =10 (u)o,
(2.19a)

V() =oV(p)or,  V(—p)=0V(pos, V(') =oV(uon,
(2.19D)

with g # 41, and also p # 0 for the symmetry p — p~t. Moreover, p(u) =

p(x,t, 1) satisfies the following symmetries:
p () = —p(p) = p(=p) = p(p"). (2.20)
It follows that
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e &. also satisfy the same symmetries as in (2.19a):

bu(ji) = 1 du(p)or, Du(—p) = 02di(p)on, Du(p™) = 1 ds(p)or.
(2.21)
That means <AI;$)(/¢) = 01&39*(/1) = 0'30'1&353)(—,&) = 01[1523)(/[1) for +Im p <

0, u # +£1.

In (2.11)) the coefficients are traceless matrices, from which it follows that
e det éi =1.

Regarding the values of ®. at particular points in the p-plane, (2.18) implies
the following:

o (3Wa®) — [ as p — oo with Impu > 0, and also for u = 0 (by the
symmetry (2.21)).

o (¢ ¢?) — I as p — oo with Im p <0, and also for u = 0.

¢ As i = 1, u(w,t, 1) = grigos(e,t) (T11) + O(1) with ax(z,t) € R

(understood column-wise, in the corresponding half-planes).

o As pu — —1, dy(x,t,pu) = —mai(x,t) (% 14) + O(1) with the same
a4 (x,t) as the previous ones (by symmetry (2.21))).

2.1.3 Spectral data

Introduce the scattering matrix s(u) as a matrix relating EIv>+ and ®_ on the

real line:

~

O (x,t, 1) = _(x,t, p)e P ()7 e R, p £ (222)

By (2.21)), s(u) can be written in terms of two scalar spectral functions, a(pu)

and b(p): -
s(p) = (CM b(,u)) : p e R, (2.23)



satisfying the symmetries a(p) = a(—p) = a(p™) and b(u) = —b(—p) =
b(p™t) for p € R.

The spectral functions a(p) and b(p) are uniquely determined by u(z,0)
through the solutions EIVDi(x, 0, 1) of equations (2.18)). On the other hand, using

the representations

~

a(p) = det (5(” <I>(f)), b(1) = e det (‘T’(f) 5@)),

the analytic properties of &Di stated above imply corresponding properties of
a(p) and b(p):

e a(u) can be analytically continued into C*, being continuous up to the real
line, except at p = +1. Moreover, a(0) = 1, a(u) — 1 as u — oo, and a(pu)

satisfies the symmetries

a(p) = a(~fi) = a(—p~") for ITmp > 0.

e b(1) is continuous for u € R\ {—1,1}. Moreover, b(0) = 0 and b(p) — 0 as
@ — £oo.

o As pp— 1, a(p) = 55 + O(1) and b(p) = ’yﬁ + O(1) with the same

v € R, as follows from ([2.22)).

o As p — —1, a(u) = ’ym + O(1) and b(p) = —’ym + O(1) with the

same 7y as the previous one, by symmetry.

o la(u)]> = [b(u)[* =1 for p € R, p# £1.

Remark 2.1.4. The case v # 0 is generic. On the other hand, in the non-generic
case 7 = 0, we then have a(+1) = a; and b(£1) = £b; with some a; € R and
by € R such that a? = 1+ b3. Tt then follows from that the coefficients
a,(z,t) and a_(z,t) appearing in the expansions of d at = *£1 are related
by

ay(z,t) = (a; — by)a_(z,t). (2.24)
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2.2 Riemann—Hilbert problem
2.2.1 RH problem parameterized by (x,t)

The analytic properties of ®. stated above allow rewriting the scattering rela-
tion as a jump relation for a piece-wise meromorphic (w.r.t. ), 2 x 2-
matrix valued function (depending on x and ¢ as parameters). Indeed, define
M = M(x,t, ) by

(%E)u,t,u) F(2) )
(p x; t, Y Imlu’ > 07
M tp) =<5 (( t“f (2.25)
(CDSL)(:c,t,u) *a(;’)’“ ) , Imp < 0.
Define also b )
L
r(p) = ()’ p e R. (2.26)

Then the limiting values My (z,t, 1), u € R of M as p is approached from C*
are related by

M_(z,t,p) = My(z,t,p)J(x,t, 1), p€R, p#+l, (2.27a)
where
J(x,t, 1) = e Pl@tp)os Jo(u)ep(x’t’“)of’ (2.27b)
with
1 —r
Jo(w) = | (n )* . (2.27¢)
ri(p) 1 —r(p)r(w)

Taking into account the properties of d, and s(p) we check that M (z,t, )

satisfies the following conditions:

e The jump condition ([2.27)) across R.

e The determinant condition det M = 1.
e The normalization condition:

M—1 aspu—o0 (2.28)

(and also M (0) = I by symmetry, see (2.31))).
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e Singularity conditions:

(

NI e I 1, 1 0
2(/171) 1 + ( )7 /L — ) m,u > )
—C
M(z,t, 1) = 4 (2.29)
ouwe) [ €1 O(1 1, 1 0
_2(u—|—1) 1 + ( )7 n— —1, mpy > U,
_C J—

\

with some o (z,t) € R and (see Remark [2.1.4)

0,  ify#£0,
¢im tha (2.300)

ath iy =,

where a1 = a(1), by = b(1), and v := —Zi}tig%(p — 1)a(p). Notice that in

terms of r(%1), the generic case 7 # 0 corresponds to r(1) = —r(—1) =

—1 whereas in the non-generic case, |r(£1)| < 1 (see the case of the one-

dimensional Schrodinger operator [53], which constitutes the spectral problem

for the Korteweg—de Vries equation). Therefore, can be written as
0, if r(1) = —1,

¢i= (2.30D)
L+r(1)=1—r(-1), if|r(1)] <1

Both conditions in (2.29)) are actually equivalent by the symmetries (2.31)).

o Symmetries (which result from (2.21))):

M(p) = oM (p)or,  M(—p) = osM(p)os,  M(u™') = 1M (p)oy,
(2.31)
where M(p) = M(z,t,u). The first symmetry can also be written as
o1 MW* = M®) . Moreover, implies the symmetries M (—j) = M (—p™1)
o3 M (p)os.

If a(u) is allowed to have zeros in C*, the above conditions must be supple-
mented by residue conditions at these zeros. Assume that a(u) has a finite

number of simple zeros {p;}’ in C*. Symmetries a(p) = a(—p) = a(—p™?)
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imply that this set of zeros is invariant under the transformations y — —j

I: for each j there exist j/ and j” such that —f; = pjy and

and pu — —pu~

_/’L;1 e luj”'

e Residue conditions: MM (¢, ;1) has simple poles at {p;} and M3 (¢, 1)
has simple poles at {fi;}}. Moreover

1

Res, MW Tt 1) = M Tyt i), 2.32a
Hj ( ) %j(x7 t) ( ]) ( )
1
Res, M®? Tyt ) = — MW Tyt ;). 2.32b
Hj ( ) %j(x’ t) ( ]) ( )
Here s¢j(,t) = a(pj)d;6~2@H) with some constants §; # 0. By symmetries

(2.31)) both conditions in - are equivalent. Note also how the residue
changes under the transformations p — —p and g — —p~ b if —p; = pj

-1 _ = -2
and —p; " = pyr then s =3¢ = —p; s,

Proof of (2.32)). Indeed, let 11; be a simple root of a(u), that is, a(u;) = 0 with
a(pj) # 0. Then, using a(p) = det (&D(_l) 5&?)) = det (@(_1) @f)), we have

O (w,t, 1) = 0,00 (, 1, 1)), (2.33)
O (.1, 1) = ;721 (1, 1) (2.33b)
with some constant d; # 0. Hence,

oWt ) Wt ) P (b, )

Res,,, MY (z,t, 1) = Res,,,

a(p)  aluy)  a(uy)de 2t
Denoting »;(z,t) = a(p;)de” pletii) we get | The residue relation

(2.32b) then follows by the symmetry p — p* = f. Indeed, applying this
symmetry to (2.32al) and multiplying by o1 we get

O-lM(Z)*(xa 2 :aj)v

Resp, o MW (z,t, 1) = =@
j

which reduces to (2.32D)) in view of the relation oy MV* = M?) (see (2.31))).

o6



In the framework of the Riemann—Hilbert approach to nonlinear evolu-
tion equations, we interpret the jump relation (2.27a), normalization condi-
tion (2.28)), singularity conditions (2.29), and residue conditions (2.32)) as a
Riemann-Hilbert problem, with the jump matrix and residue parameters de-
termined by the initial data for the nonlinear problem. We proceed as in the

case of the Camassa—Holm equation:

1) In order to have the data for the RH problem to depend explicitly on the
parameters, we use the space variable y(z,t) := x — f;oo(rh(ﬁ, t) —1)d& we
have introduced in ([2.14)).

2) In order to determine an efficient way for retrieving the solution of the mCH
equation from the solution of the RH problem, we pay a special attention to
the behavior of the Jost solutions of the Lax pair equations at u = =+i, i.e.,
at those values of p that correspond to A = 0, when the z-equation ([2.44)),
(2.5a]) of the Lax pair becomes trivial (independent of the solution of the

nonlinear equation in question).

2.2.2 Eigenfunction near pu =i

In the case of the Camassa—Holm equation [20] as well as other CH-type non-
linear integrable equations studied so far, see, e.g., [29, 30|, the analysis of the
behavior of the respective Jost solutions at dedicated points in the complex
plane of the spectral parameter (see Item 2) above) requires a dedicated gauge
transformation of the Lax pair equations.

It is remarkable that in the case of the mCH equation, we don’t need to
use such a transformation; all we need is to regroup the terms in the Lax pair

Namely, let us rewrite (2.8al) in terms of u (keeping the same notation ® for
the solution):

. i(u?2 —1 R .
b, + 1(”4—)03@ — 0,9, (2.34a)
]
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where

A i(+1)m—-1) (0 1 iu(m —1) i(p?—Dm (-1
Uo(.’L‘,t,,u) = (/L 2)( ) _<’u(2 )+ (,LL ) . (:u )
2(p* = 1) -1 0 p? =1 Ay p
(2.34D)
so that Up(x,t, £i) = 0. Accordingly, rewrite (2.8d) as
N R
¢, — ——— 03P = 1)@ 2.34
t (,LL2+1)2 03 ‘/b ) ( C)
where
- (W =1) 5 o oo ;
Vo, t, 1) := T(u — ay + 2u)mos + V(x, t, pw). (2.34d)
Further, introduce (compare with (2.16]))
i(pn? —1 2i(p? —1
oty = WD, B Dy (239

T
I (2T 1)
then Qg := pyos, and By := e so that equations (2.34a)) and (2.34d) become

503: + [Qoz, 50] = (A]o&)o,

_ L (2.36)
Do + [Qot, Po] = VoPo.

Define the Jost solutions @ of (2.36)) as the solutions of the integral equations

) i(p?-1)

Bos (@, t, ) = T+ / Lm0 1 ) B (€, 1 e T,
- (2.37)
If &gy = Pore P we observe that Doy (x,t, 1) and Dy (z,t, 1) satisfy the
same differential equations and thus they are related by matrices C.(u)

independent of x and ¢:

(i)j: = (i)Oj:Ci(,LL>-
It follows that
EIv)i(x7 t :u) = EIv)O:&: (xa t M)e_po(m’t’M)UBCi (M)ep(x,t,,u)ag,' (238)
Thus, Cy(p) = ePo(Foot)=p(kootu))os,
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Since p(z,t,pu) — po(x,t, 1) = _i(u4;1) f

i,u2—1 00/ ~
Cy(pn) = I whereas C_(u) = e(T) I (m(&,)—1)dE o5
Since Up(,t,1) = 0, it follows from (2.37) that g (x,¢,1) = I and thus

+oo(m(f,t) — 1)d¢ we find that

X

EIv)+(;U,t, i) = o2 [F(m(et)—1)de o3 and &)_(x,t,i) _ e—%ffoo(m(&t)—l)dfas.

Consequently,
a(1) = e*%fff.f(m(&t)—l)dg
and
o5 [T (e t)—1)de 0
M(xa t) 1) — 0 o %fgjoo(m(g t)—l)dg (239&)
Then, by symmetry,
. o= 3 (g )-1)dg 0
M(x,t,—i) = ) e | (2.39b)

Remark 2.2.1. The symmetries (2.31)) imply that M (i) = M (i) = osM(i)os
where M (i) = M(x,t,1), and thus M (i) is a diagonal matrix with real entries
which, due to the determinant equality det M = 1, has the form

t 0
M 1) = £ (2.40a)
0 ¢ i(z1)
with some (z,t) € R. Then, referring again to (2.31)), it follows that
pHx,t) 0
0 plzt)

with the same @(z,t). Therefore, the matrix structure of M (x,t, £i) as in
(2.39) follows from the general properties of the solution of a Riemann—Hilbert

problem (specified by jump, normalization, residue, singularity, and symmetry

M(z,t,—i) = ( (2.40D)

conditions). This is in contrast with the case of the Camassa—Holm equation
[25, 26], where a specific matrix structure of the solution of the associated
RH problem, evaluated at a dedicated point (k = % for the CH equation),

constitutes an additional requirement for the solution. In that case, the proof
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of the uniqueness of the solution of the RH problem relies essentially on this

additional property.
In what follows we will use (2.39)) in order to extract the solution of the

mCH equation from the solution of the associated RH problem.

2.2.3 RH problem in the (y,t) scale

Introducing the new space variable y(x, t) by (2.14)), M(y, t, ) sothat M (z,t, ) =
M (y(z,t),t, 1), the jump condition (2.27a) becomes

M_(y.t,p) = My(y,t, 1) J(y. t,p), pER, p#=£l (2.41a)
where
j(y, tp) = e~ PYt.p)os Jo(ﬂ)eﬁ(y’t’”)"f‘ (2.41b)
with Jo(u) defined by (2.27¢)) and
A i(p® = 1) 8’
t =27 - —t . 2.41
Py, t, 1) ™ Y+ TS (2.41c)

so that J(x,t, ) = j(y(:c,t),t,u) and p(x,t,u) = p(y(z,t),t, 1), where the
jump J(z,t, ) and the phase p(x,t, ) are defined in and ([2.16), re-
spectively.

Accordingly, in this scale, the residue conditions become explicit as

well:

~ 1 ~
Resuj M(1)<y7t7/~L> = }A{(y t) M(Z)(yatauj)a
N (2.42)

Resz, M (y,t, 1) = MY (y,t,15),

#(y. 1)
with 3z;(y,t) = a(p;)d;e"2WH) - Further we denote p; := a(g)d;.

Noticing that the normalization condition (2.28)), the symmetries (2.31)), and
the singularity conditions at u = %1 hold when using the new scale (y, t),

we arrive at the basic RH problem.

Basic RH problem. Given r(u) for 4 € R, ¢ € R, and {u;, p;}’ a set
of points p; € C* and complex numbers p; # 0 invariant by p +— —f and
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p— —p~ ! (that is, —@; = py and —uj_l = pjn with p; = pj = —,uj_iju)7 find
a piece-wise (w.r.t. R) meromorphic, 2 x 2-matrix valued function M (y,t, )

satisfying the following conditions:

e The jump condition (2.41]) across R (with Jy(u) defined by (2.27d)).
e The residue conditions with 3z;(y,t) = pje2PW:tHa),

e The normalization condition M(y,t, ) — I as p — co.

e The symmetries

~ A

M(p) = s M (p)or,  M(—p) = oM (p)os,  M(p™") = o1 M(n)o
(2.43)
where M (;1) = M(y,t, ;). These symmetries imply that

~ ~ ~

M(—p™t) = o3M(pu)os = M(—p).

e The singularity conditions

9 1&+(y7t) —c 1
My, t = — O(1 — 1, 1 0
(y.t, 1) 2w1)<c1 +0(1)  asp—1, Imp>0,
(2.44a)
- 1&+(y7t) ¢ 1
My, t = -2 O(1 — —1, 1 > ()
(y7 7/’6) 2(/1 n 1) (_C _1 + ( ) as U ) m,LL )

(2.44D)

where a4 (y,t) € R is not specified. These two singularity conditions are
actually equivalent by symmetries ([2.43]).

Data of this RH problem associated with wug(x). Specific data for this
RH problem can be derived from initial data of the Cauchy problem (2.1
satisfying ug(z) — 1 as z — +o0.

o We first get s(u) through (2.22)) at t = 0 (using the solutions of ([2.18)) taken
at t =0).
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e Spectral data a(u), b(p), and 7(u) follow through (22.23)) and ([2.26)).

e Then {u;} are the zeros of a(u) in C¥.
e The real constant ¢ is defined through (12.30)).

e The constants {0;} are defined by (2.33b) at ¢t = 0 (using the solutions of

BT at t = 0).

e Finally, the {p;}{’ are defined by p; = a(u;)d;.

Further, the basic RH problem associated with the Cauchy problem (22.1]) for
the mCH equation is the basic RH problem with data associated with initial
data satisfying ug(z) — 1, as we just specified.

Remark 2.2.2. An important difference between the cases of the CH and mCH
equations is that in the former case, there is a possibility to reduce the matrix
RH problems to vector ones which have no singularity at a point on the contour:
this can be done by multiplying the respective M by the vector (1,1) from the
left. This trick will obviously not work in our current case, since the matrix
structure (see (2.44)) of the singularity at p = 1 is different from that at

= —1

2.2.4 Uniqueness of the solution of the basic RH problem

Assume that the RH problem - - 2.44]) has a solution M. In order to prove
that this solution is unique, we first observe that det M=1.

Indeed, the conditions for M imply that det M has neither a jump across
R no singularities at p;. Moreover, det M tends to 1 as i — oo, and the
only possible singularities of det M are simple poles at © = 41. Then, by
Liouville’s theorem, det M = 1+ ¢1 + ffl with some ¢;. But then, the
symmetry M (u~ D) = o M (p)oy from 3) implies that ¢; = ¢ = 0 and thus
det M = 1.

Now suppose that M, and M, are two solutions of the RH problem, and
consider P := Ml(Mg)*l. Obviously, P has neither a jump across R no sin-
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gularities at p;. Moreover, P tends to I as y — 0o, and the only possible
singularities of P are simple poles at u = +1.

Consider, for example, the development of Mj, J=12as pu— —1 with
Im o > 0:

- __iBi(yt) [ ¢ 1 n;(y,t) m;(yt) .
M;(y,t,p) = “3ut 1) (_C —1>+<fj(y,t) gj(y’t)>+0(u+1), pneCT
By det Mj = 1 it follows that

(M;(y, t, )™ = ——;f;(i tl)) (_Cl —(31) - (%}?j; :TZ;%)”) +O(u+1).

Moreover, using these expressions to calculate the expansion of M;M ],—1 as

p — —1 the vanishing of the term of order (u + 1)~! reads as

ni(y,t) + fi(y,t) = clm;(y, 1) + g;(y, 1), j=1,2 (2.45)
Hence, ([2.45) implies that
i(y,t) (1 1
Py, t,u) = ————~ +0(1)as u— —1, peCt,
W tm) = =501 (_1 i (1) as p

for some 1 (y,t). Then, by the symmetry P(u~1) = o3P (u)os3, we have

Pt =5 (

and, according to the Liouville theorem and the normalization condition,

i 1 (1 -1 1 (11
P=—g0w) (F (1 1>+m<1 1>>+I'

Evaluating this at ¢ =i we have

1 -1

) 1>+O(1)asu—>1,u€(c+,

Py, t.i) = —%w(y,t) (‘1 1) s (2.46)

But, according to (2.40a)), both matrices M, (i) and M,(i) are diagonal. Hence
P(y,t,1) is also diagonal and (2.46) implies that 1(y,t) = 0. Consequently,
P(y,t, 1) = I so that M; = M.
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2.2.5 Recovering u(x,t) from the solution of the RH problem

We will show how to recover the solution of the Cauchy problem (2.1)) from
the solution of the basic RH problem whose data are associated with the initial
data up(x). We begin with some preliminary observations.

Going back to the construction of M(x,t, ) from the Jost solutions, see
Section [2.2.2 we can use (2.39a]) in order to express the solution u(x,t) of the

mCH equation in terms of M (z,t, u) evaluated at g = i. Indeed, introduce

(compare with the case of the CH equation [26])

i1 (2, 1) = My (2, t,1) + Moy (2, t,i) = e2 e (nE0-1de
a2, 1) = Mua(x,1,1) + Mas(,t,i) = o3 (R(E0-1dE,

Using the new space variable y(x,t) := x — f;oo(?’h(f, t) — 1)d¢ we have intro-
duced in ([2.14)), the above equations yield

,L:Ll (x,1) _ ef:“’(m(g,t)—l)df — o y(xt) (2.47)
|5 (.I, t)
and thus i (2, 1)
H1\ T,
v = y(z. 1) + In PA5Y 2.48
y( ) [ (.%', t) ( )
Also notice that
fis (o, )ia (1) = 1. (2.49)

Proposition 2.2.3. Let M(y,t,,u) be the solution of the RH problem f
(2.44) whose data are associated with the initial data ug(x). Define i1 (y,t) =
My (y, t,1) + Moy (y, t,1) and jio(y,t) == Mya(y, t,1) + Mas(y, t,1). The solution
u(zx,t) of the Cauchy problem has z-derwative given by the parametric

representation

1 ﬂl(y7t)
Uz (x +1t,t) = =0 In= , 2.50a
( ) =3 fia(y, 1) \2:502)
ﬂl(ynt)
x(y,t) =y +In= : 2.50b
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Proof. In what follows we will express w, in the variables (y,t¢). To express a

function f(z,t) in (y,t) we will use the notation f(y,t) := f(z(y,t), 1), e.g.,
t),t)

u(y,t) == u(x(y,t),t), U.(y,t) := U (x(y,t),1),

m(y,t) = m(x(y,1),1), ©(y,1) = w(z(y,1),1).
Differentiation of the identity x(y(z,t),t) = x w.r.t. ¢ gives
O (2(y(x,1),1)) = 2y (y, )ye(, 1) + 2:(y, ) = 0. (2.51)

From (2.14)) it follows that
1

Ty(y, 1) = — 2.52
y( ) m(:%t) ( )
and y(x,t) = f 0 (&,t)d€. By ([2.34), the latter equality becomes

+00
wlat) = [ (@) (6,)9€ = (e, ),
Substituting this and (2.52)) into (2.51]) we obtain

Further, differentiating (2.53)) w.r.t. y we get

. N 1 X
xty(ya t) - W:cxy(ya t) = 2“90(“ — Ugy + 1)%(:% t) = 2ux(y7 t)' (254)

Therefore, we arrive at a parametric representation of . (x,t):

@y, 1), 1) = i1 (y, 1) = %at:c(y,t),

In /i (y, 1)
x(y,t +
(y ) In 2 (y7 t)
which yields (2.50]). For the direct determination of u from the solution of the
RH problem, see Remark below. H

Remark 2.2.4. In the case of the Camassa—Holm equation, the relation between
the new and original space variables (2.48)) is the same whereas the derivative
(2.53)) gives directly the solution u of the nonlinear equation (in the (y,t) vari-

ables) in question.
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2.3 From a solution of the RH problem to a solution of
the mCH equation

Henceforth we consider a RH problem (2.41])—(2.44) with data not necessarily
related to initial data for the mCH equation. This section aims to show that
starting from the solution M (y,t, ) of such a RH problem one can construct
a solution (at least, locally) of the mCH equation by manipulations similar
to those of Section 2.2.5. For this purpose, we will show that starting from
M(y,t,,u) one can define 2 x 2-matrix valued functions W(y,t, 1) satisfying

Lax pair equations

I
T

v,

I
<»

v,
whose coefficients U and V' are obtained from M (y,t, 1), and whose compati-
bility condition is the mCH equation (written in the (y,t) variables).

