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Abstract. In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of
the Krein–von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed,

strictly positive operator, S ≥ εIH for some ε > 0 in a Hilbert space H to an abstract buckling problem

operator.

In the concrete case where S = −∆|C∞0 (Ω) in L2(Ω; dnx) for Ω ⊂ Rn an open, bounded (and sufficiently

regular) set, this recovers, as a particular case of a general result due to G. Grubb, that the eigenvalue
problem for the Krein Laplacian SK (i.e., the Krein–von Neumann extension of S),

SKv = λv, λ 6= 0,

is in one-to-one correspondence with the problem of the buckling of a clamped plate,

(−∆)2u = λ(−∆)u in Ω, λ 6= 0, u ∈ H2
0 (Ω),

where u and v are related via the pair of formulas

u = S−1
F (−∆)v, v = λ−1(−∆)u,

with SF the Friedrichs extension of S.
This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs

extension, which found natural applications in quantum mechanics, elasticity, etc.).

In the second, and principal part of this survey, we study spectral properties for HK,Ω, the Krein–von
Neumann extension of the perturbed Laplacian −∆ + V (in short, the perturbed Krein Laplacian) defined

on C∞0 (Ω), where V is measurable, bounded and nonnegative, in a bounded open set Ω ⊂ Rn belonging

to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,r,

r > 1/2. (Contrary to other uses of the notion of “domain”, a domain in this survey denotes an open

set without any connectivity hypotheses. In addition, by a “smooth domain” we mean a domain with a
sufficiently smooth, typically, a C∞-smooth, boundary.) In particular, in the aforementioned context we

establish the Weyl asymptotic formula

#{j ∈ N |λK,Ω,j ≤ λ} = (2π)−nvn|Ω|λn/2 +O
(
λ(n−(1/2))/2

)
as λ→∞,

where vn = πn/2/Γ((n/2) + 1) denotes the volume of the unit ball in Rn, |Ω denotes the volume of Ω,
and λK,Ω,j , j ∈ N, are the non-zero eigenvalues of HK,Ω, listed in increasing order according to their
multiplicities. We prove this formula by showing that the perturbed Krein Laplacian (i.e., the Krein–von

Neumann extension of −∆ + V defined on C∞0 (Ω)) is spectrally equivalent to the buckling of a clamped
plate problem, and using an abstract result of Kozlov from the mid 1980’s. Our work builds on that of

Grubb in the early 1980’s, who has considered similar issues for elliptic operators in smooth domains, and

shows that the question posed by Alonso and Simon in 1980 pertaining to the validity of the above Weyl
asymptotic formula continues to have an affirmative answer in this nonsmooth setting.

We also study certain exterior-type domains Ω = Rn\K, n ≥ 3, with K ⊂ Rn compact and vanishing

Bessel capacity B2,2(K) = 0, to prove equality of Friedrichs and Krein Laplacians in L2(Ω; dnx), that is,
−∆|C∞0 (Ω) has a unique nonnegative self-adjoint extension in L2(Ω; dnx).
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1. Introduction

In connection with the first and abstract part of this survey, the connection between the Krein–von
Neumann extension and an abstract buckling problem, suppose that S is a densely defined, symmetric,
closed operator with nonzero deficiency indices in a separable complex Hilbert space H that satisfies

S ≥ εIH for some ε > 0, (1.1)

and denote by SK and SF the Krein–von Neumann and Friedrichs extensions of S, respectively (with IH
the identity operator in H).

Then an abstract version of Proposition 1 in Grubb [97], describing an intimate connection between the
nonzero eigenvalues of the Krein–von Neumann extension of an appropriate minimal elliptic differential
operator of order 2m, m ∈ N, and nonzero eigenvalues of a suitable higher-order buckling problem (cf.
Example 3.5), to be proved in Lemma 3.1, can be summarized as follows:

There exists 0 6= v ∈ dom(SK) satisfying SKv = λv, λ 6= 0, (1.2)

if and only if

there exists a 0 6= u ∈ dom(S∗S) such that S∗Su = λSu, (1.3)

and the solutions v of (1.2) are in one-to-one correspondence with the solutions u of (1.3) given by the pair
of formulas

u = (SF )−1SKv, v = λ−1Su. (1.4)

Next, we will go a step further and describe a unitary equivalence result going beyond the connection
between the eigenvalue problems (1.2) and (1.3): Given S, we introduce the following sesquilinear forms in
H,

a(u, v) = (Su, Sv)H, u, v ∈ dom(a) = dom(S), (1.5)

b(u, v) = (u, Sv)H, u, v ∈ dom(b) = dom(S). (1.6)

Then S being densely defined and closed, implies that the sesquilinear form a is also densely defined and
closed, and thus one can introduce the Hilbert space

W = (dom(S), (·, ·)W) (1.7)

with associated scalar product

(u, v)W = a(u, v) = (Su, Sv)H, u, v ∈ dom(S). (1.8)
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Suppressing for simplicity the continuous embedding operator of W into H, we now introduce the following
operator T in W by

(w1, Tw2)W = a(w1, Tw2) = b(w1, w2) = (w1, Sw2)H, w1, w2 ∈ W. (1.9)

One can prove that T is self-adjoint, nonnegative, and bounded and we will call T the abstract buckling
problem operator associated with the Krein–von Neumann extension SK of S.

Next, introducing the Hilbert space Ĥ by

Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H =

[
IH − Pker(SK)

]
H = [ker(SK)]⊥, (1.10)

where PM denotes the orthogonal projection onto the subspace M⊂ H, we introduce the operator

Ŝ :

{
W → Ĥ,
w 7→ Sw,

(1.11)

and note that Ŝ ∈ B(W, Ĥ) maps W unitarily onto Ĥ.

Finally, defining the reduced Krein–von Neumann operator ŜK in Ĥ by

ŜK := SK |[ker(SK)]⊥ in Ĥ, (1.12)

we can state the principal unitary equivalence result to be proved in Theorem 3.4:

The inverse of the reduced Krein–von Neumann operator ŜK in Ĥ and the abstract buckling problem
operator T in W are unitarily equivalent, (

ŜK
)−1

= ŜT (Ŝ)−1. (1.13)

In addition, (
ŜK
)−1

= US
[
|S|−1S|S|−1

]
(US)−1. (1.14)

Here we used the polar decomposition of S,

S = US |S|, with |S| = (S∗S)1/2 ≥ εIH, ε > 0, and US ∈ B
(
H, Ĥ

)
unitary, (1.15)

and one observes that the operator |S|−1S|S|−1 ∈ B(H) in (1.14) is self-adjoint in H.
As discussed at the end of Section 4, one can readily rewrite the abstract linear pencil buckling eigenvalue

problem (1.3), S∗Su = λSu, λ 6= 0, in the form of the standard eigenvalue problem |S|−1S|S|−1w = λ−1w,
λ 6= 0, w = |S|u, and hence establish the connection between (1.2), (1.3) and (1.13), (1.14).

As mentioned in the abstract, the concrete case where S is given by S = −∆|C∞0 (Ω) in L2(Ω; dnx), then

yields the spectral equivalence between the inverse of the reduced Krein–von Neumann extension ŜK of S and
the problem of the buckling of a clamped plate. More generally, Grubb [97] actually treated the case where
S is generated by an appropriate elliptic differential expression of order 2m, m ∈ N, and also introduced the
higher-order analog of the buckling problem; we briefly summarize this in Example 3.5.

The results of this connection between an abstract buckling problem and the Krein–von Neumann exten-
sion in Section 3 originally appeared in [30].

Turning to the second and principal part of this survey, the Weyl-type spectral asymptotics for perturbed
Krein Laplacians, let −∆D,Ω be the Dirichlet Laplacian associated with an open set Ω ⊂ Rn, and denote
by ND,Ω(λ) the corresponding spectral distribution function (i.e., the number of eigenvalues of −∆D,Ω not
exceeding λ). The study of the asymptotic behavior of ND,Ω(λ) as λ → ∞ has been initiated by Weyl
in 1911–1913 (cf. [189], [188], and the references in [190]), in response to a question posed in 1908 by the
physicist Lorentz, pertaining to the equipartition of energy in statistical mechanics. When n = 2 and Ω is a
bounded domain with a piecewise smooth boundary, Weyl has shown that

ND,Ω(λ) =
|Ω|
4π

λ+ o(λ) as λ→∞, (1.16)

along with the three-dimensional analogue of (1.16). (We recall our convention to denote the volume of
Ω ⊂ Rn by |Ω|.) In particular, this allowed him to complete a partial proof of Rayleigh, going back to 1903.
This ground-breaking work has stimulated a great deal of activity in the intervening years, in which a large
number of authors have provided sharper estimates for the remainder, and considered more general elliptic
operators equipped with a variety of boundary conditions. For a general elliptic differential operator A of
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order 2m (m ∈ N), with smooth coefficients, acting on a smooth subdomain Ω of an n-dimensional smooth
manifold, spectral asymptotics of the form

ND,Ω(A;λ) = (2π)−n
(∫

Ω

dx

∫
a0(x,ξ)<1

dξ

)
λn/(2m) +O

(
λ(n−1)/(2m)

)
as λ→∞, (1.17)

where a0(x, ξ) denotes the principal symbol of A, have then been subsequently established in increasing
generality (a nice exposition can be found in [6]). At the same time, it has been realized that, as the
smoothness of the domain Ω (by which we mean smoothness of the boundary of Ω) and the coefficients of A
deteriorate, the degree of detail with which the remainder can be described decreases accordingly. Indeed,
the smoothness of the boundary of the underlying domain Ω affects both the nature of the remainder in
(1.17), as well as the types of differential operators and boundary conditions for which such an asymptotic
formula holds. Understanding this correlation then became a central theme of research. For example, in the
case of the Laplacian in an arbitrary bounded, open subset Ω of Rn, Birman and Solomyak have shown in
[40] (see also [41], [42], [43], [44]) that the following Weyl asymptotic formula holds

ND,Ω(λ) = (2π)−nvn|Ω|λn/2 + o
(
λn/2

)
as λ→∞, (1.18)

where vn denotes the volume of the unit ball in Rn, and |Ω| stands for the n-dimensional Euclidean volume
of Ω. (Actually, (1.18) extends to unbounded Ω with finite volume |Ω|, but this will not be addressed
in this survey.) On the other hand, it is known that (1.18) may fail for the Neumann Laplacian −∆N,Ω.
Furthermore, if α ∈ (0, 1) then Netrusov and Safarov have proved that

Ω ∈ Lipα implies ND,Ω(λ) = (2π)−nvn|Ω|λn/2 +O
(
λ(n−α)/2

)
as λ→∞, (1.19)

where Lipα is the class of bounded domains whose boundaries can be locally described by means of graphs
of functions satisfying a Hölder condition of order α; this result is sharp. See [149] where this intriguing
result (along with others, similar in spirit) has been obtained. Surprising connections between Weyl’s as-
ymptotic formula and geometric measure theory have been explored in [57], [109], [128] for fractal domains.
Collectively, this body of work shows that the nature of the Weyl asymptotic formula is intimately related
not only to the geometrical properties of the domain (as well as the type of boundary conditions), but also
to the smoothness properties of its boundary (the monographs by Ivrii [112] and Safarov and Vassiliev [167]
contain a wealth of information on this circle of ideas).

These considerations are by no means limited to the Laplacian; see [58] for the case of the Stokes operator,
and [39], [45] for the case the Maxwell system in nonsmooth domains. However, even in the case of the Laplace
operator, besides −∆D,Ω and −∆N,Ω there is a multitude of other concrete extensions of the Laplacian −∆
on C∞0 (Ω) as a nonnegative, self-adjoint operator in L2(Ω; dnx). The smallest (in the operator theoretic
order sense) such realization has been introduced, in an abstract setting, by M. Krein [124]. Later it was
realized that in the case where the symmetric operator, whose self-adjoint extensions are sought, has a
strictly positive lower bound, Krein’s construction coincides with one that von Neumann had discussed in
his seminal paper [183] in 1929.

For the purpose of this introduction we now briefly recall the construction of the Krein–von Neumann
extension of appropriate L2(Ω; dnx)-realizations of the differential operator A of order 2m, m ∈ N,

A =
∑

0≤|α|≤2m

aα(·)Dα, (1.20)

Dα = (−i∂/∂x1)α1 · · · (−i∂/∂xn)αn , α = (α1, . . . , αn) ∈ Nn0 , (1.21)

aα(·) ∈ C∞(Ω), C∞(Ω) =
⋂
k∈N0

Ck(Ω), (1.22)

where Ω ⊂ Rn is a bounded C∞ domain. Introducing the particular L2(Ω; dnx)-realization Ac,Ω of A defined
by

Ac,Ωu = Au, u ∈ dom(Ac,Ω) := C∞0 (Ω), (1.23)

we assume the coefficients aα in A are chosen such that Ac,Ω is symmetric,

(u,Ac,Ωv)L2(Ω;dnx) = (Ac,Ωu, v)L2(Ω;dnx), u, v ∈ C∞0 (Ω), (1.24)

has a (strictly) positive lower bound, that is, there exists κ0 > 0 such that

(u,Ac,Ωu)L2(Ω;dnx) ≥ κ0 ‖u‖2L2(Ω;dnx), u ∈ C∞0 (Ω), (1.25)
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and is strongly elliptic, that is, there exists κ1 > 0 such that

a0(x, ξ) := Re

( ∑
|α|=2m

aα(x)ξα
)
≥ κ1 |ξ|2m, x ∈ Ω, ξ ∈ Rn. (1.26)

Next, let Amin,Ω and Amax,Ω be the L2(Ω; dnx)-realizations of A with domains (cf. [6], [100])

dom(Amin,Ω) := H2m
0 (Ω), (1.27)

dom(Amax,Ω) :=
{
u ∈ L2(Ω; dnx)

∣∣Au ∈ L2(Ω; dnx)
}
. (1.28)

Throughout this manuscript, Hs(Ω) denotes the L2-based Sobolev space of order s ∈ R in Ω, and Hs
0(Ω) is

the subspace of Hs(Rn) consisting of distributions supported in Ω (for s > 1
2 ,
(
s− 1

2

)
/∈ N, the space Hs

0(Ω)
can be alternatively described as the closure of C∞0 (Ω) in Hs(Ω)). Given that the domain Ω is smooth,
elliptic regularity implies

(Amin,Ω)∗ = Amax,Ω and Ac,Ω = Amin,Ω. (1.29)

Functional analytic considerations (cf. the discussion in Section 2) dictate that the Krein–von Neumann
(sometimes also called the “soft”) extension AK,Ω of Ac,Ω on C∞0 (Ω) is the L2(Ω; dnx)-realization of Ac,Ω
with domain (cf. (2.10) derived abstractly by Krein)

dom(AK,Ω) = dom
(
Ac,Ω

)
+̇ ker

(
(Ac,Ω)∗

)
. (1.30)

Above and elsewhere, X+̇Y denotes the direct sum of two subspaces, X and Y , of a larger space Z, with
the property that X ∩ Y = {0}. Thus, granted (1.29), we have

dom(AK,Ω) = dom(Amin,Ω) +̇ ker(Amax,Ω)

= H2m
0 (Ω) +̇

{
u ∈ L2(Ω; dnx)

∣∣Au = 0 in Ω
}
.

(1.31)

In summary, for domains with smooth boundaries, AK,Ω is the self-adjoint realization of Ac,Ω with domain
given by (1.31).

