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Abstract

Classical oscillation theory for Jacobi matrices connects the number of eigen-
values below a given value with the number of nodes (sign flips) of certain
solutions of the underlying difference equation. The aim of this thesis is to de-
velop a novel relative oscillation theory for Jacobi matrices which, rather than
counting the number of eigenvalues of one single matrix, counts the difference
between the number of eigenvalues of two different matrices. This is done by
replacing nodes of solutions associated with one matrix by weighted nodes of
Wronskians of solutions of two different matrices.

Zusammenfassung

Klassische Oszillationstheorie für Jacobi-Matrizen verknüpft die Anzahl der
Eigenwerte unter einem vorgegebenen Wert mit der Anzahl der Knoten (Vor-
zeichenwechsel) gewisser Lösungen der zugrundeliegenden Differenzengleichung.
Ziel dieser Diplomarbeit ist es eine neuartige relative Oszillationstheorie für
Jacobi-Matrizen zu entwickeln, welche — anstatt die Eigenwerte einer einzi-
gen Matrix zu zählen — die Differenz der Anzahl der Eigenwerte zweier ver-
schiedener Matrizen zählt. Dazu ersetzen wir die Knoten einer zu einer Matrix
gehörenden Lösung durch gewichtete Knoten der Wronski-Determinante von
Lösungen zweier verschiedener Matrizen.
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5.1 Comparing Prüfer Angles . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Nodes of the Wronskian . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Finite Jacobi Operators . . . . . . . . . . . . . . . . . . . . . . . 31

A Notation 35

i





CHAPTER 0

Introduction

Jacobi operators can be regarded as a discrete analogue to Sturm-Liouville op-
erators, given by

τ =
1
r

(
− d

dx
p
d

dx
+ q

)
,

which arise in quantum mechanics as a generalisation of Schrödinger operators
in one dimension. Jacobi operators – as well as Sturm-Liouville operators – have
a variety of possible applications in physics, for example the infinite harmonic
crystal in one dimension, a model from solid state physics.
Of central importance in this respect is the investigation of the spectrum of these
operators and one of the main tools is oscillation theory. Classical oscillation
theory investigates the number of nodes (sign flips) of solutions of the underlying
difference equation which can in turn be related to the number of eigenvalues
below a certain value. We refere for example to the recent monograph on discrete
oscillation theory by Agarwal et al. [1]. The aim of this thesis is to develop an
extended oscillation theory which allows us to measure the difference between
the spectra of two Jacobi operators. That is, we compare the Jacobi matrix
H0

0,n and a perturbation H1
0,n, given by

Hj
0,n =



bj(1) a(1) 0 0 0

a(1) bj(2)
. . . 0 0

0
. . . . . . . . . 0

0 0 a(n− 1) bj(n− 2) a(n− 2)
0 0 0 a(n− 2) bj(n− 1)


where j ∈ {0, 1}. We will show how the number of eigenvalues inside a given
interval can be counted by counting the nodes of the Wronskian of two appro-
priate solutions. Since H0

0,n −H1
0,n is not of one sign, we will weight the nodes

of the Wronskian according to the sign of H0
0,n −H1

0,n.
Similar findings for Sturm-Liouville operators were presented recently by Helge
Krüger and Gerald Teschl in [10], [9], [8]. Preliminary work was done in 1996 by
Fritz Gesztesy, Barry Simon and Gerald Teschl in [5] and [18]. They were able
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Chapter 0. Introduction

to show that the spectrum of Sturm Liouville operators and Jacobi operators
are connected closely with the number of nodes of the Wronskian. I recommend
Chapter 4 of [14] for further information and references. The main findings of
this thesis will appear in [2].
Chapter 1 gives a short overview on difference expressions, i.e. endomorphisms
of complex-valued sequences, and introduces the second order symmetric differ-
ence expression

τ : `(Z)→ `(Z)
f(n) 7→ a(n)f(n+ 1) + a(n− 1)f(n− 1) + b(n)f(n)

which leads us to the Jacobi difference equation τu = λu, λ ∈ C. We will regard
some basic facts about the corresponding solutions and their Wronskians. Last
but not least we will give attention to the Jacobi operator

H : `2(Z)→ `2(Z)
f 7→ τf

and its finite restrictions. The content of this chapter is described in [14] in a
more comprehensive way. This chapter also recapitulates some well-known facts
from functional analysis as given in [20], [19] or [15].
In Chapter 2 we introduce Prüfer variables and establish a connection between
the number of sign changes, called nodes, of the solutions of the Jacobi difference
equation and their Prüfer angles. As a main reference the reader is referred to
[14], Chapter 4 and [18].
In Chapter 3 we compare the solutions of two Jacobi operators with different b.
Moreover, we infer a few properties of their Wronskians, which will be helpful for
our further investigations and which provides us with the fact that in a proper
setting the Prüfer angle is monotonically increasing, resp. decreasing, which is
a key ingredient for our proofs in chapter 5.
Chapter 4 gives a proof of Sturm’s Separation Theorem, cf. [6], Section 6.2.
Chapter 5 proves the fact that the difference of the number of eigenvalues below
λ of two finite Jacobi operators differing in b equals the number of weighted
nodes of the Wronskian of suitable solutions u of the Jacobi difference equation
τu = λu. Therefore, we first show how the sign changes of the Wronskian and
the difference of the corresponding Prüfer angles are connected in detail. By
weighting the nodes of the Wronskian according to the sign of b0−b1, we will see
that it is possible to count them using Prüfer angles. The connection between
the spectrum of a Jacobi operator and the nodes of a suitable solution goes back
to the work of Gerald Teschl, cf. [18].

Thanks

First of all, I want to thank my advisor Gerald Teschl for the excellent support
I had in the writing of this thesis and the time he consistently devoted to
it. I further thank my friends and colleagues in the START project “Spectral
Analysis and Applications to Soliton Equations” Katrin Grunert, Helge Krüger,
and Alice Mikikits-Leitner for their support.
I am indebted to the Faculty of Mathematics at the University of Vienna which
provided me with ideal working conditions, especially to my friends and col-
leagues Martin Piskernig and Andreas Ulovec for several helpful suggestions.
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CHAPTER 1

A Brief Summary of Jacobi Operators

1.1 The Jacobi Difference Equation

In this chapter we will review some basic terms and definitions on Jacobi oper-
ators. Most of these facts can be found more comprehensive in [14]. For this
purpose especially Chapters 1, 2, and 4 are relevant.

Definition 1.1. Let I be a subset of Z and M = R or M = C. By `(I,M) we
denote the set of M -valued sequences (f(n))n∈I and `(I) = `(I,C). Furthermore
we define

`(n1, n2) = `({n ∈ Z |n1 < n < n2}),
`(n1,∞) = `({n ∈ Z |n1 < n}),
`(∞, n2) = `({n ∈ Z |n < n2})

(1.1)

for all n1, n2 ∈ Z. Moreover,

δn(m) = δn,m =
{

0 if n 6= m
1 if n = m

(1.2)

denotes the canonical basis of `(Z).

Definition 1.2. A difference expression is an endomorphism of `(Z), given by

R : `(Z)→ `(Z)
u 7→ Ru.

(1.3)

Each difference expression is uniquely determined by its corresponding matrix
representation, given by

(R(m,n))m,n∈Z = (Rδn)(m) = 〈δm, Rδn〉. (1.4)

Definition 1.3. We call a difference expression R symmetric if

R(m,n) = R(n,m) for all m,n ∈ Z. (1.5)

1



Chapter 1. A Brief Summary of Jacobi Operators

The order of a difference expression R is given by N ∈ N if N is the smallest
non-negative integer which satisfies R(m,n) = 0 for all n−m > N+ and m−n >
N− with N = N+ +N−. If no such number exists we call R of infinite order.

Definition 1.4. Let a, b ∈ `(Z) be real-valued sequences which satisfy a(n) ∈
R\{0}, b(n) ∈ R, n ∈ Z. Then τ denotes the second order symmetric difference
expression given by

τ : `(Z)→ `(Z)
f(n) 7→ a(n)f(n+ 1) + a(n− 1)f(n− 1) + b(n)f(n)

(1.6)

associated with the tridiagonal matrix

. . . . . . 0 0 0
a(n− 2) b(n− 1) a(n− 1) 0 0

0 a(n− 1) b(n) a(n) 0
0 0 a(n) b(n+ 1) a(n+ 1)

0 0 0
. . . . . .

 . (1.7)

Moreover, the Jacobi difference equation is defined as

τu = λu, (1.8)

where u ∈ `(Z) and λ ∈ C.

A short calculation shows that

(τf)(n) = −(∂∗a∂f)(n) +
(
a(n− 1) + a(n) + b(n)

)
f(n)

= ∂(a(n− 1)∂f(n− 1)) +
(
a(n− 1) + a(n) + b(n)

)
f(n)

(1.9)

where

(∂f)(n) = f(n+ 1)− f(n),
(∂∗f)(n) = f(n− 1)− f(n)

(1.10)

and we find that τ is a discrete analogue to the well-known Sturm-Liouville
operator, given by

τ =
1
r

(
− d

dx
p
d

dx
+ q

)
. (1.11)

Lemma 1.5 (Summation by Parts).

n∑
i=m

g(i)(∂f)(i) = g(n)f(n+ 1)− g(m− 1)f(m) +
n∑

i=m

(∂∗g)(i)f(i) (1.12)

Definition 1.6. For all f , g ∈ `(Z) we define the (modified) Wronskian

Wn(f, g) = a(n)
(
f(n)g(n+ 1)− f(n+ 1)g(n)

)
(1.13)

and

W±∞(f, g) = lim
n→±∞

Wn(f, g) (1.14)

provided the limit exists.

2



Chapter 1. A Brief Summary of Jacobi Operators

The Wronskian is given by

Wn(f, g) =
∣∣∣∣ f(n) g(n)
f(n+ 1) g(n+ 1)

∣∣∣∣ =
∣∣∣∣ f(n) g(n)
(∂f)(n) (∂g)(n)

∣∣∣∣ (1.15)

and satisfies

Wn(f, f) = 0,
Wn(f, g) = −Wn(g, f),
Wn(cf, g) = Wn(f, cg) = cWn(f, g) for all c ∈ C,

Wn(f + f̃ , g) = Wn(f, g) +Wn(f̃ , g),
Wn(f, g + g̃) = Wn(f, g) +Wn(f, g̃),

(1.16)

and if f , g are real-valued we have

Wn(f, g) = 0 ⇒ ∃ c ∈ R: f(n) = cg(n) and f(n+ 1) = cg(n+ 1). (1.17)

Lemma 1.7 (Green’s Formula). Let f , g ∈ `(Z), then

n∑
j=m

(
f(τg)− (τf)g

)
(j) = Wn(f, g)−Wm−1(f, g). (1.18)

Proof. We have

n∑
j=m

(
f(τg)− (τf)g

)
(j)

=
n∑

j=m

f(j)
(
a(j)g(j + 1) + a(j − 1)g(j − 1) + b(j)g(j)

)
−

n∑
j=m

(
a(j)f(j + 1) + a(j − 1)f(j − 1) + b(j)f(j)

)
g(j)

=
n∑

j=m

(
Wj(f, g)−Wj−1(f, g)

)
= Wn(f, g)−Wm−1(f, g).