First, let us reformulate the original Lax pair equations (2.8]) in the (y,t)
variables. Introducing W(y,t) = ®(z(y,t),t) and taking into account (2.53)

and ([2.52)), the Lax pair (2.8)) in the variables (y,t) takes the form:

. . om—=1Xx (1 1.
U, +ikosV = —— = A U
y T 1RO m ik (1 ) !

. 2ik . a (-1 =1 a, (0 1 .

\If—— \If: R A _x \1]

o (%(% 1)”(1 0>)
where k := —%\/1 — )2

Consequently, using p as spectral parameter (see (2.15))), we have

Proposition 2.3.1. The Laz pair (2.8) has the following form in the variables

(y,t, 1)
. (2 —1 N~
U, + =1 4~ 7.
du (2.55)
28(p° = Dp & = '
t — ﬁag\ﬂ = V\Ij,
(1*+1)

66



(2.56a)
~ iq(y,t) (1 =1\  ig(y,t) (1 1
V(y, t,u) = +
(w1, 4) p—1 <1 -1 p+1 \—-1 —1
1 0 1 1 0 t
N 91(y, 1) N 92(y, t) |
p—=1\ga(y,t) 0 pHi\gi(y,t) 0
(2.56b)
with f, q, g1, and go as follows:
h—1
f=-"2 g=a, g=—t—d, g=i-1,. (2.57)
2m

Our goal in this section is to show that giving a solution M (y, ¢, u) to the
RH problem (2.41))(2.44)), where the data r(p) for u € R, ¢ € R, and {u;, p;}¥

are not a priori associated with some initial data ug(x), one can “extract” from

M (y,t, ) a solution to the mCH equation. The idea is as follows:

(a) Starting from M(y,t, u1), define W(y, t, 1) = M(y,t, u)e P@Hm% and show
that \i/(y, t, ;1) satisfies the system of differential equations:

v,

I
Q))

7
g (2.58)

I
<»
KD

\ijt )
where U and V have the same (rational) dependence on p as in (2.55)) and
(2.56), with coefficients given in terms of M (y,t, u1) evaluated at appropri-
ate values of u.

(b) Show that the compatibility condition for (2.58)), which is the equality U —

A~

V, 4+ [U, V] = 0, reduces to the mCH equation.
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Proposition 2.3.2. Let M(y,t, 1) be the solution of the RH problem (2.41) -
(2.44)). Define

U(y,t,p) = M(y,t, p)e PWHmo, (2.59)
~ i(u2— 2 2 . .
where p(y,t,p) == — (#4u D) (—y + wgﬁt). Then V(y,t,u) satisfies the dif-
ferential equation
b, = U0
with U = —i(’i—gl)ag + U, where U is as in ([2.56a) with f given by
ny,t
flo.t) = 120,

n(y,t) being extracted from the large p expansion of M(y,t, j1):

9 - l g(yat) 77(3/775)
Mt =TI+ (my,t) eyt

1
Proof. First, notice that \if(y, t, i) satisfies the jump condition

U (y, b, 1) = Wy, t, 1) Jo(1)

with the jump matrix Jy independent of y. Hence, \ify(y, t, ) satisfies the same

)) +0(u™?), [ — 0.

jump condition. Consequently, \ily\i!_l = MQM_l — ﬁyMagM_l has no jump
and thus it is a meromorphic function, with possible singularities at u = oo,
=0, and p = =£1. Let us evaluate \ffy\ifl near these points.

(i) As 1 — oo, we have p, = £ + O(u~!) and thus

where M () = M(m)(y, t) comes from the large p asymptotics of M:

. [(c0)
M=1+——+0(u?), p— 00,
v

~

Symmetries (2.43) imply that oo M () gy = —M () and oy Mgy = M), s0

that
1) <f n >
n —<
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with some £(y,t) € iR and n(y, t) € R. Consequently,

>+Omly [ — 00. (2.60)
n 0

Then, by symmetry,

PN 1 i (0 —

(i) Pushing the expansion (2.44a]) of M (y) a step further, and proceeding
as in Section to get (2.45) we have

i (1 -1
U, Ut = + O(1), — 1, 2.62
y M_1<1_1) W, 262
with some (i (y,t) € R. By symmetry,

. - 1 1
@@@1:,fiﬁ<1 1)%0(@, p— —1. (2.63)

Combining (2.60)), (2.61), (2.62), and (2.63)), we obtain that the function
A i(p?—1 ' 1 -1 ' 1 1 1 (0 —
\ij\p—l 4 I(M )0_3 . 161 o lﬁl + i n

Ap p—1\1 -1} p+1\-1 1) 2\n o0

is holomorphic in the whole complex p-plane and, moreover, vanishes as pu —
oo. Then, by Liouville’s theorem, it vanishes identically.

~

Further, again by symmetry, M (y, t,1) is diagonal (see Remark
implies that the following sum is diagonal as well:

. +- —= .
i—1\1 —1 1+1\—-1 —1 2 n 0

It follows that g

2.2.1)), which

— (1, and thus we arrive at the equality \ify = UV with

U= —l("j—;l)ag + U, where U is as in (2.56a) with f = f. [
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Proposition 2.3.3. The function U(y,t, 1) defined by (2.59) satisfies the dif-
ferential equation
U, =V (2.64)

with V = 21((;227_11))2’“‘03 + ‘7, where V is as in (2.56b)) with coefficients q, g1, and

go determined by evaluating M(y, typ) as p— 1 and p — 1.

Proof. Similarly to Proposition [2.3.2, we notice that U, = MM —

ﬁtM osM ! has no jump and thus it is a meromorphic function, with possi-

ble singularities at y = oo, p = 0, p = £1, and pu = =i, the latter being due
to the singularity of p; at u = +i:

1 i
(LF? pFi

p(p) =+ + O(1), [— =i (2.65)

Evaluating U, U~ near these points, we have the following.
(i) As u — oo, we have p;(u) = O(p~t) and thus
bl (w) =0(w™), n— oo (2.66)
Then, by symmetry,

U0 () =O0(n),  p—0. (2.67)

(ii) Expanding M(p) at x4 = 1, and proceeding as above to get ([2.62), we

have

B ) = (1 _1) PO pel (269

with some fs(y,t) € R. By symmetry,

b0 (u) = ’uiizl (11 11) + O(1), uw— —1. (2.69)

(iii) Evaluating M(u) as pu — 1, we first notice that, due to symmetries,

M(u)<a1 0)+<0 O) (b= +O0((u—1)%),  p—i, (270)

0 a;' as
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with some a; = a;(y,t), j = 1,2, 3. Taking into account ({2.65), we have

A s 1 1 _ 0 2a9a, :
/A = — —— s+ - | io3 + +0(1), — 1.
t (lu) (M _ 1)2 3 [—i ( 3 (20,3@11 0 )) ( ) 2
(2.71)

Then, by symmetry,

A A 1 1 0 —2aza; !

U, 0 (p) = — o3+ —— | ioy + L 1+0(1), — —i.

R e <03 (2 ‘ M.
(2.72)

Combining (22.66)), (2.68)), and (2.69)), (2.71]), and (2.72), we obtain that the

function

1 0 m 1 0 7

with 71 = 2asa; and v, = —2agza; ' is holomorphic in the whole complex p-

plane and, moreover, vanishes as u — oo. Then, by Liouville’s theorem, it

vanishes identically. Thus we arrive at the equality ¥y = V¥ with V(,LL) =
2l VP V(p), where V(y) is as in (2.56D) with ¢ = B, g1 = 71, and

(n2+1)?
g2 = 2. L]

The next step is to demonstrate that the compatibility condition

U, —V, 4+ [0,V] =0 (2.73)

yields the mCH equation in the (y,t) variables, which is as follows:

Proposition 2.3.4. The mCH equation (2.3a]) in the (y,t) variables reads as

follows:

(M iy, t) = 20.(y, 1), (2.74a)
iy, t) == iy, t) — ey, t) + 1, (2.74D)

where f(y,t) := f(z(y,t),t) for any function f(z,t) and z,(y,t) = m " (y,1).

71



Proof. Substituting m; = —(wm), from (2.3a)) and z; = @ from (2.53)) into the
equality

mt(y7 t) = m:c(x(ya t): t>xt(y7 t) + ’ﬁlt<$<y, t): t)
and using that w, = 2mu, we get
iy, t) = ma(x(y, ), )y, t) — ma(2(y, 1), )y, ) — 2m* (@ (y, t), ). (y, 1)
= —20,M*(y,t)
and thus (2.74a)) follows. O

Remark 2.3.5. Notice that ([2.74b]) can be written as

m(y,t) = a(y,t) = (), (y,)m(y, ) + 1. (2.75)

Now, evaluating the compatibility equation (2.73|) at the singular points for

U and V, we get algebraic and differential equations amongst the coefficients
of U and V, i.e., amongst 81, B2, 71, and 9, that can be reduced to (2.74al).

Proposition 2.3.6. Let 51(y,t), Ba(y,t), 11(y, 1), and v (y,t) be the functions
determined in terms ofM(y, t, 1) as in Propositions|2.3.4 and|2.3.5. Then they

satisfy the following equations:

Y1+ V2

fut——=0; (2.76a)
fr = 7 — oy, (2.76b)
(71 = 12)y — (1+281) (1 +92) = 0; (2.76¢)
(V2 +71)y + 461 — (14 2B1) (71 — 12) = 0. (2.76d)

Proof. Recall 51 and (5 are given by (2.62) and (2.68)), respectively. Moreover,
Y1 = 2aza; and 7 := —2aza; ', where ay, ay, and as are defined by (2.70)).
(i) Evaluating the Lh.s. of (2.73)) as 4 — oo, the main term (of order O(1))

+
(ﬁlt + n 9 72) 02,

18

from which (2.76a)) follows.
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(ii) Evaluating the Lh.s. of (2.73)) as  — 0, the main term (of order O(p 1))

1 _
4 <ﬁ2+% 72) o1,
W 2

from which (2.76b) follows.
(iii) Evaluating the Lh.s. of (2.73) as u — 1, the diagonal part of the main

term (of order O((p — 1)71)) is

i

w—1 (Bre — Bay — Br(m + 12)) 03,

from which (2.76¢]) follows, taking into account (2.76a)) and (2.76b)).
(iv) Evaluating the Lh.s. of (2.73)) as p# — i, the main term (of order O((u —

1)71)) is

1 0 - 0 01
: Ty (1+2p1) N 201 ;
M1 —2y 0 —2 0 10
from which (2.76d]) follows. O

Proposition 2.3.7. Let m(y,t), a(y,t), and x(y,t) be defined in terms of f,
Ba, v1, and 7y as follows:

18

= (1+28)7", azﬁf:”;VH v, =1+26.  (2.77)

Then the four equations (2.76]) reduce to (2.74a) and (2.75)).

Proof. Indeed, defining @ and x(y,t) as prescribed in (2.77)), equation ({2.76¢])

-1

, can be expressed as

implies that 4, = 4,2

. Y1+ 72
b —

R

2
Then, taking into account the definition of m in (2.77)), equation (2.76a)) takes
the form of the equation ([2.74a)). Finally, using the notations introduced above,

equation ([2.75)) can be written as

1 — 1
_eom (71 +72)y ey
1+ 28 2 2 1+253
which is just equation (2.76d)). O
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Remark 2.3.8. Formulas 4 = 25 and 4, = —% provide an alternative way
to obtain 4 as well as @, from the solution M of the RH problem. Indeed,
according to Proposition 2.3.3] @ and 4, (as functions of (y, t)) can be obtained
using the coefficients a;(y, ) (see (2.70)) of the development of M (y,t, k) as

p — i (thus avoiding the differentiations used in Section [2.2.5)):
u(y,t) = —azay — agal_l, Uy (y,t) = —asay + agal_l, (2.78)

where a;(y,t) are determined by (2.70). Recall also the representation for m
in terms of M evaluated as i — 00, see Proposition |2.3.2)
B 1 B 1
1426y, 1) 1=nly,t)’ (2.79)
n(y,) = lim pha(y, ¢, p).

m(y,1)

Considered together with the expression for the change of variables (2.50h)),

which can be written as (we indeed have i1 = a; and iy = al_l)
2(y,1) =y +2Ina(y,t), (2.80)

equations (2.78) and (2.79) give a parametric representation of the solution of
the mCH equation (2.3a)).

2.4 Solitons

In the Riemann—Hilbert variant of the inverse scattering transform method,
pure soliton solutions can be obtained from the solutions of the RH problem
assuming that the jump is trivial (J = I), which reduces the construction to
solving a system of linear algebraic equations generated by the residue condi-
tions.

In order to construct the simplest, one-soliton solution, we consider the
RH problem (2.41))—(2.44) with specific data, in particular r(¢) = 0, so that
J=1. Regarding the other data, we require that M® has a simple pole on
the unit circle, at p; = €, 0 € (0, 5). It follows that MW has also a simple
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pole at o = —e ¥ = —fi; = —pu7'. According to the symmetries (2.43) the
coefficients 3;(y,t) = pje”2?Wti) j = 1,2 in the residue conditions (2.42)

must satisfy the relations 71y = 700 = —uﬁf{g, that is, p1 = p2 = —pf2p2

which imply p; = ie 7% for some 6 € R. Further we denote x(y,t) == 1(y,t)
and p := p; € C. So p satisfies

= —e%lp, (2.81)

e

Thus we arrive at the following Riemann—Hilbert problem:

Soliton RH problem. Given 6 € (0,%) and 5 # 0 two real parameters,

together with ¢ € R, find a piece-wise (w.r.t. R) meromorphic, 2 x 2-matrix

valued function M (y, t, 1) satisfying the following conditions:
e The jump condition J = I across R.

e The residue conditions (2.42)) at u; = e and ji; = e

Resge MW (y, t, 1) = A t)M(z)(y,t,ew), (2.82a)
7\Y,
. 1 . .
Resqi0 M3 (y,t, 1) = = MOy, ¢, e, (2.82b)
#(y, 1)
where ff(y,t) — ie—iﬁge—Zﬁ(y,t7e19) with ﬁ(y,t,ew) — si1219(_y + ﬁ )7 and

= —eM3
e The normalization condition M (y, ¢, 00) = I.
e The symmetries (2.43).
e The singularity conditions at p = +1.

The residue conditions at pe and fig follow from (2.82)) using the symmetries
(2.43)):

~ 1 ~ )

Res_q-0 MW (y,t,p) = E MP(y,t,—e ), (2.83a)
~ 1 ~ .

Res_ao M@ (y, t, 1) = 20D MY (y, t, —e?). (2.83b)



To summarize, the soliton RH problem of parameters (), 5) is the RH prob-
lem (2.41)—(2.44) with trivial jump condition and residue conditions data {p;, p; }i
where 11 = —fip = € and p; = py = ie 195,

Remark 2.4.1. Assume that the data of the soliton RH problem are associated
with the spectral data corresponding to some initial data ug(z), see Section
2.1.3 In particular, b(x) = 0 and a(p) has two zeros in C*, each of multi-
plicity one, p; = ¢ and ps = —e™, both on the unit circle. The coefficient
s in the residue condition for MM at py is given by 3 = pe_%(y’t’eie) with
p = a(e”)§, where the constant  relates two Jost functions: Cf)@(x,t,ul) =
5&39)(x,t,u1). Using the symmetries and the relation fi; = p; ! we find

that 01®4 (e )0y = Oo(e?) = (&) and thus § is real. Moreover, from the

symmetry relation a(p ') = a(j1) it follows that a(e?) = —e*?a(el?), and thus
p = a(e?)d satisfies (2.81)). To conclude, in that case, § = —ie?a(el?)d.

Proposition 2.4.2. Let 0 € (0,%) and b =% 0 be two real parameters. Then,
the soliton RH problem of parameters (0, 5) has a solution M = M95 provided
that ¢ = 1:

. iay(y,t) (-1 1 Pac(y,t) (1 1
2 p—1 \-11 2 p+1 \ -1 -1

i’%l (yvt)eig + if%l(y7t)e716 _i/%Q (yvt)e7i9 _|_ 1"%2 (yat)eie
7619 +efi0 7efi0 +eie
/ 0 N / . (2:84)

i'%Q(yat)eie _|_ _i’%Z(yﬂf)e_ie _il%l(y7t)e_i0 + _i’%l(y7t)eie

Iu,eie [}ri’eiie uie—ie u+eie
where
2
.1 A cos” 0 1
K ) = —x(y,t) — — - —, 2.8ba
2 (Y1) (y,1) Ely. D)0 smo (2.85a)
cos 0
Ri(y,t) = —— ko(y, 1), 2.85b
1 %) 25¢(y,t) sin 0 2(0: 1) ( )
G (y,t) = 2R9(y, t). (2.85¢)
Here,

i N . in ¢
sy, t) == G e Pt with zﬁ(yﬂf,ele)zsuz1 <_y+
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Proof. Since M(p) = M(y,t, ) is solution of the soliton RH problem whose
jump condition is trivial, it is a rational function, whose pole structure is speci-
fied by the singularity conditions (2.44)) at 4 = +1 and by the residue conditions

2382 at pp = +e*:

i )—I+% as <c 1>i o ( ¢ 1 )+< s +u+elg>
p—1\—c 1) 2p+1\—c —1 Mfzie—i—ﬂfé‘,ig uelg—k =l
(2. 86)
with some a4 (y,t), ¢;j(y,t), ¢(y,t), and c. We will specify the coefficients
using the symmetries (2.43). The symmetry MO (—p) = o300 MP (1) shows
that ¢ = 1, ¢ = ¢4, 6o = —c3, ¢3 = ¢9, and ¢4 = —cq. On the other hand,

the symmetry MM (=) = o5M®) (1) shows that ¢5 = —& and ¢4 = é. Thus

(2.86]) takes the form

. i & 11\ i a 1 1 T e e
M(,u)—l 1 Oz_+ _i ay 4 N o0 u+e 0 /~L o190 uj_fe .
2,LL 1\=-1 1 2,U—|‘1 -1 -1 7 + ——7 + 15

u+e i0 pte

The symmetry M(l)(—/fl) = agM(l)(,u) shows that c3 = cle*m and ¢4 =
—coe 2 g0 that ¢; = —cje 2 for j = 1,2, that is, ¢;(y,t) = ie4;(y, t) with
#j(y,t) € R. Thus we get (2.84).

Then, using M(O) = JlM(oo)al = I, it follows that &, = 2ko, that is,
(2-85¢). Introducing s(y,t) = 6 e 2We") 5o that (y,t) = ie ¥5(y,t) and
substituting into the residue condition at € we find on
the first row and then on the second one. ]

Remark 2.4.3. Assume that the data of our soliton RH problem are derived
from the spectral data corresponding to some initial data ug(x), as in Remark
2.4.1| Then, it directly follows that ¢ = 1. Since b(u) = 0 we indeed have (see
Remark and ([2.30)) p =0, by =0, and af = 1; thus ¢ = 1.

According to Section [2.3] a solution of the soliton RH problem gives rise to
a solution (at least, locally, in the (y,t) variables) of the mCH equation. Thus,
Proposition [2.4.2| provides a family of one-soliton solutions parameterized by

two real parameters ¢ € (0, %) and 5 0.
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Proposition 2.4.4. The one-soliton solution i = 4, ; of parameters (0, 5) has

the following form in the (y,t)-scale:

’ t 2 2(9- t 2(9
u(y,t) — 4tan?6 > (y,t) +2cos” 6 - z(y, 1) + cos

t 2.
(22(y,t) + 22(y,t) + cos? 0)? 29:1); (2.87a)
where
2y, t) = 26 sin 0 (v zst). (2.87b)
Proof. Let z(y,t) be defined by
2(y,t) == 25¢(y, ) sin 0. (2.88)

2

Then, z(y,t) = 25 sin § eV ir5t). Thus, z is real-valued. Moreover, z(y,t) >
0if 6 > 0 and 2(y,t) < 0 if & < 0. Using (2.85a)), (2.850)), and (2.88) we get

the following expressions of k9 and A;:

2z sin 6 . cosf 2sin § cos O

— and A = — Ko = )
22 4+ 22+ cos? 0 ! s 2T 221224 cos2l

In order to obtain the formula for the soliton solution @ = u(y,t), we use the

(2.89)

Ro =

relation

oL = —asa; — azaj (2.90)

from (2.78). To compute a; = a1 (y,t) we observe that a; = My (i). We thus

obtain

] ar . 1+ e2i? T cos
g =1———-Kj———F—=1—-ho+ Kj———
! 2 '2(1 — sin ) 2T —sing’

using the relation 0‘7* = fy from (2.85c|). Using the expressions of k1 and ks
from ([2.89) we get

z+1+sind
z+1—sinf

To compute ay = as(y,t) and ag = asz(y,t) we observe that as = (%Mlz(i) and

a; = (2.91a)

az = 8MM21(1). Using in addition the expression of &9 from ([2.89) we obtain

sin 0 2z sin? 0
— L Gy = — 2.91b
T g™ (14 sin6)(22 + 2z + cos? §)’ ( )
sin 2z sin? )
— G = — , 291
BT sing (1 —sinf) (22 + 2z + cos? 6) (2.91c)
Then, substituting (2.91]) into (2.90]), we arrive at (2.87al). O
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It follows from that if & > 0, then for any ¢ > 0, u(y,t) is a smooth
function of y having a single peak and (exponentially) approaching 0 as y —
+00. On the other hand, if 5 < 0, then u has two singular points corresponding
to z = —1 £ siné.

Now let us discuss the change of variable (y,t) — (z,t), which can be

specified explicitly. This change of variable is associated with u, s, that is, it is
given by (2.500) where fiy and fis are defined in terms of M = Mg 5

Proposition 2.4.5. The change of variable x(y,t) associated with the soliton

u, 5 takes the following form:

(y,t) +1+sinb

(y,t) =y +2In~ (2.92)
T = n : .
v Y z(y,t) + 1 —sinfb
Proof. As we have shown in Section 2.3} x(y,t) can be given by (2.80)):
2(y,t) =y +2Inai(y,t), (2.93)
where ay(y,t) = My (y,t,1). Substituting ([2.91a)) into (2.93)), we obtain (2.92).
]

Corollary 2.4.6. Let x(y,t) be the change of variable associated with 1, ;. Its

reqularity properties are as follows.

(a) If 6 <0, then (- ,t) is singular: there exist values of y at which x(y,t) is

infinite.

(b) If§ > 0, then z(-,t): R — R is a regular map. Moreover, it has the
following additional properties:

(i) If0 € (0,3), then z(-,t): R = R is a diffeomorphism for any t > 0.

(ii) If 0 = 3, then x(-,t): R — R is a bijection, but the derivative of the

inverse map has a singularity, and only one.

(iii) If 0 € (5,5), then x(-,t) is not monotonous. More precisely, there

are three intervals of monotonicity.
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The possible singularities of x(y,t) are those for u(y,t): they correspond
to 2 = —1 £ sinf. Therefore, if & > 0, then 2(y,t) > 0 and thus there are
no singularities, whereas if 6 < 0, then x(y,t) is singular at those y where
z=—1=+sinb.