Denote by γmDu :=
(
γjNu

)
0≤j≤m−1

the Dirichlet trace operator of order m ∈ N (where ν denotes the

outward unit normal to Ω and γNu := ∂νu stands for the normal derivative, or Neumann trace), and let
AD,Ω be the Dirichlet (sometimes also called the “hard”) realization of Ac,Ω in L2(Ω; dnx) with domain

dom(AD,Ω) :=
{
u ∈ H2m(Ω)

∣∣ γmDu = 0
}
. (1.32)

Then AK,Ω, AD,Ω are “extremal” in the following sense: Any nonnegative self-adjoint extension Ã in
L2(Ω; dnx) of Ac,Ω (cf. (1.23)), necessarily satisfies

AK,Ω ≤ Ã ≤ AD,Ω (1.33)

in the sense of quadratic forms (cf. the discussion surrounding (2.4)).
Returning to the case where Ac,Ω = −∆|C∞0 (Ω), for a bounded domain Ω with a C∞-smooth boundary,

∂Ω, the corresponding Krein–von Neumann extension admits the following description

−∆K,Ωu := −∆u,

u ∈ dom(−∆K,Ω) := {v ∈ dom(−∆max,Ω) | γNv +MD,N,Ω(γDv) = 0}, (1.34)

where MD,N,Ω is (up to a minus sign) an energy-dependent Dirichlet-to-Neumann map, or Weyl–Titchmarsh
operator for the Laplacian. Compared with (1.31), the description (1.34) has the advantage of making
explicit the boundary condition implicit in the definition of membership to dom(−∆K,Ω). Nonetheless, as
opposed to the classical Dirichlet and Neumann boundary condition, this turns out to be nonlocal in nature,
as it involves MD,N,Ω which, when Ω is smooth, is a boundary pseudodifferential operator of order 1. Thus,
informally speaking, (1.34) is the realization of the Laplacian with the boundary condition

∂νu = ∂νH(u) on ∂Ω, (1.35)

where, given a reasonable function w in Ω, H(w) is the harmonic extension of the Dirichlet boundary trace
γ0
Dw to Ω (cf. (4.15)).

While at first sight the nonlocal boundary condition γNv + MD,N,Ω(γDv) = 0 in (1.34) for the Krein
Laplacian −∆K,Ω may seem familiar from the abstract approach to self-adjoint extensions of semibounded
symmetric operators within the theory of boundary value spaces, there are some crucial distinctions in the
concrete case of Laplacians on (nonsmooth) domains which will be delineated at the end of Section 6.

For rough domains, matters are more delicate as the nature of the boundary trace operators and the
standard elliptic regularity theory are both fundamentally affected. Following work in [89], here we shall
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consider the class of quasi-convex domains. The latter is the subclass of bounded, Lipschitz domains in Rn
characterized by the demand that

(i) there exists a sequence of relatively compact, C2-subdomains exhausting the original domain, and
whose second fundamental forms are bounded from below in a uniform fashion (for a precise formu-
lation see Definition 5.3),

or

(ii) near every boundary point there exists a suitably small δ > 0, such that the boundary is given by
the graph of a function ϕ : Rn−1 → R (suitably rotated and translated) which is Lipschitz and whose
derivative satisfy the pointwise H1/2-multiplier condition

n−1∑
k=1

‖fk ∂kϕj‖H1/2(Rn−1) ≤ δ
n−1∑
k=1

‖fk‖H1/2(Rn−1), f1, ...fn−1 ∈ H1/2(Rn−1). (1.36)

See Hypothesis 5.7 for a precise formulation. In particular, (1.36) is automatically satisfied when ω(∇ϕ, t),
the modulus of continuity of ∇ϕ at scale t, satisfies the square-Dini condition (compare to [140], [141], where
this type of domain was introduced and studied),∫ 1

0

(ω(∇ϕ; t)

t1/2

)2 dt

t
<∞. (1.37)

In turn, (1.37) is automatically satisfied if the Lipschitz function ϕ is of class C1,r for some r > 1/2. As a
result, examples of quasi-convex domains include:

(i) All bounded (geometrically) convex domains.
(ii) All bounded Lipschitz domains satisfying a uniform exterior ball condition (which, informally speak-

ing, means that a ball of fixed radius can be “rolled” along the boundary).
(iii) All open sets which are the image of a domain as in (i), (ii) above under a C1,1-diffeomorphism.
(iv) All bounded domains of class C1,r for some r > 1/2.

We note that being quasi-convex is a local property of the boundary. The philosophy behind this concept
is that Lipschitz-type singularities are allowed in the boundary as long as they are directed outwardly (see
Figure 1 on p. 28). The key feature of this class of domains is the fact that the classical elliptic regularity
property

dom(−∆D,Ω) ⊂ H2(Ω), dom(−∆N,Ω) ⊂ H2(Ω) (1.38)

remains valid. In this vein, it is worth recalling that the presence of a single re-entrant corner for the domain
Ω invalidates (1.38). All our results in this survey are actually valid for the class of bounded Lipschitz
domains for which (1.38) holds. Condition (1.38) is, however, a regularity assumption on the boundary of
the Lipschitz domain Ω and the class of quasi-convex domains is the largest one for which we know (1.38)
to hold. Under the hypothesis of quasi-convexity, it has been shown in [89] that the Krein Laplacian −∆K,Ω

(i.e., the Krein–von Neumann extension of the Laplacian −∆ defined on C∞0 (Ω)) in (1.34) is a well-defined
self-adjoint operator which agrees with the operator constructed using the recipe in (1.31).

The main issue of this survey is the study of the spectral properties of HK,Ω, the Krein–von Neumann
extension of the perturbed Laplacian

−∆ + V on C∞0 (Ω), (1.39)

in the case where both the potential V and the domain Ω are nonsmooth. As regards the former, we shall
assume that 0 ≤ V ∈ L∞(Ω; dnx), and we shall assume that Ω ⊂ Rn is a quasi-convex domain (more on
this shortly). In particular, we wish to clarify the extent to which a Weyl asymptotic formula continues
to hold for this operator. For us, this undertaking was originally inspired by the discussion by Alonso and
Simon in [14]. At the end of that paper, the authors comment to the effect that “It seems to us that the
Krein extension of −∆, i.e., −∆ with the boundary condition (1.35), is a natural object and therefore worthy
of further study. For example: Are the asymptotics of its nonzero eigenvalues given by Weyl’s formula?”
Subsequently we have learned that when Ω is C∞-smooth this has been shown to be the case by Grubb in
[97]. More specifically, in that paper Grubb has proved that if NK,Ω(A;λ) denotes the number of nonzero
eigenvalues of AK,Ω (defined as in (1.31)) not exceeding λ, then

Ω ∈ C∞ implies NK,Ω(A;λ) = CA,nλ
n/(2m) +O

(
λ(n−θ)/(2m)

)
as λ→∞, (1.40)

where, with a0(x, ξ) as in (1.26),

CA,n := (2π)−n
∫

Ω

dnx

∫
a0(x,ξ)<1

dnξ (1.41)
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and

θ := max
{1

2
− ε , 2m

2m+ n− 1

}
, with ε > 0 arbitrary. (1.42)

See also [143], [144], and most recently, [102], where the authors derive a sharpening of the remainder in
(1.40) to any θ < 1. To show (1.40)–(1.42), Grubb has reduced the eigenvalue problem

Au = λu, u ∈ dom(AK,Ω), λ > 0, (1.43)

to the higher-order, elliptic system 
A2v = λAv in Ω,

γ2m
D v = 0 on ∂Ω,

v ∈ C∞(Ω).

(1.44)

Then the strategy is to use known asymptotics for the spectral distribution function of regular elliptic
boundary problems, along with perturbation results due to Birman, Solomyak, and Grubb (see the literature
cited in [97] for precise references). It should be noted that the fact that the boundary of Ω and the coefficients
of A are smooth plays an important role in Grubb’s proof. First, this is used to ensure that (1.29) holds
which, in turn, allows for the concrete representation (1.31) (a formula which in effect lies at the start of the
entire theory, as Grubb adopts this as the definition of the domains of the Krein–von Neumann extension).
In addition, at a more technical level, Lemma 3 in [97] is justified by making appeal to the theory of pseudo-
differential operators on ∂Ω, assumed to be an (n− 1)-dimensional C∞ manifold. In our case, that is, when
dealing with the Krein–von Neumann extension of the perturbed Laplacian (1.39), we establish the following
theorem:

Theorem 1.1. Let Ω ⊂ Rn be a quasi-convex domain, assume that 0 ≤ V ∈ L∞(Ω; dnx), and denote by
HK,Ω the Krein–von Neumann extension of the perturbed Laplacian (1.39). Then there exists a sequence of
numbers

0 < λK,Ω,1 ≤ λK,Ω,2 ≤ · · · ≤ λK,Ω,j ≤ λK,Ω,j+1 ≤ · · · (1.45)

converging to infinity, with the following properties.

(i) The spectrum of HK,Ω is given by

σ(HK,Ω) = {0} ∪ {λK,Ω,j}j∈N, (1.46)

and each number λK,Ω,j, j ∈ N, is an eigenvalue for HK,Ω of finite multiplicity.
(ii) There exists a countable family of orthonormal eigenfunctions for HK,Ω which span the orthogonal

complement of the kernel of this operator. More precisely, there exists a collection of functions
{wj}j∈N with the following properties:

wj ∈ dom(HK,Ω) and HK,Ωwj = λK,Ω,jwj , j ∈ N, (1.47)

(wj , wk)L2(Ω;dnx) = δj,k, j, k ∈ N, (1.48)

L2(Ω; dnx) = ker(HK,Ω) ⊕ lin. span{wj}j∈N, (orthogonal direct sum). (1.49)

If V is Lipschitz then wj ∈ H1/2(Ω) for every j and, in fact, wj ∈ C∞(Ω) for every j if Ω is C∞

and V ∈ C∞(Ω).
(iii) The following min-max principle holds:

λK,Ω,j = min
Wj subspace of H2

0(Ω)

dim(Wj)=j

(
max

06=u∈Wj

( ‖(−∆ + V )u‖2L2(Ω;dnx)

‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2L2(Ω;dnx)

))
,

j ∈ N. (1.50)

(iv) If

0 < λD,Ω,1 ≤ λD,Ω,2 ≤ · · · ≤ λD,Ω,j ≤ λD,Ω,j+1 ≤ · · · (1.51)

are the eigenvalues of the perturbed Dirichlet Laplacian −∆D,Ω (i.e., the Friedrichs extension of
(1.39) in L2(Ω; dnx)), listed according to their multiplicities, then

0 < λD,Ω,j ≤ λK,Ω,j , j ∈ N, (1.52)

Consequently introducing the spectral distribution functions

NX,Ω(λ) := #{j ∈ N |λX,Ω,j ≤ λ}, X ∈ {D,K}, (1.53)
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one has

NK,Ω(λ) ≤ ND,Ω(λ). (1.54)

(v) Corresponding to the case V ≡ 0, the first nonzero eigenvalue λ
(0)
K,Ω,1 of −∆K,Ω satisfies

λ
(0)
D,Ω,2 ≤ λ

(0)
K,Ω,1 and λ

(0)
K,Ω,2 ≤

n2 + 8n+ 20

(n+ 2)2
λ

(0)
K,Ω,1. (1.55)

In addition,
n∑
j=1

λ
(0)
K,Ω,j+1 < (n+ 4)λ

(0)
K,Ω,1 −

4

n+ 4
(λ

(0)
K,Ω,2 − λ

(0)
K,Ω,1) 6 (n+ 4)λ

(0)
K,Ω,1, (1.56)

and
k∑
j=1

(
λ

(0)
K,Ω,k+1 − λ

(0)
K,Ω,j

)2 ≤ 4(n+ 2)

n2

k∑
j=1

(
λ

(0)
K,Ω,k+1 − λ

(0)
K,Ω,j

)
λ

(0)
K,Ω,j k ∈ N. (1.57)

Moreover, if Ω is a bounded, convex domain in Rn, then the first two Dirichlet eigenvalues and the
first nonzero eigenvalue of the Krein Laplacian in Ω satisfy

λ
(0)
D,Ω,2 ≤ λ

(0)
K,Ω,1 ≤ 4λ

(0)
D,Ω,1. (1.58)

(vi) The following Weyl asymptotic formula holds:

NK,Ω(λ) = (2π)−nvn|Ω|λn/2 +O
(
λ(n−(1/2))/2

)
as λ→∞, (1.59)

where, as before, vn denotes the volume of the unit ball in Rn, and |Ω| stands for the n-dimensional
Euclidean volume of Ω.

This theorem answers the question posed by Alonso and Simon in [14] (which corresponds to V ≡ 0), and
further extends the work by Grubb in [97] in the sense that we allow nonsmooth domains and coefficients.
To prove this result, we adopt Grubb’s strategy and show that the eigenvalue problem

(−∆ + V )u = λu, u ∈ dom(HK,Ω), λ > 0, (1.60)

is equivalent to the following fourth-order problem
(−∆ + V )2w = λ (−∆ + V )w in Ω,

γDw = γNw = 0 on ∂Ω,

w ∈ dom(−∆max).

(1.61)

This is closely related to the so-called problem of the buckling of a clamped plate,
−∆2w = λ∆w in Ω,

γDw = γNw = 0 on ∂Ω,

w ∈ dom(−∆max),

(1.62)

to which (1.61) reduces when V ≡ 0. From a physical point of view, the nature of the later boundary value
problem can be described as follows. In the two-dimensional setting, the bifurcation problem for a clamped,
homogeneous plate in the shape of Ω, with uniform lateral compression on its edges has the eigenvalues λ
of the problem (1.61) as its critical points. In particular, the first eigenvalue of (1.61) is proportional to the
load compression at which the plate buckles.

One of the upshots of our work in this context is establishing a definite connection between the Krein–von
Neumann extension of the Laplacian and the buckling problem (1.62). In contrast to the smooth case, since
in our setting the solution w of (1.61) does not exhibit any extra regularity on the Sobolev scale Hs(Ω),
s ≥ 0, other than membership to L2(Ω; dnx), a suitable interpretation of the boundary conditions in (1.61)
should be adopted. (Here we shall rely on the recent progress from [89] where this issue has been resolved
by introducing certain novel boundary Sobolev spaces, well-adapted to the class of Lipschitz domains.) We
nonetheless find this trade-off, between the 2nd-order boundary problem (1.60) which has nonlocal boundary
conditions, and the boundary problem (1.61) which has local boundary conditions, but is of fourth-order,
very useful. The reason is that (1.61) can be rephrased, in view of (1.38) and related regularity results
developed in [89], in the form of

(−∆ + V )2u = λ (−∆ + V )u in Ω, u ∈ H2
0 (Ω). (1.63)
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In principle, this opens the door to bringing onto the stage the theory of generalized eigenvalue problems,
that is, operator pencil problems of the form

Tu = λSu, (1.64)

where T and S are certain linear operators in a Hilbert space. Abstract results of this nature can be found
for instance, in [133], [156], [175] (see also [129], [130], where this is applied to the asymptotic distribution
of eigenvalues). We, however, find it more convenient to appeal to a version of (1.64) which emphasizes the
role of the symmetric forms

a(u, v) :=

∫
Ω

dnx (−∆ + V )u (−∆ + V )v, u, v ∈ H2
0 (Ω), (1.65)

b(u, v) :=

∫
Ω

dnx∇u · ∇v +

∫
Ω

dnxV 1/2uV 1/2v, u, v ∈ H2
0 (Ω), (1.66)

and reformulate (1.63) as the problem of finding u ∈ H2
0 (Ω) which satisfies

a(u, v) = λ b(u, v) v ∈ H2
0 (Ω). (1.67)

This type of eigenvalue problem, in the language of bilinear forms associated with differential operators, has
been studied by Kozlov in a series of papers [118], [119], [120]. In particular, in [120], Kozlov has obtained
Weyl asymptotic formulas in the case where the underlying domain Ω in (1.65) is merely Lipschitz, and the
lower-order coefficients of the quadratic forms (1.65)–(1.66) are only measurable and bounded (see Theorem
9.1 for a precise formulation). Our demand that the potential V is in L∞(Ω; dnx) is therefore inherited
from Kozlov’s theorem. Based on this result and the fact that the problems (1.65)–(1.67) and (1.60) are
spectral-equivalent, we can then conclude that (1.59) holds. Formulas (1.55)–(1.57) are also a byproduct of
the connection between (1.60) and (1.61) and known spectral estimates for the buckling plate problem from
[27], [28], [31], [60], [110], [150], [152], [153]. Similarly, (1.58) for convex domains is based on the connection
between (1.60) and (1.61) and the eigenvalue inequality relating the first eigenvalue of a fixed membrane and
that of the buckling problem for the clamped plate as proven in [151] (see also [152], [153]).