(1.19)

Lemma 1.8. Let f , g ∈ `(Z), then the Wronskian W (f, g) is nonzero if and
only if f and g are linearly independent. If τf = λf and τg = λg for some
λ ∈ C, then the Wronskian Wn(f, g) is constant.

Proof. We say f and g are linearly dependent if f(n) = cg(n) for some c ∈ C
and for all n ∈ Z. Thus,

f , g are linearly dependent
⇔ f(n) = cg(n)
⇔ f(n)cg(n+ 1) = cg(n)f(n+ 1)
⇔ Wn(f, g) = 0,

(1.20)

3



Chapter 1. A Brief Summary of Jacobi Operators

for all n ∈ N, which proofs the lemma. If f , g solve (1.8) with the same λ ∈ C
we have

Wn(f, g)−Wm−1(f, g) =
n∑

i=m

(
f(τg)− (τf)g

)
(i) = 0. (1.21)

Suppose that a(n) 6= 0 for all n ∈ Z, then for any arbitrary given values in two
consecutive points u(n0) and u(n0 + 1) there is a unique solution of τu = λu in
`(Z). Furthermore, for all λ in C there are two linearly independent solutions
of the Jacobi difference equation. Moreover, two linearly independent solutions
cannot have a common zero, since the Wronskian has no zeros.

1.2 The Fundamental Solutions

The solution space of the Jacobi difference equation (1.8) is two-dimensional
and hence it is possible to choose two linearly independent solutions of (1.8),
namely c, s, the fundamental solutions.

Definition 1.9. For any n0 ∈ Z, λ ∈ C we define the fundamental solutions c,
s ∈ `(Z) as

τc(., n0) = λc(., n0) where c(n0, n0) = 1, c(n0 + 1, n0) = 0 (1.22)

and

τs(., n0) = λs(., n0) where s(n0, n0) = 0, s(n0 + 1, n0) = 1. (1.23)

We will omit n0 whenever it is zero, that is,

c(n) := c(n, 0) and s(n) := s(n, 0). (1.24)

Any solution u of (1.8) is a linear combination of the fundamental solutions,
such that

u(n) =
W (u, s)
W (c, s)

c(n)− W (u, c)
W (c, s)

s(n). (1.25)

Using induction it is straightforward to show that, for any k ≥ 0, c(n0 + k, n0)
and s(n0 + k, n0) are polynomials of order at most k with respect to λ.

Definition 1.10. For all n1, n2 ∈ Z where n1 > n2 + 1 we define the Jacobi
matrix

Jn1,n2 =



b(n1 + 1) a(n1 + 1) 0 0 0

a(n1 + 1) b(n1 + 2)
. . . 0 0

0
. . . . . . . . . 0

0 0 a(n2 − 1) b(n2 − 2) a(n2 − 2)
0 0 0 a(n2 − 2) b(n2 − 1)

 . (1.26)

Lemma 1.11. Let n1, n2 ∈ Z, n1 > n2+1 and let s be the fundamental solution
of τs = λs, then we have

s(λ, n1, n2) =
det(λ− Jn1,n2)∏n2−1

i=n1+1 a(i)
. (1.27)

4



Chapter 1. A Brief Summary of Jacobi Operators

Proof. cf. [14], (1.65).

Since the Wronskian of c(., n0) and s(., n0) is constant, we can evaluate it at
the point n0 and thus we have

Wn(c(., n0), s(., n0)) = a(n0). (1.28)

Hence, for arbitrary solutions u, v of the Jacobi difference equation (1.25) implies

u(n) = u(n0)c(n, n0) + u(n0 + 1)s(n, n0) (1.29)

and

Wn(u(., n0), v(., n0)) = a(n0)(u(n0)v(n0 + 1)− u(n0 + 1)v(n0)). (1.30)

1.3 The Jacobi Difference Operator

In this section we will have a look at operators acting on the Hilbert space `2(Z)
associated with the Jacobi difference equation. From now on we assume that a,
b ∈ `∞(Z) are bounded and as already noted before we will furthermore assume
that a(n) ∈ R \ {0}, b(n) ∈ R, n ∈ Z.

Definition 1.12. For 1 ≤ p <∞ we define the Banach spaces

`p(I,M) =
{
f ∈ `(I,M) |

∑
n∈I
|f(n)|p <∞

}
(1.31)

and
`∞(I,M) =

{
f ∈ `(I,M) | sup

n∈I
|f(n)| <∞

}
(1.32)

with the corresponding norms

‖f‖p =
(∑
n∈I
|f(n)|p

) 1
p

for all f ∈ `p(I,M),

‖f‖∞ = sup
n∈I
|f(n)| for all f ∈ `∞(I,M).

(1.33)

Definition 1.13. We define `p±(Z,M) as the set of sequences in `(Z,M) which
are `p near ±∞, i.e. all sequences in `(Z,M) whose restriction to `(±N,M)
belongs to `p(±N,M).

The vector space `2(Z) is a Hilbert space with scalar product

〈f, g〉 =
∑
n∈Z

f(n)∗g(n) and ‖f‖ =
√∑
n∈Z
|f(n)|2 (1.34)

where f(n)∗ denotes the complex conjugation of f(n).

Lemma 1.14. For all f , g, τf , τg ∈ `2±(Z) we have

W±∞(f, g) = 0. (1.35)

5



Chapter 1. A Brief Summary of Jacobi Operators

Proof. We infer

W±∞(f, g) = lim
n→±∞

a(n)(f(n)g(n+ 1)− f(n+ 1)g(n)). (1.36)

Since a ∈ `∞ the last term is in `2±, thus the limit is zero.

Definition 1.15. Let a and b be in `∞(Z,R) and a(n) 6= 0. Then we call

H : `2(Z)→ `2(Z)
f 7→ τf

(1.37)

the Jacobi operator associated with a, b.

The norm of H is given by

‖H‖ = sup
f : ‖f‖=1

‖Hf‖2 (1.38)

and since a(n) and b(n) are real we have (Hf)∗ = Hf∗.

Definition 1.16. Let H be a Hilbert space and let A : D(A)→ H, D(A) dense.
The adjoint operator A∗ is defined by

D(A∗) = {f ∈ H | ∃f̃ ∈ H : 〈f,Ag〉 = 〈f̃ , g〉∀ g ∈ D(A)}
A∗f = f̃

(1.39)

A is called self-adjoint if A = A∗.

Remark 1.17. We have

‖H‖ = sup
f : ‖f‖=1

‖(a(n)f(n+ 1) + a(n− 1)f(n− 1) + b(n)f(n))n∈Z‖

≤ sup
f : ‖f‖=1

‖a‖∞‖f−‖+ ‖a‖∞‖f+‖+ ‖b‖∞‖f‖

≤ 2‖a‖∞ + ‖b‖∞,

(1.40)

where f−(n) = f(n+ 1) and f+(n) = f(n− 1) for all n ∈ Z.

Theorem 1.18. The Jacobi operator H is bounded and self-adjoint.

Proof. Green’s formula and Lemma 1.14 imply

〈f,Hf〉 − 〈Hf, f〉

=
∑
n∈Z

(f∗(n)(Hf)(n)− (Hf)∗(n)f(n))

=
∑
n∈Z

(f∗(n)(τf)(n)− (τf∗)(n)f(n))

= W∞(f∗, f)−W−∞(f∗, f) = 0.

(1.41)

Since H is bounded, symmetric and defined on the entire Hilbert space `2(Z),
H is self-adjoint. (Hellinger-Toeplitz [cf. e.g. [20] Th. V.5.5])
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Chapter 1. A Brief Summary of Jacobi Operators

Definition 1.19. Let a, b0 and b1 be in `∞(Z,R) and a(n) 6= 0, then we define

Ht : `2(Z)→ `2(Z)
f 7→ τtf

(1.42)

where

(τtf)(n) = a(n)f(n+ 1) +a(n−1)f(n−1) + ((1− t)b0(n) + tb1(n))f(n) (1.43)

for all t ∈ [0, 1].

Remark 1.20. We have

Ht = (1− t)H0 + tH1 = H0 + t(b1 − b0). (1.44)

Definition 1.21. For any n0 ∈ Z we define the restriction H+,n0 of H to the
subspace `2(n0,∞) as

H+,n0f(n) =
{
a(n0 + 1)f(n0 + 2) + b(n0 + 1)f(n0 + 1) if n = n0 + 1
(τf)(n) if n > n0 + 1

(1.45)
and the restriction H−,n0 of H to the subspace `2(−∞, n0) as

H−,n0f(n) =
{
a(n0 − 2)f(n0 − 2) + b(n0 − 1)f(n0 − 1) if n = n0 − 1
(τf)(n) if n < n0 − 1

(1.46)
and the restriction Hn1,n2 of H to the subspace `2(n1, n2) as

Hn1,n2f(n) =

 a(n1 + 1)f(n1 + 2) + b(n1 + 1)f(n1 + 1) if n = n1 + 1
(τf)(n) if n1 + 1 < n < n2 − 1
a(n2 − 2)f(n2 − 2) + b(n2 − 1)f(n2 − 1) if n = n2 − 1

(1.47)

These operators are again bounded and self-adjoint. Moreover, Hn1,n2 is asso-
ciated with the Jacobi matrix Jn1,n2 .