We now consider the case § > 0 (and thus z(y,¢) > 0). The derivative
0yx(y,t) = zy(y,t) is given by

2% + 22 cos 20 + cos? 0
zy(y,t) = R(2(y,t)), where R(z) = PR Py (2.94)

It follows that R(0) = R(c0) = 1. Moreover, we have the following:

1) If 0 € (0, %), then R(z) > 0 for all z > 0.

2) If = %, then z = 5 is a double zero of R(z).

3) If 6 € (3,75), then

a) R(z) > 0for z € [0, — cos 20—+/—sin 0 - sin 30)U(— cos 20++/— sin 6 - sin 30, +00),
b) R(z) < Ofor z € (— cos20—+/—sin @ - sin 36, — cos 20++/— sin § - sin 36).

It follows that for 6 € (0, %) the solution is smooth (both in the (y,t) and
the (z,t) variables). On the other hand, for 6 = % the solution u(x,t) =
u(y(x,t),t) is given in parametric form by

422(y, t) + 22(y,t) + 1
iy 1) = 8=y ) ((;’t;j 8z((yy,7t))—t el
2y, t) = 6V/3 e Ve 43t (2.95b)
03T e V3 1 4 ‘/7§

z(y,t) =y +21In- — :
T V3
0V3eT Ve 43t 4 — V3

In particular, in the latter case (2.94)) and ([2.954) give

232 BE+1)(22+1)
- d 4, = —24/3
T 9y MO W V3 (2521 6% +3)3

(2.95a)

(2.95¢)

where 2z := z — % Thus x, has a double zero at Z = 0, which corresponds to

the crest of the solution, whereas, at the same point, 4, has a triple zero, so
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that @, = 4,/x, = 0. Consequently, u(x,t) is still continuous, with a continu-
ous first derivative u, that vanish at the crest, but the higher order derivatives

2

become unbounded at this point, e.g., @iy, ~ —2 272 as 2 — 0. This unusual

2
(finite) smoothness property of the soliton corresponding to the parameters sep-
arating (infinitely) smooth solitons from multivalued solutions (associated with
the breaking of bijectivity of z(-,¢): R — R) was first reported by Matsuno
[100], where the soliton solutions were constructed using a direct method.

Thus we arrive at the following description of the one-soliton solutions (con-
sistent with [100]*see (3.4) and (3.14)):

Theorem 2.4.7. The mCH equation in the form has a family of one-
soliton solutions, reqular as well as non-reqular, u(x,t) = ﬂe’g(x,t), param-
eterized by two parameters, 6 > 0 and 0 € (0,%). These solitons u(x,t) =
u(y(x,t),t) are given, in parametric form, by

2 t 2 20- t 29
u(y,t) — 4tan? hZ (y,t) +2cos 6 - z(y, 1) + cos

t 2.96
(22(y,t) + 22(y,t) + cos? #)? 2(y, 1), (2.96a)
2(y,t) + 1 +sinf
V- . 2.96b
x(y7 ) Z/"‘ nz(y7t)+1_sin07 ( )
2(y,t) = 26 sin O ¥l k!, o

They have different properties depending on the value of the parameter 6:

(i) For 0 € (0,%), the one-soliton solution (x,t) is smooth in the (v,t)

variables.

(ii) For 6 = %, then u(x,t) is given by (2.95) and has finite smoothness: u
and u, are continuous with i, (x,t) = 0 at the crest when z(y(z,t),t) = 3,
but near the crest the higher derivatives become unbounded as z — %

(iii) If 0 € (3,5), then u(x,t) = a(y,t) is regular in (y,t), multivalued in
(x,t), and loop-shaped.
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2.5 Conclusions to Chapter 2

In this Section, we have considered the Cauchy problem for the modified Camassa—
Holm equation on the whole line in the case when the solution is assumed to
approach a non-zero constant at the both infinities of the space variable. A
non-zero background provides that the spectral problem in the associated Lax
pair equations has a continuous spectrum, which allows us to formulate the in-
verse spectral problem as a Riemann—Hilbert factorization problem with jump
conditions across the real axis.

We have developed the Riemann—Hilbert approach to this problem, which is
based on the Jost solutions of the Lax pair and the scattering relations between
them. Two specific features of the z-equation associated with the mCH equation
that affect analytic properties of the Jost solutions are as follows: (a) A\ enters
U through a product with the “momentum” m(x,t), which, in the framework
of the inverse problem, is an unknown function; (b) as |z| — oo, m(z,t)
approaches a non-zero constant. In particular, these features affect the problem
of control of the large-A behavior of the Jost solutions. In our development of
the RH formalism, this problem is addressed by (i) transforming the Lax pair
equations to an appropriate form, with selected diagonal parts that dominate,
in a certain sense, for large A; (ii) introducing a new spatial-type variable,
in view of having an explicit description of the large-\ behavior of the Jost
solutions in terms of space and time parameters; (iii) introducing a new spectral
parameter pu (related to A by A = —%(,u + ;%»7 which allows us to avoid non-
rational dependence of the coefficients in the Lax pair equations on the spectral
parameter. Moreover, we take advantage of a consequence of property (a) that
for A = 0, U becomes independent of u, which suggests an efficient way for
“extracting” the solution of the Cauchy problem from the solution of the RH
problem taking the details of the behavior of the latter as A — 0.

Using this approach, we have obtained (i) a representation for the solution of
the Cauchy problem for the mCH equation in terms of the solution of the asso-

ciated Riemann—Hilbert factorization problem and (ii) a description of certain
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soliton-type solutions, both regular and non-regular. In particular, we have ob-
tained the peakon type solution which has a different behaviour in comparison
with the (original) Camass-Holm equation near the "peak": the solution itself
and its first spatial derivative are continuous bounded functions, and the older

derivatives become unbounded.
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Chapter 3

The modified Camassa—Holm equation
on a nonzero background: large-time
asymptotics for the Cauchy problem

The results of this Chapter are published in [87].

We study the large-time behavior of the solution of the Cauchy problem
for the mCH equation on a nonzero background (2.1)), taking the formalism
developed in Chapter 2 as the starting point. Focusing on the solitonless case,
in Subection we reduce the original (singular) RH problem representation
for the solution of to the resolution of a regular RH problem. Then, in
Subsection [3.2], the latter problem is analyzed asymptotically, as ¢ — 4o0.
We finally obtain the leading asymptotic terms for the solution of the Cauchy
problem (2.1)), in the two sectors of the (x,t) half-plane, 1 < ¢ < 3 and
3 _ =z

1 < 7 < 1 where the deviation from the background value is nontrivial. In

those sectors this deviation exhibits slowly decaying (of order t=Y 2), modulated
(by 7) oscillations (Theorems and [3.2.4), while in the remaining sectors
$>3and 7 < % it decays rapidly to 1.

3.1 Reduction to a regular RH problem
Introducing a new function u by
u(z,t) =a(z —t,t) + 1, (3.1)
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the mCH equation (2.1a)) reduces to

my + (0m), =0, (3.2a)
M= 1 — Uy + 1, (3.2b)
Q= — 2+ 24, (3.2¢)

where the solution @ is considered on zero background: u(z,t) — 0 as x —
+oo for all ¢+ > 0. In accordance with (2.1)), it is assumed that mg(z) =
(1 — 0*)ug(x) = (1 — 0?)ag(z) +1 > 0 for all z > 0. The Riemann-Hilbert
(RH) approach for the Cauchy problem for equation has been developed
in Chapter 2. This resulted in a parametric representation for @(x,t) in terms
of the solution of an appropriate RH problem proposed in Chapter 2, according
to the following algorithm:

(a) Given wug(x), construct the “reflection coefficient” r(u), p € R and, if ap-
plicable, the “discrete spectrum data” {y;, pj}évzl, by solving the Lax pair
equations associated with , whose coefficients are determined in terms
of ug(x).

(b) Construct the jump matrix J(y,t, u), p € R by
J(y,t, p) = e—p(y,w)asJO(M)ep(yyt,u)as (3.3)

where ( ) N 22
i(p” — ft

)=y Ty 3.4

p(y,t, 1) I < y (u2+1)2) (3.4)

and Jo(u) is defined by
o) = (1 —r(u)r* () rw)) | 35

(c) Solve the following RH problem (parametrized by y and t): Find a piece-
wise (w.r.t. R) meromorphic (in the complex variable p), 2 X 2-matrix

valued function M (y,t, u) satisfying the following conditions:

85



e The jump condition

My(y,t,p) = M (y, t, 1)) J(y, t, 1), peR, p#+L (3.6

e The residue conditions

1
Res,uj M(l)(y7tnu) - M(2)(y7t7uj)7
%j(y7 t) (3 7)
1 .
Res—.M@) yvtnu [a— M(l) yatnﬁa
Hj ( ) %j(% t) ( ])
with s¢;(y,t) == pje”22Wt),
e The normalization condition
M(y,t,u) — I as p — oc. (3.8)
e The symmetries
M(p) = M(p~') = osM(—p)os = o1 M (fi)oy, (3.9)

where M () = M (y,t, ).

e The singularity conditions

iOé+(y,t) —c 1
M(y,t = —" 1 1, 1
(y,t, 1) 20— 1) (c ) + 0O(1) aspu— 1, Imp >0,
(3.10a)
iOé+(y,t) ¢ 1
= - 1 —1, 1
M(y,t, p) 20t D) (_C _1>+O() as pp — —1, Imp > 0,

(3.10D)

where ¢ = 1 4 r(1) (generically, ¢ = 0) whereas a, (y,t) € R is not
specified.

Having found the solution M((y,t, u) of this RH problem (which is unique,
if it exists), extract the real-valued functions a;(y,t), 7 = 1,2, 3 from the

expansion of M(y,t, u) at pu = i:

~ (a(y,t) 0 0 as(y,t) .
M(%M)( 0 all(y,t)>+<a3(y,t) 0 )(u ) (3.11)
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+O0((p =17, p—i
(e) Obtain @(z,t) in parametric form as follows:

u(x,t) = u(y(x,t),t),
where

a(% t) = _a2(y7 t)al (ya t) - a’3(y> t)al_l(ya t):

(3.12)
z(y,t) ==y + 2Inay(y,t).

Remark 3.1.1. To simplify notations in this paper, compared to Chapter 2, we
have removed the symbol “hat” over many functions (e.g., M (y,t, 1), oy (y,t),
etc.). Another difference is that M and M_ are exchanged in the jump relation
so that here the jump is the inverse of that in Chapter 2: Jy = JAO_ L and
J=J"

Remark 3.1.2. The symmetries are consistent with the symmetries of (),

namely

r(p) = —r(=p) =r(p), (3.13)

N .

and with the invariance of the set {p;, p;};2;:

—i; = py and — g = pyr with p; =7y = —p;pyr.

These symmetries and invariances follow from the construction of the RH prob-
lem above in terms of the dedicated (Jost) solutions of the Lax pair equations
associated with the mCH equation. Moreover, the symmetries (3.9) imply the

particular structure of the matrices in ((3.11]).

Remark 3.1.3. In the case of the Camassa—Holm (CH) equation, the condition
mo(z) := (1 —8?)ug(z) > 0 for all z provides the existence of a global solution
to the corresponding initial value problem (see, e.g., [42]). In the case of the
modified Camassa—Holm (mCH) equation, the situation is different: even if the
initial potential mg does not change sign the solution w(x,t) may blow-up in

finite time [78]. We believe that the Riemann—Hilbert approach for constructing
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solutions of PDEs, being intrinsically local in the corresponding variables (in
the case of the mCH equation, these variables are y and t), is best suited to
present solutions (particularly, of initial value problems) that overcome finite
time blow-up (see, e.g., [7T0]*Chapter 3, Section 1, Corollary 3.1) and thus allow
us to study the large time behavior of solutions (namely here @(y,t)) in sectors
of the (y,t) half-plane. Then, as the following asymptotic analysis will show
(see (3.57h) and (3.69b))), in the solitonless case the correspondence between x
and y is one-to-one for any large enough ¢, and therefore the solutions u(x,t)
are also well-defined for any large ¢ in the (z,t) half-plane.

On the other hand, it is the breaking of this one-to-one correspondence
x <> y that provides a mechanism of wave breaking of the solution u(x,t) in
situations where, however, the solution M(y,t, ) of the RH problem (3.6))-
(3-10) exists for all y and ¢. In particular, if the initial data are such that some
of the associated discrete spectral points {u;} have the form p; = €% with
3 < 0; < 3, then the correspondence between x and y is no longer one-to-one

for any large enough ¢, see Chapter 2*Corollary 5.6.

In the general context of nonlinear integrable equations, the RH problem
formalism (i.e., the representation of the solution of the original problem — the
Cauchy problem for a nonlinear integrable PDE — in terms of the solution of an
associated RH problem) allows reducing the problem of the large time analysis
of the solution of the nonlinear PDE to that of the RH problem. Residue condi-
tions (if any) involved in the RH problem formulation generate a soliton-type,
non-decaying contribution to the asymptotics whereas the jump conditions are
responsible for the dispersive (decaying) part, details of which can be retrieved
applying an appropriate modification of the nonlinear steepest descent method
to the asymptotic analysis of a preliminarily regularized RH problem (i.e., a
RH problem involving the jump and normalization conditions only).

With this respect we notice that the residue conditions can be handled

in a standard way:

(i) either adding to the contour small circles around each p; and fi; and
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reducing the residue conditions to associated jump conditions across the

circles

(ii) or using the Blaschke-Potapov factors (see, e.g., [21]).

In both approaches, the original RH problem is reduced to a RH problem
without residue conditions.

As for the singularity conditions, we notice that in the case of the Camassa—
Holm equation, where such a condition is also involved in the matrix RH prob-
lem formalism, an efficient way to handle it is to reduce the matrix RH problem
to a vector one, multiplying from the left by the constant vector (1,1). Indeed,
the singularity condition for the CH equation has the form of (3.10D]), and thus
this multiplication “kill” the singularity, reducing the RH problem to a regular
one. With this respect, we notice that the matrix RH problem for the modified
Camassa—Holm equation is different: it also involves the singularity condition
(3.10a)), which, obviously, cannot be removed using the same trick.

In the present paper, we focus on the study of the dispersive part of the
large-time asymptotics of solutions of Cauchy problems for the mCH equation.
Accordingly, we proceed with the solitonless case assuming that there are no
residue conditions (the consideration of a possible discrete spectrum can then
be done according to an already well developed technique, see, e.g., [21]).

In this section we reduce the original RH problem (which is still singular due
to conditions ) to a regular one, proceeding in two steps.

In Step 1, we reduce the RH problem with the singularity conditions (3.10)) at
1 = £1to a RH problem which is characterized by the following two conditions:

(i) the matrix entries are regular at g = 41, but the determinant of the
(matrix) solution vanishes at u = +1 (note that det M (u) = 1 for the
solution of the original RH problem);

(i) the solution is singular at p = 0.

Then, in Step 2, the latter RH problem is reduced to a regular one, i.e., to

a RH problem with the jump and normalization conditions only.
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Proposition 3.1.4. Let M(y,t,u) be a solution of the RH problem (3.6)),

BI)-@ET0). Define M by
~ 1
ﬂﬂ%uu%=<l—;m>ﬂﬂ%uM- (314

Then M () = M(y,t, 1) is the unique solution of the following RH problem:

(C1) M(u) is analytic in C* and C~ and continuous up to R\ {0}.

(C2) M(p) satisfies the jump condition (3.6)) with the jumyp defined by B-3)-

B.3).
(C3) M
(C4) M
(C5) det M (1) = 0.
(C6) M(u™") = —pM(p)oy

Proof. First, let’s check that M (y,t,u) constructed from M(y,t, ) satisfies
the conditions above. The limiting properties (C3) and (C4) as ;1 — oo and as

(n) — I as p — oo.
(1

) = —%O’l—l—O(l) as p — 0.

p — 0 are obviously satisfied (by construction) whereas (C2) results from the
fact that a multiplication from the left does not change the jump conditions.
Further, since det M (y,t, 1) = 1, it follows that det M(y, ¢, u) = 1 — # and
thus det M(y,t,£1) = 0. Moreover, as  — 1 we have

(MmmJEmnzwmmwmmm—%wmmwmmm

= (Mq1(p) — Moy (), Mra(p) — Maa(p)) + O(1) = O(1)
due to . Similarly, as y — —1 we have
(W1 (2), Nz (1)) = (Miy (1) + Mas (1), Mis(1z) + Mas(p)) + O(1) = O(1)

due to (3.10b)). Similarly for (Mgl(,u), Mzg(,u)). Thus M (y, t, i) is non-singular
at 4 = £1. Finally, (C6) follows from the symmetry relation M (u™!) =
oM (p)oy from (3.9).
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Now, let’s prove that the solution of the RH problem (C1)-(C6) above is
unique (if it exists). First, we notice that if M(y,t, 1) solves the RH problem

(C1)—(C6), then

det M(y,t, 1) =1 — % (3.15)
Indeed, since det J(y,t,pu) = 1 and det M(y,t, p) is bounded at p = oo, it
follows that det M (p) is a rational function. Moreover, from (C4) we have that
det M(u) = —% + 44 O(1) as p — 0, with some ¢ = ¢(y,t). Taking info
account (C3) we have that ((y,t,u) ;= det M (y,t,u) — 1+ /%2 — - is a bounded
entire function of u, which, by Liouville’s theorem and (C3), vanishes for all

(y,t). Finally, evaluating ((y,t, ) at u = +1 and using (C5), it follows that
c(y,t) = 0 and thus (3.15) follows.

Now let’s assume that M is another solution of the RH problem (C1)-

(C6) and define N(u) := M(u)M (p). Since M and M satisfy the same

jump conditions, N(u) is a rational function, with possible singularities at

i=0,-1,1. In view of and (03), M (1) = 475 (Loy + O(1)) = O(1)
as ;4 — 0 and thus N(u) is non-singular at g = 0. In order to prove that
N(p) is non-singular at g = £1, we use relation (C6). In particular, we have
M(1) = —M(1)oy and thus M () = (2 Z%) +O(u—1) as u — 1, with some

g2 —g2

1 ) o
9j, J = 1,2. Consequently, M (n) = #5 ((Z25) +O(u—1)) as pr = 1.

with some g;, 7 = 1,2, which implies that N () is bounded as ¢ — 1. Similarly

for p — —1. Therefore, N (i) is an entire function such that N(oco) = I and
thus N(u) = I by Liouville’s theorem. O

Remark 3.1.5. Assuming r(u) = —r(—pu) (see (3.13), we have that J(u) sat-

isfies the symmetries

J(p) = o3J(—p)os = o1J " ()or,

which, due to uniqueness, imply for M the same symmetries as for M:

M(p) = o3sM(—pt)os = o1 M(i)o (3.16)
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(taking also into account that the symmetries (3.16|) are consistent with all
conditions in the RH problem in Proposition |3.1.4)).

Step 2 in the reduction of the RH problem is formulated in the following
proposition (see [82, 115 [116] for the case of the nonlinear Schrodinger equation

with “finite density” boundary conditions).

Proposition 3.1.6 (regular RH problem). The solution M of the RH problem
from Proposition |3.1.4) can be represented in terms of the solution of a reqular

RH problem as follows:

Wy, t, ) = (1 - im,t)) Myt ), (3.17)

where MT(p) = ME(y,t, 1) is the solution of the following RH problem:
Find M®(p) such that

(R1) M%(u) is analytic in C* and C~ and continuous up to the real azis.

(R2) M (u) satisfies the jump condition (3.3)(3.6).
(R3) M (p) — I as p — oo.

Here A in (3.17)) is expressed in terms of the solution M of the RH problem
above by:
A(ya t) = 01 [MR(ya t; 0)]71'

Proof. Let M®(11) be the solution of the regular RH problem (R1)-(R3) above.
Then M (y,t, 1) defined by obviously (by construction) satisfies condi-
tions (C1)-(C4) of the RH problem from Proposition [3.1.4l In order to check
conditions (C5) and (C6), we use the matrix structure of A that follows from
the symmetries of M%(p).

(i) Since M% () and M (p) satisfy the same jump condition, the uniqueness
of the solution of the regular RH problem implies that M (u) satisfies the same
symmetries (see (3.9)) (generated by the symmetry r(p) = —r(—p)):

ME(p) = o3 MB(—i)os = o1 ME(j1)o,. (3.18)
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det MT(u) = 1. Consequently, A(y,t) has the structure

A= (15 “ ) with a? — 82 = 1 (3.19)
a —if

and thus det(I — p 1Ay, t)) =1— 0‘2;252 =1- %, which implies (C5). Notice

that A2 = 1.

(ii) Now consider the symmetry p s p= L.
that J(u) = o1 J (") oy and thus M(p) := oy M%(u~")oy satisfies the same
jump condition as M® (1) does. Taking into account that M(co) = oy M*%(0)oy,
Liouville’s theorem implies that M~(co)M(p) = o [ME(0)] ' ME ("o, =
M (p), or, in terms of A,

From r(u) = r(p=1) it follows

ME(p™ = AME()o,. (3.20)

Now, combining (3.17) with (3.20) we can express M(p~1) in terms of M (u)
as follows:

M(p™") = (I = Ap)M (™) = (I = Ap)AM " ()or = Q)M (p)or (3.21)

with

Q) = (I = Aw)A (I —Ap™") .
Using (8.19), direct calculations give Q(u) = —pl and thus the symmetry
takes the form of (C6) in Proposition [3.1.4] O

From M?* back to @

Now, we can obtain a parametric representation of the solution @(x,t) of the
Cauchy problem (B.2) in terms of the solution M (y,t, ) of the regular RH

problem from Proposition 3.1.6, First, using (3.14) and (3.17)), we get M from
ME:

M(p) = (1 — %01> B (1 — %A) ME(p). (3.22)

93



Then, by (3.11)) and ([3.12)) we find
M(y7 t7 :u) ~ {al(y7 t)? G’Q(yv t)7 a’3(y7 t)} ~ {ﬁ(yv t)a x(yv t)}v

and finally a(z,t) = a(y(z,t),1).

3.2 Large-time asymptotics of the regular RH problem

In this section, we study the large-time asymptotics of the solution M%(y,t, 1)
of the regular RH problem from Proposition [3.1.6 using the ideas and tools of
the nonlinear steepest descent method [54]. The method consists in successive
transformations of the original RH problem, in order to reduce it to an explicitly

solvable RH problem. The different steps include
(a) appropriate triangular factorizations of the jump matrix;
(b) “absorption” of the triangular factors with good large-time behavior;

(c) reduction, after rescaling, to a RH problem which is solvable in terms of

certain special functions;
(d) analysis of the approximation errors.

The information on LP-RH problems and their applications to the asymptotics
can be found in [50, B3| [70, 122]. Here we focus on deriving the leading terms

of the large-time asymptotics, while for error estimates we refer to [93].