In closing, we wish to point out that in the C∞-smooth setting, Grubb’s remainder in (1.40), with the
improvement to any θ < 1 in [102], [143], [144], is sharper than that in (1.59). However, the main novel
feature of our Theorem 1.1 is the low regularity assumptions on the underlying domain Ω, and the fact that
we allow a nonsmooth potential V . As was the case with the Weyl asymptotic formula for the classical
Dirichlet and Neumann Laplacians (briefly reviewed at the beginning of this section), the issue of regularity
(or lack thereof) has always been of considerable importance in this line of work (as early as 1970, Birman
and Solomyak noted in [40] that “there has been recently some interest in obtaining the classical asymptotic
spectral formulas under the weakest possible hypotheses.”). The interested reader may consult the paper [44]
by Birman and Solomyak (see also [42], [43]), as well as the article [63] by Davies for some very readable,
highly informative surveys underscoring this point (collectively, these papers also contain more than 500
references concerning this circle of ideas).

We note that the results in Sections 4–6 originally appeared in [89], while those in Sections 7–11 originally
appeared in [29].

Finally, a notational comment: For obvious reasons in connection with quantum mechanical applications,
we will, with a slight abuse of notation, dub −∆ (rather than ∆) as the “Laplacian” in this survey.

2. The Abstract Krein–von Neumann Extension

To get started, we briefly elaborate on the notational conventions used throughout this survey and espe-
cially throughout this section which collects abstract material on the Krein–von Neumann extension. Let H
be a separable complex Hilbert space, ( · , · )H the scalar product in H (linear in the second factor), and IH
the identity operator in H. Next, let T be a linear operator mapping (a subspace of) a Banach space into
another, with dom(T ) and ran(T ) denoting the domain and range of T . The closure of a closable operator
S is denoted by S. The kernel (null space) of T is denoted by ker(T ). The spectrum, essential spectrum,
and resolvent set of a closed linear operator in H will be denoted by σ(·), σess(·), and ρ(·), respectively. The
Banach spaces of bounded and compact linear operators on H are denoted by B(H) and B∞(H), respectively.
Similarly, the Schatten–von Neumann (trace) ideals will subsequently be denoted by Bp(H), p ∈ (0,∞). The
analogous notation B(X1,X2), B∞(X1,X2), etc., will be used for bounded, compact, etc., operators between
two Banach spaces X1 and X2. Moreover, X1 ↪→ X2 denotes the continuous embedding of the Banach space
X1 into the Banach space X2. In addition, U1 u U2 denotes the direct sum of the subspaces U1 and U2 of a
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Banach space X ; and V1⊕V2 represents the orthogonal direct sum of the subspaces Vj , j = 1, 2, of a Hilbert
space H.

Throughout this manuscript, if X denotes a Banach space, X∗ denotes the adjoint space of continuous
conjugate linear functionals on X, that is, the conjugate dual space of X (rather than the usual dual space
of continuous linear functionals on X). This avoids the well-known awkward distinction between adjoint
operators in Banach and Hilbert spaces (cf., e.g., the pertinent discussion in [71, p. 3, 4]).

Given a reflexive Banach space V and T ∈ B(V,V∗), the fact that T is self-adjoint is defined by the
requirement that

V〈u, Tv〉V∗ = V∗〈Tu, v〉V = V〈v, Tu〉V∗ , u, v ∈ V, (2.1)

where in this context bar denotes complex conjugation, V∗ is the conjugate dual of V, and V〈 · , · 〉V∗ stands
for the V,V∗ pairing.

A linear operator S : dom(S) ⊆ H → H, is called symmetric, if

(u, Sv)H = (Su, v)H, u, v ∈ dom(S). (2.2)

If dom(S) = H, the classical Hellinger–Toeplitz theorem guarantees that S ∈ B(H), in which situation S is
readily seen to be self-adjoint. In general, however, symmetry is a considerably weaker property than self-
adjointness and a classical problem in functional analysis is that of determining all self-adjoint extensions in
H of a given unbounded symmetric operator of equal and nonzero deficiency indices. (Here self-adjointness

of an operator S̃ in H, is of course defined as usual by
(
S̃
)∗

= S̃.) In this manuscript we will be particularly

interested in this question within the class of densely defined (i.e., dom(S) = H), nonnegative operators
(in fact, in most instances S will even turn out to be strictly positive) and we focus almost exclusively on
self-adjoint extensions that are nonnegative operators. In the latter scenario, there are two distinguished
constructions which we will briefly review next.

To set the stage, we recall that a linear operator S : dom(S) ⊆ H → H is called nonnegative provided

(u, Su)H ≥ 0, u ∈ dom(S). (2.3)

(In particular, S is symmetric in this case.) S is called strictly positive, if for some ε > 0, (u, Su)H ≥ ε‖u‖2H,
u ∈ dom(S). Next, we recall that A ≤ B for two self-adjoint operators in H if

dom
(
|A|1/2

)
⊇ dom

(
|B|1/2

)
and(

|A|1/2u, UA|A|1/2u
)
H ≤

(
|B|1/2u, UB |B|1/2u

)
H, u ∈ dom

(
|B|1/2

)
,

(2.4)

where UC denotes the partial isometry in H in the polar decomposition of a densely defined closed operator
C in H, C = UC |C|, |C| = (C∗C)1/2. (If in addition, C is self-adjoint, then UC and |C| commute.) We also
recall ([75, Section I.6], [114, Theorem VI.2.21]) that if A and B are both self-adjoint and nonnegative in H,
then

0 ≤ A ≤ B if and only if (B + aIH)−1 ≤ (A+ aIH)−1 for all a > 0, (2.5)

(which implies 0 ≤ A1/2 ≤ B1/2) and

ker(A) = ker
(
A1/2

)
(2.6)

(with C1/2 the unique nonnegative square root of a nonnegative self-adjoint operator C in H).
For simplicity we will always adhere to the conventions that S is a linear, unbounded, densely defined,

nonnegative (i.e., S ≥ 0) operator in H, and that S has nonzero deficiency indices. In particular,

def(S) = dim(ker(S∗ − zIH)) ∈ N ∪ {∞}, z ∈ C\[0,∞), (2.7)

is well-known to be independent of z. Moreover, since S and its closure S have the same self-adjoint
extensions in H, we will without loss of generality assume that S is closed in the remainder of this section.

The following is a fundamental result to be found in M. Krein’s celebrated 1947 paper [124] (cf. also
Theorems 2 and 5–7 in the English summary on page 492):

Theorem 2.1. Assume that S is a densely defined, closed, nonnegative operator in H. Then, among
all nonnegative self-adjoint extensions of S, there exist two distinguished ones, SK and SF , which are,
respectively, the smallest and largest (in the sense of order between self-adjoint operators, cf. (2.4)) such

extension. Furthermore, a nonnegative self-adjoint operator S̃ is a self-adjoint extension of S if and only if

S̃ satisfies

SK ≤ S̃ ≤ SF . (2.8)

In particular, (2.8) determines SK and SF uniquely.
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In addition, if S ≥ εIH for some ε > 0, one has SF ≥ εIH, and

dom(SF ) = dom(S)u (SF )−1 ker(S∗), (2.9)

dom(SK) = dom(S)u ker(S∗), (2.10)

dom(S∗) = dom(S)u (SF )−1 ker(S∗)u ker(S∗)

= dom(SF )u ker(S∗), (2.11)

in particular,

ker(SK) = ker
(
(SK)1/2

)
= ker(S∗) = ran(S)⊥. (2.12)

Here the operator inequalities in (2.8) are understood in the sense of (2.4) and hence they can equivalently
be written as

(SF + aIH)−1 6
(
S̃ + aIH

)−1
6 (SK + aIH)−1 for some (and hence for all ) a > 0. (2.13)

We will call the operator SK the Krein–von Neumann extension of S. See [124] and also the discussion
in [14], [23], [24]. It should be noted that the Krein–von Neumann extension was first considered by von
Neumann [183] in 1929 in the case where S is strictly positive, that is, if S ≥ εIH for some ε > 0. (His
construction appears in the proof of Theorem 42 on pages 102–103.) However, von Neumann did not isolate
the extremal property of this extension as described in (2.8) and (2.13). M. Krein [124], [125] was the
first to systematically treat the general case S ≥ 0 and to study all nonnegative self-adjoint extensions of S,
illustrating the special role of the Friedrichs extension (i.e., the “hard” extension) SF of S and the Krein–von
Neumann (i.e., the “soft”) extension SK of S as extremal cases when considering all nonnegative extensions
of S. For a recent exhaustive treatment of self-adjoint extensions of semibounded operators we refer to
[22]–[25].

For classical references on the subject of self-adjoint extensions of semibounded operators (not necessarily
restricted to the Krein–von Neumann extension) we refer to Birman [37], [38], Friedrichs [79], Freudenthal

[78], Grubb [94], [95], Krein [125], S̆traus [173], and Vĭsik [182] (see also the monographs by Akhiezer and
Glazman [10, Sect. 109], Faris [75, Part III], and the recent book by Grubb [100, Sect. 13.2]).

An intrinsic description of the Friedrichs extension SF of S ≥ 0 due to Freudenthal [78] in 1936 describes
SF as the operator SF : dom(SF ) ⊂ H → H given by

SFu := S∗u,

u ∈ dom(SF ) :=
{
v ∈ dom(S∗)

∣∣ there exists {vj}j∈N ⊂ dom(S), (2.14)

with lim
j→∞

‖vj − v‖H = 0 and ((vj − vk), S(vj − vk))H → 0 as j, k →∞
}
.

Then, as is well-known,

SF ≥ 0, (2.15)

dom
(
(SF )1/2

)
=
{
v ∈ H

∣∣ there exists {vj}j∈N ⊂ dom(S), (2.16)

with lim
j→∞

‖vj − v‖H = 0 and ((vj − vk), S(vj − vk))H → 0 as j, k →∞
}
,

and
SF = S∗|dom(S∗)∩dom((SF )1/2). (2.17)

Equations (2.16) and (2.17) are intimately related to the definition of SF via (the closure of) the sesquilin-
ear form generated by S as follows: One introduces the sesquilinear form

qS(f, g) = (f, Sg)H, f, g ∈ dom(qS) = dom(S). (2.18)

Since S ≥ 0, the form qS is closable and we denote by QS the closure of qS . Then QS ≥ 0 is densely
defined and closed. By the first and second representation theorem for forms (cf., e.g., [114, Sect. 6.2]), QS is
uniquely associated with a nonnegative, self-adjoint operator in H. This operator is precisely the Friedrichs
extension, SF ≥ 0, of S, and hence,

QS(f, g) = (f, SF g)H, f ∈ dom(QS), g ∈ dom(SF ),

dom(QS) = dom
(
(SF )1/2

)
.

(2.19)

An intrinsic description of the Krein–von Neumann extension SK of S ≥ 0 has been given by Ando and
Nishio [16] in 1970, where SK has been characterized as the operator SK : dom(SK) ⊂ H → H given by

SKu := S∗u,
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u ∈ dom(SK) :=
{
v ∈ dom(S∗)

∣∣ there exists {vj}j∈N ⊂ dom(S), (2.20)

with lim
j→∞

‖Svj − S∗v‖H = 0 and ((vj − vk), S(vj − vk))H → 0 as j, k →∞
}
.

By (2.14) one observes that shifting S by a constant commutes with the operation of taking the Friedrichs
extension of S, that is, for any c ∈ R,

(S + cIH)F = SF + cIH, (2.21)

but by (2.20), the analog of (2.21) for the Krein–von Neumann extension SK fails.
At this point we recall a result due to Makarov and Tsekanovskii [134], concerning symmetries (e.g., the

rotational symmetry exploited in Section 11), and more generally, a scale invariance, shared by S, S∗, SF ,
and SK (see also [105]). Actually, we will prove a slight extension of the principal result in [134]:

Proposition 2.2. Let µ > 0, suppose that V, V −1 ∈ B(H), and assume S to be a densely defined, closed,
nonnegative operator in H satisfying

V SV −1 = µS, (2.22)

and

V SV −1 = (V ∗)−1SV ∗ (or equivalently, (V ∗V )−1S(V ∗V ) = S ). (2.23)

Then also S∗, SF , and SK satisfy

(V ∗V )−1S∗(V ∗V ) = S∗, V S∗V −1 = µS∗, (2.24)

(V ∗V )−1SF (V ∗V ) = SF , V SFV
−1 = µSF , (2.25)

(V ∗V )−1SK(V ∗V ) = SK , V SKV
−1 = µSK . (2.26)

Proof. Applying [185, p. 73, 74], (2.22) yields V SV −1 = (V ∗)−1SV ∗. The latter relation is equivalent to
(V ∗V )−1S(V ∗V ) = S and hence also equivalent to (V ∗V )S(V ∗V )−1 = S. Taking adjoints (and applying
[185, p. 73, 74] again) then yields (V ∗)−1S∗V ∗ = V S∗V −1; the latter is equivalent to (V ∗V )−1S∗(V ∗V ) =
S∗ and hence also equivalent to (V ∗V )S∗(V ∗V )−1 = S. Replacing S and S∗ by (V ∗V )−1S(V ∗V ) and
(V ∗V )−1S∗(V ∗V ), respectively, in (2.14), and subsequently, in (2.20), then yields that

(V ∗V )−1SF (V ∗V ) = SF and (V ∗V )−1SK(V ∗V ) = SK . (2.27)

The latter are of course equivalent to

(V ∗V )SF (V ∗V )−1 = SF and (V ∗V )SK(V ∗V )−1 = SK . (2.28)

Finally, replacing S by V SV −1 and S∗ by V S∗V −1 in (2.14) then proves V SFV
−1 = µSF . Performing the

same replacement in (2.20) then yields V SKV
−1 = µSK . �

If in addition, V is unitary (implying V ∗V = IH), Proposition 2.2 immediately reduces to [134, Theorem
2.2]. In this special case one can also provide a quick alternative proof by directly invoking the inequalities
(2.13) and the fact that they are preserved under unitary equivalence.

Similarly to Proposition 2.2, the following results also immediately follow from the characterizations (2.14)
and (2.20) of SF and SK , respectively:

Proposition 2.3. Let U : H1 → H2 be unitary from H1 onto H2 and assume S to be a densely defined, closed,
nonnegative operator in H1 with adjoint S∗, Friedrichs extension SF , and Krein–von Neumann extension
SK in H1, respectively. Then the adjoint, Friedrichs extension, and Krein–von Neumann extension of the
nonnegative, closed, densely defined, symmetric operator USU−1 in H2 are given by

[USU−1]∗ = US∗U−1, [USU−1]F = USFU
−1, [USU−1]K = USKU

−1 (2.29)

in H2, respectively.

Proposition 2.4. Let J ⊆ N be some countable index set and consider H =
⊕

j∈J Hj and S =
⊕

j∈J Sj,

where each Sj is a densely defined, closed, nonnegative operator in Hj, j ∈ J . Denoting by (Sj)F and (Sj)K
the Friedrichs and Krein–von Neumann extension of Sj in Hj, j ∈ J , one infers

S∗ =
⊕
j∈J

(Sj)
∗, SF =

⊕
j∈J

(Sj)F , SK =
⊕
j∈J

(Sj)K . (2.30)

The following is a consequence of a slightly more general result formulated in [16, Theorem 1]:
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Proposition 2.5. Let S be a densely defined, closed, nonnegative operator in H. Then SK , the Krein–von
Neumann extension of S, has the property that

dom
(
(SK)1/2

)
=

{
u ∈ H

∣∣∣∣ sup
v∈dom(S)

|(u, Sv)H|2

(v, Sv)H
< +∞

}
, (2.31)

and ∥∥(SK)1/2u
∥∥2

H = sup
v∈dom(S)

|(u, Sv)H|2

(v, Sv)H
, u ∈ dom

(
(SK)1/2

)
. (2.32)

A word of explanation is in order here: Given S ≥ 0 as in the statement of Proposition 2.5, the Cauchy-
Schwarz-type inequality

|(u, Sv)H|2 ≤ (u, Su)H(v, Sv)H, u, v ∈ dom(S), (2.33)

shows (due to the fact that dom(S) ↪→ H densely) that

u ∈ dom(S) and (u, Su)H = 0 imply Su = 0. (2.34)

Thus, whenever the denominator of the fractions appearing in (2.31), (2.32) vanishes, so does the numerator,
and one interprets 0/0 as being zero in (2.31), (2.32).