Definition 1.22. Moreover, we set H∞,∞n1,n2
= Hn1,n2 , H0,β2

n1,n2
= H∞,β2

n1+1,n2
, and

Hβ1,β2
n1,n2

= H∞,β2
n1,n2

− a(n1)β−1
1 〈δn1+1, .〉δn1+1, β1 6= 0,

Hβ1,β2
n1,n2

= Hβ1,∞
n1,n2+1 − a(n2)β2〈δn2 , .〉δn2 , β2 6=∞. (1.48)

Remark 1.23. Note that Hβ
+,n0

can be associated with the following domain

D(Hβ
+,n0

) = {f ∈ `2(n0,∞)| cos(α)f(n0) + sin(α)f(n0 + 1) = 0}, (1.49)

β = cot(α) 6= 0, if one agrees that only points with n > n0 are of significance
and that the last point is only added as a dummy variable so that one does not
have to specify an extra expression for (τf)(n0 + 1). In particular, the case
β = ∞ (i.e., corresponding to the boundary condition f(n0) = 0) is known as
Dirichlet boundary condition at n0. Analogously for Hβ

−,n0
and Hβ1,β2

n1,n2
.
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CHAPTER 2

Oscillation Theory

2.1 Prüfer Variables

We will first recall a few basic results on the solutions of the Jacobi difference
equation given in (1.8) before we subsequently will have a look at the Wronskian
of two solutions solving (1.8) with different b ∈ `(Z).

Remark 2.1. (cf. [18], Remark 2.2) Introduce Hε = UεHU
−1
ε where Uε = U−1

ε

is a unitary operator defined via (Uεf)(n) = ε̃(n)f(n) with ε̃(n) ∈ {+1,−1} and
ε̃(n)ε̃(n+1) = ε(n). Then Hε is associated with the sequences aε(n) = ε(n)a(n),
bε(n) = b(n), n ∈ Z and the case a(n) 6= 0 can be easily reduced to the case
a(n) < 0.

Thus, for a(n) ∈ R \ {0} it is no restriction to assume that a(n) < 0 for all
n ∈ Z, what we will do from now on. Furthermore, we assume that b(n) ∈ R
for all n ∈ Z and a solution of (1.8) will always mean a real valued, nonzero
solution.

Lemma 2.2. Let u be a solution of (1.8) and u(n) = 0 for some n ∈ N, then
we have

u(n− 1)u(n+ 1) < 0. (2.1)

Proof. Suppose that u(n) = 0, then (1.8) implies

a(n)u(n+ 1) = −a(n− 1)u(n− 1) (2.2)

and thus we have

− u(n− 1)
u(n+ 1)

=
a(n)

a(n− 1)
> 0. (2.3)

Note that a solution (not vanishing identically!) cannot be zero at two consec-
utive points and that we made the assumption a(n) < 0 for all n ∈ Z.

In some sense this lemma says that nontrivial solutions of (1.8) can only have
”simple” zeros. Moreover, every (nontrivial) solution fulfills

(u(n), u(n+ 1)) 6= (0, 0) for all n ∈ Z, (2.4)

9
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which allows us to introduce Prüfer variables. For all n ∈ Z we set

u(n) = ρu(n) sin θu(n) and
u(n+ 1) = ρu(n) cos θu(n).

(2.5)

That is,
ρu(n) sin θu(n) = ρu(n− 1) cos θu(n− 1) (2.6)

and

θu(n) =

{
arccot

(
u(n+1)
u(n)

)
, if u(n) 6= 0,

kπ for some k ∈ Z, otherwise.
(2.7)

Note that ρu(n) > 0 for all n ∈ Z and θu(n) is only defined up to an additive
integer multiple of 2π, depending on n. For our further investigations it is
essential to gain unique values for the Prüfer angle and therefore we fix θu(0)
and require

dθu(n)/πe ≤ dθu(n+ 1)/πe ≤ dθu(n)/πe+ 1, (2.8)

where x 7→ dxe denotes the ceiling function given by

x 7→ dxe = min{n ∈ Z |n ≥ x}. (2.9)

The function x 7→ dxe − 1 is a left-continuous analogue to the well-known floor
function defined as

x 7→ bxc = max{n ∈ Z |n ≤ x} (2.10)

which itself is a right-continuous step function.

2.2 Nodes of Solutions

Whereas in the continuous case one considers zeros of solutions of Sturm-
Liouville differential equations, in the discrete case we are interested in zeros
and sign changes of a solution of (1.8), denoted as nodes.

Definition 2.3. We call n ∈ Z a node of a solution u of (1.8) if either

u(n) = 0 or u(n)u(n+ 1) < 0. (2.11)

We say that a node n0 of u lies between m and n if either

m < n0 < n or n0 = m but u(m) 6= 0. (2.12)

#(u) denotes the number of nodes of u and #(m,n)(u) denotes the number of
nodes of u between m and n.

Lemma 2.4. Suppose that (2.8) holds for a solution u of (1.8) and for an
arbitrary n0 ∈ Z we choose some k ∈ Z such that θu(n0) = kπ+γ with γ ∈ (0, π]
and θu(n0 + 1) = kπ + Γ, then we have

γ ∈
{

(0, π2 ] iff n0 is not a node
(π2 , π] iff n0 is a node (2.13)

10
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and

Γ ∈
{

(0, π] iff n0 is not a node
(π, 2π) iff n0 is a node (2.14)

Moreover,
θu(n) = kπ +

π

2
⇔ θu(n+ 1) = (k + 1)π. (2.15)

Proof. Condition (2.8) implies that Γ ∈ (0, 2π].
Suppose that there is no node at n, then γ ∈ (0, π). Suppose that ±u(n) >
0, then ± sin(kπ + γ) > 0. Furthermore we have ±u(n + 1) ≥ 0 and thus
± cos(kπ + γ) ≥ 0. Therefore γ ∈ (0, π2 ) and k ≡ 0

1 mod 2. Moreover,

± sin θu(n+ 1) = ±(−1)k sin(Γ) ≥ 0 (2.16)

implies Γ ∈ (0, π].
On the other hand suppose that n is a node, then there are two cases:
Either we have u(n) = 0, so γ = π and θu(n) = (k + 1)π where k ≡ 0

1 mod 2.
Thus,

± ρu(n) cos((k + 1)π) = ±u(n+ 1) < 0. (2.17)

And hence
± sin θu(n+ 1) = ±(−1)k sin(Γ) < 0 (2.18)

implies Γ ∈ (π, 2π). Or we have ±u(n) > 0 and ±u(n+ 1) < 0, thus we infer

± sin θu(n) = ±(−1)k sin(γ) > 0 (2.19)

and
± sin θu(n+ 1) = ±(−1)k sin(Γ) < 0. (2.20)

Now, γ ∈ (0, π) implies Γ ∈ (π, 2π). Moreover, by

± u(n+ 1) = ±ρu(n) cos θu(n) < 0 (2.21)

we conclude that sin θu(n) and cos θu(n) are of different sign and thus γ ∈ (π2 , π).
Suppose that θu(n) = kπ+ π

2 , then we have u(n+ 1) = ρu(n) cos θu(n) = 0 and
thus Γ is an integer multiply of π and u(n)u(n+ 1) < 0. Hence,

sin(kπ +
π

2
) cos(kπ + Γ) = (−1)k sin(

π

2
)(−1)k cos(Γ) < 0 (2.22)

implies Γ = π.
Conversely, suppose that θu(n+ 1) = (k + 1)π, then we have cos θu(n) = 0 and
thus θu(n) = lπ+ π

2 where l ∈ Z. Furthermore Lemma 2.2 implies u(n)u(n+2) <
0 and we have

sin(lπ +
π

2
) cos((k + 1)π) = (−1)l sin(

π

2
)(−1)k+1 < 0. (2.23)

Hence, l ≡ k mod 2 and (2.8) implies l = k.

Corollary 2.5. Suppose that (2.8) holds for a solution u of (1.8), then

dθu(n+ 1)
π

e =

{
d θu(n)

π e+ 1 if n is a node,
d θu(n)

π e otherwise.
(2.24)

11
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By this means it is possible to count nodes of solutions of the Jacobi difference
equation using Prüfer variables and the number of nodes in an interval (m,n),
possibly infinite, is given by

Theorem 2.6. Let m < n. Suppose that (2.8) holds for a solution u of (1.8),
then

#(m,n)(u) = dθu(n)
π
e − bθu(m)

π
c − 1 (2.25)

and

#(u) = lim
n→∞

(
dθu(n)

π
e − bθu(−n)

π
c − 1

)
. (2.26)

Proof. We proof the theorem by induction.
Let n = m+ 1.
If u(m) = 0, then u(n) 6= 0 and according to the definition the node m of u
doesn’t lie in (m,n). For any k in Z we have θu(m) = (k+1)π and θu(n) = kπ+Γ
with Γ ∈ (π, 2π]. Hence,

dθu(n)
π
e − bθu(m)

π
c − 1 = 0 = #(m,n)(u). (2.27)

If u(m) 6= 0, we have

bθu(m)
π
c = dθu(m)

π
e − 1 =

{
d θu(n)

π e − 2 if m is a node,
d θu(n)

π e − 1 otherwise.
(2.28)

Hence,

dθu(n)
π
e − bθu(m)

π
c − 1 = #(m,n)(u). (2.29)

We assume that the theorem already holds for some n ≥ m + 1 and if n is a
node we have

#(m,n+1)(u) = #(m,n)(u) + 1

= dθu(n)
π
e − bθu(m)

π
c

= dθu(n+ 1)
π

e − bθu(m)
π
c − 1.

(2.30)

The same holds if n is no node of u.

Since the fundamental solution s of the Jacobi difference equation has boundary
condition s(0) = 0 and we normalize θs such that θs(0) = 0 we have

Corollary 2.7. Let n > 0. Suppose that (2.8) holds for the fundamental solu-
tion s of (1.8), then

#(0,n)(s) = dθs(n)
π
e − 1. (2.31)
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2.3 The Riccati Equation

Lemma 2.8 (Riccati Equation). If sin θu(n) 6= 0 and cos θu(n) 6= 0 for all
n ∈ N, then

τu = λu ⇔ a(n) cot θu(n) + a(n− 1) tan θu(n− 1) = λ− b(n). (2.32)

Proof. We have

(τ − λ)u = 0
⇔ a(n)u(n+ 1) + a(n− 1)u(n− 1) + (b(n)− λ)u(n) = 0
⇔ a(n)ρu(n) cos θu(n) + a(n− 1)ρu(n− 1) sin θu(n− 1)

+ (b(n)− λ)ρu(n) sin θu(n) = 0

⇔ a(n) cot θu(n) + a(n− 1)
ρu(n− 1) sin θu(n− 1)

ρu(n) sin θu(n)
+ b(n)− λ = 0

⇔ a(n) cot θu(n) + a(n− 1) tan θu(n− 1) = λ− b(n).