3.2.1 Transformations of the regular RH problem

Introduce
01, &) = 0(k(p), €),
where
Y _1 _l A . B 2k
=t b =g (0] ROk o (2
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Hence, p(y,t,u) = itd(p,&). The jump matrix J(y,t,p) in (3.6) which is
defined by (3.3)—(3.5)) allows two triangular factorizations:

r efQitQ
J(y,t,,u) = <(1) (M)l ) (T*(i)emtﬁ (1)> ’ (3.24&)

J(y,t,p) = (3.24b)

( 1 0) (1 — r(p)r*(p) 0 ) <1 %62%)
() 2it0 1 :
MM 0 =t/ \0 1

Following the basic idea of the nonlinear steepest descent method [54], the
factorizations can be used in such a way that the (oscillating) jump ma-
trix on R for a modified RH problem reduces (see the RH problem for M5 below)
to the identity matrix whereas the arising jumps outside R are exponentially
small as ¢ — 4+00. The use of one or another form of the factorization is dic-
tated by the “signature table” for 6, i.e., the distribution of signs of Im 6(u, &)
(that depends on &) in the p-complex plane.

a) The factorization (3.24al) is appropriate for the (open) intervals of R for
which Im (p) is positive for € C* close to these intervals (and negative
for p € C~ close to the same intervals). We denote by 3, = ¥,(£) the union

of these intervals.

b) On the other hand the factorization (3.24b)) is appropriate for the (open) in-

tervals of R for which Im 6(y) is negative for y € C* close to these intervals.

We denote their union by ¥,(§) = R\ X,(&).

In turn, one can get rid of the diagonal factor in ([3.24b) using the solution
of the following scalar RH problem: Find a scalar function d(u, &) (£ being a

parameter) analytic in g € C\ 3,(§) and such that
04(p1,€) = 0-(p, (L = [r()), v € Z(8), (3.25a)
op, &) =1, p— oc. (3.25b)

The solution of the RH problem (3.25)) is given by the Cauchy integral:

511, €) = exp {i /2 . In{1 — 'T(S)‘Q)ds}. (3.26)

27 S — I
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Define Mi(y,t, p) := M (y,t, 11)6%(u,&). Then M; can be characterized
as the solution of the RH problem including the standard normalization condi-

tion My(u) — I as pp — oo and the jump condition

Ml-l—(y:tu:u) - Ml—(yntnu)Jl(yatnu)a JUBS R? (327)

where the jump matrix is factorized as
L ()8 (p, §)e" 1 0
Jl(:U,t,,LL) = % -9 2it0 ) ILL € Za(f)
0 1 ()52, €)1
(3.28a)

Ji(y,t, pm) = (3.28D)
7,,* _2 i ) .
T mam U (1, €)e™ 1) \0 1

Now let us discuss the structure of ¥,(§) and 3,(&). First, we notice that
0(¢, k) is exactly the same as in the case of the CH equation [27]. Taking
into account the relation between p and k (see (3.23), the “signature table”
for the CH equation near the real axis suggests that for the mCH equation
(the latter being, additionally, symmetric w.r.t. g+ 1/pu) while the ranges of
values of & for which the “signature table” keeps the same structure are the
same. Namely, one can distinguish four ranges of values of ¢ for which ¥,(§)
and X (€) have qualitatively different structures (which, consequently, implies

four qualitatively different types of large-time asymptotics):
(D) € >2,
(IT) 0 < ¢ < 2,
(III) —1 < ¢ <0,
(IvV) £ < -1,

Each range of values of ¢ is characterized by the structure of ¥,(&) (or 34(€)):
¥.4(&) is the union of disjoint intervals whose (finite) end points are (real) sta-

tionary points of 0(u,§), i.e., points y € R where S—Z(,u,f) = 0, and similarly
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p(§) =
(0. £>2,
) (—H0, =32 U (s o), 0<¢<2,
(—00, =pi1) U (=10, —5) U (=4, £) U (ki) U (g +00), —E<€<0,
| (—00, +00), ¢ < -1
(3.29)

Here the values of 19(§) > 1 and p1(§) > 1 are those associated (via k; =
(e Mi]), j =0,1) with the (real) stationary points xo(£) and rq(€) of O(k),
i.e., the end points in the case of the CH equation. They are determined by

the relation £ = % (see [27]):

14+46—-1— 1+46+1
B =Y g =

(ko(&) is relevant for ranges II and III whereas k(&) is relevant for range I11
only). In analogy with the case of the CH equation, for ¢ in ranges I and IV,
the solution Mj of the RH problem (see below) decays rapidly (as t — +00) to
the identity matrix, which corresponds (in the case without discrete spectrum)
to rapid decay of the resulting u(y,t). On the other hand, ranges II and III
are those where the large-time asymptotics in the case of the CH equation are
of Zakharov-Manakov type (trigonometric oscillations decaying as t~/2), see
|21, 27]. Our main goal in the present paper is the derivation of analogous
asymptotic formulas, for ranges II and III, in the case of the mCH equation.
The next step in the transformation of the RH problem is the “absorption”
of the triangular factors in (3.28al) and into the solution of a deformed
RH problem, with an enhanced jump contour (having parts outside R). This
absorption requires the triangular factors in and to have ana-
lytic continuation at least into a band surrounding R. With this respect we
notice that, as in the case of other integrable equations (in particular, the CH

equation), the reflection coefficient r(u) is defined, in general, for u € R only.
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However, one can approximate r(u) and % by some rational functions

with well-controlled errors (see, e.g., [93]). Alternatively, if we assume that the
initial data @(z,0) decays exponentially to 0 as z — +oo (or that @(z,0) has
finite support in R), then r(ux) turns out to be analytic in a band containing
the real axis (or analytic in the whole plane) and thus there is no need to use
rational approximations in order to be able to perform this absorption (see the
transformation M; ~» Ms below). Henceforth, in order to avoid technicalities
and to keep the presentation of our main result as simple as possible, we assume
that r(u) (and thus 1 —r(u)r*(p)) is analytic in a domain of the complex plane
containing the contours of the successive RH problems (and refer to [93] for
details related to the rational approximations).

For 0 < £ < 2 and for —% < & < 0, we define a contour ¥ = () consistent
with the signature table for 0(u, £), see Figures and [3.2] respectively.

........................ Q
1 - & e +
5, ¥ 5 s, 5,
{y 1, : ! 2, Q,
_1 4 1 3 4
X, I3 _@ Ho 23 Z,
it + ."-.' 2 + -
.................... QO ""'--.........-""--"‘

Figure 3.1: Signature table (dotted lines), contour X(§) = Uj_;%; (solid lines)
and domains €;(§) for 0 < £ < 2.
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I3

Figure 3.2: Signature table (dotted lines), contour X(§) = Uj_;%;

and domains Q;(§) for —1 < £ < 0.

Further, define My by Ms(y,t, pu) :== My(y,t, ) P(y,t, 1), where

P(y,t, i) = <

]7 VS QO?
1 0 0
o € 1
()03 (p, §)e 1
1 — T(M* 52 ’ e—21t9
( MY e
0 1
1 0 0
" JURSIRYAN
— ;ﬁl(u)é—z(ujg)ezlw 1
() e
; n e Q4.
0 1

(solid lines)

(3.30)

Then Ms(y,t, ;) can be characterized as the solution of the RH problem with

the standard normalization condition Ms(u) — I as u — oo and the jump

condition

MQ-l—(y?t),u) - M2—(y7t7M)J2(y7taM>7 [UAS 2= U?:lzja
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where X; 1= Q_oﬂﬂ_j and

(

1 0
. pE X,
=1 ()07 (p, €)e*" 1
r(p) 2 —2ith
1 1—7“(,u)7""(,u)(S (Maf)e e 227
0 1
Jo(y,t, 1) = < (3.32)
1 0 .
e (I
L ()8, €2
; n e >4
0 1

\

The RH problem for M, is such that uniform decay (as t — +00) of the jump
matrix is violated only near the stationary phase points of (). The large-time
analysis, with appropriate estimates, of such problems involves the “compari-
son” of the RH problem with that modified in small vicinities of the stationary
phase points, using rescaled spectral parameters as well as approximations of
the jump matrices in these vicinities [54].

In our large-time analysis for My, we follow the strategy presented in [93].

Step (1). Add to ¥ small circles v; (5 = 0,1) surrounding pu;, together with
their images —v; (surrounding —p;) and i’yj*l (surrounding £1/p;) under the
mappings p — —pu and g +— 1/u, respectively.

Step (ii). Inside the circles around gy and gy, define (explicitly) a function
mo(y, t, ) which exactly satisfies the jump condition across ¥ obtained from

(3.32) by replacing r(u) with r(ug) and (), respectively, and by replacing
6% (1, €)e 2M(8) with its large-time approximation.

Step (iii). Define mgo(y, t, ) inside the other small contours using the symme-
tries mo(p) = mo(1/i2) and mo(pu) = o3mo(—p)os (which are consistent with

the symmetries of Ma(u)).
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Step (iv). Define m(u) by

) My(y,t, pymg* (y,t, 1), inside +~; and £,
My, t, 1) =
Ms(y,t, 1), otherwise,

Then m(u) satisfies the conditions of the RH problem

m+(y,t,,u) = m—(yatnu)j(yatau)v :u € ﬁ] = E UJ {:l:fy‘?} U] {:l:fyj_l}7

m(y,t,p) = 1, [t — 00,
where
)
my " (y,t, ), pe U{Ey Uy {£9771)
J(y,t,p) = S mgt(y, t, 1) Loy, t, )moy (y, t, 1), € XN {p| pinside U; {:i:fyjj.ﬂ}},
\ Jo(y, t, 1), otherwise.

On the other hand, the unique solution of this problem can be expressed in
terms of the solution ©(u) of the singular integral equation (see [93]*Lemma

2.9):
. 1 . ds
m(yvtnu) =1+ a9 G(y,t,S)U)(y,t,S) : (333)
21 Js 5 — |

Here w(y,t,s) :== J(y,t,5)—I and © € I+ L*(2) is the solution of the integral

equation

O(u) — Ca®(n) = I,
where Cy: L*(X) + L®(X) — L*(X) is an integral operator defined with the
help of the singular Cauchy operator: Cy f := C_(fw), where C_ = %(—]+ S¢)
and Sy, is the operator associated with 3> and defined by the principal value of

the Cauchy integral:

1 .
Ss00) = s [ Lt et

Here L2(X) 4+ L®(%) denotes the space of all functions that can be written as

the sum of a function in L*(3) and a function in L®(3).
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Step (v). Estimate the large-time behavior of m(y,¢,u) at g =1 and p = 0

taking into account the following facts:

e The main contribution to the r.h.s. of (3.33)) comes from the integrals over
the small contours, where w(y, t, 1) = my ' (y,t, u) — I:

R 1 my ! Jt,s)—1
iy, t,p) =1+ -— o (8,4,5)
2T Sy S T M

ds 4+ o(t71/%). (3.34)

Henceforth the error estimates are uniform for ¢ < £ < 2 — ¢ and —%1 +e<

¢ < —e, for any small € > 0. For detailed estimates, see [93].

e In turn, the main contribution to mal(y, t, ;) — I comes from the asymptotics
of the RH problem for parabolic cylinder functions (involved in the construc-

tion of mg(y,t, 1)), see [93]*Appendix B, which can be given explicitly.

3.2.2 Range 0 < £ <2

This range is characterized by the presence of four real critical points: 4 and
E 1y L

Construction of my

First, we approximate itf(u, £) using (3.23), the relation

1 1
Ko = 1 Ho — % (3.35)

between pg and kg, and the approximation for 6(k, €) near ko, see [27]:

0(k, &) ~ 0(ro) + 8fo(ko)(k — Ko)?,

where (3 4r2) 1643
KZO - /{0 A l‘fo

- -—— 0 p— —_——— .
Jo(ro) (1+4K2)3 7 (o) (1 + 4rk3)?

Here and below we use the symbol &~ somewhat loosely to express that the left-

(3.36)

hand side is approximated by the right-hand side as a function of the spectral

parameter with an error term that we are able to control in the subsequent
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error estlmates (see, e.g., (3.44) and (3.47)-(3-49)). We have —ith(u,&) =
—1t9(/-f0) -, where the scaled spectral variable fi is introduced by

~

!
K= Ho = - :
(14 po*)V2fot

Now we approximate d(u, ) near p = po. From (3.26) we have

mm)w% </woﬁJm1r@%%
hoz—ilnu—vwo ),

/1/”0 / 1—|7“ ()] ds
" omi m . 17 (o) 2 s — p

(notice that |r(u)| = |r(—w)| = |r(1/p)|). Therefore (cf. [27]),

(3.37)

where

ih,
i fo +1/p0 " (o) _ b 200 (o)
0(p, &) ~ (1 — po h( ) eXtro) = fiho (128 fyrdt) 2 exlio
(h:8) = ) 2p0(pt0 — 1/10) ( ot

and thus
5(#7 g)e—ite(l%g) ~ 5/10 (57 t)ﬂihoe_%’ (339)
where

O (§,1) = & 100mol10)) X(10) (128 i (10 (110) ) 2 (pa0)t) 7 (3.40)

The approximation ([3.39)) suggests introducing mg(y, t, 1) (near p = pg) as
follows:

mo(y, £, ) = D(E )m™ (& )D& 1), (341)
where D(&,t) = 673(t) and m™ (&, 1) is the solution of the RH problem, in
the ji-complex plane, whose solution is given in terms of parabolic cylinder
functions [93] (with ¢ = —7(uo)).

Since (see (3.37)) finite values of p correspond to growing (with ¢) values

of fi, the large-time asymptotics of mg(y,t, ) for p on the small contours
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surrounding 4y and :ti involves the large-fi asymptotics of m*X (&, 1), which
is given by (see [93]*Appendix B)

e =1+~( " 5“0(5)>+OA2 3.42
m™ (&, 1) p (%(5) 0 (i77) (3.42)

with
/BMO \/76 T —arg(— +arg1"(1h0))’ (343)

where T" is Euler’s gamma function. From (3.37)), (3.41) and (3.42) we have

mg ' (y, t, 1) = D&, 1) (m™) 7 (& () D (€, 1)

1 0 _Buo(g) ~1 -1
D(&,t) | I - (@0(5) 0 ))D (&) + 0@ )

=]+ —""—+0("), (3.44)

where

1073, (&, 1) Buo (&)

1+ 115%) /2 fo(Ko (o))
(3.45)

Here the estimate O(¢™1) is uniform for € and p such that 6y < € < 2 — &1 and

o 0 Bo(&,t) : _
B(¢&,t) = (Bo(g,t) 0 ) with Bo(¢,t) = (

|t — o] = €2 for any small positive ¢, j =1, 2.

Asymptotics for m

In view of our algorithm for representing w in terms of the solution of the
associated regular RH problem, see (3.22)), (3.11)), (3.12), and (3.1]), we need
to know the asymptotics for m(y,t,0), m(y,t,i), and mq(y,t), where 1y is
extracted from the expansion m(y, t, ) = m(y, t,1)+1m (y, t)(p—i)+O((n—i)?)
as 4 — i. By and the residue theorem, the leading contributions of the

integral over 7y into (3.34]) for these quantities are, respectively,

B B B
and ———. (3.46)

povVt (no — V1 (ko —1)2V
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In order to take into account the contributions of all small contours, we

extend the definition of my by symmetries (as indicated in Step (iii)). This

gives
B B 1B 1 B\ 1
m(y,¢,0 _I+( _____ —+——>—+o(t_1/2)
( ) po po pgpgt o Hipg') Vi
47:1m B t 0 1
I 71m 0(57 ) +O(t—1/2)7 (347)
,UO\/% -1 0
. : B B 1 B 1 B 1 1
myvtal :[+( -+ > S > Y E— >—+Ot /
)= G S T e =1 =) v
21Im By(&,t 0 1
I 11m 0(57 ) —|—O<t_1/2), (348)
MO\/% —1 0
and
. B B 1 B 1 B 1 i
mly,t:< ~z T : _—f——f>—+0(t /)
- (ho —1)* * (—po—1)* 4§ (g =12 g (—po' —1)2) V1t
4 0 Re —2¢
— (1o—1)? -1/2
= 5 5 + o(t . 3.49
Vi <Re T 0 ) e (849

From m back to M~

In Section we presented the large-time asymptotics of m(y, ¢, 1) (and thus
of Ms(y,t,u)) for the dedicated values of p. Since P(y,t,0) = I whereas
P(y,t, ) tends to I exponentially fast, as ¢ — +oo for all u close to i,
in order to obtain the leading terms of the asymptotics for MP(y, t,u) =

My(y, 1, 1) (1,€) = Ma(y, £, 1) P~y £, 1)6% (1, £, we need to know 6(s,)
(3.26) for ;= 0 and p near i.

Due to the symmetry |r(u)| = |r(—p)| we have

5(0,€) = exp L/Z . In(1 —|r(s)| )ds}

271 S

1. (3.50)

Let Iy and I; be such that 6(u, &) = elotit=+ a5 1, — i, Then, using again
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the symmetry |r(u)| = |r(—p)l),

_ b In(1 —[r(s)*) g1 [ (- r(s)%) ;
Iy = /z(g) d w/ ds.

27 s — i e 821

On the other hand,
1 [ 1 1
L =— In(1 — |r(s)|?) ( — + , ) ds

27i (s —1)?  (—s—1)?

1/ 1o
1 [Ho s2—1
= — In(1 — |r(s)[*)—5—=ds =0,
| W)

the latter equality being due to the symmetry |r(u)| = |r(u~1)|. Thus, as
p— 1,

5(1,€) = 8(1,€) + O((u — 1)?) with 8(i,€) = exp {%/

1/ 1o

i,
s 41

(3.51)
Therefore, it M (y,t, u) = ME(y,t,1) + M (y,t) (1 —1) + O(( — 1)?) we have

the following asymptotics for M%(y, t,0), M (y,t,1), and M{(y,t):

MP(y,1,0) = in(y,1,0) = [ + 1m Bo(&, ) ( ! 1) Lo(t?),  (3.52a)

poV't -1 0
ME(y, t,i) = m(y, t,1)6%(1, &) + O(e™) (3.52b)
B 2iIm By(&,t) 1 _ ~1/2
T ( MO\/_ (1 O)) 5 (1a£) + O(t )7
M{'(y, t) = 1 (y,1)07 (i, §) + O(e™") (3.52¢)
4 0 Re B
- — _ (ho—1)% | §93(; —1/2
v (Re( sy ) 574(,€) + ot

where By(&,t) is given by (3.45) and (i, £) is given by (3.51]).

Large-time asymptotics of u

Combining the asymptotics (3.52)) for MZ(y, t,u) with (3.11)), (3.12), (3.14),
and (3.17)), we can obtain the leading term of the large-time asymptotics of

u(z,t).

106



Introducing n := QImBO , from ([3.52al) we have:

2in 1

Aly,t) = o1 [M"(y,t,0)]" ( L oy

) +o(t7V?). (3.53)

Therefore, for

M) = <1 _ lal) B <[ - EA) ME() (3.54)

MRy = i”) 503<i>+<§2 ﬁ) 5% (1) (1 — 1) + O((u — D)%), (3.55¢)

_Ag B A B
Bl—ﬂRe(MO_I)Q, B \/%Re(uo_w. (3.56)

Substituting (3.55)) into (3.54) and keeping the terms of order ¢~'/2 we have

[ (T =n)d(i) 0
M{p)= ( 0 (1+n)51(1)>

0 (B1 +m)d~" (i) 0 4o (y — 2
+<(62—77)5(i) 0 )(M ) +o((p =)t

and thus (see (3.11)))

a1 = (1=n)8(1)+o(t™?), as = (B1+0)d 1(Q)+o(t™?), as = (Bo—n)d(i)+o(t"?).

It follows (see (3.12)) that

8(1 — M(z)) —-1/2
Re By + o(t7'/%),  (3.57a
(14 pd)2Vt oo, )
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z(y,t) =y +2In((1 = n)d(D) +ot %) =y +y(&) + O 1), (3.57)

where (see (3.51) yo(§) = 2 1%0 %ds.

Recalling the definition (3.45) of By and introducing the real-valued func-
tions 5(€,¢) and 5(€) (see (BA3) and (B40)) by

Bue(§) = v hoe'?#®), 520(5, t) = el¥s(&t)

we have By = %ei(gwﬁ(fmwﬂ@) and thus
Vho T
Re By(€, 1) = T uzg\/Z_fo cos {5 +oos(Et) + @5(5)} . (3.58)
0

Substituting (3.58)) into (3.57a) gives the asymptotics of the solution of the
Cauchy problem for the mCH equation (in the form (3.2))) expressed paramet-

rically, in the (y,t) variables. Recalling the definitions of fy, s, ¢35, By, (see
(13.36), (3.40), (3.43))) and the relationship (3.35)) between g and k¢ we obtain
the following large-time asymptotics along the rays ¥ = ¢ for 0 < § < 2:

i0.0) = L cos (Cal€)t + Cu(@) It + O+l (359
where
Ci(§) = — (3811022(2) 5 ; (3.60a)
32k
Co(§) = Ty (3.60b)
C5(§) = —ho, (3.60¢)

1o 1—|r(s)*> ds
e __</ °) /u()) ST T

128k (3 — 4K3)
(1+ 4rk3)3

taking into account that hg, kg, and g are defined as functions of &.

— holn — arg(—7(uo)) + arg I'(iho),

In order to express the asymptotics of a(x,t) = u(y(z,t),t) in the (z,t)
variables, we notice that (3.57b)) reads
x



and thus introducing ¢ := ¥ gives C;(§) = C;(¢) +O(t™"), j=1,...,4 and

o)t = Co(C)t — C;—(?(o o(C) +of1).

It follows that the leading term of the asymptotics for @(z,t) can be obtained
from the r.h.s. of (3.59)), where

(i) C;(&) is replaced by C;(C) for j =1,2,3, and
(if) C4(€) is replaced by C4(¢) := Ca(¢) — C4(¢)yo(C).

In turn, calculating C4(¢) in terms of ko(¢) and using (3.60b) and ¢ = 12+f:°
we get C5(() = —2ko and thus

Cu(0) = o + e [ RO

(3.61)
1/ po

The asymptotic analysis we have presented above can be summarized in the

following

Theorem 3.2.1. In the solitonless case, the solution @(x,t) of the Cauchy

problem for the mCH equation in the form has the following large-time

asymptotics along the rays § =: ¢ in the sector of the (x,t) half-plane 0 < ¢ <

2:

C1(¢)
Vit

with Cy, Cy, Cy defined by (3.60a)-(3.60d), and Cy defined by (3.61)-(3.60d).
Moreover, in these definitions hg = — 3= In(1—|r(p0)|?), ro(¢) = (—VlHAf{l_C)Z
and p19(¢) > 1 is characterized by the relation ko(¢) = 1(p0(¢) — po(¢) ™).

u(x,t) = oS {C’Q(C)t + C5(¢) Int + é’4(§)} +o(t71?) (3.62)

)

By using the relation (3.1)) between @ and w we immediately obtain, as a

corollary, the large-time asymptotics for u(z,t) in the sector 1 < ¥ < 3.

Theorem 3.2.2 (1% oscillatory region). Let ug(x) be a smooth function which
tends sufficiently fast to 1 as x — 400 and satisfies (1 — 0*)ug(z) > 0 for all

x. Assume we are in the solitonless case, i.e., assume that the spectral function
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associated with ug(x) has no zeros in the upper half-plane and thus the “discrete
spectrum” 1s empty.

Then the solution u(x,t) of the Cauchy problem for the mCH equation
has the following large-time asymptotics in the sector of the (x,t) half-plane
defined by 1 < (=5 < 3:

Ci(¢—1)
Vit

wz,t) =1+ cos { Co(C = )t + Cy(C = DIt + Cy(C = 1) fo(t ™)
(3.63)
The error term is uniform in any sector 1 +e < ( < 3 — ¢ where € s a small

positive number.