We continue by recording an abstract result regarding the parametrization of all nonnegative self-adjoint
extensions of a given strictly positive, densely defined, symmetric operator. The following results were
developed from Krein [124], Vĭsik [182], and Birman [37], by Grubb [94], [95]. Subsequent expositions are
due to Faris [75, Sect. 15], Alonso and Simon [14] (in the present form, the next theorem appears in [89]),
and Derkach and Malamud [65], [135]. We start by collecting our basic assumptions:

Hypothesis 2.6. Suppose that S is a densely defined, symmetric, closed operator with nonzero deficiency
indices in H that satisfies

S ≥ εIH for some ε > 0. (2.35)

Theorem 2.7. Suppose Hypothesis 2.6. Then there exists a one-to-one correspondence between nonnegative
self-adjoint operators 0 ≤ B : dom(B) ⊆ W → W, dom(B) = W, where W is a closed subspace of
N0 := ker(S∗), and nonnegative self-adjoint extensions SB,W ≥ 0 of S. More specifically, SF is invertible,
SF ≥ εIH, and one has

dom(SB,W) =
{
f + (SF )−1(Bw + η) + w

∣∣ f ∈ dom(S), w ∈ dom(B), η ∈ N0 ∩W⊥
}
,

SB,W = S∗|dom(SB,W), (2.36)

where W⊥ denotes the orthogonal complement of W in N0. In addition,

dom
(
(SB,W)1/2

)
= dom

(
(SF )1/2

)
u dom

(
B1/2

)
, (2.37)∥∥(SB,W)1/2(u+ g)

∥∥2

H =
∥∥(SF )1/2u

∥∥2

H +
∥∥B1/2g

∥∥2

H, (2.38)

u ∈ dom
(
(SF )1/2

)
, g ∈ dom

(
B1/2

)
,

implying,

ker(SB,W) = ker(B). (2.39)

Moreover,

B ≤ B̃ implies SB,W ≤ SB̃,W̃ , (2.40)

where

B : dom(B) ⊆ W →W, B̃ : dom
(
B̃
)
⊆ W̃ → W̃,

dom
(
B̃
)

= W̃ ⊆ W = dom(B).
(2.41)

In the above scheme, the Krein–von Neumann extension SK of S corresponds to the choice W = N0 and
B = 0 (with dom(B) = dom

(
B1/2

)
= N0 = ker(S∗)). In particular, one thus recovers (2.10), and (2.12),

and also obtains

dom
(
(SK)1/2

)
= dom

(
(SF )1/2

)
u ker(S∗), (2.42)∥∥(SK)1/2(u+ g)

∥∥2

H =
∥∥(SF )1/2u

∥∥2

H, u ∈ dom
(
(SF )1/2

)
, g ∈ ker(S∗). (2.43)

Finally, the Friedrichs extension SF corresponds to the choice dom(B) = {0} (i.e., formally, B ≡ ∞), in
which case one recovers (2.9).
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The relation B ≤ B̃ in the case where W̃ $W requires an explanation: In analogy to (2.4) we mean(
|B|1/2u, UB |B|1/2u

)
W ≤

(
|B̃|1/2u, UB̃ |B̃|

1/2u
)
W , u ∈ dom

(
|B̃|1/2

)
(2.44)

and (following [14]) we put(
|B̃|1/2u, UB̃ |B̃|

1/2u)W =∞ for u ∈ W\dom
(
|B̃|1/2

)
. (2.45)

For subsequent purposes we also note that under the assumptions on S in Hypothesis 2.6, one has

dim(ker(S∗ − zIH)) = dim(ker(S∗)) = dim(N0) = def(S), z ∈ C\[ε,∞). (2.46)

The following result is a simple consequence of (2.10), (2.9), and (2.20), but since it seems not to have
been explicitly stated in [124], we provide the short proof for completeness (see also [135, Remark 3]). First
we recall that two self-adjoint extensions S1 and S2 of S are called relatively prime if dom(S1) ∩ dom(S2) =
dom(S).

Lemma 2.8. Suppose Hypothesis 2.6. Then SF and SK are relatively prime, that is,

dom(SF ) ∩ dom(SK) = dom(S). (2.47)

Proof. By (2.9) and (2.10) it suffices to prove that ker(S∗) ∩ (SF )−1 ker(S∗) = {0}. Let f0 ∈ ker(S∗) ∩
(SF )−1 ker(S∗). Then S∗f0 = 0 and f0 = (SF )−1g0 for some g0 ∈ ker(S∗). Thus one concludes that
f0 ∈ dom(SF ) and SF f0 = g0. But SF = S∗|dom(SF ) and hence g0 = SF f0 = S∗f0 = 0. Since g0 = 0 one
finally obtains f0 = 0. �

Next, we consider a self-adjoint operator

T : dom(T ) ⊆ H → H, T = T ∗, (2.48)

which is bounded from below, that is, there exists α ∈ R such that

T ≥ αIH. (2.49)

We denote by {ET (λ)}λ∈R the family of strongly right-continuous spectral projections of T , and introduce,
as usual, ET ((a, b)) = ET (b−)− ET (a), ET (b−) = s-limε↓0ET (b− ε), −∞ ≤ a < b. In addition, we set

µT,j := inf
{
λ ∈ R | dim(ran(ET ((−∞, λ)))) ≥ j

}
, j ∈ N. (2.50)

Then, for fixed k ∈ N, either:
(i) µT,k is the kth eigenvalue of T counting multiplicity below the bottom of the essential spectrum, σess(T ),
of T ,
or,
(ii) µT,k is the bottom of the essential spectrum of T ,

µT,k = inf{λ ∈ R |λ ∈ σess(T )}, (2.51)

and in that case µT,k+` = µT,k, ` ∈ N, and there are at most k − 1 eigenvalues (counting multiplicity) of T
below µT,k.

We now record a basic result of M. Krein [124] with an important extension due to Alonso and Simon [14]
and some additional results recently derived in [30]. For this purpose we introduce the reduced Krein–von

Neumann operator ŜK in the Hilbert space (cf. (2.12))

Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H =

[
IH − Pker(SK)

]
H = [ker(SK)]⊥, (2.52)

by

ŜK : = SK |[ker(SK)]⊥ (2.53)

= SK [IH − Pker(SK)] in [IH − Pker(SK)]H
= [IH − Pker(SK)]SK [IH − Pker(SK)] in [IH − Pker(SK)]H,

(2.54)

where Pker(SK) denotes the orthogonal projection onto ker(SK) and we are alluding to the orthogonal direct
sum decomposition of H into

H = Pker(SK)H⊕ [IH − Pker(SK)]H. (2.55)

We continue with the following elementary observation:
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Lemma 2.9. Assume Hypothesis 2.6 and let v ∈ dom(SK). Then the decomposition, dom(SK) = dom(S)u
ker(S∗) (cf. (2.10)), leads to the following decomposition of v,

v = (SF )−1SKv + w, where (SF )−1SKv ∈ dom(S) and w ∈ ker(S∗). (2.56)

As a consequence, (
ŜK
)−1

= [IH − Pker(SK)](SF )−1[IH − Pker(SK)]. (2.57)

We note that equation (2.57) was proved by Krein in his seminal paper [124] (cf. the proof of Theorem
26 in [124]). For a different proof of Krein’s formula (2.57) and its generalization to the case of non-negative
operators, see also [135, Corollary 5].

Theorem 2.10. Suppose Hypothesis 2.6. Then,

ε ≤ µSF ,j ≤ µŜK ,j , j ∈ N. (2.58)

In particular, if the Friedrichs extension SF of S has purely discrete spectrum, then, except possibly for
λ = 0, the Krein–von Neumann extension SK of S also has purely discrete spectrum in (0,∞), that is,

σess(SF ) = ∅ implies σess(SK)\{0} = ∅. (2.59)

In addition, let p ∈ (0,∞) ∪ {∞}, then

(SF − z0IH)−1 ∈ Bp(H) for some z0 ∈ C\[ε,∞)

implies (SK − zIH)−1[IH − Pker(SK)] ∈ Bp(H) for all z ∈ C\[ε,∞).
(2.60)

In fact, the `p(N)-based trace ideals Bp(H) of B(H) can be replaced by any two-sided symmetrically normed
ideals of B(H).

We note that (2.59) is a classical result of Krein [124], the more general fact (2.58) has not been mentioned
explicitly in Krein’s paper [124], although it immediately follows from the minimax principle and Krein’s
formula (2.57). On the other hand, in the special case def(S) < ∞, Krein states an extension of (2.58) in
his Remark 8.1 in the sense that he also considers self-adjoint extensions different from the Krein extension.
Apparently, (2.58) in the context of infinite deficiency indices has first been proven by Alonso and Simon
[14] by a somewhat different method. Relation (2.60) was recently proved in [30] for p ∈ (0,∞).

Concluding this section, we point out that a great variety of additional results for the Krein–von Neumann
extension can be found, for instance, in [10, Sect. 109], [14], [16]–[18], [19, Chs. 9, 10], [20]–[30], [49], [65],
[66], [75, Part III], [76], [77], [82, Sect. 3.3], [89], [97], [102], [103], [105]–[108], [116], [117, Ch. 3], [126], [127],
[148], [160], [168]–[170], [172], [178], [179], [181], and the references therein. We also mention the references
[72]–[74] (these authors, apparently unaware of the work of von Neumann, Krein, Vĭshik, Birman, Grubb,

S̆trauss, etc., in this context, introduced the Krein Laplacian and called it the harmonic operator, see also
[98]).

3. The Abstract Krein–von Neumann Extension and its Connection to an Abstract
Buckling Problem

In this section we describe some results on the Krein–von Neumann extension which exhibit the latter
as a natural object in elasticity theory by relating it to an abstract buckling problem. The results of this
section appeared in [30].

As the principal result of this section we will describe the unitary equivalence of the inverse of the Krein–
von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, operator S
satisfying S ≥ εIH for some ε > 0, in a complex separable Hilbert space H, to an abstract buckling problem
operator.

We start by introducing an abstract version of Proposition 1 in Grubb’s paper [97] devoted to Krein–von
Neumann extensions of even order elliptic differential operators on bounded domains:

Lemma 3.1. Assume Hypothesis 2.6 and let λ 6= 0. Then there exists 0 6= v ∈ dom(SK) with

SKv = λv (3.1)

if and only if there exists 0 6= u ∈ dom(S∗S) such that

S∗Su = λSu. (3.2)
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In particular, the solutions v of (3.1) are in one-to-one correspondence with the solutions u of (3.2) given
by the formulas

u = (SF )−1SKv, (3.3)

v = λ−1Su. (3.4)

Of course, since SK ≥ 0, any λ 6= 0 in (3.1) and (3.2) necessarily satisfies λ > 0.

Proof. Let SKv = λv, v ∈ dom(SK), λ 6= 0, and v = u+ w, with u ∈ dom(S) and w ∈ ker(S∗). Then,

SKv = λv ⇐⇒ v = λ−1SKv = λ−1SKu = λ−1Su. (3.5)

Moreover, u = 0 implies v = 0 and clearly v = 0 implies u = w = 0, hence v 6= 0 if and only if u 6= 0. In
addition, u = (SF )−1SKv by (2.56). Finally, using λv = Su ∈ dom(SK) ⊂ dom(S∗), one concludes that

λw = Su− λu ∈ ker(S∗) implies

0 = λS∗w = S∗(Su− λu) = S∗Su− λS∗u = S∗Su− λSu.
(3.6)

Conversely, suppose u ∈ dom(S∗S) and S∗Su = λSu, λ 6= 0. Introducing v = λ−1Su, then v ∈ dom(S∗)
and

S∗v = λ−1S∗Su = Su = λv. (3.7)

Noticing that
S∗Su = λSu = λS∗u implies S∗(S − λIH)u = 0, (3.8)

and hence (S − λIH)u ∈ ker(S∗), rewriting v as

v = u+ λ−1(S − λIH)u (3.9)

then proves that also v ∈ dom(SK), using (2.10) again. �

Due to Example 3.5 and Remark 3.6 at the end of this section, we will call the linear pencil eigen-
value problem S∗Su = λSu in (3.2) the abstract buckling problem associated with the Krein–von Neumann
extension SK of S.

Next, we turn to a variational formulation of the correspondence between the inverse of the reduced Krein

extension ŜK and the abstract buckling problem in terms of appropriate sesquilinear forms by following the
treatment of Kozlov [118]–[120] in the context of elliptic partial differential operators. This will then lead to
an even stronger connection between the Krein–von Neumann extension SK of S and the associated abstract
buckling eigenvalue problem (3.2), culminating in a unitary equivalence result in Theorem 3.4.

Given the operator S, we introduce the following sesquilinear forms in H,

a(u, v) = (Su, Sv)H, u, v ∈ dom(a) = dom(S), (3.10)

b(u, v) = (u, Sv)H, u, v ∈ dom(b) = dom(S). (3.11)

Then S being densely defined and closed implies that the sesquilinear form a shares these properties and
(2.35) implies its boundedness from below,

a(u, u) ≥ ε2‖u‖2H, u ∈ dom(S). (3.12)

Thus, one can introduce the Hilbert space W = (dom(S), (·, ·)W) with associated scalar product

(u, v)W = a(u, v) = (Su, Sv)H, u, v ∈ dom(S). (3.13)

In addition, we denote by ιW the continuous embedding operator of W into H,

ιW :W ↪→ H. (3.14)

Hence we will use the notation

(w1, w2)W = a(ιWw1, ιWw2) = (SιWw1, SιWw2)H, w1, w2 ∈ W, (3.15)

in the following.
Given the sesquilinear forms a and b and the Hilbert space W, we next define the operator T in W by

(w1, Tw2)W = a(ιWw1, ιWTw2) = (SιWw1, SιWTw2)H

= b(ιWw1, ιWw2) = (ιWw1, SιWw2)H, w1, w2 ∈ W.
(3.16)

(In contrast to the informality of our introduction, we now explicitly write the embedding operator ιW .)
One verifies that T is well-defined and that

|(w1, Tw2)W | ≤ ‖ιWw1‖H‖SιWw2‖H ≤ ε−1‖w1‖W‖w2‖W , w1, w2 ∈ W, (3.17)



ON THE KREIN–VON NEUMANN EXTENSION 17

and hence that
0 ≤ T = T ∗ ∈ B(W), ‖T‖B(W) ≤ ε−1. (3.18)

For reasons to become clear at the end of this section, we will call T the abstract buckling problem operator
associated with the Krein–von Neumann extension SK of S.

Next, recalling the notation Ĥ = [ker(S∗)]⊥ =
[
IH − Pker(S∗)

]
H (cf. (2.52)), we introduce the operator

Ŝ :

{
W → Ĥ,
w 7→ SιWw,

(3.19)

and note that
ran

(
Ŝ
)

= ran(S) = Ĥ, (3.20)

since S ≥ εIH for some ε > 0 and S is closed in H (see, e.g., [185, Theorem 5.32]). In fact, one has the
following result:

Lemma 3.2. Assume Hypothesis 2.6. Then Ŝ ∈ B(W, Ĥ) maps W unitarily onto Ĥ.

Proof. Clearly Ŝ is an isometry since∥∥Ŝw∥∥Ĥ = ‖SιWw
∥∥
H = ‖w‖W , w ∈ W. (3.21)

Since ran
(
Ŝ
)

= Ĥ by (3.20), Ŝ is unitary. �

Next we recall the definition of the reduced Krein–von Neumann operator ŜK in Ĥ defined in (2.54), the
fact that ker(S∗) = ker(SK) by (2.12), and state the following auxiliary result:

Lemma 3.3. Assume Hypothesis 2.6. Then the map[
IH − Pker(S∗)

]
: dom(S)→ dom

(
ŜK
)

(3.22)

is a bijection. In addition, we note that[
IH − Pker(S∗)

]
SKu = SK

[
IH − Pker(S∗)

]
u = ŜK

[
IH − Pker(S∗)

]
u

=
[
IH − Pker(S∗)

]
Su = Su ∈ Ĥ, u ∈ dom(S).