(2.33)
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CHAPTER 3

The Modified Jacobi Difference Equation

Definition 3.1. Let a, b0, b1 ∈ `(Z) be real-valued sequences which satisfy
a(n) < 0. We define

τ0 : `(Z)→ `(Z)
u(n) 7→ a(n)u(n+ 1) + a(n− 1)u(n− 1) + b0(n)u(n),

τ1 : `(Z)→ `(Z)
u(n) 7→ a(n)u(n+ 1) + a(n− 1)u(n− 1) + b1(n)u(n)

(3.1)

and τt = τ0 + t(b1 − b0) for all t ∈ [0, 1].

Lemma 3.2. For all t ∈ [0, 1] let ut be solutions of τtut = λut where ut(n0) =
(1− t)u0(n0) + tu1(n0) and ut(n0 + 1) = (1− t)u0(n0 + 1) + tu1(n0 + 1), u0(n0),
u1(n0), u0(n0 + 1), u1(n0 + 1) ∈ R, n0 ∈ Z, then for any m ∈ Z, t 7→ ut(m) is
a polynomial in t of order at most{

m− n0 if m > n0,
|m− n0|+ 1 if m ≤ n0.

(3.2)

Proof. We will proof the lemma by induction. By assumption ut(n0) and ut(n0+
1) are polynomials of order 1 with respect to t. Now, suppose that ut(n) is a
polynomial of order at most m−n0 for all n0 +1 < n ≤ m. Since ut is a solution
of τtut = λut we have

a(m)ut(m+ 1) + a(m− 1)ut(m− 1) + bt(m)ut(m) = λut(m), (3.3)

where bt(m) = b0(m) + t(b1(m)− b0(m)). By

a(m)ut(m+1) = (λ−b0(m))ut(m)−a(m−1)ut(m−1)+(b0(m)−b1(m))tut(m)
(3.4)

we infer that ut(m+ 1) is a polynomial of order at most m+ 1− n0.
The same holds for m ≤ n0.

15
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Lemma 3.3. For all t ∈ [0, 1], n0 ∈ Z, let ut be solutions of τtut = λut where
ut(n0) = (1− t)u0(n0)+ tu1(n0) and ut(n0 +1) = (1− t)u0(n0 +1)+ tu1(n0 +1)
with u0(n0), u1(n0), u0(n0 + 1), u1(n0 + 1) ∈ R. Suppose that (2.8) holds for
θu0 , then (2.8) holds for all θut where t ∈ [0, 1].

Proof. Assume that there is a t ∈ (0, 1], such that (2.8) doesn’t hold for θut
,

then there is an n such that

dθut
(n)
π
e > dθut

(n+ 1)
π

e or dθut
(n)
π
e+ 1 < dθut

(n+ 1)
π

e. (3.5)

Since θut
depends continuously on t and (2.8) holds for θu0 there exists a t0 ∈

[0, t] such that for any k ∈ Z one of the following cases holds:

(1) θut0
(n) = kπ and θut0

(n+ 1) ∈ ((k + 1)π, (k + 2)π]
(2) θut0

(n) = (k + 1)π and θut0
(n+ 1) ∈ (kπ, (k + 1)π]

(3) θut0
(n) ∈ (kπ, (k + 1)π] and θut0

(n+ 1) = (k + 2)π
(4) θut0

(n) ∈ (kπ, (k + 1)π] and θut0
(n+ 1) = kπ

Suppose that (1) or (2) holds, then ut0(n+ 1)2 > 0 and thus

0 < sin θut0
(n+ 1) cos θut0

(n) = (−1)k+1(−1)k sin Γ (3.6)

where Γ lies in (0, π], which leads to a contradiction.
Suppose that (3) or (4) holds, then ut0(n+ 1) = 0 implies ut0(n)ut0(n+ 2) < 0
and thus

0 > sin θut0
(n) cos θut0

(n+ 1) = (−1)k sin(γ)(−1)k cos Γ (3.7)

with γ ∈ (0, π] and resp. Γ = 2π in the case of (3), resp. Γ = 0 in the case of
(4), which leads to a contradiction.

The previous lemma ensures that it is always possible to fix θu0(0) and require

dθu0(n)/πe ≤ dθu0(n+ 1)/πe ≤ dθu0(n)/πe+ 1 (3.8)

to use continuity to gain unique values for the Prüfer angle for all t ∈ [0, 1] such
that

dθut
(n)/πe ≤ dθut

(n+ 1)/πe ≤ dθut
(n)/πe+ 1. (3.9)

3.1 A Few Properties of the Wronskian

A couple of facts about the Wronskian of two solutions of (1.8) such as Green’s
formula given in Lemma 1.7 in a slightly modified way still hold in our context,
i.e. for the Wronskian of two solutions of Jacobi difference equations with a
modified b.

Lemma 3.4 (Green’s Formula). Let f, g ∈ `(Z) and m ≤ n, then
n∑

j=m

(
f(τ1g)− (τ0f)g

)
(j)

= Wn(f, g)−Wm−1(f, g) +
n∑

j=m

(b1(j)− b0(j))f(j)g(j).

(3.10)
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Proof. We have

n∑
j=m

(
f(τ1g)− (τ0f)g

)
(j)

=
n∑

j=m

(f(j)
(
a(j)g(j + 1) + a(j − 1)g(j − 1) + b1(j)g(j)

)
−
(
a(j)f(j + 1) + a(j − 1)f(j − 1) + b0(j)f(j)

)
g(j))

=
n∑

j=m

(
Wj(f, g)−Wj−1(f, g) + (b1(j)− b0(j))g(j)f(j)

)
= Wn(f, g)−Wm−1(f, g) +

n∑
j=m

(b1(j)− b0(j))g(j)f(j).

(3.11)

Now we fix some λ ∈ R and have a look at the solutions of the corresponding
Jacobi difference equations, especially the properties of their Wronskian.

Corollary 3.5. Let λ ∈ R, let u0, u1 ∈ `(Z) be solutions of τ0,1u0,1 = λu0,1 and
m ≤ n, then

Wn(u0, u1)−Wm−1(u0, u1) =
n∑

j=m

(b0(j)− b1(j))u0(j)u1(j). (3.12)

In particular,

Wn+1(u0, u1)−Wn(u0, u1) = (b0(n+ 1)− b1(n+ 1))u0(n+ 1)u1(n+ 1). (3.13)

Since ut(n) is a polynomial in t for all n ∈ Z it is differentiable and we let the
dot denote the derivative with respect to t, given by

u̇t0(n) = lim
t→t0

ut(n)− ut0(n)
t− t0

. (3.14)

To shorten notation we will use the following abbreviation for sums

m−1∑∗

i=m0

f(i) =


∑m−1
i=m0

f(i) if m > m0

0 if m = m0

−
∑m0−1
i=m f(i) if m < m0

. (3.15)

Lemma 3.6. Let λ ∈ R, n0 ∈ Z and for all t ∈ [0, 1] let ut be a solution of
τtut = λut with boundary conditions ut(n0) = u0(n0) + t(u1(n0)− u0(n0)) and
ut(n0 + 1) = u0(n0 + 1) + t(u1(n0 + 1)− u0(n0 + 1)) where u0(n0), u0(n0 + 1),
u1(n0), u1(n0 + 1) ∈ R, then we have

Wn(ut, u̇t) = Wn0(u0, u1) +
n∑∗

i=n0+1

(b0(i)− b1(i))ut(i)2. (3.16)

17



Chapter 3. The Modified Jacobi Difference Equation

Proof. For all t, t̃ ∈ [0, 1] we have

Wn0(ut, u̇t) = a(n0)(ut(n0)u̇t(n0 + 1)− ut(n0 + 1)u̇t(n0))
= Wn0(u0, u1)

(3.17)

and

Wn0(ut, ut̃) = a(n0)(ut(n0)ut̃(n0 + 1)− ut(n0 + 1)ut̃(n0))

= (t̃− t)Wn0(u0, u1)
(3.18)

Moreover,

Wn(ut, u̇t) = lim
t̃→t

Wn(ut, ut̃)−Wn(ut, ut)
t̃− t

= lim
t̃→t

Wn(ut, ut̃)
t̃− t

.

(3.19)

If n > n0 by Corollary 3.5 and bt(i) = b0(i)+ t(b1(i)−b0(i)) we further conclude
that

Wn(ut, u̇t)−Wn0(u0, u1) = lim
t̃→t

Wn(ut, ut̃)−Wn0(ut, ut̃)
t̃− t

= lim
t̃→t

1
t̃− t

n∑
i=n0+1

(bt(i)− bt̃(i))ut(i)ut̃(i)

= lim
t̃→t

t̃− t
t̃− t

n∑
i=n0+1

(b0(i)− b1(i))ut(i)ut̃(i)

=
n∑

i=n0+1

(b0(i)− b1(i))ut(i)2.

(3.20)

Similarly, if n < n0 we have

Wn(ut, u̇t)−Wn0(u0, u1) = −
n0∑

i=n+1

(b0(i)− b1(i))ut(i)2. (3.21)

It is further possible to investigate sign changes near one or more consecutive
zeros of the Wronskian.

Lemma 3.7. Let λ ∈ R, let u0,1 be solutions of τ0,1u0,1 = λu0,1 and

(1) let
∏n+1
i=n (b0(i)− b1(i)) > 0, Wn−1(u0, u1)Wn+1(u0, u1) 6= 0 and

Wn(u0, u1) = 0, then

Wn−1(u0, u1)Wn+1(u0, u1) < 0. (3.22)

(2) let b1(n+ 1) 6= b0(n+ 1) and Wn(u0, u1) = Wn+1(u0, u1) = 0, then

u0(n+ 1) = u1(n+ 1) = 0. (3.23)
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(3) let ±b0(n) > b1(n), ±b0(n+ 2) > b1(n+ 2) and
Wn(u0, u1) = Wn+1(u0, u1) = 0, then

Wn−1(u0, u1)Wn+2(u0, u1) < 0. (3.24)

Proof. (1) We have

Wn−1(u0, u1)Wn+1(u0, u1)
= −(Wn(u0, u1)−Wn−1(u0, u1))(Wn+1(u0, u1)−Wn(u0, u1))
= −(b0(n)− b1(n))u0(n)u1(n)(b0(n+ 1)− b1(n+ 1))u0(n+ 1)u1(n+ 1)

= −(b0(n)− b1(n))(b0(n+ 1)− b1(n+ 1))c2u0(n)2u0(n+ 1)2 < 0.
(3.25)

In the last step we used (1.17) since u0 and u1 are real-valued.