3.2.3 Range —: < ¢<0

This range is characterized by the presence of eight real critical points: =y,
+uq, i,ual, and i,ul_l, see Figure . Similarly to the range 0 < & < 2, we
proceed, first, by evaluating the contribution to from 9 and —v; and
then by using the symmetries p — —p and g — 1/p. Notice that choosing —v;
surrounding — 1 is suggested by the structure of 334 (€): the parts of 3 (&)
ending at pg and at —puy are located to the left of these points. This implies
that the construction of the local approximation near —u; follows exactly the
same lines as for pg, the only difference being in the contributions to the r.h.s.
of from other critical points.
Namely, from (13.26)) we have

ih 1N ik 1N ik ihy
5 §)2<u—uo) 0(#"’#01) O(M—Ml) 1<u+u1) e
’ =yt o+ o ot gt 1 — b ’

where hj = —3In(1 — |r(p;)[*), = 0,1 and

() = = {— [t spama (3.65)

2m1 00
—ho Ho 1—1|r(s)]? ds
(7w
—Ho po't 1 - ’T(MO)‘ S—H
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prt 1_|r(3)‘2 ds - +oon8_ e
+/_ullln1—\r(m)|28—u / tnfs = ud Indl '”')}-

Thus, using ro(po), fo(ko(po)), (see (B.35), (3.36)), and similarly for ry (1)
and fi(r1(p1))

K1 + Ko
R1 — Ko

ihy
61, €) ~ i (128 fordt) 7 ( ) eXH) with fi = (u—po) (1 %) 2fot.
0

for p near py and

iho
i _ih K1+ K _ o 1
(,u g) =~ hl( 128f1/{)%t) 2 (Kl K/O) eX( ,Ul) Wlth Iu — (Iu_|_'u1) <1 _|_ ?> ) /_2f1t
1 — Ko 2
for pu near —py (notice that fy(kg) = fio(3— 4“0) > 0 whereas fi(k1) = R1B—4rT)
0P/ = T1+ard)? 1\R1) = a2y

0). Consequently, the coefficients d,,(£,t) and 0,,(&,t) to be used in the con-

struction of my (3.41]) for u near py and —pq, respectively, are as follows:

) ihy i
Su(€.t) = 7000 (SR ) (128 o)~

1 (3.66)
K1 + Ko in

. iho
5 (E,1) = oltf(51) gx (=) ( ) (—128fm%(u1)t)_71,

which implies (cf. (3.44]))

K1 — Ry

-1 o BMo(got)
my (y,t,,u) =1+ ﬁ(,u - ,MO)

my ' (y, 1, 1) :]—{—\/?MM

t(p+ )
where (cf.(3.45))

B 0 Bo(&t) _ 0 Bi&1)
B”°(£’t)<30<£,t> 0 ) B”l(g’t)<31<€vt> ! )

with

+O(t™), for p inside o,

+O(t™Y), for p inside — 7,

K1+ no)ml 107, (§,8) By (€)
(1+ 6%) /2o (k0)
(m + m))m@ iy, (£, 1) By, (€)
K1 — Ko (1+ pui)\/=2fi(k1)

(3.67)

Bl(€7 t)
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Here 3,,(€) is given by @ ) and

Bm \/76 T —arg(—7(—p))+arg F(lhl))

In turn, due to the symmetries, the asymptotics for m(y,¢,0), m(y,t,1), and
mi(y,t) (and thus for M%Z(y,t,0), M%(y,t,i), and M{(y,t)) in the present

case (cf. (3.47)-(3.49) and (3.52))) involve two terms:
4i (Im By(&,1 Im By (&, 0 1
MRy, t,0) =T + — ( mBo(6t)  mBi(E, )) ( o> +o(t7?),

\/% o M1 —
M*(y,t,1) = (I + % (Im i)f’t) - ImBﬁjl(f’w) (Ol ;)) 6% (1,€) +o(t'1?),
4 0 Re + Re
MR(y,t) = — ( ( ) (11 +1 > 503( S) O(t_l/Q),
1 VI \Re s + Re 0 0

where (i, £) is now given by

56,6 = e {% ( [ OO) Sy (13)2)018} ST

0

It follows that the asymptotics for the parametric representation of @, see

(3.57a) and (3.57b)), takes the form
8 1 1
a(y,t) = — (MR By + wRe B1> o(t™1?),  (3.69a)

Vi (L + p5)? (1 + p7)?
w(y, ) =y +yo (&) + O(t™1?), (3.69b)
where yo1(£) = ( f”ol + f ) des.

Recalling the definitions of Bj, j =0, 1, and arguing as in the case
0 < & < 2, we arrive at the asymptotics of 4(y, t) (cf. (3.59))

©) _ _ _
i = 3 Tl {chon+ 0§”<s> e+ P} +o( ),
o (3.70)
where
. Sho )2
j
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()
_ 71
(&) = —hy, (3.71c)
3 2
ey _ 3T oo 1286813 — 4k

K1 + Ko

— arg(—7((—=1)7;)) + arg T'(ih;) + 2h;_;In

and x(p) is given by (3.65)).

Returning to the (z,t) variables, C’ij)(f), j = 0,1 are to be replaced, simi-

larly to (3.61)), by
E0 () = ) +<—1>ﬁ4/~ej<<)< SN +O°) In(1 = |r(s)P)
9(¢) = Q) / / / ;

s 61 82+1

lﬁ—/ﬁo’

(3.72)
which finally leads us to

Theorem 3.2.3. In the solitonless case, the solution u(x,t) of the Cauchy
problem for the mCH equation in the form (3.2) has the following large-time
asymptotics along the rays 7 =:  in the sector of the (x,t) half-plane —%1 <
¢ <0:

() _ _ »
i) =3 G \/gf) cos { ()t + CP ()t + CPHO) } + o)

7=0,1

with an error term uniform in any sector —i +e < ( < —e where € is a small
positive number. The coefficients C’l(j), C’;j), C’g(j) are defined by (3.71a)-(3.71d))
and é’ij) is defined by (3.72)-(3.71d). In these definitions

(1 (),

_(YIFER 1Y _( VITE 414G
ko(C) = i ., k(Q) = |- m ,
and pi(¢) > 1, 5 = 0,1 is characterized by the relation k;(¢) = i(ﬂj(o _
().

hy =
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Using again (3.1)) we obtain, as a corollary, the large-time asymptotics of

u(z,t) in the sector 3 < £ < 1.

Theorem 3.2.4 (2% oscillatory region). Let ug(z) be a smooth function which
tends sufficiently fast to 1 as x — 400 and satisfies (1 — 02)ug(z) > 0 for all
x. Assume we are in the solitonless case, i.e., assume that the spectral function
associated with uy(x) has no zeros in the upper half-plane and thus the “discrete
spectrum” 1s empty.

Then the solution u(x,t) of the Cauchy problem for the mCH equation
has the following large-time asymptotics along the rays T =: ¢ in the sector of
the (x,t) half-plane defined by % <(<1:

() | | |
(e, t) =1+ % cos {cy)(g —Dt+ (¢ —1)Int+CY (¢ - 1)}+0(t‘1/2)
§=0,1

The error term is uniform in any sector % +e < (< 1—¢ where € is small

and positive.

_3 _
t =4 ¢=1
/ //
7
Z nd = y
727 oggiflatory
4
7 regiph
7 /7
// 4
7 4
. / //
rapid decay / y
VA " .
e 1% oscillatory
/s 7 .
il region
’ s, (=3
/s -
/ 7 -
Vavs -
/s -
7’ _ -
S rapid decay
~
-

Figure 3.3: Asymptotics for u(z,t) according to ¢ := 7: the four regions.

Remark 3.2.5 (other regions). In the solitonless case, u(x,t) decays rapidly to
1 in the sectors £ > 3 and £ < 3, ¢f. [27]. This is due to the fact that for these
ranges of values of %, 0(y, §) has no real stationary points (lying on the contour

of the original RH problem).
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Remark 3.2.6 (transition zones). Transitions between the sectors (i.e., for £

t
near % and 3) are characterized by the merging of real stationary points of

O(u, &), which implies that the error terms in Theorems and grow
as € — 0 and thus the presented asymptotics becomes incorrect. On the other
hand, in analogy with the case of the Camassa—Holm equation (see [17]), using a
different scaling of the spectral parameter, one can obtain a correct asymptotics

in the transition zones in terms of Painlevé transcendents [20].

3.3 Soliton asymptotics

As for other soliton equations, the soliton solutions of the mCH equation are
associated with the residue conditions (2.42)). Accordingly, these conditions
give rise to soliton asymptotics in a dedicated sector of the (x,t) plane. They
can be handled by adding to the contour small circles around each p; and its
symmetry counterparts and thus reducing the residue conditions to associated
jump conditions across the circles and then proceeding as in the case without
residue conditions [21].

The one-soliton solution u = ugs with parameters (6,0), where 0 € (0, 3),

has the following parametric representation:
u(z,t) =u(x —t,t) + 1 =au(y(x —t,t),t) + 1, (3.73a)

where
(y,t) +2cos?8 - 2(y,t) + cos? 0
(2(5,0) + 225, 1) + cOR0)?

2
i(y,t) = 4tan* 0 - 2(y,t), (3.73b)

2(y,t) + 1 +sind
)=t 21 3.73
x(y7 ) +y+ nZ(y,t)—F]__Sln@’ ( C)
and
2y, t) = 26 sin 0 (v st). (3.73d)

Notice that if 6 € (3, 5), then the = to y correspondence (3.73c) is not one-
to-one and thus in this case (3.73)) represent a loop-type multi-valued function
of #. On the other hand, if # € (0, %), then (3.73) represent a smooth function,
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which dominates the long-time behavior of the solution of problem (2.1)) in an

associated sector. Similarly to [21] the following theorem holds:

Theorem 3.3.1 (soliton asymptotics). Assume that a(p) associated with uy(x)
has 2n simple zeros: p; = el with 0 < 0y < -+ < 0, < 3 and fipy; = —ji
forl =1,....,n. Then the asymptotics of u (understood as a global solution

of (2.1a) or a solution continued beyond possible blow-ups following the RH

formalism) in the sector 3 < ¥ <9 is given as follows:

x 2
t 1 cos? 6,

1. In the sectors < g with any € > 0 sufficiently small,

u(w,t) = uj(z,t) + O™, j=1,...,n

with 1 > 1 depending on the rate of decay of up(z) — 1 as |z| — oo, where
w; is given, parametrically, by (3.73) with 6, 6, and z replaced by 6;, §;,

and z; respectively, where

. sin 6; (y—msggtg_t—f—y?)
2i(y,t) = 24;sin6; e J

and y;-) are constants determined by {0, Om ;11

2. Outside these sectors, u(x,t) = O(t7).

Remark 3.3.2. Since it is the RH problem parametrized by y and ¢ that un-
dergoes the asymptotic analysis, and the soliton solutions ((3.73h|) are smooth
in (y,t) variables, the asymptotic results of Theorem hold true for the

mCH equation written in (y,t) variables, see Chapter 2, even if a(u) has zeros

at some p* = e with 0% € (3,5). On the other hand, this allows deducing
a sufficient condition for wave breaking of solutions of problem (2.1a]) (in (x,t)
T T
372
occurs at a certain finite time. In this case, the mechanism of wave breaking

variables): If a(y) has a zero p* = € with #* € (Z,Z), then wave breaking
consists in breaking the one-to-one correspondence x <+ y (cf. [32]).

Remark 3.3.3 (other regions). u(z,t) decays rapidly to 1 in the sectors £ > 9
and $ < %, cf. [27]. This is due to the fact that for these ranges of values of 7,
O(u, £) has no real stationary points (lying on the contour of the original RH
problem).
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3.4 Conclusions to Chapter 3

In this Section, we have applied the nonlinear steepest descent method, based
on the Riemann—Hilbert formalism, to study the large-time asymptotics of the
solution of the Cauchy problem for the modified Camassa—Holm equation on
the whole line in the case when the solution is assumed to approach a non-
zero constant at the both infinities of the space variable. We have focused on
the study of the solitonless case assuming that there are no residue conditions
(for the soliton case, where the basic RH problem involves residue conditions,
one can reduce (using the Blaschke—Potapov factors) this RH problem to that
having no residue conditions).

For the sake of the large-t analysis, we have reduced the original (singular)
RH problem representation for the solution of the mCH equation to the solution
of a regular RH problem (i.e., to a RH problem with the jump and normalization
conditions only). A notable feature of the modified Camassa—Holm equation
is that the associated basic RH problem has two singularity conditions (at
i = £1) with different matrix structures, which does not allow getting rid of
them by reducing the matrix RH problem to a vector one, as it can be done in
the case of the (original) Camassa—Holm equation. In our approach, we have
addressed the reduction problem in two steps. First, we have reduced the RH
problem with the singularity conditions at ;4 = 41 to a RH problem which is
characterized by the following two conditions: (i) the matrix entries are regular
at p = £1, but the determinant of the (matrix) solution vanishes at y = +1
(notice that det M(u) = 1 for the solution of the original RH problem); (ii)
the solution is singular at © = 0. Then, we have represented the solution of
the latter RH problem in terms of the solution of a regular one. In turn, the
solution of the resulting regular RH problem was analyzed asymptotically, as
t — +o00, using an appropriate adaptation of the nonlinear steepest descent
method.

In such a way, we have obtained the results of the asymptotic analysis in

the solitonless case for the two sectors 3 < 2 <1 and 1 < £ < 3 (in the (,1)
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half-plane, ¢ > 0), where the leading asymptotic term of the deviation of the so-
lution from the background is nontrivial: this term is given by modulated (with

parameters depending on %), decaying (as t~1/2) trigonometric oscillations.
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Chapter 4

The Riemann—Hilbert approach to the
modified Camassa—Holm equation with
step-like boundary conditions

The results of this Chapter are published in [88].

We consider the initial value problem for the mCH equation (4.1al):

my + ((u2—ui)m)x20, M i=1uU— Uz, t>0, —oco<z<+oo, (4.1a)

u(z,0) = up(x), — 00 < x < 400, (4.1b)

assuming that

Ajasr — —o0
up(z) — : (4.2)
As as x — o0

where A; and Ay are some different constants, and that the solution u(z,t)
preserves this behavior for all fixed ¢ > 0.

We develop the Riemann—Hilbert formalism to problem (4.1]) with the step-
like initial data assuming that 0 < A; < A, and that u(x, t) approaches its
large-x limits sufficiently fast. We also assume that m(z,0) = uo(x) —uge () >
0 for all &; then it can be shown that m(x,¢) > 0 for all ¢ (see Appendix[4.1] for
the case of the CH equation, see [41],43]). In Section 1.2} we introduce appropri-
ate transformations of the Lax pair equations and the associated Jost solutions
(“eigenfunctions”) and discuss analytic properties of the eigenfunctions and the
corresponding spectral functions (scattering coefficients), including the sym-

metries and the behavior at the branch points. Here the analysis is performed
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when fixing the branches of the functions k;(X) := , /A2 — 4, j = 1,2 involved

in the Lax pair transformations as having the branch cuts (—oo, —4)U(F, 00).
J J

In Section [4.3] the introduced eigenfunctions are used in the construction of the

Riemann—Hilbert problems, whose solutions evaluated at A\ = 0 (where A is the

spectral parameter in the Lax pair equations) give parametric representations
of the solution of problem (4.1)). The case 0 < Ay < A; is briefly discussed in
Subsection 4.4

4.1 Sign-preserving property of m

In order to control the analytic properties of the Jost solution the sign-
preserving property of m plays a crucial role. The analogous result for the
Camassa—Holm equation can be found in [41], 143].

Assume that u(z,t) — Ay € H3(—o00,a) and u(x,t) — Ay € H3(a,00) for
any real a and for any ¢ € (0,7), where T" < 400 is the maximal existing
time. Then Morrey’s inequality implies that (mu,)(s, x) is uniformly bounded

for 0 < s <t <T, xe€R. Consider the Cauchy problem for ¢(t, z):

% = (' —uz)(q(t,2),t), t€(0,T), z€R, (4.32)
9(0,z) =z, zcR, (4.3b)

where u(z,t) solves (4.1)). Differentiating (4.3 with respect to z leads to

d
qu(t, x) = (2muy)(q(t, z),t)q.(t, ), (4.4a)
7:(0,x) =1, z€R. (4.4b)
It follows that
¢ (t,x) = &2 Jo(mus)(a(s,2),9)ds , (4.5)
and, moreover,
" < q.(t,x) <eBW te[0,7) (4.6)
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for some k(t) and K(t).
Now observe that from (£.1a)) and (£.3) it follows that < [m(q(t, ), t)q.(t, z)] =
0. Indeed,
d
= [ma(t, 2),)q.(t, )]

dt
= [mui(q(t, ), 1) + my(q(t, 2), ) q:(t, )] (q(t, @), ) (t, ) + mlq(t, ), t)gra (L, @)
— [—(u2 — ui)fm — (u2 — u2)mx + my(u 2 ui)] (q(t,z),t)q.(t, x)
+2(m’u,) (q(t, ©), 1) qu(t, ) = 0.

Thus, due to (| - ) and ( - we have
m(t, q(t, x))q.(t,x) = m(0,q(0,2))q.(0,z) = m(0, x).

Hence, if m(z,0) > 0, then m(q(t,x),t) > 0 for all t € [0,7), z € R. Since
q.(t,x) > 0, we have that ¢(¢,x) is strictly increasing function. Moreover,
integrating w.r.t. x, we also have lim,_,1 q(t,z) = £oo. Hence ¢(z,1)
is one-to-one from R onto R and thus m(¢,z) > 0 for all t € [0,7T), x € R.

4.2 Lax pairs and eigenfunctions

4.2.1 Lax pairs

The Lax pair for the mCH equation (4.1a]) has the following form [108]:

O, (z,t,\)
(I)t(llf, t, A)

Uz, t, \)P(x,t,\), (4.7a)
V(x,t, \)®(z,t,\), (4.7b)

where the coefficients U and V' are defined by

U = % ( -1 /\m> , (470)

u —u2 N Yy — Uy) — Au?—u2)m
V(v e ) e

2
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with m(x,t) = u(x,t) — uye(x,t). The RH formalism for integrable nonlinear
equations is based on using appropriately defined eigenfunctions, i.e., solutions
of the Lax pair, whose behavior as functions of the spectral parameter is well-
controlled in the extended complex plane. Notice that the coefficient matrices
U and V are traceless, which provides that the determinant of a matrix solution
to (4.7) (composed of two vector solutions) is independent of x and t.

Also notice that U and V' have singularities (in the extended complex A-
plane) at A = 0 and A = oco. In particular, U is singular at A = oo, which
necessitates a special care when constructing solutions with controlled behavior
as A — 0o. On the other hand, U becomes u-independent at A = 0 (a property
shared by many Camassa—Holm-typed equations, including the CH equation
itself), which suggests using the behavior of the constructed solutions as A — 0
in order to “extract” the solution of the nonlinear equation in question from the
solution of an associated Riemann—Hilbert problem (whose construction, in the

direct problem, involves the dedicated solutions of the Lax pair equations).

Notations

e We introduce the following notations for various intervals of the real axis:

1 1 . 1 1
Y = (_007 __] U [_7 OO): Y= (—OO, __) U (_7 OO)?
’ At A ’ A" A
1 1 1 1 . 1 1 1 1

S = N = -

Notice that 7 C Y9 since we assume A; < As.

e For A € ¥; we denote by Ay (A_) the point of the upper (lower) side of
¥ (ie. Ax = limg A £ ie). Then we have —\; = (=A\)_ and A, = A_.
o ki(A) == /A2 — %, j = 1,2 with the branch cut ¥; and the branch is

fixed by the condition £;(0) = ALJ
Observe that Im k;(A) > 0 on C, and k;(\) is real valued on the both sides
of ;. Also notice that kj(A) = w; (Aw; (A), where w(A) = /X — 4 with
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the branch cut [Aij, 00) and w; (0) \/iz, and w; (A) = /A + A%— with the

1
VA

branch cut (—oo, —7] and w; (0) =
Observe the following symmetry relations:

ki(=X\) =kj(A), XAeC\X,, (4.8a)
B = —ki(-N)1), AeS, (43h)

ki(\) = —k;(\), AeC\Yy, (4.8¢)
ki(Ar) = kj(As), A€ (4.8d)

(here (4.8b]) follows from (4.8a)) and (4.8d))).

In order to control the large A behavior of solutions of (4.7)), we introduce
two gauge transformations associated with x — (—1)’oc0 and m — A; (in a

similar way as it was done in the case of the constant background in Chapter
2).

Proposition 4.2.1. Fquation (4.1a) admits Lax pairs of the form (j =1,2)
O+ Qud; = V0, (4.9b)

whose coefficients Q; = Q;(x,t,\), U; = Uj(x,t,\), and V; = Vj(x,t,\)
are 2 X 2 matrices given by (4.13)) and (4.14), which are characterized by the

following properties:

(i) @, is diagonal and is unbounded as A — oo.

(ii) U; = O(1) and V; = O(1) as A\ — oco.

iii) The diagonal parts of U; and V; decay as X\ — 0o.
(iii) 9 j j Y

(iv) Uj — 0 and VJ —0asx — (—1)/oo.

Proof. Notice that U in (4.7¢) can be written as

om(x,t) [ =1 AA; m(z,t)—A; (1 0
Ulx,t,\) = 24, (—)\Aj | + oA 0 1) (4.10)
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where m(z,t) — A; — 0 as @ — (—1)’c0. The first (non-decaying, as z —

(—1)00) term in (4.10)) can be diagonalized by introducing

(@, t, A) i= Dy (N ®(x, 1, \), (4.11)
where
—1
\[ —1 Yy " ) (4.12)
\/1A Fi( ( R v wrrpy
with
\/7\/ 1( lAk() A114- >
1Ak 1 T34, 50

The factor \/; /m — 1 provides det D;(A\) = 1 for all A, and the branch

of the square root is chosen so that the branch cut is [0, 00) and v/—1 = i; then
JW; = —y/w;. Observe that , /m — 1 is well defined as a function of A
on C\ X; as well as on the sides of ¥;. Then (4.11]) transforms (4.7al) into

o 1k]()\)m o

(I)jx + 9 qu)j = chi)j, (413&)
where Uj = Uj(x,t, A) is given by
N A(m — A; A
Mmoo (4.13b)

In turn, the t-equation (4.7b|) of the Lax pair is transformed into

- N ]- ]_ A A A
O + 1Ak (N) (—ﬂm(zﬂ —ul) — )\2> 30, =V, @y, (4.13c)
where V; = Vj(x,t,\) is given by
~ 1 2(u — Aj) u
A YT . AN+ 22 T =
‘/J 2Ajk]()\) ( (u u )(m ) \ )02+ >\Ul

_5@%E<%W‘A> Qﬂ“—ﬁxm—&ﬂa&

Now notice that equations (4.13al) and (4.13d|) have the desired form (4.9),
if we define @); by

Qj(x,t,A) == pj(,t, N)os, (4.14a)
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with

, 1 (" 1 Al
pj(ﬂf, t, )\) = 1Ajkj(>\) 2_A7 /(_Ujoo(m(f, t) )df + 5 — t(/\2 + 2 )
(4.14b)
Indeed, we obviously have p;, = MT/\)m, on the other hand, the equality
Ak 1 9 9 1
pjt = 1Ajk;(A) —Q—AJ?"’L(U — ) 3
follows from (4.1al). [

Remark 4.2.2. In Chapter 2, which deals with the mCH equation on a single
background, introducing a uniformizing spectral parameter (such that A and
the respective k() are rational with respect to it) allowed getting rid of square
roots and thus avoiding the problem of specifying particular branches. In the
present case, since we have to deal with two different functions, k;(A) and
k2(X), associated with two different backgrounds, we keep the original spectral
parameter A as the spectral variable in the RH problem formalism we are going

to develop.