(3.23)

Proof. Let u ∈ dom(S), then ker(S∗) = ker(SK) implies that
[
IH − Pker(S∗)

]
u ∈ dom(SK) and of course[

IH − Pker(S∗)

]
u ∈ dom

(
ŜK
)
. To prove injectivity of the map (3.22) it suffices to assume v ∈ dom(S) and[

IH − Pker(S∗)

]
v = 0. Then dom(S) 3 v = Pker(S∗)v ∈ ker(S∗) yields v = 0 as dom(S) ∩ ker(S∗) = {0}.

To prove surjectivity of the map (3.22) we suppose u ∈ dom
(
ŜK). The decomposition, u = f + g with

f ∈ dom(S) and g ∈ ker(S∗), then yields

u =
[
IH − Pker(S∗)

]
u =

[
IH − Pker(S∗)

]
f ∈

[
IH − Pker(S∗)

]
dom(S) (3.24)

and hence proves surjectivity of (3.22).
Equation (3.23) is clear from

SK
[
IH − Pker(S∗)

]
=
[
IH − Pker(S∗)

]
SK =

[
IH − Pker(S∗)

]
SK
[
IH − Pker(S∗)

]
. (3.25)

�

Continuing, we briefly recall the polar decomposition of S,

S = US |S|, (3.26)

with
|S| = (S∗S)1/2 ≥ εIH, ε > 0, US ∈ B

(
H, Ĥ

)
is unitary. (3.27)

At this point we are in position to state our principal unitary equivalence result:

Theorem 3.4. Assume Hypothesis 2.6. Then the inverse of the reduced Krein–von Neumann extension ŜK
in Ĥ =

[
IH − Pker(S∗)

]
H and the abstract buckling problem operator T in W are unitarily equivalent, in

particular, (
ŜK
)−1

= ŜT (Ŝ)−1. (3.28)

Moreover, one has (
ŜK
)−1

= US
[
|S|−1S|S|−1

]
(US)−1, (3.29)

where US ∈ B
(
H, Ĥ

)
is the unitary operator in the polar decomposition (3.26) of S and the operator

|S|−1S|S|−1 ∈ B(H) is self-adjoint in H.
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Proof. Let w1, w2 ∈ W. Then,(
w1,

(
Ŝ
)−1(

ŜK
)−1

Ŝw2

)
W =

(
Ŝw1,

(
ŜK
)−1

Ŝw2

)
Ĥ

=
((
ŜK
)−1

Ŝw1, Ŝw2

)
Ĥ =

((
ŜK
)−1

SιWw1, Ŝw2

)
Ĥ

=
((
ŜK
)−1[

IH − Pker(S∗)

]
SιWw1, Ŝw2

)
Ĥ by (3.23)

=
((
ŜK
)−1

ŜK
[
IH − Pker(S∗)

]
ιWw1, Ŝw2

)
Ĥ again by (3.23)

=
([
IH − Pker(S∗)

]
ιWw1, Ŝw2

)
Ĥ

=
(
ιWw1, SιWw2

)
H

=
(
w1, Tw2

)
W by definition of T in (3.16), (3.30)

yields (3.28). In addition one verifies that(
Ŝw1,

(
ŜK
)−1

Ŝw2

)
Ĥ =

(
w1, Tw2

)
W

=
(
ιWw1, SιWw2

)
H

=
(
|S|−1|S|ιWw1, S|S|−1|S|ιWw2

)
H

=
(
|S|ιWw1,

[
|S|−1S|S|−1

]
|S|ιWw2

)
H

=
(
(US)∗SιWw1,

[
|S|−1S|S|−1

]
(US)∗SιWw2

)
H

=
(
SιWw1, US

[
|S|−1S|S|−1

]
(US)∗SιWw2

)
H

=
(
Ŝw1, US

[
|S|−1S|S|−1

]
(US)∗Ŝw2

)
Ĥ , (3.31)

where we used |S| = (US)∗S. �

Equation (3.29) is of course motivated by rewriting the abstract linear pencil buckling eigenvalue problem
(3.2), S∗Su = λSu, λ 6= 0, in the form

λ−1S∗Su = λ−1(S∗S)1/2
[
(S∗S)1/2u

]
= S(S∗S)−1/2

[
(S∗S)1/2u

]
(3.32)

and hence in the form of a standard eigenvalue problem

|S|−1S|S|−1w = λ−1w, λ 6= 0, w = |S|u. (3.33)

We conclude this section with a concrete example discussed explicitly in Grubb [97] (see also [94]–[96] for
necessary background) and make the explicit connection with the buckling problem. It was this example
which greatly motivated the abstract results in this note:

Example 3.5. ([97].) Let H = L2(Ω; dnx), with Ω ⊂ Rn, n ≥ 2, open, bounded, and smooth (i.e., with a
smooth boundary ∂Ω), and consider the minimal operator realization S of the differential expression S in
L2(Ω; dnx), defined by

Su = S u, (3.34)

u ∈ dom(S) = H2m
0 (Ω) =

{
v ∈ H2m(Ω)

∣∣ γkv = 0, 0 ≤ k ≤ 2m− 1
}
, m ∈ N,

where

S =
∑

0≤|α|≤2m

aα(·)Dα, (3.35)

Dα = (−i∂/∂x1)α1 · · · (−i∂/∂xn)αn , α = (α1, . . . , αn) ∈ Nn0 , (3.36)

aα(·) ∈ C∞(Ω), C∞(Ω) =
⋂
k∈N0

Ck(Ω), (3.37)

and the coefficients aα are chosen such that S is symmetric in L2(Rn; dnx), that is, the differential expression
S is formally self-adjoint,

(S u, v)L2(Rn;dnx) = (u,S v)L2(Rn;dnx), u, v ∈ C∞0 (Ω), (3.38)

and S is strongly elliptic, that is, for some c > 0,

Re

( ∑
|α|=2m

aα(x)ξα
)
≥ c|ξ|2m, x ∈ Ω, ξ ∈ Rn. (3.39)
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In addition, we assume that S ≥ εIL2(Ω;dnx) for some ε > 0. The trace operators γk are defined as follows:
Consider

γ̊k :

{
C∞(Ω)→ C∞(∂Ω)

u 7→ (∂knu)|∂Ω,
(3.40)

with ∂n denoting the interior normal derivative. The map γ̊ then extends by continuity to a bounded operator

γk : Hs(Ω)→ Hs−k−(1/2)(∂Ω), s > k + (1/2), (3.41)

in addition, the map

γ(r) = (γ0, . . . , γr) : Hs(Ω)→
r∏

k=0

Hs−k−(1/2)(∂Ω), s > r + (1/2), (3.42)

satisfies

ker
(
γ(r)

)
= Hs

0(Ω), ran
(
γ(r)

)
=

r∏
k=0

Hs−k−(1/2)(∂Ω). (3.43)

Then S∗, the maximal operator realization of S in L2(Ω; dnx), is given by

S∗u = S u, u ∈ dom(S∗) =
{
v ∈ L2(Ω; dnx)

∣∣S v ∈ L2(Ω; dnx)
}
, (3.44)

and SF is characterized by

SFu = S u, u ∈ dom(SF ) =
{
v ∈ H2m(Ω)

∣∣ γkv = 0, 0 ≤ k ≤ m− 1
}
. (3.45)

The Krein–von Neumann extension SK of S then has the domain

dom(SK) = H2m
0 (Ω)u ker(S∗), dim(ker(S∗)) =∞, (3.46)

and elements u ∈ dom(SK) satisfy the nonlocal boundary condition

γNu− PγD,γNγDu = 0, (3.47)

γDu = (γ0u, . . . , γm−1u), γNu = (γmu, . . . , γ2m−1u), u ∈ dom(SK), (3.48)

where

PγD,γN = γNγ
−1
Z :

m−1∏
k=0

Hs−k−(1/2)(∂Ω)→
2m−1∏
j=m

Hs−j−(1/2)(∂Ω) continuously for all s ∈ R, (3.49)

and γ−1
Z denotes the inverse of the isomorphism γZ given by

γD : ZsS →
m−1∏
k=0

Hs−k−(1/2)(∂Ω), (3.50)

ZsS =
{
u ∈ Hs(Ω)

∣∣S u = 0 in Ω in the sense of distributions in D′(Ω)
}
, s ∈ R. (3.51)

Moreover one has (
Ŝ
)−1

= ιW [IH − PγD,γNγD]
(
ŜK
)−1

, (3.52)

since [IH − PγD,γNγD] dom(SK) ⊆ dom(S) and S[IH − PγD,γNγD]v = λv, v ∈ dom(SK).
As discussed in detail in Grubb [97],

σess(SK) = {0}, σ(SK) ∩ (0,∞) = σd(SK) (3.53)

and the nonzero (and hence discrete) eigenvalues of SK satisfy a Weyl-type asymptotics. The connection to
a higher-order buckling eigenvalue problem established by Grubb then reads

There exists 0 6= v ∈ dom(SK) satisfying S v = λv in Ω, λ 6= 0 (3.54)

if and only if

there exists 0 6= u ∈ C∞(Ω) such that

{
S 2u = λS u in Ω, λ 6= 0,

γku = 0, 0 ≤ k ≤ 2m− 1,
(3.55)

where the solutions v of (3.54) are in one-to-one correspondence with the solutions u of (3.55) via

u = S−1
F S v, v = λ−1S u. (3.56)

Since SF has purely discrete spectrum in Example 3.5, we note that Theorem 2.10 applies in this case.
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Remark 3.6. In the particular case m = 1 and S = −∆, the linear pencil eigenvalue problem (3.55) (i.e.,
the concrete analog of the abstract buckling eigenvalue problem S∗Su = λSu, λ 6= 0, in (3.2)), then yields
the buckling of a clamped plate problem,

(−∆)2u = λ(−∆)u in Ω, λ 6= 0, u ∈ H2
0 (Ω), (3.57)

as distributions in H−2(Ω). Here we used the fact that for any nonempty bounded open set Ω ⊂ Rn, n ∈ N,
n ≥ 2, (−∆)m ∈ B

(
Hk(Ω), Hk−2m(Ω)

)
, k ∈ Z, m ∈ N. In addition, if Ω is a Lipschitz domain, then one has

that −∆: H1
0 (Ω)→ H−1(Ω) is an isomorphism and similarly, (−∆)2 : H2

0 (Ω)→ H−2(Ω) is an isomorphism.
(For the natural norms on Hk(Ω), k ∈ Z, see, e.g., [142, p. 73–75].) We refer, for instance, to [36, Sect.
4.3B] for a derivation of (3.57) from the fourth-order system of quasilinear von Kármán partial differential
equations. To be precise, (3.57) should also be considered in the special case n = 2.

Remark 3.7. We emphasize that the smoothness hypotheses on ∂Ω can be relaxed in the special case of the
second-order Schrödinger operator associated with the differential expression −∆+V , where V ∈ L∞(Ω; dnx)

is real-valued: Following the treatment of self-adjoint extensions of S = (−∆ + V )|C∞0 (Ω) on quasi-convex
domains Ω introduced in [89], and recalled in Section 6, the case of the Krein–von Neumann extension SK
of S on such quasi-convex domains (which are close to minimally smooth) is treated in great detail in [29]
and in the remainder of this survey (cf. Section 7). In particular, a Weyl-type asymptotics of the associated
(nonzero) eigenvalues of SK , to be discussed in Section 9, has been proven in [29]. In the higher-order smooth
case described in Example 3.5, a Weyl-type asymptotics for the nonzero eigenvalues of SK has been proven
by Grubb [97] in 1983.

4. Trace Theory in Lipschitz Domains

In this section we shall review material pertaining to analysis in Lipschitz domains, starting with Dirichlet
and Neumann boundary traces in Subsection 4.1, and then continuing with a brief survey of perturbed
Dirichlet and Neumann Laplacians in Subsection 4.2.

4.1. Dirichlet and Neumann Traces in Lipschitz Domains. The goal of this subsection is to introduce
the relevant material pertaining to Sobolev spaces Hs(Ω) and Hr(∂Ω) corresponding to subdomains Ω of
Rn, n ∈ N, and discuss various trace results.

Before we focus primarily on bounded Lipschitz domains (we recall our use of “domain” as an open subset
of Rn, without any connectivity hypotheses), we briefly recall some basic facts in connection with Sobolev
spaces corresponding to open sets Ω ⊆ Rn, n ∈ N: For an arbitrary m ∈ N ∪ {0}, we follow the customary
way of defining L2-Sobolev spaces of order ±m in Ω as

Hm(Ω) :=
{
u ∈ L2(Ω; dnx)

∣∣ ∂αu ∈ L2(Ω; dnx), 0 ≤ |α| ≤ m
}
, (4.1)

H−m(Ω) :=

{
u ∈ D′(Ω)

∣∣∣∣u =
∑

0≤|α|≤m

∂αuα, with uα ∈ L2(Ω; dnx), 0 ≤ |α| ≤ m
}
, (4.2)

equipped with natural norms (cf., e.g., [2, Ch. 3], [137, Ch. 1]). Here D′(Ω) denotes the usual set of
distributions on Ω ⊆ Rn. Then we set

Hm
0 (Ω) := the closure of C∞0 (Ω) in Hm(Ω), m ∈ N ∪ {0}. (4.3)

As is well-known, all three spaces above are Banach, reflexive and, in addition,(
Hm

0 (Ω)
)∗

= H−m(Ω). (4.4)

Again, see, for instance, [2, Ch. 3], [137, Ch. 1].
We recall that an open, nonempty set Ω ⊆ Rn is called a Lipschitz domain if the following property

holds: There exists an open covering {Oj}1≤j≤N of the boundary ∂Ω of Ω such that for every j ∈ {1, ..., N},
Oj ∩ Ω coincides with the portion of Oj lying in the over-graph of a Lipschitz function ϕj : Rn−1 → R
(considered in a new system of coordinates obtained from the original one via a rigid motion). The number
max {‖∇ϕj‖L∞(Rn−1;dn−1x′)n−1 | 1 ≤ j ≤ N} is said to represent the Lipschitz character of Ω.

The classical theorem of Rademacher on almost everywhere differentiability of Lipschitz functions ensures
that for any Lipschitz domain Ω, the surface measure dn−1ω is well-defined on ∂Ω and that there exists an
outward pointing normal vector ν at almost every point of ∂Ω.



ON THE KREIN–VON NEUMANN EXTENSION 21

As regards L2-based Sobolev spaces of fractional order s ∈ R, on arbitrary Lipschitz domains Ω ⊆ Rn, we
introduce

Hs(Rn) :=

{
U ∈ S ′(Rn)

∣∣∣∣ ‖U‖2Hs(Rn) =

∫
Rn
dnξ

∣∣Û(ξ)
∣∣2(1 + |ξ|2s

)
<∞

}
, (4.5)

Hs(Ω) :=
{
u ∈ D′(Ω)

∣∣u = U |Ω for some U ∈ Hs(Rn)
}

= RΩH
s(Rn), (4.6)

where RΩ denotes the restriction operator (i.e., RΩ U = U |Ω, U ∈ Hs(Rn)), S ′(Rn) is the space of tempered

distributions on Rn, and Û denotes the Fourier transform of U ∈ S ′(Rn). These definitions are consistent
with (4.1), (4.2). Next, retaining that Ω ⊆ Rn is an arbitrary Lipschitz domain, we introduce

Hs
0(Ω) :=

{
u ∈ Hs(Rn)

∣∣ supp(u) ⊆ Ω
}
, s ∈ R, (4.7)

equipped with the natural norm induced by Hs(Rn). The space Hs
0(Ω) is reflexive, being a closed subspace

of Hs(Rn). Finally, we introduce for all s ∈ R,

H̊s(Ω) = the closure of C∞0 (Ω) in Hs(Ω), (4.8)

Hs
z (Ω) = RΩH

s
0(Ω). (4.9)

Assuming from now on that Ω ⊂ Rn is a Lipschitz domain with a compact boundary, we recall the
existence of a universal linear extension operator EΩ : D′(Ω) → S ′(Rn) such that EΩ : Hs(Ω) → Hs(Rn)

is bounded for all s ∈ R, and RΩEΩ = IHs(Ω) (cf. [163]). If C̃∞0 (Ω) denotes the set of C∞0 (Ω)-functions

extended to all of Rn by setting functions zero outside of Ω, then for all s ∈ R, C̃∞0 (Ω) ↪→ Hs
0(Ω) densely.