(2) By (3.13) and Wn(u0, u1)−Wn+1(u0, u1) = 0 either u0(n+ 1) or u1(n+ 1)
must be zero. Since (1.17) and Wn(u0, u1) = 0 both are 0.

(3) By (2) there is a node at n+ 1 and hence (3.13) and (2.2) imply

Wn−1(u0, u1)Wn+2(u0, u1)
= (Wn−1(u0, u1)−Wn(u0, u1))(Wn+2(u0, u1)−Wn+1(u0, u1))
= −(b0(n)− b1(n))u1(n)u0(n)(b0(n+ 2)− b1(n+ 2))u1(n+ 2)u0(n+ 2)
< 0.

(3.26)

3.2 The Derivative of the Prüfer Angle

Lemma 3.8. Let λ ∈ R, n0 ∈ Z and for all t ∈ [0, 1] let ut be a solution of
τtut = λut with boundary conditions ut(n0) = u0(n0) + t(u1(n0)− u0(n0)) and
ut(n0 + 1) = u0(n0 + 1) + t(u1(n0 + 1) − u0(n0 + 1)) where u0(n0), u1(n0),
u0(n0 + 1), u1(n0 + 1) ∈ R, then we have

θ̇ut
(n) =

Wn0(u0, u1)
−a(n)ρut

(n)2
+

n∑∗

i=n0+1

(b0(i)− b1(i))ut(i)2

−a(n)ρut
(n)2

. (3.27)

Proof. We have

Wn(ut, u̇t)
= a(n)(ut(n)u̇t(n+ 1)− u̇t(n)ut(n+ 1))

= a(n)(ρut
(n) sin θut

(n)(ρ̇ut
(n) cos θut

(n)− ρut
(n) sin θut

(n)θ̇ut
(n))

− (ρ̇ut
(n) sin θut

(n) + ρut
(n) cos θut

(n)θ̇ut
(n))ρut

(n) cos θut
(n))

= a(n)ρut(n)(sin θut(n)ρ̇ut(n) cos θut(n)− sin θut(n)ρut(n) sin θut(n)θ̇ut(n))

− (cos θut
(n)ρ̇ut

(n) sin θut
(n) + cos θut

(n)ρut
(n) cos θut

(n)θ̇ut
(n)))

= a(n)ρut
(n)2θ̇ut

(n)(− sin2 θut
(n)− cos2 θut

(n)).
(3.28)

To finish the proof apply Lemma 3.6.
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Lemma 3.9. Let λ ∈ R and let n0, n ∈ Z, b0, b1 ∈ `(Z) and for all t ∈ [0, 1]
let ut be a solution of τtut = λut with boundary conditions ut(n0) = u0(n0) +
t(u1(n0) − u0(n0)) and ut(n0 + 1) = u0(n0 + 1) + t(u1(n0 + 1) − u0(n0 + 1))
where u0(n0), u0(n0 + 1), u1(n0), u1(n0 + 1) ∈ R. Let b0(n + 1) ≥ b1(n + 1),
and let θ̇t(n) > 0, then θ̇t(n+ 1) > 0.

Proof. Suppose n = n0 and θ̇ut(n) = Wn0 (u0,u1)

−a(n)ρut (n)2 > 0, then

θ̇ut(n+ 1) =
Wn0(u0, u1) + (b0(n0 + 1)− b1(n0 + 1))ut(n0 + 1)2

−a(n+ 1)ρut(n+ 1)2
> 0. (3.29)

Suppose n+ 1 = n0 and

θ̇ut
(n) =

Wn0(u0, u1)
−a(n)ρut(n)2

− (b0(n0)− b1(n0))ut(n0)2

−a(n)ρut(n)2
> 0, (3.30)

then

θ̇ut(n+ 1) =
Wn0(u0, u1)

−a(n+ 1)ρut(n+ 1)2
> 0. (3.31)

Otherwise suppose n 6= n0, n+ 1 6= n0 and θ̇ut
(n) > 0 then

θ̇ut
(n+ 1) = θ̇ut

(n)
−a(n)ρt(n)2 + (b0(n+ 1)− b1(n+ 1))ut(n+ 1)2

−a(n+ 1)ρt(n+ 1)2
> 0.

(3.32)

Theorem 3.10. Let λ ∈ R, n0 ∈ Z and for all t ∈ [0, 1] let ut be a solution of
τtut = λut with boundary conditions ut(n0) = c0 and ut(n0 + 1) = c1 where c0,
c1 ∈ R and let b0(n) ≥ b1(n) (resp. b0(n) ≤ b1(n)) for all n ∈ Z, then we have

θ̇ut
(n0)

 ≥ 0 (resp. ≤ 0) if n > n0,
= 0 if n = n0,
≤ 0 (resp. ≥ 0) if n < n0.

(3.33)

Proof. Due to Lemma 3.8 we have

θ̇ut
(n) =

n∑
i=n0+1

(b0(i)− b1(i))ut(i)2

−a(n)ρut
(n)2

(3.34)

for all n > n0 and

θ̇ut
(n) =

n0∑
i=n+1

(b0(i)− b1(i))ut(i)2

a(n)ρut
(n)2

(3.35)

for all n < n0.

3.3 More on a Fundamental Solution

Lemma 3.11. Let λ ∈ R and for any n0 > 0 let s be the fundamental solution
of τs = λs associated with b(n) sufficiently large for all 0 < n < n0 where
s(0) = 0 and s(1) = 1, then

s(n) > 0 for all 0 < n ≤ n0. (3.36)
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For any n0 < 0 let s be the fundamental solution of τs = λs associated with
b(n) sufficiently large for all n0 < n < 0 where s(0) = 0 and s(1) = 1, then

s(n) < 0 for all n0 ≤ n < 0. (3.37)

Proof. We will proof the lemma by induction. We have s(1) = 1. Suppose that
s(n) > 0 for all 0 < n ≤ n0, thus by

s(n0 + 1) = a(n0)−1((λ− b(n0))s(n0)− a(n0 − 1)s(n0 − 1)) (3.38)

we infer that s(n0 + 1) > 0 if and only if

b(n0) > λ− a(n0 − 1)s(n0 − 1)s(n0)−1. (3.39)

In an analogous manner we prove the case n < n0.

Remark 3.12. Let λ ∈ R and let st be the fundamental solution of τtst = λst
where st(0) = 0 and st(1) = 1. For all t ∈ [0, 1] we normalize θst

such that

θst
(0) = 0 and θst

(−1) = −π
2
. (3.40)

Let bt(n) be sufficiently large for all n > 0, then we have sin θst
(n) > 0 and

cos θst
(n) > 0 and hence

θst
(n) ∈ (0,

π

2
). (3.41)

Let bt(n) be sufficiently large for all n < 0, then we have sin θst(n) < 0 and
cos θst(n) < 0 and hence

θst
(n) ∈ (−π,−π

2
). (3.42)

Lemma 3.13. Let λ ∈ R and let s be a solution of τbs = λs where s(0) = 0
and s(1) = 1, then

limb(n)→∞
cot θs(n)
b(n) = − 1

a(n) if n > 0,

limb(n)→∞
tan θs(n−1)

b(n) = − 1
a(n−1) if n < 0.

(3.43)

Proof. Since b(n) → ∞, s has no nodes beside 0, thus sin θs(n) 6= 0 and
cos θs(n) 6= 0 for all n 6= 0, n 6= −1. Lemma 2.8 implies

lim
b(n)→∞

a(n) cot θs(n)
b(n)

+ lim
b(n)→∞

a(n− 1) tan θs(n− 1)
b(n)

= lim
b(n)→∞

λ

b(n)
− 1.

(3.44)
Suppose that n > 0, then as b(n) → ∞ the Prüfer angle θs(n − 1) is in (0, π2 )
(Remark 3.12) and decreases. Thus, ∃ M > 0 such that tan θs(n − 1) ≤ M as
b(n)→∞ and thus we have

lim
b(n)→∞

a(n− 1) tan θs(n− 1)
b(n)

= 0 ⇒ lim
b(n)→∞

cot θs(n)
b(n)

= − 1
a(n)

. (3.45)

Suppose that n < 0, then as b(n) → ∞ the Prüfer angle θs(n) is in (−π,−π2 )
(Remark 3.12) and increases. Thus, ∃ M > 0 such that cot θs(n) ≤ M as
b(n)→∞ and thus we have

lim
b(n)→∞

a(n− 1) cot θs(n)
b(n)

= 0 ⇒ lim
b(n)→∞

tan θs(n− 1)
b(n)

= − 1
a(n− 1)

.

(3.46)
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CHAPTER 4

Sturm’s Separation Theorem

We prove a discrete analogue of the well-known Sturm separation theorem for
differential equations. Unlike the corresponding result in the continuous case
the Sturm separation theorem for difference equations is not valid for all second
order homogenous difference equations. It is believed that Sturm actually proved
the theorem for difference equations before he proved the corresponding result
for differential equations (cf. [6] Theorem 6.5, [3]).

Theorem 4.1 (Sturm Separation Theorem). Let λ ∈ R and let u0,1 be solutions
of τ0,1u0,1 = λu0,1 corresponding to b0(j) ≥ b1(j) for all j ∈ Z, let m < n.
Suppose that either m is a node of u0 or Wm(u0, u1) = 0 and either n is a node
of u0 or Wn(u0, u1) = 0 (m = −∞ or n = +∞ are allowed if u0 and u1 are
both in `2±(Z) and W±∞(u0, u1) = 0). If W.(u0, u1) is not vanishing identically
on [m,n], then u1 has at least one node between m and n+ 1.

Proof. W.l.o.g. u0 has no node between n and m. Moreover, let u0(m+ 1) > 0
and u1(m+ 1) > 0, thus we have

u0(m) ≤ 0
or

Wm(u0, u1) = 0

 , u0(m+ 1) > 0, . . . , u1(n) ≥ 0,

 u0(n+ 1) < 0
or

Wn+1(u0, u1) = 0
.

(4.1)
Suppose u1 has no node between m and n+ 1, then

u1(m) ≥ 0, u1(m+ 1) > 0, . . . , u1(n) > 0, u1(n+ 1) ≥ 0 (4.2)

holds. Observe

Wn(u0, u1)−Wm(u0, u1) =
n∑

i=m+1

(b0(i)− b1(i))u0(i)u1(i) ≥ 0 (4.3)

with equality if and only if b0(i) = b1(i) for all i = m+ 1, . . . , n− 1 and either
b0(n) = b1(n) or u0(n) = 0. Suppose u0 has a node at m, then

Wm(u0, u1) = a(m)(u0(m)u1(m+ 1)− u0(m+ 1)u1(m)) ≥ 0. (4.4)
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Of course this also holds trivially if Wm(u0, u1) = 0. Similarly, if u0 has a node
at n, then

Wn(u0, u1) = a(n)(u0(n)u1(n+ 1)− u0(n+ 1)u1(n)) ≤ 0. (4.5)

This contradicts (4.3) unless both Wronskians on the left and the sum on the
right are zero, which is the case if and only if the Wronskian vanishes identically
on [m,n].