4.2.2 Eigenfunctions

The Lax pair in the form (4.13)) allows us to determine, via associated integral
equations, dedicated solutions having a well-controlled behavior as functions of

the spectral parameter A for large values of X. Indeed, introducing

~ A

d; = dje (4.15)

(understanding ®; as a 2 x 2 matrix), equations (£.13a)) and ([E13d) can be

rewritten as

Oy + [Qa, D5] = U0,

~ - . (4.16)
©ji + Q) @5 = VP,
where [, -] stands for the commutator. We now determine the Jost solutions

O, = O;(x,t,)\), j = 1,2 of ({E16) as the solutions of the associated Volterra
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integral equations:

éj(x’t’ )\) — ]+/ er(gvt /\) QJ Z‘t)\ (5 t )\) (5)1/-7)\)er(xvt’/\)_Qj(fvt/\)dg’
(=1)7o0

(4.17)
or, taking into account the definition of Qj,

~ x kj(\)
<I>j<x,t,A>=f+/ o omENI T (4 NB(E,t Ner
(—1)ioo

(/\) ff m(7,t)dros3 dg

(4.18)
(1 is the 2 x 2 identity matrix).

Hereafter, <i>j = EDje*Qj, 7 = 1,2 denote the corresponding Jost solutions
of whereas ®; := D;l(/\)@)j denote the corresponding Jost solutions of
7).

We are now able to analyze the analytic and asymptotic properties of the
solutions &)j of as functions of A\, using Neumann series expansions. Let
AM and A® denote the columns of a 2 x 2 matrix A = (A(l) A(2>). Using

these notations we have the following properties:

o 559 ) is analytic in C \ X, and has a continuous extension on the lower and

upper sides of Z]

° E)El) and <T>§2) are well defined and continuous on the lower and upper sides

of E]

In (4.16]) the coefficients are traceless matrices, from which it follows that
det &Dj is independent on x and ¢, and hence
o det ij =1

Regarding the values of &)j at particular points in the A-plane, (4.18)) implies
the following:

o (8 8®) — I as A\ — oo (since the diagonal part of U; is O(%) and the

1
A
off-diagonal part of Uj is bounded).

o <i>j has singularities at A = :I:% of order % (this will be discussed below, see

Subsection [4.2.8)).
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4.2.3 “Background” solution

Introduce ®g ;(x,t,\) = Dj_l(A)e_Qj(x’t’A). We see that @ ; satisfy the differ-

ential equations:

—1 A,
o) Jjr — ﬂ;(j7t) ’ D YE
S SV P |
! (4.19)
-1 MA;
Qg jr = ( gz.m(UQ Ui) - %) ! 0,
J “AA; 1

Comparing this with (4.9), ®;(z,t, \) can be characterized as the solutions

of the integral equations:

v t)—A;
(I)j(l',t, )\) - (I)()’j(l',t,)\)%—/ (I)O,j(x)ta )\)(I)O_’]l(yatA)m(y’Zi jag@j(y,t,)\)dy.
(~1)ioo j
(4.20)
Observe that @ ;(z,t, A)@&}(y,t, A) is entire w.r.t. A. Hence the “lack of
analyticity” (jumps) of ®;(x,¢,\) is generated by the “lack of analyticity” of
P j(z,t,N). Notice that det ®; = det @ ; = 1.

4.2.4 Spectral functions

Introduce the scattering matrices s(Ay) for A € 3 as matrices relating ®; and
(DQZ
<I>1(:U, t, )\:t) = (I)Q(.’,C, t, )\:E)S()\:t)a A E 21 (421)

with det s(A+) = 1. In turn, ®, and P, are related by
D;l(Ai)él(l', t, )\i) = D;l(ki)ég(l’, t, Ai)e_QQ(w’t’)\i)S()\i)te(x’t’Ai), A E 21.
(4.22)

Introducing
§(m,t, \y) 1= e Q@A) () )e@ul@tAs) (4.23)

we have
(Dflél)(x,t, )\j:) = (D;lég)(x,t,kiﬁ(:ﬁ,t, )\j:); AE 21. (424)
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Notice that the scattering coeflicients (s;;) can be expressed as follows:

s11 = det(®V, @), (4.25)
s12 = det(®, ®Y), (4.25b)
S91 = det(q)gl), (I)gl)), (425(3)
S99 = det (@Y, 1Y) (4.25d)
Accordingly,
§1j = det((D; @)Y, (Dy'95)), (4.26a)
§2j = det((Dy ' 2) M, (Dy'd1))). (4.26b)

Then (4.25a)) implies that s11(\) can be analytically extended to C\ 33 and

defined on the upper and lower sides of 5. On the other hand, since @gl) is

analytic in C\ ¥; and CIDS) is defined on the upper and lower sides of X9, s91(\)
can be extended by ({.25d) to the lower and upper sides of 3. It follows that
(4.21)) and (4.22)) restricted to the first column hold also on ¥y, namely,

O (2,8, Ms) = s (As) B (2,8, M) + 551 A) B (2,8, M), A € B, (4.27)
and, respectively,

(D7 @) (M) = 51 (M) (D7) (As) + 5 (M) (D5 1B ) (M), A € S
(4.28)

4.2.5 Symmetries

Let’s analyse the symmetry relations amongst the eigenfunctions and scattering

coefficients. In order to simplify the notations, we will omit the dependence on
zand t (e.g., UN) = Ul(x,t,\)).
First symmetry: A <— —A\.

Proposition 4.2.3. The following symmetries hold:

V(N = —3@V(=)), AeC\ 3y, (4.29a)
PP (\) = 030 (=N), AeC\ . (4.29b)
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Proof. Observe that o3U(MN)og = U(=A) and o3V (A)og = V(=)). Hence
03®§j)(—A) solves (4.7)) together with @g-j) (A). Comparing their asymptotic
behaviour as z — (—1)7co and using (4.8a)), the symmetries (4.29)) follow. [

Corollary 4.2.4. We have

1.
811(—/\) = 811()\), reC \ d9. (430)

2.
W\ =030V (=N), AeC\ ¥, (4.31a)
PPN\ = —30P(=N), AeC\ D (4.31b)

3.
(D7'®{)(=2) = —o5(D1 ') (A), A€ C\ Ty, (4.32a)
(D3 ®5))(=A) = 03(D; ' 0P)(N), A e T\ Dy (4.32D)

Proof. 1. Substitute (4.29) into (4.25al).

2. Observe that due to (4.8af), we have Dj_l(—)\) = —03Dj_1()\)03 and Q;(—\) =
Q);(A). Combining this with (4.29)) and using the connection between @,
and Cij, we obtain (4.31)).

3. Combine D;'(=X) = —o3D; ' (A)os and (4.31)).

Proposition 4.2.5. The following symmetry holds
(I)j(/\+) = —03(I)j(—)\+>0'3, A€ Ej (433)

Proof. Since o3U(N)oz = U(—M\) and o3V (A)o3 = V(=) and U and V do not
have jumps along 3, it follows that if ®;(Ay) solves (4.7), so does o3P ;(—AL).
Comparing their asymptotic behaviour as x — (—1)/0co and using (4.84)), the

symmetry (4.33)) follows. O
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Corollary 4.2.6. We have

1.
S(/\+) = 038(—)\+)03, A E 21 (434)

2.
éj()g.) = 0'3&)]'(—>\+)0'3, S EJ (435)

3.
(D 10))((—A)-) = —o3(D; @) (A )az,  As €35, (4.36)

Proof. 1. Substitute (4.33) into (4.21]).

2. Observe that due to (4.8al), we have Dj_l(—)\+) = —Jng_l(/\jL)ag and
Q;(—A+) = Q;(A+). Combining this with (4.33)) and using the connection
between ®; and éj, we obtain (4.35)).

3. Combine D;l(—)\+) = —03Dj_1(>\+)03 and (4.35)).

[
Second symmetry: X <— —\.
Proposition 4.2.7. The following symmetry holds
D;j(As) = 03P ((—=A)+)o2, AE ;. (4.37)

Proof. Since U and V' are single valued functions of A, we have o3U (A} )o3 =
U((=X)4) and o3V (Ap)og = V((=A)4) for A € ;. Hence, if ®;(\;) solves
([4.7), so does 03P;((—Ay). Comparing their asymptotic behaviour as z —
(—1)700 and using (4.8b)) and the equality \/m — 1\/—m -1 =
—ﬁ for A\ € 3;, the symmetry (4.37) follows. O

Corollary 4.2.8. We have

1.
s(Ay) = o9s((—=A) 4 )09, A e Y. (4.38)
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S()\+) = 0'18()\_)0'1, A E 21. (439)

3.
&)j()ur) = Jz(i)]((—)\)Jr)Jg, A€ E] (440)

4.
(D18)((—0),) = 0s(D B) (A )os,  A€Sy  (441)

Proof. 1. Substitute (4.37)) into (4.21]).
2. Combine (4.38)) with (4.34).

3. Observe that k;(\;) € R and that due to (4.8b]) and \/m — 1\/—m —1=
— 7t we have Dj(A4)o3D; ((=A)+) = o9 and Qj((—A)+) = —Q;(A1)
for A € Zj Combining this with (4.37)) and using the connection between

®; and éj, we obtain (|4.40)).

4. Combine Dj()\+)03D;1((—)\)+) = 0y and (4.40)).

O
Third symmetry: A <— .
Proposition 4.2.9. The following symmetries hold
oY) = -0 ()), recC\x; (4.42)

Proof. Since U(A) = U(\) and V() = V()), it follows that q);j)(X) solves
(4.7a]) together with CIDE-j )(/\). Hence, comparing their asymptotic behaviour as

2 — (—1) 00 and using (4.8d)) and the equality , /—iAjklj(X) —1=—/ —iAjlij(/\) —

1,
we obtain the symmetries (4.42)). O

Corollary 4.2.10. We have

1.

Sll(X) = 811()\), AeC \ do. (443)
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eV =dY(\), recC\3:, (4.44)

(D71 (N) = —(D7PeY)(N), AeC\ ¥, (4.45)
Proof. 1. Substitute (4.42)) into (4.25a)).

2. Observe that due to . ) and , /- 7y k —1=—, /1A k — 1, we have

Dj_l(X) = —Dj_ (A) and Q]( ) = )\). Hence comblmng this with

(4.42)) and using the connection between ®; and <I>j, we obtain ((4.44]).

3. Combine Dj_l(X) = —Dj_l(A) and (4.44)).

Proposition 4.2.11. The following symmetry holds

o,(0) = —2,(\),  Ael, (4.46)

Proof. As above, since U(A) = U()\) and V()\) V(A) and U and V have
no jumps along X, we have U(A_) = U(A;) and V(A_) = V(\,). It follows
that if ®;(A;) solves (4.7)), so does ®;(A;). Comparing their asymptotic be-

haviour as * — (—1)7co and using (4.8d) and the fact that —1Ajk1j(X) —1=

— e k A0 — 1, the symmetry (4.46] - follows. ]

Corollary 4.2.12. We have

1.
sOL) =s(Ay), AeX. (4.47)

2.
O;(A) =0;(N),  Aed; (4.48)

3.
(Dj'®))(Ay) = (D] '®))(Ay), AeX, (4.49)



Proof. 1. Substitute (4.46) into (4.21)).

2. Observe that due to . ) and ,/—— 7y k — /1A k — 1, we have

Dj_l(/\_) = —Dj-_l()\+) and Q;(\_) = Qj()\+) for A € 3. Combmmg this

with (#.46)) and using the connection between ®; and ®;, we obtain the

result.

3. Combine D' (A_) = =D (Ay) and Q;(A-) = Q;(Ay) and ([£.48).

[
Fourth symmetry Ay <— ..
Proposition 4.2.13. The following symmetry holds
;A ) =i®;(\ oy, AeEX; (4.50)

Proof. Since U(Ay) = U(A;) and V(Ay) = V(A4) for A € X5, in follows that if
P, (A1) solves (4.7)), so does <I>j()\+). Comparing their asymptotic behaviour as
r — (—1)/00 and using (#.8d)) and the equalities \/—iAjkj(A+) -1 Hizjéi)\” =

f— - /1 ArA;j 1 .
lAk Oy — 1 and Ak ) 1A+k ) \/—m—lfor)\ézj,

the symmetry (4.50 - follows. ]

Corollary 4.2.14. We have

1. s(\y) = o15s(A\p)or, A € Xy, which, in terms of the matriz entries, reads

as follows:

811()\+) = 822()\+), (451&)
812()\+) = 821()\+). (451b)

2. |$11(>\+)|2 — ‘821()\+)|2 =1 fOT A E 21.

3. [2EH| <1 for A e Sy,

811

Notice that ‘zi(t)’ =1 for A € Xy iff si(\y) = o0.
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10.

11.

12.

811(/\_) = 822()\_), = 21,
812(/\_) = 821()\_), A E 21.
(I)j()ur) = i‘bj()\f)gl, A€ 2]
o) =ieP(\), rey,
P () =10V(A),  Aed,.
s11(A4+) = s22(A), AeEYy,

811()\+) = —1821()\,), A€ 20,

’M| =1 for A € Xp.

s11(Ay)

811()\_) = 1821(/\+), A E 20.
(ij()\-i-) = O'lé](A+)O'1, A € 23
V) = dP(Ny), Aex,
PPN = dV(Ay), AeX,

) (M) =1(D]'R) (Ao, A€
(A-) = (=D (A ) @A )o)Y,
' ) Pa(Ay)or)?,
b1 (\s),

(4.52a)
(4.52b)

(4.53)

(4.54a)
(4.54b)

(4.55a)
(4.55b)
(4.55¢)

(4.56)

(4.57a)
(4.57h)

(4.58)

(4.50a)
(4.59D)
(4.59¢)



13.

(D' ®)((=A)4) = o3(Dy' @) (A1), A€ Dy, (4.60a)
(Dy ' ®2)((=A)4) = —03(Dy ' @) (A1), A€ 3. (4.60b)

n
811((—>\)+) = 811()\+), A€ 21. (461)

Proof. 1. Substitute (4.50)) into (4.21)).
. This follows from the fact that det s(A+) =1 for all A € ¥; and (4.51]).

DO

3. Dividing the previous equality by |s11(Ay)]?, we obtain 1 — }%‘2 =

’m| > (. Hence‘s21 ’<1

4. Combine - and -
5. Combine (| - and (| -

6. Rewrite (4.53]) columnwise.

7. Substituting (4.53)) into (4.25a)) leads to (4.55)). Notice that in proving
(4.55b)) and (4.55¢) we use the fact that CD(11> is analytic on Y.

8. Using the previous result for the first equality and (4.43)) for the second

821>\+‘_’—1811 }_‘811)\+‘:1
s11(A4) S11 >\+ s11(Ay) ’

one, we get ‘

1 ArA;
9. Observe that \/——iAjkj(/\+) — 1 1+1A+k o i /1A B0 —land /57— e k oo

A :
% = 1\/—m Limply D ()\+) iD; Y\ )opand Dj(\y) =

—io1Dj(Ay), and (E8d) imply Q;(My) = —Q;(\;) for A € ;. Combining
this with (4.50)) and using the connection between ®; and CTDj, we obtain
(14.56)).

10. Combine (4.56 - ) and ( -

11. Combine D;l()\+) = iDj_l(/\Jr)al and ((4.56]).
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12. Use (4.58) combined with (4.49) for the first two equalities and the fact
that k() is analytic on 3 for the last one.

13. Combine (4.58) and (|4.41]).
14. (4.38)) implies s99(A+) = s11((—A)4). Combine this with (4.51al).

[]

4.2.6 Limits of the eigenfunctions and scattering coefficients from

below and above the branch cut

Recall that k;()) is analytic in C \ X; and discontinuous across ;.

Notations. It will be useful in what follows to introduce the following notations

(for A € 3;):
kj()x) =kj(A\y) = leif(r)l kj(\ + ie), ki (A) == k;j(A-) = 13{51 k(A — ie).
Similarly,

() = 000 = lm @ (i), @) = B () = lim B (A-ie)

Observe that

KT () = —kf(\), Aex, (4.62a)
kr(N) =k (N) =ki(N), A€, (4.62b)
ky(\) = —kf(\), A€ X (4.62¢)
Combining (4.56)) and (4.48) we have
M=\ = dPT(N), Aem, (4.632)
O\ = dT(N), Aem,. (4.63b)
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4.2.7 Discrete spectrum and zeros of scattering coefficients

0 ) we arrive at the spectral problem for a weighted

0
Multiplying (4.7al) by (1

Dirac operator:

2 0 —1 1 (0 1
E((l O><I>x+§<1 0) CID)—)\CI), x € (—00,00). (4.64)

Since lim,_,(_1)ic m(z,t) = A; # 0, this operator can be viewed as a self-
adjoint operator in L?(—o00,00) and thus its spectrum in real.

Observe that for A € ¥4, both kj(\), 7 = 1,2 are real-valued and hence the
eigenfunctions ®; are bounded but not square integrable near (—1)/oo. Since
they are related by a matrix independent on x and ¢, ®; are bounded and not
square integrable near +00. Hence 3, comprise the continuous spectrum.

For A € (—1/A45,1/A,), @gl) decays (exponentially fast) as © — —oo and
CIDQQ) decays (exponentially fast) as * — +o00; hence the the eigenvalues in
(—1/Ay,1/As) coincides with the zeros of s11(\) = det(CI)gl), CIDgQ)).

Note that since |s11(Ay)|2 = [s21(A4)[2 = 1 for A € ¥ (see Corollary [4.2.14)),
we have s11(\;) # 0 for A € 3.

Let’s show that s13(Ay) # 0 as well as sy (Ay) # 0 for A € ¥ (the similar
result for A_ will then follow from the symmetry ) Indeed, we have
|22 (As)] = 1for A € >0 (see Corollary |4.2.14). Hence s11(Aot)s21(Aos) = 0
iff s11(Ao+) = 0 and s91(Ag+) = 0 simultaneously. But s11(Ag+) = 0 implies
that @gl)()\%) and <I>§2>(>\0+) are dependent. Silarly, so1(Aoy) = 0 implies that
<I>§1)()\0+) and @él)()\oJr) are dependent. Hence ®§1>(A0+) and @;2)()\0+) are
dependent, which contradicts the fact that det @9 = 1 (the latter follows from
evaluating det @ s(x,t,\) as © — oo and using the fact that the determinant
of a matrix composed by two vector solutions of does not depend on ).

Assumption. We will assume that s11(\) has a finite number of zeros on

R\ ¥5. Since s1; is analytic on C \ 3, the uniqueness theorem implies that
the sufficient condition is 511(:'34%) # 0.
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Let {\z}7_; be the zeros of s11(A). For such A\; we have
DM () = @Y (A, br = b(An).
Proposition 4.2.15. The zeros of s11(\) are simple.

Proof. We will denote by ’ the dirivative w.r.t. A.
Using the definition of s11(A) we have

1 2 1 2 1 2
si(A) = det(@1", ) () = det((@)V, @) (A) + det(@, (@)5)(N).

Since <I>§.j ) solves (4.7a)), we have
NG _ rrigpn @) 0 1) 40
(@) ;7 = U(P); +m< )q)j,

and, using the fact that det(U(®’ § ), é) = — det(((I)’)1 ,UCID( )) we have

d 1

— det((® )\ @) = det (( o'l o >> ,
4 et (@, (@2 = — det @ ol
d.fU 1 |

Evaluating at A = A, and using <I> ()\k) we get

0 1
( )@52><Ak>,@§2><Ak>>,
—1 0
d

det(@1, (@) () = —bim det (( 01 ;) 3" (), <I>§2>(Ak>> -

and

di det((®), ) (Ap) = bpm det
X

VR

Using the symmetry (4.42)) and observing that A\, € R, we have

det<( ! ;) 3 (), 82 () = —([(B2)aal® + | (2)12/2) (M)
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and hence

d

- det (), @) (\p) = by /:O m(|(Da)az]® + [(P2)12]?)dr,

X

D qet(@ (@) 2)(\) = by / m(|(®2)e2]* + | (@2)12]?)da.

X —0o0
It follows that

) = b [ (@)l + |(@2):aP)r

oo

and thus si;(\;) # 0.
[]

Observe that due to the symmetry (4.30)), if s11(A\x) = 0, then s11(—A;) =0
as well. Since, according to Proposition [4.2.15] all zeros of s1; are simple, it
follows that s11(0) # 0. This fact will also be discussed in Subsection [4.3.2]

4.2.8 Behaviour at the branch points
Observe that k;(+£+) = 0.

Proposition 4.2.16. éj(ac,t, A) has the following behaviour at the branch

points

i)j(a:,t,)\)iijf(x)’\)t)<l 1)+<aj(x’t) bj(x’t)>+0( A—Ai), )\—>Ai,

-1 -1 bi(z,t) aj(z,t) j j

5 _aj(z,t) (1 -1 aj(z,t) —bj(z,1) 1 L
@;( ,t,A)——wj_(A) (1 1)+<bj($7t) aj(xjt)>+0( At o) Ao

whith some real-valued oj(x,t), a;(z,t), and bj(x,t), j =1,2.

Proof. Recall that w (X)) = /A — Aij with a branch cut on [Aij, 00) and w; (0) =

\/iA_ and w; (A) = /A + A%- with a branch cut on (—o0, —Aij] and w; (0) =
1

)
J

3
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1

First, consider the behavior of the eigenfunctions near 4. Introduce P iz, t,N)
J

i

_ . 1 .
such that ®;(z,t,\) = W+®;(z, ¢, ) with W+ = <Y Then &y (x, 1, \)

Y
solves the following integral equation:
i 1 1 ]‘ o i 13 ~ = i 13
OF T, t, ) = — +/ A*legkj()\) fI deUgU_A(I) be—ij()\) fw deag.
J( ) 2 (—lw;_()\) lw;—()\)> (—1)ico J J

The kernel of this equation and hence i)j has no singularity at %. Hence

. i (& d, a; b, 1 1
Qi(x,t,\) = oL+ Y +O0 (A=, N—= —.
Aty wj () (51' dj) (Cj d; Aj Aj

Using (4.48)), we get éj, czj € R and aj, bj, ¢;, d; € R. Then, using (4.56]), we

get éj = ch and a; = d;, ¢; = b;; thus

- i;(z,t) {1 1 a; b; 1 1
Dz, t,\) = —L—= o O A— — A— —.

In order to get the simiular result for —-, we use W~ = 7.
J

instead of W, which leads to

A

~ ﬁj(l’,t) -1 1 &j bj 1 1
& (x,t,\) =L 1 FO(A+ =), A= ——.