Moreover, one has (
Hs

0(Ω)
)∗

= H−s(Ω), s ∈ R. (4.10)

(cf., e.g., [113]) consistent with (4.3), and also,(
Hs(Ω)

)∗
= H−s0 (Ω), s ∈ R, (4.11)

in particular, Hs(Ω) is a reflexive Banach space. We shall also use the fact that for a Lipschitz domain

Ω ⊂ Rn with compact boundary, the space H̊s(Ω) satisfies

H̊s(Ω) = Hs
z (Ω) if s > −1/2, s /∈

{
1
2 + N0

}
. (4.12)

For a Lipschitz domain Ω ⊆ Rn with compact boundary it is also known that(
Hs(Ω)

)∗
= H−s(Ω), −1/2 < s < 1/2. (4.13)

See [176] for this and other related properties. Throughout this survey, we agree to use the adjoint (rather
than the dual) space X∗ of a Banach space X.

From this point on we will always make the following assumption (unless explicitly stated otherwise):

Hypothesis 4.1. Let n ∈ N, n ≥ 2, and assume that ∅ 6= Ω ⊂ Rn is a bounded Lipschitz domain.

To discuss Sobolev spaces on the boundary of a Lipschitz domain, consider first the case where Ω ⊂ Rn
is the domain lying above the graph of a Lipschitz function ϕ : Rn−1 → R. In this setting, we define the
Sobolev space Hs(∂Ω) for 0 ≤ s ≤ 1, as the space of functions f ∈ L2(∂Ω; dn−1ω) with the property that
f(x′, ϕ(x′)), as a function of x′ ∈ Rn−1, belongs to Hs(Rn−1). This definition is easily adapted to the case
when Ω is a Lipschitz domain whose boundary is compact, by using a smooth partition of unity. Finally, for
−1 ≤ s ≤ 0, we set

Hs(∂Ω) =
(
H−s(∂Ω)

)∗
, −1 6 s 6 0. (4.14)

From the above characterization ofHs(∂Ω) it follows that any property of Sobolev spaces (of order s ∈ [−1, 1])
defined in Euclidean domains, which are invariant under multiplication by smooth, compactly supported
functions as well as composition by bi-Lipschitz diffeomorphisms, readily extends to the setting of Hs(∂Ω)
(via localization and pullback). For additional background information in this context we refer, for instance,
to [71, Chs. V, VI], [93, Ch. 1].

Assuming Hypothesis 4.1, we introduce the boundary trace operator γ0
D (the Dirichlet trace) by

γ0
D : C(Ω)→ C(∂Ω), γ0

Du = u|∂Ω. (4.15)

Then there exists a bounded, linear operator γD

γD : Hs(Ω)→ Hs−(1/2)(∂Ω) ↪→ L2(∂Ω; dn−1ω), 1/2 < s < 3/2,

γD : H3/2(Ω)→ H1−ε(∂Ω) ↪→ L2(∂Ω; dn−1ω), ε ∈ (0, 1)
(4.16)
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(cf., e.g., [142, Theorem 3.38]), whose action is compatible with that of γ0
D. That is, the two Dirichlet trace

operators coincide on the intersection of their domains. Moreover, we recall that

γD : Hs(Ω)→ Hs−(1/2)(∂Ω) is onto for 1/2 < s < 3/2. (4.17)

Next, retaining Hypothesis 4.1, we introduce the operator γN (the strong Neumann trace) by

γN = ν · γD∇ : Hs+1(Ω)→ L2(∂Ω; dn−1ω), 1/2 < s < 3/2, (4.18)

where ν denotes the outward pointing normal unit vector to ∂Ω. It follows from (4.16) that γN is also a
bounded operator. We seek to extend the action of the Neumann trace operator (4.18) to other (related)
settings. To set the stage, assume Hypothesis 4.1 and observe that the inclusion

ι : Hs0(Ω) ↪→
(
Hr(Ω)

)∗
, s0 > −1/2, r > 1/2, (4.19)

is well-defined and bounded. We then introduce the weak Neumann trace operator

γ̃N :
{
u ∈ Hs+1/2(Ω)

∣∣∆u ∈ Hs0(Ω)
}
→ Hs−1(∂Ω), s ∈ (0, 1), s0 > −1/2, (4.20)

as follows: Given u ∈ Hs+1/2(Ω) with ∆u ∈ Hs0(Ω) for some s ∈ (0, 1) and s0 > −1/2, we set (with ι as in
(4.19) for r := 3/2− s > 1/2)

〈φ, γ̃Nu〉1−s = H1/2−s(Ω)〈∇Φ,∇u〉(H1/2−s(Ω))∗ + H3/2−s(Ω)〈Φ, ι(∆u)〉(H3/2−s(Ω))∗ , (4.21)

for all φ ∈ H1−s(∂Ω) and Φ ∈ H3/2−s(Ω) such that γDΦ = φ. We note that the first pairing in the right-hand
side above is meaningful since (

H1/2−s(Ω)
)∗

= Hs−1/2(Ω), s ∈ (0, 1), (4.22)

that the definition (4.21) is independent of the particular extension Φ of φ, and that γ̃N is a bounded
extension of the Neumann trace operator γN defined in (4.18).

For further reference, let us also point out here that if Ω ⊂ Rn is a bounded Lipschitz domain then for
any j, k ∈ {1, ..., n} the (tangential first-order differential) operator

∂/∂τj,k := νj∂k − νk∂j : Hs(∂Ω)→ Hs−1(∂Ω), 0 ≤ s ≤ 1, (4.23)

is well-defined, linear and bounded. Assuming Hypothesis 4.1, we can then define the tangential gradient
operator

∇tan :

H
1(∂Ω)→

(
L2(∂Ω; dn−1ω)

)n
f 7→ ∇tanf :=

(∑n
k=1 νk

∂f
∂τkj

)
1≤j≤n

, f ∈ H1(∂Ω). (4.24)

The following result has been proved in [139].

Theorem 4.2. Assume Hypothesis 4.1 and denote by ν the outward unit normal to ∂Ω. Then the operator

γ2 :

{
H2(Ω)→

{
(g0, g1) ∈ H1(∂Ω)× L2(∂Ω; dn−1ω)

∣∣∇tang0 + g1ν ∈
(
H1/2(∂Ω)

)n}
u 7→ γ2u = (γDu , γNu),

(4.25)

is well-defined, linear, bounded, onto, and has a linear, bounded right-inverse. The space
{

(g0, g1) ∈
H1(∂Ω)× L2(∂Ω; dn−1ω)

∣∣∇tang0 + g1ν ∈
(
H1/2(∂Ω)

)n}
in (4.25) is equipped with the natural norm

(g0, g1) 7→ ‖g0‖H1(∂Ω) + ‖g1‖L2(∂Ω;dn−1ω) + ‖∇tang0 + g1ν‖(H1/2(∂Ω))n . (4.26)

Furthermore, the null space of the operator (4.25) is given by

ker(γ2) :=
{
u ∈ H2(Ω)

∣∣ γDu = γNu = 0
}

= H2
0 (Ω), (4.27)

with the latter space denoting the closure of C∞0 (Ω) in H2(Ω).

Continuing to assume Hypothesis 4.1, we now introduce

N1/2(∂Ω) :=
{
g ∈ L2(∂Ω; dn−1ω)

∣∣ gνj ∈ H1/2(∂Ω), 1 ≤ j ≤ n
}
, (4.28)

where the νj ’s are the components of ν. We equip this space with the natural norm

‖g‖N1/2(∂Ω) :=

n∑
j=1

‖gνj‖H1/2(∂Ω). (4.29)

Then N1/2(∂Ω) is a reflexive Banach space which embeds continuously into L2(∂Ω; dn−1ω). Furthermore,

N1/2(∂Ω) = H1/2(∂Ω) whenever Ω is a bounded C1,r domain with r > 1/2. (4.30)



ON THE KREIN–VON NEUMANN EXTENSION 23

It should be mentioned that the spaces H1/2(∂Ω) and N1/2(∂Ω) can be quite different for an arbitrary
Lipschitz domain Ω. Our interest in the latter space stems from the fact that this arises naturally when
considering the Neumann trace operator acting on{

u ∈ H2(Ω)
∣∣ γDu = 0

}
= H2(Ω) ∩H1

0 (Ω), (4.31)

considered as a closed subspace of H2(Ω) (hence, a Banach space when equipped with the H2-norm). More
specifically, we have (cf. [89] for a proof):

Lemma 4.3. Assume Hypothesis 4.1. Then the Neumann trace operator γN considered in the context

γN : H2(Ω) ∩H1
0 (Ω)→ N1/2(∂Ω) (4.32)

is well-defined, linear, bounded, onto and with a linear, bounded right-inverse. In addition, the null space of
γN in (4.32) is precisely H2

0 (Ω), the closure of C∞0 (Ω) in H2(Ω).

Most importantly for us here is the fact that one can use the above Neumann trace result in order to
extend the action of the Dirichlet trace operator (4.16) to dom(−∆max,Ω), the domain of the maximal
Laplacian, that is, {u ∈ L2(Ω; dnx) |∆u ∈ L2(Ω; dnx)}, which we consider equipped with the graph norm

u 7→ ‖u‖L2(Ω;dnx) + ‖∆u‖L2(Ω;dnx). Specifically, with
(
N1/2(∂Ω)

)∗
denoting the conjugate dual space of

N1/2(∂Ω), we have the following result from [89]:

Theorem 4.4. Assume Hypothesis 4.1. Then there exists a unique linear, bounded operator

γ̂D :
{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}
→
(
N1/2(∂Ω)

)∗
(4.33)

which is compatible with the Dirichlet trace introduced in (4.16), in the sense that, for each s > 1/2, one has

γ̂Du = γDu for every u ∈ Hs(Ω) with ∆u ∈ L2(Ω; dnx). (4.34)

Furthermore, this extension of the Dirichlet trace operator in (4.16) allows for the following generalized
integration by parts formula

N1/2(∂Ω)〈γNw, γ̂Du〉(N1/2(∂Ω))∗ = (∆w, u)L2(Ω;dnx) − (w,∆u)L2(Ω;dnx), (4.35)

valid for every u ∈ L2(Ω; dnx) with ∆u ∈ L2(Ω; dnx) and every w ∈ H2(Ω) ∩H1
0 (Ω).

We next review the case of the Neumann trace, whose action is extended to dom(−∆max,Ω). To this end,
we need to address a number of preliminary matters. First, assuming Hypothesis 4.1, we make the following
definition (compare with (4.28)):

N3/2(∂Ω) :=
{
g ∈ H1(∂Ω)

∣∣∇tang ∈ (H1/2(∂Ω)
)n}

, (4.36)

equipped with the natural norm

‖g‖N3/2(∂Ω) := ‖g‖L2(∂Ω;dn−1ω) + ‖∇tang‖(H1/2(∂Ω))n . (4.37)

Assuming Hypothesis 4.1, N3/2(∂Ω) is a reflexive Banach space which embeds continuously into the space
H1(∂Ω; dn−1ω). In addition, this turns out to be a natural substitute for the more familiar space H3/2(∂Ω)
in the case where Ω is sufficiently smooth. Concretely, one has

N3/2(∂Ω) = H3/2(∂Ω), (4.38)

(as vector spaces with equivalent norms), whenever Ω is a bounded C1,r domain with r > 1/2. The primary
reason we are interested in N3/2(∂Ω) is that this space arises naturally when considering the Dirichlet trace
operator acting on {

u ∈ H2(Ω)
∣∣ γNu = 0

}
, (4.39)

considered as a closed subspace of H2(Ω) (thus, a Banach space when equipped with the norm inherited
from H2(Ω)). Concretely, the following result has been established in [89].

Lemma 4.5. Assume Hypothesis 4.1. Then the Dirichlet trace operator γD considered in the context

γD :
{
u ∈ H2(Ω)

∣∣ γNu = 0
}
→ N3/2(∂Ω) (4.40)

is well-defined, linear, bounded, onto and with a linear, bounded right-inverse. In addition, the null space of
γD in (4.40) is precisely H2

0 (Ω), the closure of C∞0 (Ω) in H2(Ω).
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It is then possible to use the Neumann trace result from Lemma 4.5 in order to extend the action of
the Neumann trace operator (4.18) to dom(−∆max,Ω) =

{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}

. As before,

this space is equipped with the natural graph norm. Let
(
N3/2(∂Ω)

)∗
denote the conjugate dual space of

N3/2(∂Ω). The following result holds:

Theorem 4.6. Assume Hypothesis 4.1. Then there exists a unique linear, bounded operator

γ̂N :
{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}
→
(
N3/2(∂Ω)

)∗
(4.41)

which is compatible with the Neumann trace introduced in (4.18), in the sense that, for each s > 3/2, one
has

γ̂Nu = γNu for every u ∈ Hs(Ω) with ∆u ∈ L2(Ω; dnx). (4.42)

Furthermore, this extension of the Neumann trace operator from (4.18) allows for the following generalized
integration by parts formula

N3/2(∂Ω)〈γDw, γ̂Nu〉(N3/2(∂Ω))∗ = (w,∆u)L2(Ω;dnx) − (∆w, u)L2(Ω;dnx), (4.43)

valid for every u ∈ L2(Ω; dnx) with ∆u ∈ L2(Ω; dnx) and every w ∈ H2(Ω) with γNw = 0.

A proof of Theorem 4.6 can be found in [89].

4.2. Perturbed Dirichlet and Neumann Laplacians. Here we shall discuss operators of the form−∆+V
equipped with Dirichlet and Neumann boundary conditions. Temporarily, we will employ the following
assumptions:

Hypothesis 4.7. Let n ∈ N, n ≥ 2, assume that Ω ⊂ Rn is an open, bounded, nonempty set, and suppose
that

V ∈ L∞(Ω; dnx) and V is real-valued a.e. on Ω. (4.44)

We start by reviewing the perturbed Dirichlet and Neumann LaplaciansHD,Ω andHN,Ω associated with an
open set Ω in Rn and a potential V satisfying Hypothesis 4.7: Consider the sesquilinear forms in L2(Ω; dnx),

QD,Ω(u, v) = (∇u,∇v) + (u, V v), u, v ∈ dom(QD,Ω) = H1
0 (Ω), (4.45)

and
QN,Ω(u, v) = (∇u,∇v) + (u, V v), u, v ∈ dom(QN,Ω) = H1(Ω). (4.46)

Then both forms in (4.45) and (4.46) are densely, defined, closed, and bounded from below in L2(Ω; dnx).
Thus, by the first and second representation theorems for forms (cf., e.g., [114, Sect. VI.2]), one concludes
that there exist unique self-adjoint operators HD,Ω and HN,Ω in L2(Ω; dnx), both bounded from below,
associated with the forms QD,Ω and QN,Ω, respectively, which satisfy

QD,Ω(u, v) = (u,HD,Ωv), u ∈ dom(QD,Ω), v ∈ dom(HD,Ω), (4.47)

dom(HD,Ω) ⊂ dom
(
|HD,Ω|1/2

)
= dom(QD,Ω) = H1

0 (Ω) (4.48)

and

QN,Ω(u, v) = (u,HN,Ωv), u ∈ dom(QN,Ω), v ∈ dom(HN,Ω), (4.49)

dom(HN,Ω) ⊂ dom
(
|HN,Ω|1/2

)
= dom(QN,Ω) = H1(Ω). (4.50)

In the case of the perturbed Dirichlet Laplacian, HD,Ω, one actually can say a bit more: Indeed, HD,Ω

coincides with the Friedrichs extension of the operator

Hc,Ωu = (−∆ + V )u, u ∈ dom(Hc,Ω) := C∞0 (Ω) (4.51)

in L2(Ω; dnx),
(Hc,Ω)F = HD,Ω, (4.52)

and one obtains as an immediate consequence of (2.19) and (4.45)

HD,Ωu = (−∆ + V )u, u ∈ dom(HD,Ω) =
{
v ∈ H1

0 (Ω)
∣∣∆v ∈ L2(Ω; dnx)

}
. (4.53)

We also refer to [71, Sect. IV.2, Theorem VII.1.4]). In addition, HD,Ω is known to have a compact resolvent
and hence purely discrete spectrum bounded from below.