This leads to the question whether solutions are oscillatory or not.

Definition 4.2. τ is said to be oscillatory if there is a solution of τu = 0 with
infinitely many nodes. τ is said to be oscillatory near ±∞ if there is a solution
u of τu = 0 with infinitely many nodes near ±∞.

Remark 4.3. If one solution of τ has infinitely many nodes, then each such
solution has infinitely many nodes. Due to Sturm’s Theorem 4.1 we have: if
τ0 − λ is oscillatory, τ1 − λ also is oscillatory whenever b0(n) ≥ b1(n) for all
n ∈ Z and thus, if τ1 − λ is non-oscillatory then τ0 − λ is non-oscillatory.
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CHAPTER 5

Relative Oscillation Theory for Jacobi Matrices

In this chapter we investigate sign changes, i.e. weighted nodes, of the Wronskian
of two solutions of a Jacobi difference equation modified in b as defined in 3.1.
Subsequently we will investigate how the difference of the number of eigenvalues
of two Jacobi operators is correlated to the number of weighted nodes of the
Wronskian of their solutions.

5.1 Comparing Prüfer Angles

First we will have a closer look at the difference of the Prüfer angles of two
solutions.

Definition 5.1. Let u0, u1 be solutions of τ0,1u0,1 = λu0,1, λ ∈ R, then we
define

∆u0,u1(n) = θu1(n)− θu0(n). (5.1)

Let ut denote solutions of τtut = λut, for some λ ∈ R and for all t ∈ [0, 1], where
τt corresponds to bt = (1− t)b0 + tb1 and where ut(n0) = (1− t)u0(n0)+ tu1(n0)
and ut(n0 + 1) = (1− t)u0(n0 + 1) +u1(n0 + 1) with u0(n0), u1(n0), u0(n0 + 1),
u1(n0 + 1) ∈ R, n0 ∈ Z. To shorten notation we will denote ∆ = ∆t,t̃ = ∆ut,ut̃

,
θt = θut

and ρt = ρut
. We will furthermore assume that (2.8) holds for the

solution u0 and thus (2.8) holds for all solutions ut as shown in Lemma 3.3.
Hence, it is possible to use the following notation:

θt(n) = ktπ + γt for some γt ∈ (0, π],
θt(n+ 1) = ktπ + Γt for some Γt ∈ (0, 2π] (5.2)

and for some kt ∈ Z.

Lemma 5.2. For some n0 ∈ Z choose some k0, k1 ∈ Z such that θ0,1(n0) =
k0,1π+ γ0,1 with γ0,1 ∈ (0, π] and θ0,1(n0 + 1) = k0,1π+ Γ0,1 with Γ0,1 ∈ (0, 2π],
then we have

∆(n0) = (k1− k0)π+ γ1− γ0 and ∆(n0 + 1) = (k1− k0)π+ Γ1−Γ0 (5.3)

where
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(1) either u0 and u1 have a node at n0 or both do not have a node at n0, then

γ1 − γ0 ∈ (−π
2
,
π

2
) and Γ1 − Γ0 ∈ (−π, π). (5.4)

(2) u1 has no node at n0, but u0 has a node at n0, then

γ1 − γ0 ∈ (−π, 0) and Γ1 − Γ0 ∈ (−2π, 0). (5.5)

(3) u1 has a node at n0, but u0 has no node at n0, then

γ1 − γ0 ∈ (0, π) and Γ1 − Γ0 ∈ (0, 2π). (5.6)

Proof. Use Lemma 2.4.

Lemma 5.3. For all t, t̃ ∈ [0, 1] and all n ∈ Z we have

d∆ut,ut̃
(n)/πe − 1 ≤ d∆ut,ut̃

(n+ 1)/πe ≤ d∆ut,ut̃
(n)/πe+ 1. (5.7)

Proof. For all n ∈ Z using the notation from (5.2) where k = kt̃− kt by Lemma
5.2 we have either

∆t,t̃(n) ∈ (kπ − π
2 , kπ + π

2 ) and ∆t,t̃(n+ 1) ∈ (kπ − π, kπ + π),
∆t,t̃(n) ∈ (kπ − π, kπ) and ∆t,t̃(n+ 1) ∈ (kπ − 2π, kπ) or
∆t,t̃(n) ∈ (kπ, kπ + π) and ∆t,t̃(n+ 1) ∈ (kπ, kπ + 2π).

(5.8)

In each case the lemma holds.

Thus, we can use the following notation:

∆t,t̃(n) = kπ + γ for some γ ∈ (0, π],
∆t,t̃(n+ 1) = kπ + Γ for some Γ ∈ (−π, 2π]. (5.9)

Lemma 5.4. For all n ∈ Z

Wn(u0, u1) = −a(n)ρu0(n)ρu1(n) sin ∆u0,u1(n) (5.10)

holds.

Proof. We have

Wn(u0, u1)
= a(n)(u0(n)u1(n+ 1)− u1(n)u0(n+ 1))
= a(n)ρu0(n)ρu1(n)(sin θu0(n) cos θu1(n)− sin θu1(n) cos θu0(n))
= a(n)ρu0(n)ρu1(n) sin(θu0(n)− θu1(n)).

(5.11)

We will now show that the same relation as the one given in (2.8) which allows
us to count nodes of solutions still holds for the difference of their Prüfer angles,
which is responsible for the sign changes of the Wronskian as stated in the
previous lemma.
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Lemma 5.5. Fix some n. Then, if b0(n+ 1) ≥ b1(n+ 1), we have

d∆u0,u1(n)/πe ≤ d∆u0,u1(n+ 1)/πe ≤ d∆u0,u1(n)/πe+ 1 (5.12)

and if b0(n+ 1) ≤ b1(n+ 1), we have

d∆u0,u1(n)/πe − 1 ≤ d∆u0,u1(n+ 1)/πe ≤ d∆u0,u1(n)/πe. (5.13)

Proof. We will use the notation from Lemma 5.2 where we assume k0 = k1 = 0
without loss of generality. In particular, Lemma 5.2 implies

d∆u0,u1(n)/πe − 1 ≤ d∆u0,u1(n+ 1)/πe ≤ d∆u0,u1(n)/πe+ 1.

Hence, to show (5.12) there are two cases to exclude. Namely, (i) ∆u0,u1(n) ∈
(0, π2 ), ∆u0,u1(n + 1) ∈ (−π, 0] (from case (1)) and (ii) ∆u0,u1(n) ∈ (−π, 0),
∆u0,u1(n+ 1) ∈ (−2π,−π] (from case (2)). But in case (i) we obtain a contra-
diction from (3.13):

Wn+1(u0, u1)︸ ︷︷ ︸
≤0

= Wn(u0, u1)︸ ︷︷ ︸
>0

+ (b0(n+ 1)− b1(n+ 1))︸ ︷︷ ︸
≥0

u0(n+ 1)u1(n+ 1)︸ ︷︷ ︸
≥0

.

Similarly, in case (ii) equation (3.13) implies

Wn+1(u0, u1)︸ ︷︷ ︸
≥0

= Wn(u0, u1)︸ ︷︷ ︸
<0

+ (b0(n+ 1)− b1(n+ 1))︸ ︷︷ ︸
≥0

u0(n+ 1)u1(n+ 1)︸ ︷︷ ︸
≤0

.

Equation (5.13) can be established in a similar fashion.

5.2 Nodes of the Wronskian

Now we have all the necessary tools to establish a connection between the sign
changes of the Wronskian of two solutions and the difference of their Prüfer
angles. The next Lemma shows how they exactly relate to each other.

Lemma 5.6. Let n ∈ Z, then

(1) Wn(u0, u1) = Wn+1(u0, u1) = 0 or Wn(u0, u1)Wn+1(u0, u1) > 0 implies

d∆u0,u1(n+ 1)
π

e = d∆u0,u1(n)
π

e. (5.14)

(2) Wn(u0, u1)Wn+1(u0, u1) < 0 implies

d∆u0,u1(n+ 1)
π

e =

{
d∆u0,u1 (n)

π e+ 1, if b0(n+ 1) > b1(n+ 1),
d∆u0,u1 (n)

π e − 1, if b0(n+ 1) < b1(n+ 1).
(5.15)

(3) Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0 implies

d∆u0,u1(n+ 1)
π

e =

{
d∆u0,u1 (n)

π e+ 1, if b0(n+ 1) > b1(n+ 1),
d∆u0,u1 (n)

π e, if b0(n+ 1) < b1(n+ 1).
(5.16)
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(4) Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0 implies

d∆u0,u1(n+ 1)
π

e =

{
d∆u0,u1 (n)

π e, if b0(n+ 1) > b1(n+ 1),
d∆u0,u1 (n)

π e − 1, if b0(n+ 1) < b1(n+ 1).
(5.17)

Note that in the cases (2)–(4) we necessarily have b0(n+ 1) 6= b1(n+ 1).