~

_b]

inally, using (4.35) and (4.40), we get o; = —f3; and a; = a; and b; =
) 0

Evaluating Dj_l()\) near :tAij gives

Proposition 4.2.17. Dj_l()\) has the following behaviour at the branch points:

N[N

. B et 11 ie%(ZAj)%V;T()\) 1 —1 _i
D (\) = ) O (1 1)+ 5 (_1 ' >+O((>\ Aj) ),
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D> (A
RN HED 1 - J
Here v (A) = (A — )411 with the branch cut ( ,00) and v (0) = (f;i’ and
1\ 1 () — 1
v (A) = (A+ A—j) with the branch cut (—oo, Aj) and v; (0) = At (observe
ﬂwt( 7)) =wi (V).

4.3 Riemann—Hilbert problems
4.3.1 RH problem parametrized by (x,t)

Notations. We denote

o) = 2 sy (4.65)

s11(A+)
Observe that Corollary [4.2.14] implies that

p(N)| <1, Xe, (4.66a)
PN =1, Xe X (4.66Db)

Motivated by the analytic properties of eigenfunctions and scattering coeffi-

cients, we introduce the matrix-values function

(Dl_lci)gl))(xvta >‘) ~15(2)
Mz, £, ) = (SH iy (PP E@ LN | reC\m

(4.67a)

meromorphic in C \ X9, where p;, j = 1,2 are defined in (4.14b)).
Observe that D;l(A)éj(ac,t, A) = @iz, t,\)e% @A and thus M (z,t, \)

can be written as

1)
M(z,t,\) = (%&)A) o (z,t A)) el (1), (4.67b)

It follows that det M = 1.
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Jump matrix

Since (Dl_légl))()\) is analytic in C \ 3y, the limiting values M* of M as A

approaches ¥y from C* can be expressed as follows:

(D) (1, \s)
3]_1 ()\i)epl (l‘,t,/\i)—pg(l‘,t,)\i

Mi(ﬂj‘,t,)\) = M(:C)tv)\:lz) = ( )’ (D21&)g2))<$7t7)\:t)> ) )\ S Z]

(D191 (2,1, 3)
s11( A4 )er (@,t,A)—p2(@,t A+

Mi(:c,t,)\) = M(SE’,t, )\:I:) = ( K (DQI&)éQ))(.I,t,)\i)> ) A€ 20.

Proposition 4.3.1. Mt and M~ are related as follows:

Mz, t, ) = M~ (2,6, \)J(x,t,\), XX U,

where
O 1 efp2(zat7)‘+) 0 ep2(xat7>‘+) 0
(@88 = <i 0) ( 0 em(mm) JO(A)( 0 e P2TtAL)
(4.68a)
with )
1—[pN)]? —p(\ :
P 00 g
A 1
Jo(A) = ¢ PN 1 (4.68b)
0 ) , /\620.
p(A) 1

\

Proof. (i) A € >. Considering (4.24) columnwise, rearranging the columns
and using ([£.59a]) for A € Y1, we obtain

So1 (2,6, A4 )81 (2,0
M*(x,t,\) = M~ (x,t,\)i ( sngll(??)ﬂ?é
EEXRWES

) 811(.1‘ t )\ )
t )\ 522 I,t,)\
S ). e
2(2,t,A4) Sa2(w,t, A )

Since ePt(®tA-)=p2(tA-) — epa(wtAe)=pr(ztA) from (1.47) and (4.51a) we have

S11(A— s11(A— . "
gzngS = 522EA+§ = 1. Moreover, using the definition (4.65)) of p(A) and (4.51)),
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BVZRY _ 812()\ )
we have p(\) = i)

(4.68a) with (E.GS).

(i) A\ € ¥y. Considering (4.28) columnwise, rearranging the columns and

using ([@.59b) and ([@#.59¢) for A, € Y, we obtain

Hence we can rewrite the jump condition (4.69) as

§21($,t,)\+)
+ — : §11($ t )\+) 1
M™(z,t,\) = M~ (2, t, )i (’)’ iy | (4.70)
521($,t,)\+)

Then, using the definition of p(\) together with (4.55¢) and (4.55b]), we can
rewrite the jump condition (4.70) as (4.68a) with (4.68bj).

[]

Remark 4.3.2. Notice that
det J =1 (4.71)

and that Jy(\) (and hence J) is continuous at :I:AL1 if |p(j:Ai1)\ = 1 and p(:I:A%Jr

0) = p(:I:AL1 — 0), and discontinuous otherwise.

Normalization condition at A\ — oo.

Proposition 4.3.3. As A\ — oo

( -1 1
1 +0(}), A= o0, AeCH,
1 —1
M(z,t,\) = 4 (4.72)

11
+0(5), A= o0, NeC .

DO +—

i1

\
Proof. Expanding Dj_l(/\) (4.12) as A — oo, we get

( ~1 i
5 +0(%), A—=o0, AeCT,
i -1

+0({), A=oo, AeC.

N |—
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Recalling that (3 ? ) — I as A — oo, we have, for A € CT,

- —1
(D) (N) = 1/.\+O<1>, A — 00,
2 i A
~15(2) _ 1 i l
(D' =[5 ] +05) A=

Substituting this into (4.264)), we get 511(A) =1+ O(3), A — oo.
Similarly, for A € C~ we have

(D5 18{)(N) = %(J +O(3), A—roo,

and 511(A) =1+ O(5), A — oo. Then the claim follows. O
Remark 4.3.4. In order to have a standard normalisation as A — oo, we can
introduce
(
(-1 i N
3 . M(z,t,\), NeCT,
- —i -
M(x,t,\) == < (4.73)
-1 —i
5 M(z,t,N)ioy, AeC.
—i -1

Then we have M — I at A — oo. On the other hand, M acquires an additional
jump across A € R\ Xy

M*(a,t,0) = M~ (2,6, \)J (2,6, ), A€ R\ { Ujis {4 U =411

with

~ Je (z,t,0), A€X;, j=0,1
Tt ) = § 0N »d
JR\22($,?5,)\), A GR\ZQ,
where jgj (z,t,\) = e P2(@tA)os Jo(\)ep2(wtAi)os 5 — ()1 and jR\g2(a:,t, A) =
—10'1.
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Remark 4.3.5. Using ([4.26b), we obtain $y1(X) = O(3) as A — co. Notice that

p(A) = 2383 = éjigige_Qp?(m’t’A”; since po(x,t, A\y) is purely imaginary for

A € By, e 22(@8A4) i hounded and thus p(A) = O(3) as A — co. Consequently,

1= (5 1) +0G 2o e

and

Symmetries

From the symmetry properties of the eigenfunctions and scattering functions
(4.32), (4.49), (4.36), and (4.49) it follows that

M(=X\) = —0sM(Nas, M) =—-M(Q\), AeC\%y, (4.74a)
M((=N)_) = —osM(\)os,  MO)=—-M(OL), A€ (4.74b)

where M(\) = M (x,t,\).

Singularities at :l:%.
J

- A(ll) A(l?)
Let AU denote the elements of a 2 x 2 matrix A = )
AL A((22)
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Proposition 4.3.6. M (z,t, \) has the following behaviour at the branch points

s (0T

5 T]+om, A=+

v 0 Ay
0 Ty

~ +0(1), A= —+,

Vg (/\) 0 —A, Ao

ce’® [(T10

vl I +0(1), A=, AeCy,

M(z,t,\) = 4 ! (4.75)

C+634li Tl 0

O +0(1), A=, AeC_,
AL O

e (X1 0 .

=y +0(1), A= —4, AeCy,
A O

c4i =T, 0 1

= +0(1), A= -4, AeC.,
A O

\
where I/]:-t(>\) are defined in Proposition [4.2.17, and Y; = —(2A;)7a;(z,t) +

(aj(zt)+bj(zt) A _ N (a;(x,t)+b; (.t
o] A= (24))ia (x, t)+ oAk

R, j = 1,2 as in Proposition[{.2.16.
Moreover, cy(x,t) = 0 if f1(x,t) # 0 and c(x,t) =

0, where B1(x,t) is defined in (4.76b)).

Proof. Combining Proposition 4.2.16] with Proposition [4.2.17] we get
1

as A — Aij, where a; = a;(z,t), a; = a;(z,t) and b; = bj(x, ).
First, consider the behaviour of M near ALQ. Since Dfl()\)(i)?)(g:,t, A) is

) with aj(x,t), a;(z,t), bj(x,t) €

e U A t) =

)

3mi
4

(A)

1
1 -1

11
11

a; + bj
(24;)1

»MH

D;

LN® (2,8, \) = —
Vi

1

")

oo
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: 1
analytic at a0 we have

with

a(z,1) = AQ-H\/A%—Aﬂ
o VA — A3

Ay = (11) 1 = (21) 1
O (x,t,—) + D (e, t, —
<A2+|m g et )

A A2 — A2
C(l’,t): \/ 2+| 2 1‘

Ay = (21) 1 = (11) 1
O (z, t,—) + Py (x,t,—) | .
NEET (Az VA ) T )
Then, using (4.26a]), we get the following expansion of §1(x,t, \) at ALQ:
3mi
le's 1
vy (A)

Ay
with ﬁg(af,t) = ((2A2)}L@2(x’t)(a[(x’t) + C(Q?,t)) + (az(z, t)-l—bz(éj)g a(x,t)—c (m)))

Notice that the symmetry implies that égll)(:ﬁ, t, A%) and égﬂ)(x, t, A%)
are real-valued and thus a(z,t) € R and ¢(z,t) € R.

Recall the assumption s11(- -) # 0, which implies Su(4+ -) # 0. Thus there
are two possibilities: either Bg(x,t) # 0 or By(x,t) =0 and 511(A2) =: v # 0.
In the both cases,

37 0 —(2A2)ia2(afj7 t) + (a2($’t)+b21(xat))

§11(£E, t, /\) =

c 4 1

M(xz,t,\) = 1 (24,)1 Lo). Ao b

( ) I/;_(A) 0 (2142)1042(3;’ t) + (QQ(xvt)+b21($,t)) ( ) AQ
(245)1

Now consider the behaviour of M as A approaches A% from the upper half-

plane. Since Dgl()\)il:)g)(:c, t, A) has no singularity at %, we have

1 7(2) 1 b_|_(l', t)
Oy (v, t,— ) =
A1+) ( A1_|_) (d+(ﬂf,t)
with

b — |\/—1A1—\/A%_A%
L=
VA3 — Af]

Dy

Ay = (12) 1 = (22) 1
Oy (z,t,— )+ Py, (2, t, —
(Al . 1| /—A% — A%| 2 ( A1+) 2 ( A1+)
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dJr_ —1A1—|\/A2 A2| A2 (2)( ti )—J,—i)(m)(xti ) .

/A2 — A2 Ay —i|/AZ = 42| TAL P T T Ay
Then, using (| , we get the following expansion of §11(x,t, \) at A in the
upper half—plane.

371'1

S + o), Ao~ aeC,  (476a)

S t, A
Sll(xa ) ) Al

with

J>\>—A

(a1(z,t) + bi(z,1))(dy (2, t) — by(2, 1))
(24)1 '
(4.76D)

As above, we have two possibilities: either fy(z,t) # 0 (generic case) or
Bi(z,t) = 0 and s (4 . ) = ;" # 0. This gives

Pi(z,t) = —(242)3 1 (x, ) (by (2, t)+d o (x, 1))+

3mi —(2141)%0(1(1',15) + (a1 (x,t)+b1(x,t))

_cyed (24,)T 1
M(x,t,\) = ! +0(1), A= —, 2eC,,
( ) Vf_()\) (214.1)%0{1 (flf,t) + (al(m,t)+b1l(x,t)) 0 ( ) Al +
(24,)4
where ¢y = 0 if By(z,t) # 0, and ¢, = ( 1f Pi(z,t) = 0.
The other the statements follow from the Symmetry considerations. ]

Remark 4.3.7. 1. p(A\) = % “2(tA) = O(1) as A — A%. Indeed,
in the proof of the Proposition |4.3.6, we have seen that 51(z,t,A) =
leT Bg(x t)+O(1l) as A — A%. Analogously, due to (4.26b]), we have
321(m,t, A) = —VISF—(T)\)BQ(LU,t) +0(1) as A — 4. Moreover, by our assump-

tions, 511(14%) # 0, and hence the claim follows.

2. p(A) =0(1) as A — A Indeed, we already know that 511 (\) = ﬁ)ﬁl(x, t)+
O(1) as A — A17 A € C.. Analogously, (4.26b)) together with u im-
plies that if 51 # 0 we have 591(\) = Vi?g)ﬁl(x,t)%—O( ), A= 1, A e Cy.

Moreover, by our assumptions, 511(14%9 # 0, and hence the clalm follows.
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Residue conditions.

By (4.23]), zeros of §11(A) coincide with zeros s11(\); hence, by Proposition
4.2.15, they are real and simple. Moreover, the symmetry (4.30)) implies that

— Ak 18 a zero of 511(\) together with Ag; we will denote the set of zeros of s11(\)
by { Ak, =Ar}}, where ;. € (0, A%)

Proposition 4.3.8. M1 has simple poles at {\., —\i}7. Moreover,

b

Res AkM(l) r,t\) = ——
M =)

2 V@) (1 ¢ 4N, (4.77)

Moreover, —2s—e22M) ¢ R.
s11(Ak)

Proof. Recall that <I>( )()\ ) = by, (D( )()\k) with by, = b(\) € R due the symme-
try (4.42). Then (D;! )( k) and (D, 1<I> )()\k) are related as

(Dflégl))(%) b
s11(Ag)errOe)=p2e) 511 ()
and hence follows. Moreover, differentiating and using the fact
that A\ € R, we get s;(A\z) € R, and thus %emw) e R.
Differentiating (4.30), we get si;(A\x) = —si1(=Xg). On the other hand,
implies that b(—\;) = —b(\x). Combining these facts, we obtain (4.77))

with the minus sign. ]

(DB ()

Remark 4.3.9. In terms of M (£.73)), the residue conditions take the following

form:

. 1 by -
MWD (z,t,\ e22M) Nr (D) (g ¢\ O(1), A > M\, ANeC
(’CE ) )\ )\ksll()\k) (337 5 k—|—)+ ( )7 — ks c +
(4.78a)
- 1 -
M (z,t,\) = Oh__eam(n) 0 N, t, M) +0(1), A = M\, AeC_.

)\ )\k 811()%)
(4.78D)
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RH problem parameterized by (x,t).

In the framework of the Riemann—Hilbert approach to nonlinear evolution equa-
tions, one interprets the jump relation, normalization condition, singularity con-
ditions, and residue conditions as a Riemann—Hilbert problem, with the jump
matrix and residue parameters determined by the initial data for the nonlinear
problem in question. The considerations above imply that M (z,¢, \) can be
characterized as the solution of the following Riemann—-Hilbert problem:

Find a 2 x 2 meromorphic matrix M (z,t,\) that satisfies the following

conditions:
e Jump condition (4.68]).
e Normalization condition (4.72)).

e Singularity conditions: the singularities of M (x,t, \) at :I:% are of order not

bigger than %.

e Residue conditions (if any): given {\g, xz } with A € (0, ALQ) and K € R\
{0}, MM (z, ¢, \) has simple poles at {\z, =M}, with the residues satisfying

the equations

Respn, MW (x,t, ) = rpe MM (2,8, £0y). (4.79)

Remark 4.3.10. The solution of the RH problem above, if exists, satisfies the

following properties:
1. det M =1 (follows from the fact that det J = 1).

2. Symmetries
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where M () = M(x,t, \) (follows from the respective symmetries of the
jump matrix and the residue conditions, assuming the uniqueness of the

solution).

Remark 4.3.11. We do not need to specify the singularities at the branch points
iAij in order to formulate RH problem. It is enough to require them to be of
order not bigger than i.

As for other Camassa—Holm-type equations, a principal drawback of the RH
formalism presented above is that the jump condition (4.68) involves not only
the scattering functions uniquely determined by the initial data for problem
(1), but the solution itself, via pa(z,t, \) involving m(x,¢) ([£.14D). In order
to have the data for a RH problem to be explicitly determined by the initial
data only, we introduce the space variable y(z,t) = = — Aiz f;oo(m(g,t) —
Ag)d€é — A3t, which will play the role of a parameter (together with ¢) for the
RH problem, see Section below.

In order to determine an efficient way for retrieving the solution of the mCH
equation from the solution of the RH problem, we will use the behavior of the
Jost solutions of the Lax pair equations evaluated at A = 0, for which the 2-
equation (4.7al) of the Lax pair becomes trivial (independent of the solution of

the mCH equation).

4.3.2 Eigenfunctions near 0.

In the case of the Camassa—Holm equation [26] as well as other CH-type non-
linear integrable equations studied so far, see, e.g., [30], the analysis of the
behavior of the respective Jost solutions at a dedicated point in the complex
plane of the spectral parameter (in our case, at A = 0) requires a dedicated
gauge transformation of the Lax pair equations.

It is remarkable that in the case of the mCH equation, in order to control
the behavior of the eigenfunctions at A = 0, we don’t need to introduce an

additional transformation; all we need is to regroup the terms in the Lax pair
(4.13]).
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Namely, we rewrite (4.13)) as follows:

where UO Uo(x t,\) is given by

1
qo_ (m—4;) A AT
J — J 4.81b
UJ 2 lkj()\) (—ALJ —A ’ ( : )
and
. _ A? 1 . N
CI)jt + lAjkj()\) —7 — ﬁ U3q)j = ‘/; ij, (481C)
where V) = V(x,t, \) is given by
0t (v —up)m Aj

Further, introduce (compare with (4.14b]))

pj(a,t,\) = M <a: —2 (Ag + %) t) . (4.82)

Then, introducing QO = p]0'3 and CI>0 = <I> eQa equations (4.81al) and ( m

reduce to

30, +[QV,. 37 = 008,

! @ B = Y (4.83)
), + [Qf, 9] = V).

Define the Jost solutions EIVDE) of (4.83) as the solutions of the integral equations

1Ak()\) 1A k(A

FE g0 (e, N E Ao T

_5)033(15-
(4.84)
Further, defining ég = E{?e_p?”?', we observe that @9(3:, t,\) and éj(x, t,\)
satisfy the same differential equations (4.13]) and thus they are related by ma-
trices C}(\) independent of z and ¢:

(IDj(x,t,)\):I—l—/ e
(—1)ioco



Consequently,
O;j(x,t,\) = Oz, t, N)e PIEENT 0 (\)els (@M (4.85)

Since pj(z,t,\) — p?(x,t, A) = # f - OO(m(ﬁ,zﬁ) — A;)d¢ and

ik; N)

Bj(x,t,A) = B, t, Ne = JonmmmEn Ao,
passing to the limits z — (—1)7c0, we get C;(A\) = I.
Noticing that U]O(:L‘,t,O) = 0, it follows from (4.84)) that EIv)O(:E t,0) =1
and thus ®;(z, t,0) = o T e (M€= A,)ds0s . Combining this with D;'(0) =

0 2\ |
ives
1 0 °

- 0 e
_]_ o
(D;'®;)(x,t,0) =1 (ezij S g (m(E0)—A)de

2A f( 1)]00( (§7t)_Aj)d€
O )
Consequently,

511(0) = e sy S (&)= A1 dE— g [T (m(6,t)—Az)d€

(hence 511(0) # 0) and

0 o 7y Jo (m(Et)—Az)d¢
. (4.86)

M a:,t,() =1 1 0o
0= e

Remark 4.3.12. Considering M (x,t, A) as the solution of the RH problem in
Section [4.3.1] the matrix structure of M (z,t,0) as in (4.80)), i.e.,

M{(x,1,0) = i (al(ox ) al(g’ ”) (4.87)

with some a(x,t) € R, which follows from the symmetry properties
of the solution taking into account that det M = 1 (provided the solution is
unique).

In order to extract the solution of the mCH equation from the solution of

the associated RH problem, it turns to be useful to find the next term in the
expansion of M (x,t, A) at A = 0.
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First, expanding Dj_l()\) near 0, we have

0 i i
DY\ = W B + O(\?).
o= (1) (5 ) o

ikj()\) z A 1 T m . o3
On the other hand, e 2 Je-nie(MEH=Adéos _ (72; i mi&1)=A;)48 +0O(N\?), A —

0. Then, expanding E)?(x, t,A) at 0 using the Neumann series, we have

~ 0 _(r o prEmAig
cb‘;(x,t,A)HA( . Sy 7

. + O(\?).
Sy e 025 e 0 ) .

In particular,

511()\) — e 2A1 JZ(m(& ) —Ar)ds— 2A2f (m(&,t)—Az) d§+o()\2)

Finally, we have

M(z,t,\) =1 (a 10 ) al(g’t)) + 1A (aQ(g’t) a3(0 >+O(A2), (4.88)

(x,t x,t)
where
ai(z,t) =e o o (mi&h-4 2)d (4.89a)
v A ! _
as(,t) = ( / eI e > iy [ (&0 45 (4. 89b)
o —A A
as(z,t) = ( / ele=0 5 = — 5 L2y mag Jo (mEH=A2)dE (4.89¢)

Notice that the matrix structure of terms in the r.h.s. of (4.88)) is consistent
with the symmetry properties (4.80al) of M.

Proposition 4.3.13. u(x,t) and u,(z,t) can be algebraically expressed in
terms of the coefficients a;(x,t), j = 1,3 in the development (4.88)) of M (x,t, \)
as follows:

u(z,t) = ar(z, t)as(z,t) +a; ' (z, t)az(x, t), (4.90a)
Uy (2,t) = —ay(z,t)as(z,t) + a; (o, t)az(x, t). (4.90b)
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Proof. Introduce v(z,t) = ay(z,t)as(z,t) + ay ' (z,t)as(z,t). Using (4.89) it
follows that

A+ A v —A > A
v(x,t) = 1; 2+/ e_(m_g)mQ 1d§+/ ele=¢ )m 2d¢ (4.91)

and thus, differentiating w.r.t. x,

Ay, — A * — A o A
wlad) =255 [ oM By [T R (1)

Since we assume that lim, 1) m(z,t) = A;, from 1’ it follows that

v — v,y = m and that

—00

—00

lim  w(z,t) = A, lim  v,(z,t) =0;

z—(—1)Jco z—(—1)%c0
thus v = w. Finally, we notice that the expression in the r.h.s. of (4.92)) can be
written as the r.h.s. of (4.90b|) taking into account (4.89)).
L]

4.3.3 RH problem in the (y,t) scale

As we already mentioned, the jump condition involves not only the scat-
tering functions uniquely determined by the initial data for problem (4.1]), but
the solution itself, via m(x,t), which enters the definition of po(z, ¢, \) (4.14D)).
In order to have the data for the RH problem to be explicitly determined by

the initial data only, we introduce the new space variable y(x,t) by

1 400

2
Then, introducing M (y, ¢, \) so that M(z,t,\) = M(y(z,t),t,\), the depen-
dence of the jump matrix in (4.68) on y and ¢ as parameters becomes explicit:

the jump condition for M(y, t,\) has the form

M*(y, t,\) = M~ (y, 6, ) J(y, 1, )), X e XU (4.94a)
Here
. 0 i e~ P2(y:t:A1) 0 eh2(y:t:A1) 0
Tt )= (i O)( 0 eP2(:tA+) () 0 e P2utAs) |7
(4.94b)
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where Jy(A) is defined by (4.68h)) and po is explicitly given in terms of y and t:

Pa(y,t, A) = @ (y — §> . (4.94c¢)

Similarly, the residue conditions (4.79) become explicit as well:

Res.iy, M(l)(y,t, \) = Kke2ﬁ2(y,t7>\k)M(2)(y’t’ + 1), (4.95)

by
s11(Ak)
Noticing that the normalization condition (4.72)) and the singularity condi-

with k. =

tions at A = = hold in the new scale (y, t), we arrive at the basic RH problem
J

characterizing problem (4.1al).

