Article
J. Fourier Anal. Appl. 19, 167-179 (2013)
[DOI: 10.1007/s00041-012-9242-5]
On Fourier transforms of radial functions and distributions
Loukas Grafakos and Gerald Teschl
We find a formula that relates the Fourier transform of a radial function on ℝn with the Fourier transform of the
same function defined on ℝn+2. This formula enables one to explicitly calculate the Fourier transform of any
radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function
t→ f(|t|) and the
two-dimensional function (x1,x2)→ f(|(x1,x2)|). We prove analogous results for radial tempered distributions.
MSC2010: Primary 42B10, 42A10; Secondary 42B37
Keywords: Radial Fourier transform, Hankel transform
Download