Proof. We will use the notation from Lemma 5.2 where we assume k0 = k1 = 0
without loss of generality. Moreover, interchanging u0 and u1 using ∆u1,u0 =
−∆u0,u1(n) and

d−xe =

{
−dxe if x ∈ Z,
−dxe+ 1 otherwise,

we see that it suffices to show one case b0(n + 1) ≥ b1(n + 1) or b0(n + 1) ≤
b1(n+ 1).
Suppose Wn(u0, u1) = Wn+1(u0, u1) = 0 and Wn(u0, u1)Wn+1(u0, u1) > 0 do
not hold, then by (3.13) we have

Wn+1(u0, u1)−Wn(u0, u1) = (b0(n+ 1)− b1(n+ 1))u0(n+ 1)u1(n+ 1) 6= 0

and hence b0(n+ 1) 6= b1(n+ 1).
(1) and (2). Suppose Wn(u0, u1) = Wn+1(u0, u1) = 0, then by (5.4) we infer

sin(∆u0,u1(n)) = sin(γ1 − γ0) = 0, sin(∆u0,u1(n+ 1)) = sin(Γ1 − Γ0) = 0,

where γ0, γ1 ∈ (0, π]. Thus γ0 = γ1 and we have case (1) of Lemma 5.2
which implies Γ1 − Γ0 ∈ (−π, π) and we conclude Γ1 − Γ0 = 0. In summary,
∆u0,u1(n) = ∆u0,u1(n+ 1) = 0 as claimed.
Next suppose Wn(u0, u1)Wn+1(u0, u1) 6= 0, then by (5.4) the sign of the Wron-
skian at n equals the sign of sin(∆u0,u1(n)) and hence (5.12) respectively (5.13)
finish the proof of case (1) and (2).
(3). By (5.4) we conclude ∆u0,u1(n) = γ1 − γ0 ≡ 0 mod π, where γ0, γ1 ∈
(0, π] and thus γ1 − γ0 = 0. So we have case (1) of Lemma 5.2 and hence
∆u0,u1(n+ 1) = Γ1 − Γ0 ∈ (−π, π). That is,

d∆u0,u1(n)/πe ≤ d∆u0,u1(n+ 1)/πe ≤ d∆u0,u1(n)/πe+ 1

and (5.13) finishes the proof of case (3) for b0(n+ 1) < b1(n+ 1).
(4). By (5.4) we have ∆u0,u1(n + 1) = Γ1 − Γ0 ≡ 0 mod π and Lemma 5.2
leaves us with the following possibilities

(a) ∆u0,u1(n) ∈ (−π2 ,
π
2 ) and ∆u0,u1(n+ 1) = 0,

(b) ∆u0,u1(n) ∈ (−π, 0) and ∆u0,u1(n+ 1) = −π,
(c) ∆u0,u1(n) ∈ (0, π) and ∆u0,u1(n+ 1) = π.

and (5.12) shows (4) if b0(n+ 1) > b1(n+ 1).
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Definition 5.7. Set

#nW (u0, u1) =



if b0(n+ 1)− b1(n+ 1) > 0 and
1, either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0,

if b0(n+ 1)− b1(n+ 1) < 0 and
−1, either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0,

0, otherwise.

(5.18)

We say the Wronskian has a weighted node at n if #nW (u0, u1) 6= 0. The
weighted number of nodes of the Wonskian between n1 and n2 is denoted as

#(n1,n2)W (u0, u1) =
n2−1∑
j=n1

#jW (u0, u1)−
{

0 if Wn1(u0, u1) 6= 0
1 if Wn1(u0, u1) = 0 . (5.19)

If the Wronskian is non-zero at n1 and n2, we have

#(n1,n2)W (u0, u1) = −#(n1,n2)W (u1, u0). (5.20)

Corollary 5.8. We have

d∆u0,u1(n+ 1)
π

e = d∆u0,u1(n)
π

e+ #nW (u0, u1). (5.21)

Thus, it is possible to count weighted nodes of the Wronskian using the difference
of the corresponding Prüfer angles. The weighted number of nodes at an interval
(n1, n2), possibly infinite, is given by

Lemma 5.9. Let n1 < n2, then

#(n1,n2)W (u0, u1) = d∆u0,u1(n2)/πe − b∆u0,u1(n1)/πc − 1. (5.22)
#(−∞,∞)W (u0, u1) = lim

n→∞
(d∆u0,u1(n)/πe − b∆u0,u1(−n)/πc − 1). (5.23)

Proof. Let n2 = n1 + 1. If Wn1(u0, u1) 6= 0, then by Corollary 5.8

#(n1,n2)W (u0, u1) = #n1W (u0, u1)

= d∆u0,u1(n2)
π

e − d∆u0,u1(n1)
π

e = d∆u0,u1(n2)
π

e − b∆u0,u1(n1)
π

c − 1
(5.24)

holds. If Wn1(u0, u1) = 0, then by Corollary 5.8

#(n1,n2)W (u0, u1) = #n1W (u0, u1)− 1

= d∆u0,u1(n2)
π

e − d∆u0,u1(n1)
π

e − 1 = d∆u0,u1(n2)
π

e − b∆u0,u1(n1)
π

c − 1

(5.25)

holds. Now, we assume that the claim already holds for an interval [n1, n2]
where n2 ≥ n1 + 1 and we will show that it holds for the interval [n1, n2 + 1] as
well. We have

#(n1,n2+1)W (u0, u1) = #(n1,n2)W (u0, u1) +Wn2(u0, u1)
= d∆(n2)/πe+Wn2(u0, u1)− b∆(n1)/πc − 1
= d∆(n2 + 1)/πe − b∆(n1)/πc − 1

(5.26)

where we used Corollary 5.8 again in the last step.
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Remark 5.10. Let a, b ∈ R, then

da− b
π
e =

{
d aπ e − d

b
π e+ 1 iff b < a mod π

d aπ e − d
b
π e iff b ≥ a mod π

(5.27)

and

ba− b
π
c =

{
b aπ c − b

b
π c iff b ≤ a mod π

b aπ c − b
b
π c − 1 iff b > a mod π

(5.28)

Proof. We choose

a = kaπ + γa,

b = kbπ + γb,
(5.29)

where γa, γb ∈ (0, π] for some ka, kb ∈ Z. This implies

a− b = (ka − kb)π + γa − γb. (5.30)

Suppose that γa > γb, thus we have γa − γb ∈ (0, π) and hence

da− b
π
e = ka − kb + 1. (5.31)

Suppose that γa ≤ γb, thus we have γa − γb ∈ (−π, 0] and hence

da− b
π
e = ka − kb. (5.32)

Use dxe = −b−xc, for all x ∈ R, to gain the second claim.

Theorem 5.11. Let n1 < n2, then

|#(n1,n2)W (u0, u1)− (#(n1,n2)(u1)−#(n1,n2)(u0))| ≤ 2. (5.33)

Proof. We have

|#(n1,n2)W (u0, u1)− (#(n1,n2)(u1)−#(n1,n2)(u0))|

= |d∆u0,u1(n2)
π

e − b∆u0,u1(n1)
π

c − 1

− dθu1(n2)
π

e+ bθu1(n1)
π

c+ dθu0(n2)
π

e − bθu0(n1)
π

c|

≤ |dθu1(n2)− θu0(n2)
π

e − (dθu1(n2)
π

e − dθu0(n2)
π

e+ 1)|

+ |(bθu1(n1)− θu0(n1)
π

c − (bθu1(n1)
π

c − bθu0(n1)
π

c))|

≤ 1 + 1,

(5.34)

where we used Theorem 5.9 and Theorem 2.6 in the first step and Remark 5.10
in the last step.

Theorem 5.12 (Triangle Inequality for Wronskians). Let uj be solutions of
τjuj = λuj, j ∈ {0, 1, 2}. Then,

#(n1,n2)W (u0, u1) + #(n1,n2)W (u1, u2)− 1 ≤ #(n1,n2)W (u0, u2) (5.35)

and

#(n1,n2)W (u0, u2) ≤ #(n1,n2)W (u0, u1) + #(n1,n2)W (u1, u2) + 1 (5.36)

holds.
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Proof. We have ∆u0,u1 + ∆u1,u2 = ∆u0,u2 and

#(n1,n2)W (u0, u1) + #(n1,n2)W (u1, u2)

= d∆u0,u1(n2)
π

e − b∆u0,u1(n1)
π

c − 1 + d∆u1,u2(n2)
π

e − b∆u1,u2(n1)
π

c − 1

≤ d∆u0,u2

π
e − b∆u0,u2(n1)

π
c = #(n1,n2)W (u0, u2) + 1

(5.37)

where we used dxe + dye − 1 ≤ dx + ye and bxc + byc + 1 ≥ bx + yc for all
x, y ∈ R. Furthermore,

#(n1,n2)W (u0, u2) ≤ #(n1,n2)W (u0, u1) + #(n1,n2)W (u1, u2) + 1 (5.38)

holds by dxe+ dye ≥ dx+ ye and bxc+ byc ≤ bx+ yc for all x, y ∈ R.

Theorem 5.13 (Comparison Theorem for Wronskians). Let uj be solutions of
τjuj = λuj, j ∈ {0, 1, 2} where b0(j) ≥ b1(j) ≥ b2(j) for all j ∈ Z. Let n1 and
n2 be weighted nodes of W (u0, u1), then #(n1,n2+1)W (u0, u2) ≥ 1.

Proof. W.l.o.g. W (u0, u1) has no weighted node between n1 and n2.
First, suppose #(n1,n2+1)W (u1, u2) = −1, i.e. W (u1, u2) is vanishing identically
on [n1, n2 + 1]. For all j ∈ [n1, n2 + 1] and some c ∈ R we have Wj(u0, u2) =
Wj(u0, cu1) = cWj(u0, u1) and thus both Wronskians have weighted nodes
in n1 and n2. Otherwise, the claim follows obviously from (5.35) except if
#(n1,n2+1)W (u0, u0) = 1 and #(n1,n2+1)W (u1, u2) = 0. If so, for some k, k̃ ∈ Z
we have

∆0,1(n1) = kπ, ∆0,1(n2 + 1) ∈ ((k + 1)π, (k + 2)π), (5.39)

∆1,2(n1) ∈ [k̃π, (k̃ + 1)π), and ∆1,2(n2 + 1) ∈ (k̃π, (k̃ + 1)π]. (5.40)

Hence, by ∆0,2 = ∆0,1 + ∆1,2 we have #(n1,n2+1)W (u0, u2) ≥ 1.

5.3 Finite Jacobi Operators

From now on st(., n0) will denote the solutions of τtst = λst with boundary
conditions st(n0, n0) = 0 and st(n0 + 1, n0) = 1 for all t ∈ [0, 1] and some
n0 ∈ Z.

Definition 5.14. Let a, b0, b1 ∈ `(Z) and let n0 > 1, n0 ∈ Z. For all t ∈ [0, 1]
let Ht

0,n0
denote the finite Jacobi operator

Ht
0,n0

: `2(0, n0) 7→ `2(0, n0)

Ht
0,n0

f = J t0,n0
f

(5.41)

where J t0,n0
is the Jacobi matrix given by

J t0,n0
=



bt(1) a(1) 0 0 0

a(1) bt(2)
. . . 0 0

0
. . . . . . . . . 0

0 0
. . . . . . a(n0 − 2)

0 0 0 a(n0 − 2) bt(n0 − 1)


(5.42)
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and bt(n) = b0(n) + t(b1(n)− b0(n)) for all n ∈ Z.