Basic RH problem. Given p(\) for A € 3y U Y, and {0\, ki HY with A\ €
(0, A%) and k; € R\ {0}, associated with the initial data uy(z) in (4.1]), find
a piece-wise (w.r.t. ¥3) meromorphic, 2 X 2-matrix valued function M (y,t, \)

satisfying the following conditions:
e Jump condition ([£.94) across ¥ U ¥y (with Jo(\) defined by (4.68D)).

e Residue conditions (4.95)).

e Normalization condition:

s 1 +0(3), A= o0, AeCH,
~ 1 —
M(y,t,A) = S (4.96)

5| +0(1), A—oo, NeC.

e Singularity conditions: the singularities of M (y,t,\) at :I:% are of order not
J

bigger than i.

Evaluating the solution of this problem as A\ — 0, we are able to present the
solution u to the initial value problem (4.1)) in a parametric form, see below. As
for the data for the RH problem, the scattering matrix s(A) (and hence s11()),
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s21(A), and p(A)) as well as the discrete data { Ay, r}| are determined by ug(x)
via the solutions of considered for t = 0.

The uniqueness of the solution of the basic RH problem follows using stan-
dard arguments based on the application of Liouville’s theorem to the ratio
Ml(]\%)*l of two potential solutions, Ml and Mg. Particularly, the singularity
condition implies that the possible singularities of Mj(M;)~! are of order no
bigger that 1/2 and that these singularities, being isolated, are removable.

The uniqueness, in particular, implies the symmetries

M(=)\) = —osM(Nos, M) =—-M(\), MAeC\X, (4.97a)

~

M((=N)_) = —osM(Ay)os,  MOA)=—-M(\.), AeX. (4.97b)

where M(X) = M(y, t, \), which follows from the corresponding symmetries of

A

J(y,t, \).

4.3.4 Recovering u(x,t) from the solution of the basic RH problem

Comparing the RH problem (4.68)), (4.72), (4.79)) parametrized by x and ¢ with

the RH problem (4.94)—(4.96|) parametrized by y and ¢ and using (4.89)—(4.93)

we arrive at our main representation result.

Theorem 4.3.14. Assume that u(z,t) is the solution of the Cauchy problem
(4.1) and let M(y,t,a:) be the solution of the associated RH problem ({4.94])—
(4.96), whose data are determined by uo(x). Let

. . 0 ai(y,t) , as(y, 1) 0 2
Nyt ) = (dll(w) ! >+)\< ! dg(y’t)>+0(x) (4.98)

be the development of M(y,t,x) at A = 0. Then the solution u(x,t) of the
Cauchy problem (4.1)) can be expressed, in a parametric form, in terms of
aj(y,t), 7=1,2,3: u(z,t) = u(y(z,t),t), where

a1 (y, t)as(y,t) + ay (y, t)as(y, t), (4.99a)
y —2na(y,t) + A3t (4.99b)

u(y,t)
z(y,t)
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Additionally, U, (y,t) can also be algebraically expressed in terms of a;(y,t),
J=1,2,3: uy(x,t) = u,(y(x,t),t), where

Alternatively, one can express 4,(y,t) in terms of the first term in (4.98)
only. The price to pay is that this expression involves the derivatives of this

term.

Proposition 4.3.15. The x-derivative of the solution u(x,t) of the Cauchy
problem (4.1)) has the parametric representation

1

Uy (y, t) = —A—aty Inay(y,t), (4.100a)
2

z(y,t) =y — 2Ina,(y, t) + Axt. (4.100b)

Proof. Differentiating the identity z(y(x,t),t) = z w.r.t. ¢t gives
d

From (4.93) it follows that
Ay
t) = 4.102
where m(y,t) = m(x(y,t),t), and
1
y(x,t) = —A—2(U2 —uz)m
Substituting this and (4.102)) into (4.101]) we obtain
iy, 1) = W*(y, 1) — @3 (y, 1). (4.103)
Further, differentiating (4.103)) w.r.t. y we get
wiy(y, 1) = (@ (y, 1) — 45(y, 1))ary (y. 1) = 2450, (y, 1) (4.104)
and thus
. 1 1 .
Ux(ﬂf(y, t); t) = U'x(y7 t) = Q_I%atyx(y7 t) - _A_Qaty ln a’l(y7 t)
[l
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4.4 The case A, < A

Notice that in this case X9 C ¥y and ¥y = [_A%’ —A%] U [A%’ ALQ]
We define ®; and ®; as in ([#.20) and (&.18), and introduce the scattering
matrices s(Ay), this time for A € 3y, as matrices relating ®; and @4 (for brevity

we keep for it the same notation s):
(I)l(ﬂf, t, )\:i:) = (I)Q(LE, t, )\i)S(Ai), AE 22 (4105&)
with det s(A+) = 1. In turn, ®, and P, are related by

D7 L) (, t, Ax) = D7 AL Po(z, b, Ay e~ @@tAs) g\ )e@@tAa) N e 5y
(4.106a)

The scattering coefficients s;; can be expressed as in . However, in this
case, implies that s1;(A\) can be analytically extended to C \ 3; and
defined on the upper and lower parts of >, and, since CD;Q) is analytic in C\ X
and <I>§2) is defined on the upper and lower sides of 1, s12(\) can be extended
by to the lower and upper sides of ;. Thus the following relations hold

also on Xg:

O (z,t, A1) = s (M) (2,8, As) — s1o(A) @ (2, 8, A1), A € Sy
(4.107a)

and, respectively,

(D' ®P) (@, Ax) = 811 (2, £, Ae) (D7 OP) (2,8, M) — Bra(@, £, Ax) (DT M) (2,8, M), A € S,

(4.108a)
where 5(2,t, i) 1= e~ @(@tAs)g(\)e@i (@t ),
4.4.1 Symmetries
The symmetries are similar to the case A; < As. In particular,
(1)
s = sz =1, Ae D, (4.109)
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\j”éi*;\ <1, AeX, (4.110)
(3)
811(>\+) = 822(>\_), A E 22, (4111&)
811()\+) = 1512(>\_), A E 20, (4.111b)
811(>\f) = —1812()\+), A€ 20. (41116)
(4)
j”&iy —1, Aed (4.112)
(5) ) |
(Dj10))((=A)-) = —o3(D; @) (A )as, Ay €% (4.113)
(6) | |
(D71 (N) = —(D71eY)(N), AeC\ 3z, (4.114)
(7)
(D) (=) = —o3(D ') (A), AeC\ 3y, (4.115a)
(D' ®P)(=A) = o3(Dy ' ®)(N), A e T\ . (4.115D)
(8)

DY)V () = (D' ()50 )o)Y, A ey, (4.116a)
D' A (A) = (DT A (A o), A€y, (4.116b)
D' (AP (A1) = Dy (A)d (M), A e (4.116¢)

4.4.2 Discrete spectrum

It can be shown in a similar way as for the case A; < A, that discrete spectrum
is located on (—Ail, A%) (assuming that spectral singularities do not arise in the

branch points).
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4.4.3 RH problem parametrized by (x,t)

Notations. In this case it is convenient to introduce p as

5(\ . AED U 4117
p( ) 311()\+) 2 0 ( )
Observe that (4.110) and (4.112) imply that
PN <1, A€ D, (4.118a)
PN =1, XeX. (4.118b)

Recalling the analytic properties of eigenfunctions and scattering coefficients,

we introduce the matrix-valued function

152
_ | p-16M (Dy @y7)(x,t, )

(4.119)
meromorphic in C \ X3, where p;, j = 1,2, are defined in (4.14b). Since

Dj_l(/\)&’j(l’; t,A) = ®;(z,t, A)e®@ @A) N (z t, \) can be written as

(2, t,
N<x7 ta >‘) - (q)gl) (.CC, ta )‘)7 % epl(l‘,t,/\)o':;'

Proceeding as in case A; < As, we conclude that N(x,t, ) can be charac-
terized as the solution of the following Riemann—Hilbert problem:
Find a 2 x 2 meromorphic matrix N(z,t, A) that satisfies the following con-

ditions:
e The jump condition

N+(£C,t, >‘) :N_($7ta)‘)G(xat7)‘)v A€ 22U20, (4120&)

0 i o~ P1(A4) 0 eP1(As) 0
Gz, t,\) = (i O) ( 0 ep1(>‘+)) GO()\)< 0 ) (4.120b)
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with

(

e The normalization condition:

N(z,t,\) = <

1 —5(\ .
p(N) . aesn
(01— [p(\
p(A) [p(N)] (4.1200)
1 —p(\ .
1 p(A) ey
(\7iw O
f .
) -1 1 ) N
5 . . +O(X)’ )\—>OO, )\G(C,
1 —
(4.121)
-1 ) )
5 - —l_O(X)’ )\—>OO, )\GC,
1

\

e Singularity conditions: the singularities of N (x,t, \) at :I:% are of order not

bigger than i.

o Residue conditio
{0}, N®(z,t,))

the equations

J

ns (if any): given {Ag, &}V with Az € (0, A%) and i € R\
has simple poles at {\, —S\k}{v , with the residues satisfying

Resﬂk N(Z)(:C, t,A) = /V{ke_2p1(5\k)N(2)(m’ t, ij\k)- (4.122)

Remark 4.4.1. The solution of the RH problem above, if exists, satisfies the

following propertie
1. det N = 1.

2. Symmetries:

S:

N(—)\) = —UgN()\)O'g, N()\) = —N()\), AeC \ >,

(4.123a)

N((=N)_) = —o3N(A)os,  NO)=-N(y), Aen,.

(4.123D)
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where N(A) = N(x,t,\) (follows from the respective symmetries of the
jump matrix and the residue conditions, assuming the uniqueness of the

solution).

4.4.4 Eigenfunctions near \ =0

Introducing éo,j as in (4.84]) and proceeding as in case Ay < As, the following
development of N(z,t, A\) near A = 0 holds:

N(z,t, A)i(blo t) bl(i’”) + i\ <b2(x’t) 0 >+O()\2), (4.124)

[ (x 0 bs(x, 1)
where
by(x,t) = e Joa(m(ED=ANdE (4.1254)
bz, ) = ( / " oo™ 5 A e+ %)e—zfn Faclm@=Ande (4 1951
axxi)zza/u}#f9"1;fhd§4-%§)2kfi&m“ﬂ—A0@. (4.125¢)

Proposition 4.4.2. u(x,t) and u,(x,t) can be algebraically expressed in terms
of the coefficients bj(x,t), j = 1,3 in the development (4.124)) of N(x,t, \) as

follows:

u(z,t) = bi(z, t)bo(w, ) + by (z, t)b3(x, 1), (4.126a)
Ug(z,1) = —by (2, 1)by(, t) + by M, t)bs(z, 1). (4.126b)

4.4.5 RH problem in the (y,t) scale

Introducing the new space variable g(x,t) by

T

Jzt) = o + Ai (m(E,t) — Ay)dé — A% (4.127)
1J—-x

and introducing N (,¢, A) so that N(z,t,\) = N(g(z,t),t,\), the jump con-

dition (4.120a]) becomes
NT@G,6,0) = N~(7,t, VG(7,t,)), Xe Uy, (4.128a)
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where

A 0 1 e_ﬁl(yat7)‘+) 0 eﬁl(y,t)ur) 0
G, A) = (i 0) ( 0 eP1 (A1) Go(M) 0 e Pi(HtAL) |

(4.128D)
Go() is defined by (4.120¢]),
L 1Aki(N) (. 2t
Py, t,A) = %() (y - ﬁ> . (4.128¢)

Thus G(z,t,\) = G(g(x,t),t,\) and pi(z,t,\) = pr(§(x,t),t,\), where the
jump G(z,t,\) and the phase py(z,t,\) are defined in (4.120D]) and ([{.14D),

respectively.
Accordingly, the residue conditions (4.122)) become

Res, s, NO(3,t,0) = e 20 N (g4, +4,), (4.129)

with & = —A~—.
bres1(Ak)
Noticing that the normalization condition (4.121]), the symmetries (4.123)),

and the singularity conditions at A = i% hold in the new scale (7, t), we arrive
J
at the basic RH problem.

Basic RH problem. Given j(\) for A € 3y U X, and {y, /%k}{v with A\ €
(0, 4 o) and & € R\ {0}, associated with the initial data u(z) in ({.1), find
a piece-wise (w.r.t. 3;) meromorphic, 2 X 2-matrix valued functlon N (g,t,\)

satisfying the following conditions:

e The jump condition ({#.128) across 3y Uy (with Go(\) defined by ([#120d)).
e The residue conditions (4.129)).

e The normalization condition:

N(g,t,A) = S | (4.130)
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e Singularity conditions: N (g,t, \) may have singularities at i of order 1 1

o Symmetries:

N(=)) = —05N(Nos, N =-N()\), AeC\%, (4.131a)
N((=N)_) = —03N(A\y)os, NO)=-N(\y), Ae¥. (4.131b)

where N(A\) = N(7,t, \).

4.4.6 Recovering u(xz,t) from the solution of the RH problem

Theorem 4.4.3. Assume that u(x,t) is the solution of the Cauchy problem

(4.1) and let N(g,t,2) be the solution of the associated RH problem (E.128)-
(4.130), whose data are determined by ug(x). Let

L . 0 bi(y,1) , bo(7,t) O )
N(j, t,\) = (Bll(y,t) . >+)\< . 63(W)>+O(A) (4.132)

be the development of N(ij,t,x) at X = 0. Then the solution u(z,t) of the
Cauchy problem (4.1) can be expressed, in a parametric form, in terms of
bi(5,1), 7 =1,2,3: u(x,t) = a(y(x,t),t), where

A~

a(?j? t) = bl (ga t)i)g(:&, t) + Bl_l(gn t)[;?)(g? t)) (4133&)
2(§,t) = §— 2Inby(y,t) + A2t (4.133b)
Additionally, U,(y,t) can also be algebraically expressed in terms of l;j(yv,t),

J=1,2,3: uy(x,t) = . (y(x,t),t), where

Proposition 4.4.4. Let M(y, t, 1) be the solution of the RH problem (4.128])—
(4.131)) whose data are associated with the initial data ug(x). Define fi1(y,t) :=
Mll(y7 t? 0) + MQl(ya t? O) and ﬂ2(y7 t) = MlQ(y7 t? 0) + MZQ(y7 tu O) The solu-
tion u(x,t) of the Cauchy problem (4.1)) has x-derivative given by the paramet-
ric representation
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/&l(yat) 2
x(y,t) =y +In= + Aft. 4.134b
(1) pa(y,t) ( )

Proof. In what follows we will express u, in the variables (y,
function f(z,t) in (y,t) we will use the notation f(y,t) := f(z(y,t), 1), e.g.,

t). To express a

a(y,t) == u(x(y,1),1), U(y,t) = w(2(y, 1), 1), m(y,t) == m(z(y,t),1).

Differentiation of the identity x(y(z,t),t) = x w.r.t. ¢t gives

O (2(y(x,1),1)) = 2y (y, )ye(, 1) + 24(y, ) = 0. (4.135)

From (4.127)) it follows that

Ay
Ty(Y,t) = = (4.136)
W0 =
and |
y(x,t) = A1 —(u* — u2)m.
Substituting this and (4.136)) into (4.135) we obtain
zi(y,t) = @*(y, 1) — @5(y, 1), (4.137)
Further, differentiating (4.137)) w.r.t. y we get
Try(y, t) = (ﬁ2(y,t) - ﬁi(y,t))mxy(y,t) = 2A11,(y,1). (4.138)
Therefore, we arrive at a parametric representation of u,(x,t):
lal(ya ) 2
y,t + In - + A
( ) M?(y7 )
which yields (4.134]). O

4.5 Remarks

We have presented the Riemann—Hilbert problem approach for the modified

Camassa—Holm equation on the line with step-like boundary conditions. In the
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proposed formalism, we have taken the branch cut of k;(\) along the half-lines
>; (outer cuts), which is convenient since we extract the solution of the mCH
equation exploiting the development of the solution of the RH problem at a
point laying in the domain of analyticity. Notice that it is possible to formulate
RH problem taking the branch cut of k;(A) to be the segments (——, o) (inner
cuts). In the case with inner cuts, the properties of Jost solutiorﬁs zire more
conventional (two of the columns are analytic in the upper half-plane and other
two in the lower half-plane), but, on the other hand, possible eigenvalues are
located on the jump.

We have focused on the representation results while assuming the existence
of a solution of problem in certain functional classes. To the best of our
knowledge, the question of existence is still open. One of the ways to answering
it is to appeal to functional analytic PDE techniques to obtain well-posedness
in appropriate functional classes. However, very little is known for the cases
of nonzero boundary conditions, particularly, for backgrounds having different
behavior at different infinities. Since 1980s, existence problems for integrable
nonlinear PDE with step-like initial conditions have been addressed using the
classical Inverse Scattering Transform method [86]. A more recent progress in
this direction (in the case of the Korteweg-de Vries equation) has been reported
in [64, 66, [77] (see also [65]). Another way to show existence is to infer it from
the RH problem formalism (see, e.g., [71] for the case of defocusing nonlinear
Schrodinger equation), where a key point consists in establishing a solution of
the associated RH problem and controlling its behavior w.r.t. the spatial pa-
rameter. For Camassa—Holm-type equations, where the RH problem formalism
involves the change of the spatial variable, it is natural to study the existence of
solution in both (x,t) and (y,t) scales. More precisely, the solvability problem
splits into two problems: (i) the solvability of the RH problem parametrized by
(y,t) and (ii) the bijectivity of the change of the spatial variable. Particularly,
it is possible that it is the change of variables that can be responsible of the
wave breaking [32, [18]. The solvability problem for problem in the current
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setting will be addressed elsewhere.

4.6 Conclusions to Chapter 4

We have presented the Riemann—Hilbert problem approach for the modified
Camassa—Holm equation on the line with step-like boundary conditions. In the
proposed formalism, we have taken the branch cut of k;(\) along the half-lines
>; (outer cuts), which is convenient since we extract the solution of the mCH
equation exploiting the development of the solution of the RH problem at a
point laying in the domain of analyticity. Notice that it is possible to formulate
RH problem taking the branch cut of k;(\) to be the segments (——, o) (inner
cuts). In the case with inner cuts, the properties of Jost SOhltiO;lS ;re more
conventional (two of the columns are analytic in the upper half-plane and other
two in the lower half-plane), but, on the other hand, possible eigenvalues are

located on the jump. Based on the results of the research,

e We have developed the the inverse scattering transform approach in the
form of Riemann—Hilbert problem for this problem in two cases: when the
right background is larger than the left and when the left background is
larger than the right.

e We have introduced ppropriate transformations of the Lax pair equations
that allow us to study in detail the analytic properties of the corresponding

Jost solutions and spectral functions.

e We have constructed the associated Jost solutions (“eigenfunctions”), and
discussed the analytic and asymptotic properties of the eigenfunctions and
the corresponding spectral functions (scattering coefficients), including the

behavior at the branch points.
e We have investigated the symmetries of spectral functions.

e We have obtained the parametric representation of the solution of the

Cauchy problem in form in terms of the solution of an associated RH
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problem.

The developed approach can be an effective basis for the investigation of the
large-time behavior of solutions of the Cauchy problems adapting the nonlinear

steepest descent method.
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Conclusions

The Thesis aims at the development of the inverse scattering transform ap-
proach to the initial value problems for the modified Camassa—Holm equation
with various boundary conditions, in particular, (i) when the solution is as-
sumed to approach a non-zero constant at the both infinities of the space vari-
able, and (ii) when the solution is assumed to approach two different constants
at plus and minus infinity of the space variable. The specificity of our study
is that we consider this equation in the case of with non-vanishing boundary
conditions at infinity. Such problems are of particular interest because they can
be used as models for studying expanding, oscillatory dispersive shock waves.

The method of inverse scattering problem for the modified Camassa—Holm
equation on constant non-zero and step-like backgrounds was developed for the
first time. In addition, for the problem on a constant non-zero background, the
large time asymptotics were obtained for the first time.

For the modified Camassa—Holm equation on the whole line in the case when
the solution is assumed to approach a non-zero constant at the both infinities

of the space variable we have obtained the following main results:

e We have developed the the inverse scattering transform approach in the
form of Riemann—Hilbert problem for this problem. In particular, we have
introduced the appropriate (gauge) transformation for the Lax pair equa-
tions, which reduces the original Lax pair to a “convenient” form; we have
introduced the associated Jost solutions and the corresponding scatter-
ing coefficients, and analyzed their analytic and asymptotic properties;
we have introduced a new (uniformising) spectral parameter which allows

us to avoid non-rational dependence of the coefficients in the Lax pair
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equations on the spectral parameter.

e We have observed the features that distinguish the mCH equation from
other CH type equations. In particular, one does not need to use a new
gauge transformation to control the Jost solutions at A = 0, , but the
required form of the Lax pair comes from regrouping the terms of that

appropriate for large .

e We have obtained the parametric representation of the solution of the
Cauchy problem in form in terms of the solution of an associated RH

problem.

e We have described regular and non-regular one-soliton solutions associ-
ated with the RH problems with trivial jump condition and appropriately
prescribed residue conditions. In this way, we have specified two fami-
lies of non-regular soliton solutions of the mCH equation: (i) peakon-type
solutions, which are continuous together with their first derivative but hav-
ing unbounded derivatives of order greater than 2 at the peak points; (ii)
loop-shaped, multi-valued solutions, which are conventional, signal-valued
solitons in the modified variables that becomes multivalued when going

back to the original variables, z and ¢.

e We have reduced the original RH problem associated with the mCH equa-
tion that has two singularity conditions at 4 = +1 to a regular RH problem

(i.e., to a RH problem with the jump and normalization conditions only).

e Using the nonlinear steepest descent method, we have obtained the leading
asymptotic terms for the solution u(z,t) of the Cauchy problem, in the
two sectors of the (z,?) half-plane, 1 < ¥ < 3 and % < 7 <3<
where the deviation from the background value is nontrivial: this term is
given by modulated (with parameters depending on %), decaying (as t~1/2)

trigonometric oscillations.

For the modified Camassa—Holm equation on the whole line in the case when
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the solution is assumed to approach two different constants at plus and minus

infinity of the space variable we have obtained the following main results:

e We have developed the the inverse scattering transform approach in the
form of Riemann—Hilbert problem for this problem in two cases: when the
right background is larger than the left and when the left background is
larger than the right.

e We have introduced ppropriate transformations of the Lax pair equations
that allow us to study in detail the analytic properties of the corresponding

Jost solutions and spectral functions.

e We have constructed the associated Jost solutions (“eigenfunctions”), and
discussed the analytic and asymptotic properties of the eigenfunctions and
the corresponding spectral functions (scattering coefficients), including the

behavior at the branch points.
e We have investigated the symmetries of spectral functions.

e We have obtained the parametric representation of the solution of the
Cauchy problem in form in terms of the solution of an associated RH

problem.

All results of the dissertation are presented with full proofs. They are of a
theoretical nature and can be used in further research initial boundary value
problems for equations of the Camassi-Holm type, which are promising models

of physical processes of different nature.
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