In the case of the perturbed Neumann Laplacian, HN,Ω, it is not possible to be more specific under this
general hypothesis on Ω just being open. However, under the additional assumptions on the domain Ω in
Hypothesis 4.1 one can be more explicit about the domain of HN,Ω and also characterize its spectrum as
follows. In addition, we also record an improvement of (4.53) under the additional Lipschitz hypothesis on
Ω:



ON THE KREIN–VON NEUMANN EXTENSION 25

Theorem 4.8. Assume Hypotheses 4.1 and 4.7. Then the perturbed Dirichlet Laplacian, HD,Ω, given by

HD,Ωu = (−∆ + V )u,

u ∈ dom(HD,Ω) =
{
v ∈ H1(Ω)

∣∣∆v ∈ L2(Ω; dnx), γDv = 0 in H1/2(∂Ω)
}

(4.54)

=
{
v ∈ H1

0 (Ω)
∣∣∆v ∈ L2(Ω; dnx)

}
,

is self-adjoint and bounded from below in L2(Ω; dnx). Moreover,

dom
(
|HD,Ω|1/2

)
= H1

0 (Ω), (4.55)

and the spectrum of HD,Ω, is purely discrete (i.e., it consists of eigenvalues of finite multiplicity),

σess(HD,Ω) = ∅. (4.56)

If, in addition, V ≥ 0 a.e. in Ω, then HD,Ω is strictly positive in L2(Ω; dnx).

The corresponding result for the perturbed Neumann Laplacian HN,Ω reads as follows:

Theorem 4.9. Assume Hypotheses 4.1 and 4.7. Then the perturbed Neumann Laplacian, HN,Ω, given by

HN,Ωu = (−∆ + V )u, (4.57)

u ∈ dom(HN,Ω) =
{
v ∈ H1(Ω)

∣∣∆v ∈ L2(Ω; dnx), γ̃Nv = 0 in H−1/2(∂Ω)
}
,

is self-adjoint and bounded from below in L2(Ω; dnx). Moreover,

dom
(
|HN,Ω|1/2

)
= H1(Ω), (4.58)

and the spectrum of HN,Ω, is purely discrete (i.e., it consists of eigenvalues of finite multiplicity),

σess(HN,Ω) = ∅. (4.59)

If, in addition, V ≥ 0 a.e. in Ω, then HN,Ω is nonnegative in L2(Ω; dnx).

In the sequel, corresponding to the case where V ≡ 0, we shall abbreviate

−∆D,Ω and −∆N,Ω, (4.60)

for HD,Ω and HN,Ω, respectively, and simply refer to these operators as, the Dirichlet and Neumann Lapla-
cians. The above results have been proved in [84, App. A], [90] for considerably more general potentials than
assumed in Hypothesis 4.7.

Next, we shall now consider the minimal and maximal perturbed Laplacians. Concretely, given an open set
Ω ⊂ Rn and a potential 0 ≤ V ∈ L∞(Ω; dnx), we introduce the maximal perturbed Laplacian in L2(Ω; dnx)

Hmax,Ωu := (−∆ + V )u,

u ∈ dom(Hmax,Ω) :=
{
v ∈ L2(Ω; dnx)

∣∣∆v ∈ L2(Ω; dnx)
}
.

(4.61)

We pause for a moment to dwell on the notation used in connection with the symbol ∆:

Remark 4.10. Throughout this manuscript the symbol ∆ alone indicates that the Laplacian acts in the sense
of distributions,

∆: D′(Ω)→ D′(Ω). (4.62)

In some cases, when it is necessary to interpret ∆ as a bounded operator acting between Sobolev spaces,
we write ∆ ∈ B

(
Hs(Ω), Hs−2(Ω)

)
for various ranges of s ∈ R (which is of course compatible with (4.62)).

In addition, as a consequence of standard interior elliptic regularity (cf. Weyl’s classical lemma) it is not
difficult to see that if Ω ⊆ R is open, u ∈ D′(Ω) and ∆u ∈ L2

loc(Ω; dnx) then actually u ∈ H2
loc(Ω). In

particular, this comment applies to u ∈ dom(Hmax,Ω) in (4.61).

In the remainder of this subsection we shall collect a number of results, originally proved in [89] when
V ≡ 0, but which are easily seen to hold in the more general setting considered here.

Lemma 4.11. Assume Hypotheses 4.1 and 4.7. Then the maximal perturbed Laplacian associated with Ω
and the potential V is a closed, densely defined operator for which

H2
0 (Ω) ⊆ dom((Hmax,Ω)∗) ⊆

{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx), γ̂Du = γ̂Nu = 0
}
. (4.63)

For an open set Ω ⊂ Rn and a potential 0 ≤ V ∈ L∞(Ω; dnx), we also bring in the minimal perturbed
Laplacian in L2(Ω; dnx), that is,

Hmin,Ωu := (−∆ + V )u, u ∈ dom(Hmin,Ω) := H2
0 (Ω). (4.64)
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Corollary 4.12. Assume Hypotheses 4.1 and 4.7. Then Hmin,Ω is a densely defined, symmetric operator
which satisfies

Hmin,Ω ⊆ (Hmax,Ω)∗ and Hmax,Ω ⊆ (Hmin,Ω)∗. (4.65)

Equality occurs in one (and hence, both) inclusions in (4.65) if and only if

H2
0 (Ω) equals

{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx), γ̂Du = γ̂Nu = 0
}
. (4.66)

5. Boundary Value Problems in Quasi-Convex Domains

This section is divided into three parts. In Subsection 5.1 we introduce a distinguished category of the
family of Lipschitz domains in Rn, called quasi-convex domains, which is particularly well-suited for the kind
of analysis we have in mind. In Subsection 5.2 and Subsection 5.3, we then proceed to review, respectively,
trace operators and boundary problems, and Dirichlet-to-Neumann operators in quasi-convex domains.

5.1. The Class of Quasi-Convex Domains. In the class of Lipschitz domains, the two spaces appearing
in (4.66) are not necessarily equal (although, obviously, the left-to-right inclusion always holds). The question
now arises: What extra properties of the Lipschitz domain will guarantee equality in (4.66)? This issue has
been addressed in [89], where a class of domains (which is in the nature of best possible) has been identified.

To describe this class, we need some preparations. Given n ≥ 1, denote by MH1/2(Rn) the class of
pointwise multipliers of the Sobolev space H1/2(Rn). That is,

MH1/2(Rn) :=
{
f ∈ L1

loc(Rn)
∣∣Mf ∈ B

(
H1/2(Rn)

)}
, (5.1)

where Mf is the operator of pointwise multiplication by f . This space is equipped with the natural norm,
that is,

‖f‖MH1/2(Rn) := ‖Mf‖B(H1/2(Rn)). (5.2)

For a comprehensive and systematic treatment of spaces of multipliers, the reader is referred to the 1985
monograph of Maz’ya and Shaposhnikova [140]. Following [140], [141], we now introduce a special class of
domains, whose boundary regularity properties are expressed in terms of spaces of multipliers.

Definition 5.1. Given δ > 0, call a bounded, Lipschitz domain Ω ⊂ Rn to be of class MH
1/2
δ , and write

∂Ω ∈MH
1/2
δ , (5.3)

provided the following holds: There exists a finite open covering {Oj}1≤j≤N of the boundary ∂Ω of Ω such
that for every j ∈ {1, ..., N}, Oj ∩ Ω coincides with the portion of Oj lying in the over-graph of a Lipschitz
function ϕj : Rn−1 → R (considered in a new system of coordinates obtained from the original one via a
rigid motion) which, additionally, has the property that

∇ϕj ∈
(
MH1/2(Rn−1)

)n
and ‖ϕj‖(MH1/2(Rn−1))n ≤ δ. (5.4)

Going further, we consider the classes of domains

MH1/2
∞ :=

⋃
δ>0

MH
1/2
δ , MH

1/2
0 :=

⋂
δ>0

MH
1/2
δ , (5.5)

and also introduce the following definition:

Definition 5.2. We call a bounded Lipschitz domain Ω ⊂ Rn to be square-Dini, and write

∂Ω ∈ SD, (5.6)

provided the following holds: There exists a finite open covering {Oj}1≤j≤N of the boundary ∂Ω of Ω such
that for every j ∈ {1, ..., N}, Oj ∩ Ω coincides with the portion of Oj lying in the over-graph of a Lipschitz
function ϕj : Rn−1 → R (considered in a new system of coordinates obtained from the original one via a
rigid motion) which, additionally, has the property that the following square-Dini condition holds,∫ 1

0

dt

t

(
ω(∇ϕj ; t)
t1/2

)2

<∞. (5.7)

Here, given a (possibly vector-valued ) function f in Rn−1,

ω(f ; t) := sup {|f(x)− f(y)| |x, y ∈ Rn−1, |x− y| ≤ t}, t ∈ (0, 1), (5.8)

is the modulus of continuity of f , at scale t.



ON THE KREIN–VON NEUMANN EXTENSION 27

From the work of Maz’ya and Shaposhnikova [140] [141], it is known that if r > 1/2, then

Ω ∈ C1,r =⇒ Ω ∈ SD =⇒ Ω ∈MH
1/2
0 =⇒ Ω ∈MH1/2

∞ . (5.9)

As pointed out in [141], domains of class MH
1/2
∞ can have certain types of vertices and edges when n ≥ 3.

Thus, the domains in this class can be nonsmooth.
Next, we recall that a domain is said to satisfy a uniform exterior ball condition (UEBC) provided there

exists a number r > 0 with the property that

for every x ∈ ∂Ω, there exists y ∈ Rn, such that B(y, r) ∩ Ω = ∅
and x ∈ ∂B(y, r) ∩ ∂Ω.

(5.10)

Heuristically, (5.10) should be interpreted as a lower bound on the curvature of ∂Ω. Next, we review the
class of almost-convex domains introduced in [146].

Definition 5.3. A bounded Lipschitz domain Ω ⊂ Rn is called an almost-convex domain provided there
exists a family {Ω`}`∈N of open sets in Rn with the following properties:

(i) ∂Ω` ∈ C2 and Ω` ⊂ Ω for every ` ∈ N.
(ii) Ω` ↗ Ω as `→∞, in the sense that Ω` ⊂ Ω`+1 for each ` ∈ N and

⋃
`∈N Ω` = Ω.

(iii) There exists a neighborhood U of ∂Ω and, for each ` ∈ N, a C2 real-valued function ρ` defined in U
with the property that ρ` < 0 on U ∩Ω`, ρ` > 0 in U\Ω`, and ρ` vanishes on ∂Ω`. In addition, it is
assumed that there exists some constant C1 ∈ (1,∞) such that

C−1
1 ≤ |∇ρ`(x)| ≤ C1, x ∈ ∂Ω`, ` ∈ N. (5.11)

(iv) There exists C2 ≥ 0 such that for every number ` ∈ N, every point x ∈ ∂Ω`, and every vector ξ ∈ Rn
which is tangent to ∂Ω` at x, there holds〈

Hess (ρ`)ξ , ξ
〉
≥ −C2|ξ|2, (5.12)

where 〈 · , · 〉 is the standard Euclidean inner product in Rn and

Hess (ρ`) :=

(
∂2ρ`
∂xj∂xk

)
1≤j,k≤n

, (5.13)

is the Hessian of ρ`.

A few remarks are in order: First, it is not difficult to see that (5.11) ensures that each domain Ω` is Lipschitz,
with Lipschitz constant bounded uniformly in `. Second, (5.12) simply says that, as quadratic forms on the
tangent bundle T∂Ω` to ∂Ω`, one has

Hess (ρ`) ≥ −C2 In, (5.14)

where In is the n × n identity matrix. Hence, another equivalent formulation of (5.12) is the following
requirement:

n∑
j,k=1

∂2ρ`
∂xj∂xk

ξjξk ≥ −C2

n∑
j=1

ξ2
j , whenever ρ` = 0 and

n∑
j=1

∂ρ`
∂xj

ξj = 0. (5.15)

We note that, since the second fundamental form II` on ∂Ω` is II` = Hess ρ`/|∇ρ`|, almost-convexity is, in
view of (5.11), equivalent to requiring that II` be bounded from below, uniformly in `.

We now discuss some important special classes of almost-convex domains.

Definition 5.4. A bounded Lipschitz domain Ω ⊂ Rn satisfies a local exterior ball condition, henceforth
referred to as LEBC, if every boundary point x0 ∈ ∂Ω has an open neighborhood O which satisfies the
following two conditions:

(i) There exists a Lipschitz function ϕ : Rn−1 → R with ϕ(0) = 0 such that if D is the domain above
the graph of ϕ, then D satisfies a UEBC.

(ii) There exists a C1,1 diffeomorphism Υ mapping O onto the unit ball B(0, 1) in Rn such that Υ(x0) = 0,
Υ(O ∩ Ω) = B(0, 1) ∩D, Υ(O\Ω) = B(0, 1)\D.

It is clear from Definition 5.4 that the class of bounded domains satisfying a LEBC is invariant under C1,1

diffeomorphisms. This makes this class of domains amenable to working on manifolds. This is the point of
view adopted in [146], where the following result is also proved:

Lemma 5.5. If the bounded Lipschitz domain Ω ⊂ Rn satisfies a LEBC then it is almost-convex.
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Hence, in the class of bounded Lipschitz domains in Rn, we have

convex =⇒ UEBC =⇒ LEBC =⇒ almost-convex. (5.16)

We are now in a position to specify the class of domains in which most of our subsequent analysis will be
carried out.

Definition 5.6. Let n ∈ N, n ≥ 2, and assume that Ω ⊂ Rn is a bounded Lipschitz domain. Then Ω is called
a quasi-convex domain if there exists δ > 0 sufficiently small (relative to n and the Lipschitz character of
Ω), with the following property that for every x ∈ ∂Ω there exists an open subset Ωx of Ω such that ∂Ω∩∂Ωx
is an open neighborhood of x in ∂Ω, and for which one of the following two conditions holds:

(i) Ωx is of class MH
1/2
δ if n ≥ 3, and of class C1,r for some 1/2 < r < 1 if n = 2.

(ii) Ωx is an almost-convex domain.

Given Definition 5.6, we thus introduce the following basic assumption:

Hypothesis 5.7. Let n ∈ N, n ≥ 2, and assume that Ω ⊂ Rn is a quasi-convex domain.

Informally speaking, the above definition ensures that the boundary singularities are directed outwardly.
A typical example of such a domain is shown in Fig. 1 below.

Ω
. ....................... .................... ..................

................
...............
.............

...............

.................

..................

.....................

...............

..............

..............
................. ............... ............... ...............

..............
.

..........
.....

..........
........
.

...............
...

................ .............. ............. ..............
..............
.

.................

..................
...................

.................... .................... ...................... .
.......................

..
...................................................................................... ..............

.........
.........
......

..........
....................
............. ............... .................. .

...........
..........

..........
.........

..........
........

..........
.......

.........
......

........

......

........

......

.........
......

..........
......

...........
......

............
.......

..............
........
........................................................................................................................................................................................

...............
..

............
....

..........
.......

..........
........
.
................

..............

............

..........

.........
........

...........

............................

.....................

.............
...........
........
........

...................
.......................

..........................

Figure 1. A quasi-convex domain.

Being quasi-convex is a certain type of regularity condition of the boundary of a Lipschitz domain. The
only way we are going to utilize this property is via the following elliptic regularity result proved in [89].

Proposition 5.8. Assume Hypotheses 4.7 and 5.7. Then

dom
(
HD,Ω

)
⊂ H2(Ω), dom

(
HN,Ω

)
⊂ H2(Ω). (5.17)

In fact, all of our results in this survey hold in the class of Lipschitz domains for which the two inclusions in
(5.17) hold.

The following theorem addresses the issue raised at the beginning of this subsection. Its proof is similar
to the special case V ≡ 0, treated in [89].