Lemma 5.15. Let τ be a Jacobi difference expression associated with a, b ∈ `(Z)
and let J0,n0 be the corresponding finite Jacobi operator where 1 < n0 ∈ Z.
Furthermore, let u be a solution of τu = λu, then

u(0) = 0 and u(n0) = 0 ⇔ J0,n0


u(1)
u(2)

...
u(n0 − 1)

 = λ


u(1)
u(2)

...
u(n0 − 1)

 .

(5.43)

Proof. Straightforward.

The lemma states that λ is an eigenvalue of Ht
0,n0

if and only if the fundamental
solution st(., 0) of τtst = λst has a zero at n0, resp. st(., n0) has a zero at 0.
Let PΩ denote the family of spectral projections for H0,n0 .

Theorem 5.16. Let λ ∈ R and H0,n0 be a finite restriction of the Jacobi
operator H, then

dim RanP(−∞,λ)(H0,n0) = #(0,n0)(s(., 0)) = d
θs(.,0)(n0)

π
e − 1. (5.44)

Proof. Confer [18] (3.8).

Lemma 5.17. Let λ ∈ R, b0(j) ≥ b1(j) (resp. b0(j) ≤ b1(j)) for all j ∈ Z and
let 1 < n0 ∈ Z. Then,

f : [0, 1] 7→ Z
f(t) = dim RanP(−∞,λ)(Ht

0,n0
)− dim RanP(−∞,λ](H0

0,n0
)

(5.45)

is a monotonically increasing (decreasing) step function, which is continuous
from below (above) and jumps by 1 whenever st(n0, 0) = 0. Moreover,

f(0) =
{
−1 iff λ ∈ σ(H0

0,n0
)

0 iff λ 6∈ σ(H0
0,n0

) . (5.46)

Proof. By Theorem 5.16 we have

f(t) = d
θst(.,0)(n0)

π
e − d

θs0(.,0)(n0)
π

e −
{

1 iff λ ∈ σ(H0
0,n0

),
0 iff λ 6∈ σ(H0

0,n0
). (5.47)

As t ∈ [0, 1] increases, due to Theorem 3.10 θst(.,0)(n0) is non-decreasing (non-
increasing) and thus f(t) monotonically increases (decreases) as well. In partic-
ular f(t) increases (decreases) by 1 at the end (beginning) of each interval [ti, t̃i],
possibly ti = t̃i, where the Prüfer angle θst(.,0)(n0) ≡ 0 mod π for all t ∈ [ti, t̃i],
resp. st(n0, 0) = 0 such that f(t) is continuous from below (above).

Lemma 5.18. Let λ ∈ R, b0(j) ≥ b1(j) (resp. b0(j) ≤ b1(j)) for all j ∈ Z and
let 1 < n0 ∈ Z. Then,

dim RanP(−∞,λ)(H1
0,n0

)− dim RanP(−∞,λ](H0
0,n0

)

= d
∆s0(.,n0),s1(.,0)(n0)

π
e − b

∆s0(.,n0),s1(.,0)(0)
π

c − 1

= d
∆s0(.,0),s1(.,n0)(n0)

π
e − b

∆s0(.,0),s1(.,n0)(0)
π

c − 1.

(5.48)
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Proof. Let

g : [0, 1] 7→ Z

g(t) = d
∆s0(.,n0),st(.,0)(n0)

π
e − b

∆s0(.,n0),st(.,0)(0)
π

c − 1

= d
θst(.,0)(n0)− θs0(.,n0)(n0)

π
e − b

θst(.,0)(0)− θs0(.,n0)(0)
π

c − 1.

(5.49)

If t = 0 we have τt = τ0. Thus, the solutions s0(., n0) and st(., 0) solve the same
Jacobi difference equation and by Lemma 1.8 the WronskianW (s0(., n0), st(., 0))
is constant. If λ is an eigenvalue of H0

0,n0
we have st(n0, 0) = 0 and thus

Wn0(s0(., n0), st(., 0)) = 0. This implies that the Wronskian is vanishing and
by Lemma 5.6 we have ∆s0(.,n0),st(.,0)(j) = kπ for some k ∈ Z and for all j ∈ Z,
hence g(0) = −1. If λ is not an eigenvalue of H0

0,n0
we have st(n0, 0) 6= 0 and

s0(0, n0) 6= 0, but 0 = st(0, 0) = s0(n0, n0). Thus, s0(., n0) and st(., 0) are
linearly independent and by Lemma 1.8 the Wronskian is not vanishing. By
Lemma 5.6

d
∆s0(.,n0),st(.,0)(n0)

π
e = d

∆s0(.,n0),st(.,0)(0)
π

e (5.50)

holds and by dxe − 1 = bxc for all x 6∈ Z we have g(0) = 0. That is,

g(0) =
{
−1 iff λ ∈ σ(H0

0,n0
)

0 iff λ 6∈ σ(H0
0,n0

) (5.51)

and therefore (5.46) proofs the claim for t = 0.
As t increases by Theorem 3.10 we have θ̇st(.,0)(n0) ≥ 0 (resp. θ̇st(.,0)(n0) ≤ 0).
Hence g(t) is a monotonically increasing (decreasing) step function, which is
continuous from below (above) and jumps by 1 at the end (beginning) of each
interval [ti, t̃i], possibly ti = t̃i, where θst(.,0)(n0) ≡ θs0(.,n0)(n0) mod π for all
t ∈ [ti, t̃i], i.e. where st(n0, 0) = 0 (by θs0(.,n0)(n0) = 0). To finish the proof
apply Lemma 5.17.
The same holds for

g : [0, 1] 7→ Z

g(t) = d
∆s0(.,0),s1(.,n0)(n0)

π
e − b

∆s0(.,0),s1(.,n0)(0)
π

c − 1.
(5.52)

Corollary 5.19. Let λ ∈ R, b0(j) ≥ b1(j) (resp. b0(j) ≤ b1(j)) for all j ∈ Z
and let 1 < n0 ∈ Z. Then,

dim RanP(−∞,λ)(H1
0,n0

)− dim RanP(−∞,λ)(H0
0,n0

)

= d
∆s0(.,n0),s1(.,0)(n0)

π
e − d

∆s0(.,n0),s1(.,0)(0)
π

e

= d
∆s0(.,0),s1(.,n0)(n0)

π
e − d

∆s0(.,0),s1(.,n0)(0)
π

e.

(5.53)

Theorem 5.20. Let λ ∈ R and let 1 < n0 ∈ Z. Then,

dim RanP(−∞,λ)(H1
0,n0

)− dim RanP(−∞,λ](H0
0,n0

)

= #(0,n0)W (s0(., n0), s1(., 0))
= #(0,n0)W (s0(., 0), s1(., n0)).

(5.54)
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Proof. Let
b̃(j) = min{b0(j), b1(j)} (5.55)

for all j ∈ Z, then we have b0(j) ≥ b̃(j) and b1(j) ≥ b̃(j) for all j ∈ Z. Thus we
apply Corollary 5.19 and Lemma 5.18 and we infer

dim RanP(−∞,λ)(H1
0,n0

)− dim RanP(−∞,λ](H0
0,n0

)

= d
∆s̃(.,n0),s1(.,0)(n0)

π
e − d

∆s̃(.,n0),s1(.,0)(0)
π

e

+ d
∆s0(.,n0),s̃(.,0)(n0)

π
e − b

∆s0(.,n0),s̃(.,0)(0)
π

c − 1

= d
θs1(.,0)(n0)

π
e − d

−θs̃(.,n0)(0)
π

e+ d
θs̃(.,0)(n0)

π
e − b

−θs0(.,n0)(0)
π

c − 1

= d
θs1(.,0)(n0)− θs0(.,n0)(n0)

π
e − b

θs1(.,0)(0)− θs0(.,n0)(0)
π

c − 1

= d
∆s0(.,n0),s1(.,0)(n0)

π
e − b

∆s0(.,n0),s1(.,0)(0)
π

c − 1

(5.56)

where we used

d
θs̃(.,0)(n0)

π
e − d

−θs̃(.,n0)(0)
π

e

= d
∆s̃(.,n0),s̃(.,0)(n0)

π
e − d

∆s̃(.,n0),s̃(.,0)(0)
π

e = 0.
(5.57)

Similarly,

dim RanP(−∞,λ)(H1
0,n0

)− dim RanP(−∞,λ](H0
0,n0

)

= d
∆s0(.,0),s1(.,n0)(n0)

π
e − b

∆s0(.,0),s1(.,n0)(0)
π

c − 1
(5.58)

holds. Apply Lemma 5.9.
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APPENDIX A

Notation

a(n) sequence in `(Z), first upper and lower secondary diagonal of J
b(n) sequence in `(Z), diagonal of J
bt(n) sequence in `(Z), diagonal of J t

C set of complex numbers
c fundamental solution of τs = λs vanishing in 1
dim dimension of a linear space
det determinant
ḟ derivative of f with respect to t
H Jacobi operator
H0,n0 finite Jacobi operator associated with J0,n0

Ht
0,n0

finite Jacobi operator associated with J t0,n0

J Jacobi matrix associated with τ
J t Jacobi matrix associated with τt
J0,n0 finite Jacobi matrix associated with τ
J t0,n0

finite Jacobi matrix associated with τt
λ a real number
`(Z) set of all complex valued sequences (f(n))n∈Z
`p(Z) space of all p-power summable sequences (f(n))n∈Z
`∞(Z) space of all bounded sequences (f(n))n∈Z
PΩ family of spectral projections
ρ(n) Prüfer variable of a solution u at n
ρt(n) Prüfer variable of a solution ut at n
R set of real numbers
Ran range of an operator
σess(A) essential spectrum of A
s fundamental solution of τs = λs vanishing at 0
st fundamental solution of τtst = λst vanishing at 0
s(., n0) fundamental solution of τs = λs vanishing at n0

st(., n0) fundamental solution of τtst = λst vanishing at n0

τ second order, symmetric difference expression
τt modified second order, symmetric difference expression
t real number in [0, 1]
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θu(n) the Prüfer angle of a solution u at n
θ0(n) the Prüfer angle of a solution u0 at n
u(n) solution of τu = λu
ut(n) solution of τtut = λut
#(u) number of nodes of u
#(m,n)(u) number of nodes of u between m and n
W (f, g) Wronskian
#(m,n)W (u0, u1) number of nodes of W (u0, u1) between m and n
dxe sup{n ∈ Z |n ≥ x}, ceiling function
bxc sup{n ∈ Z |n ≤ x}, floor function
Z set of Integers
z∗ complex conjugate of z
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