Theorem 5.9. Assume Hypotheses 4.7 and 5.7. Then (4.66) holds. In particular,

dom(Hmin,Ω) = H2
0 (Ω)

=
{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx), γ̂Du = γ̂Nu = 0
}
, (5.18)

dom(Hmax,Ω) =
{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}
, (5.19)

and

Hmin,Ω = (Hmax,Ω)∗ and Hmax,Ω = (Hmin,Ω)∗. (5.20)

We conclude this subsection with the following result which is essentially contained in [89].

Proposition 5.10. Assume Hypotheses 4.1 and 4.7. Then the Friedrichs extension of (−∆ + V )|C∞0 (Ω) in

L2(Ω; dnx) is precisely the perturbed Dirichlet Laplacian HD,Ω. Consequently, if Hypothesis 5.7 is assumed in
place of Hypothesis 4.1, then the Friedrichs extension of Hmin,Ω in (4.64) is the perturbed Dirichlet Laplacian
HD,Ω.
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5.2. Trace Operators and Boundary Problems on Quasi-Convex Domains. Here we revisit the
issue of traces, originally taken up in Section 2, and extend the scope of this theory. The goal is to extend
our earlier results to a context that is well-suited for the treatment of the perturbed Krein Laplacian in
quasi-convex domains, later on. All results in this subsection are direct generalizations of similar results
proved in the case where V ≡ 0 in [89].

Theorem 5.11. Assume Hypotheses 4.7 and 5.7, and suppose that z ∈ C\σ(HD,Ω). Then for any functions

f ∈ L2(Ω; dnx) and g ∈ (N1/2(∂Ω))∗ the following inhomogeneous Dirichlet boundary value problem
(−∆ + V − z)u = f in Ω,

u ∈ L2(Ω; dnx),

γ̂Du = g on ∂Ω,

(5.21)

has a unique solution u = uD. This solution satisfies

‖uD‖L2(Ω;dnx) + ‖γ̂NuD‖(N3/2(∂Ω))∗ ≤ CD(‖f‖L2(Ω;dnx) + ‖g‖(N1/2(∂Ω))∗) (5.22)

for some constant CD = CD(Ω, V, z) > 0, and the following regularity results hold:

g ∈ H1(∂Ω) implies uD ∈ H3/2(Ω), (5.23)

g ∈ γD
(
H2(Ω)

)
implies uD ∈ H2(Ω). (5.24)

In particular,
g = 0 implies uD ∈ H2(Ω) ∩H1

0 (Ω). (5.25)

Natural estimates are valid in each case.
Moreover, the solution operator for (5.21) with f = 0 (i.e., PD,Ω,V,z : g 7→ uD) satisfies

PD,Ω,V,z =
[
γN (HD,Ω − zIΩ)−1

]∗ ∈ B((N1/2(∂Ω))∗, L2(Ω; dnx)
)
, (5.26)

and the solution of (5.21) is given by the formula

uD = (HD,Ω − zIΩ)−1f −
[
γN (HD,Ω − zIΩ)−1

]∗
g. (5.27)

Corollary 5.12. Assume Hypotheses 4.7 and 5.7. Then for every z ∈ C\σ(HD,Ω) the map

γ̂D :
{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V − z)u = 0 in Ω} →
(
N1/2(∂Ω)

)∗
(5.28)

is an isomorphism (i.e., bijective and bicontinuous ).

Theorem 5.13. Assume Hypotheses 4.7 and 5.7 and suppose that z ∈ C\σ(HN,Ω). Then for any functions

f ∈ L2(Ω; dnx) and g ∈ (N3/2(∂Ω))∗ the following inhomogeneous Neumann boundary value problem
(−∆ + V − z)u = f in Ω,

u ∈ L2(Ω; dnx),

γ̂Nu = g on ∂Ω,

(5.29)

has a unique solution u = uN . This solution satisfies

‖uN‖L2(Ω;dnx) + ‖γ̂DuN‖(N1/2(∂Ω))∗ ≤ CN (‖f‖L2(Ω;dnx) + ‖g‖(N3/2(∂Ω))∗) (5.30)

for some constant CN = CN (Ω, V, z) > 0, and the following regularity results hold:

g ∈ L2(∂Ω; dn−1ω) implies uN ∈ H3/2(Ω), (5.31)

g ∈ γN
(
H2(Ω)

)
implies uN ∈ H2(Ω). (5.32)

Natural estimates are valid in each case.
Moreover, the solution operator for (5.29) with f = 0 (i.e., PN,Ω,V,z : g 7→ uN ) satisfies

PN,Ω,V,z =
[
γD(HN,Ω − zIΩ)−1

]∗ ∈ B((N3/2(∂Ω))∗, L2(Ω; dnx)
)
, (5.33)

and the solution of (5.29) is given by the formula

uN = (HN,Ω − zIΩ)−1f +
[
γD(HN,Ω − zIΩ)−1

]∗
g. (5.34)

Corollary 5.14. Assume Hypotheses 4.7 and 5.7. Then, for every z ∈ C\σ(HN,Ω), the map

γ̂N :
{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V − z)u = 0 in Ω
}
→
(
N3/2(∂Ω)

)∗
(5.35)

is an isomorphism (i.e., bijective and bicontinuous ).
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5.3. Dirichlet-to-Neumann Operators on Quasi-Convex Domains. In this subsection we review spec-
tral parameter dependent Dirichlet-to-Neumann maps, also known in the literature as Weyl–Titchmarsh and
Poincaré–Steklov operators. Assuming Hypotheses 4.7 and 5.7, introduce the Dirichlet-to-Neumann map
MD,N,Ω,V (z) associated with −∆ + V − z on Ω, as follows:

MD,N,Ω,V (z) :

{(
N1/2(∂Ω)

)∗ → (
N3/2(∂Ω)

)∗
,

f 7→ −γ̂NuD,
z ∈ C\σ(HD,Ω), (5.36)

where uD is the unique solution of

(−∆ + V − z)u = 0 in Ω, u ∈ L2(Ω; dnx), γ̂Du = f on ∂Ω. (5.37)

Retaining Hypotheses 4.7 and 5.7, we next introduce the Neumann-to-Dirichlet map MN,D,Ω,V (z) associated
with −∆ + V − z on Ω, as follows:

MN,D,Ω,V (z) :

{(
N3/2(∂Ω)

)∗ → (
N1/2(∂Ω)

)∗
,

g 7→ γ̂DuN ,
z ∈ C\σ(HN,Ω), (5.38)

where uN is the unique solution of

(−∆ + V − z)u = 0 in Ω, u ∈ L2(Ω; dnx), γ̂Nu = g on ∂Ω. (5.39)

As in [89], where the case V ≡ 0 has been treated, we then have the following result:

Theorem 5.15. Assume Hypotheses 4.7 and 5.7. Then, with the above notation,

MD,N,Ω,V (z) ∈ B
(
(N1/2(∂Ω))∗ , (N3/2(∂Ω))∗

)
, z ∈ C\σ(HD,Ω), (5.40)

and

MD,N,Ω,V (z) = γ̂N
[
γN (HD,Ω − zIΩ)−1

]∗
, z ∈ C\σ(HD,Ω). (5.41)

Similarly,

MN,D,Ω,V (z) ∈ B
(
(N3/2(∂Ω))∗ , (N1/2(∂Ω))∗

)
, z ∈ C\σ(HN,Ω), (5.42)

and

MN,D,Ω,V (z) = γ̂D
[
γD(HN,Ω − zIΩ)−1

]∗
, z ∈ C\σ(HN,Ω). (5.43)

Moreover,

MN,D,Ω,V (z) = −MD,N,Ω,V (z)−1, z ∈ C\(σ(HD,Ω) ∪ σ(HN,Ω)), (5.44)

and [
MD,N,Ω,V (z)

]∗
= MD,N,Ω,V (z),

[
MN,D,Ω,V (z)

]∗
= MN,D,Ω,V (z). (5.45)

As a consequence, one also has

MD,N,Ω,V (z) ∈ B
(
N3/2(∂Ω) , N1/2(∂Ω)

)
, z ∈ C\σ(HD,Ω), (5.46)

MN,D,Ω,V (z) ∈ B
(
N1/2(∂Ω) , N3/2(∂Ω)

)
, z ∈ C\σ(HN,Ω). (5.47)

For closely related recent work on Weyl–Titchmarsh operators associated with nonsmooth domains we
refer to [86], [87], [88], [89], and [90]. For an extensive list of references on z-dependent Dirichlet-to-Neumann
maps we also refer, for instance, to [7], [11], [15], [35], [48], [50], [51], [52], [53], [65], [66], [84]–[90], [99], [101],
[158], [164], [165], [166].

6. Regularized Neumann Traces and Perturbed Krein Laplacians

This section is structured into two parts dealing, respectively, with the regularized Neumann trace operator
(Subsection 6.1), and the perturbed Krein Laplacian in quasi-convex domains (Subsection 6.2).
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6.1. The Regularized Neumann Trace Operator on Quasi-Convex Domains. Following earlier work
in [89], we now consider a version of the Neumann trace operator which is suitably normalized to permit the
familiar version of Green’s formula (cf. (6.8) below) to work in the context in which the functions involved
are only known to belong to dom(−∆max,Ω). The following theorem is a slight extension of a similar result
proved in [89] when V ≡ 0.

Theorem 6.1. Assume Hypotheses 4.7 and 5.7. Then, for every z ∈ C\σ(HD,Ω), the map

τN,V,z :
{
u ∈ L2(Ω; dnx); ∆u ∈ L2(Ω; dnx)

}
→ N1/2(∂Ω) (6.1)

given by
τN,V,zu := γ̂Nu+MD,N,Ω,V (z)

(
γ̂Du

)
, u ∈ L2(Ω; dnx), ∆u ∈ L2(Ω; dnx), (6.2)

is well-defined, linear and bounded, where the space{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}

(6.3)

is endowed with the natural graph norm u 7→ ‖u‖L2(Ω;dnx) + ‖∆u‖L2(Ω;dnx). Moreover, this operator satisfies
the following additional properties:

(i) The map τN,V,z in (6.1), (6.2) is onto (i.e., τN,V,z(dom(Hmax,Ω)) = N1/2(∂Ω)), for each z ∈
C\σ(HD,Ω). In fact,

τN,V,z
(
H2(Ω) ∩H1

0 (Ω)
)

= N1/2(∂Ω) for each z ∈ C\σ(HD,Ω). (6.4)

(ii) One has
τN,V,z = γN (HD,Ω − zIΩ)−1(−∆− z), z ∈ C\σ(HD,Ω). (6.5)

(iii) For each z ∈ C\σ(HD,Ω), the kernel of the map τN,V,z in (6.1), (6.2) is

ker(τN,V,z) = H2
0 (Ω)+̇{u ∈ L2(Ω; dnx) | (−∆ + V − z)u = 0 in Ω}. (6.6)

In particular, if z ∈ C\σ(HD,Ω), then

τN,V,zu = 0 for every u ∈ ker(Hmax,Ω − zIΩ). (6.7)

(iv) The following Green formula holds for every u, v ∈ dom(Hmax,Ω) and every complex number z ∈
C\σ(HD,Ω):

((−∆ + V − z)u , v)L2(Ω;dnx) − (u , (−∆ + V − z)v)L2(Ω;dnx)

= −N1/2(∂Ω)〈τN,V,zu, γ̂Dv〉(N1/2(∂Ω))∗ + N1/2(∂Ω)〈τN,V,zv, γ̂Du〉(N1/2(∂Ω))∗ . (6.8)

6.2. The Perturbed Krein Laplacian in Quasi-Convex Domains. We now discuss the Krein–von Neu-
mann extension of the Laplacian −∆

∣∣
C∞0 (Ω)

perturbed by a nonnegative, bounded potential V in L2(Ω; dnx).

We will conveniently call this operator the perturbed Krein Laplacian and introduce the following basic as-
sumption:

Hypothesis 6.2. (i) Let n ∈ N, n ≥ 2, and assume that ∅ 6= Ω ⊂ Rn is a bounded Lipschitz domain
satisfying Hypothesis 5.7.
(ii) Assume that

V ∈ L∞(Ω; dnx) and V ≥ 0 a.e. in Ω. (6.9)

Denoting by T the closure of a linear operator T in a Hilbert space H, we have the following result:

Lemma 6.3. Assume Hypothesis 6.2. Then Hmin,Ω is a densely defined, closed, nonnegative (in particular,
symmetric) operator in L2(Ω; dnx). Moreover,

(−∆ + V )
∣∣
C∞0 (Ω)

= Hmin,Ω. (6.10)

Proof. The first claim in the statement is a direct consequence of Theorem 5.9. As for (6.10), let us tem-
porarily denote by H0 the closure of −∆ + V defined on C∞0 (Ω). Then

u ∈ dom(H0) if and only if

{
there exist v ∈ L2(Ω; dnx) and uj ∈ C∞0 (Ω), j ∈ N, such that

uj → u and (−∆ + V )uj → v in L2(Ω; dnx) as j →∞.
(6.11)

Thus, if u ∈ dom(H0) and v, {uj}j∈N are as in the right-hand side of (6.11), then (−∆ + V )u = v in the
sense of distributions in Ω, and

0 = γ̂Duj → γ̂Du in
(
N1/2(∂Ω)

)∗
as j →∞,

0 = γ̂Nuj → γ̂Nu in
(
N1/2(∂Ω)

)∗
as j →∞,

(6.12)
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by Theorem 4.4 and Theorem 4.6. Consequently, u ∈ dom(Hmax,Ω) satisfies γ̂Du = 0 and γ̂Nu = 0.
Hence, u ∈ H2

0 (Ω) = dom(Hmin,Ω) by Theorem 5.9 and the current assumptions on Ω. This shows that
H0 ⊆ Hmin,Ω. The converse inclusion readily follows from the fact that any u ∈ H2

0 (Ω) is the limit in H2(Ω)
of a sequence of test functions in Ω. �

Lemma 6.4. Assume Hypothesis 6.2. Then the Krein–von Neumann extension HK,Ω of (−∆ + V )
∣∣
C∞0 (Ω)

in L2(Ω; dnx) is the L2-realization of −∆ + V with domain

dom(HK,Ω) = dom(Hmin,Ω) +̇ ker(Hmax,Ω)

= H2
0 (Ω) +̇

{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V )u = 0 in Ω
}
.

(6.13)

Proof. By virtue of (2.10), (5.20), and the fact that (−∆ + V )|C∞0 (Ω) and its closure, Hmin,Ω (cf. (6.10))
have the same self-adjoint extensions, one obtains

dom(HK,Ω) = dom(Hmin,Ω) +̇ ker((Hmin,Ω)∗)

= dom(Hmin,Ω) +̇ ker(Hmax,Ω)

= H2
0 (Ω) +̇

{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V )u = 0 in Ω
}
, (6.14)

as desired. �

Nonetheless, we shall adopt a different point of view which better elucidates the nature of the boundary
condition associated with this perturbed Krein Laplacian. More specifically, following the same pattern as
in [89], the following result can be proved.

Theorem 6.5. Assume Hypothesis 6.2 and fix z ∈ C\σ(HD,Ω). Then HK,Ω,z in L2(Ω; dnx), given by

HK,Ω,zu := (−∆ + V − z)u,
u ∈ dom(HK,Ω,z) := {v ∈ dom(Hmax,Ω) | τN,V,zv = 0},

(6.15)

satisfies
(HK,Ω,z)

∗ = HK,Ω,z, (6.16)

and agrees with the self-adjoint perturbed Krein Laplacian HK,Ω = HK,Ω,0 when taking z = 0. In particular,
if z ∈ R\σ(HD,Ω) then HK,Ω,z is self-adjoint. Moreover, if z ≤ 0, then HK,Ω,z is nonnegative. Hence, the
perturbed Krein Laplacian HK,Ω is a self-adjoint operator in L2(Ω; dnx) which admits the description given
in (6.15) when z = 0, and which satisfies

HK,Ω ≥ 0 and Hmin,Ω ⊆ HK,Ω ⊆ Hmax,Ω. (6.17)

Furthermore,

ker(HK,Ω) =
{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V )u = 0
}
, (6.18)

dim(ker(HK,Ω)) = def(Hmin,Ω) = def
(
(−∆ + V )

∣∣
C∞0 (Ω)

)
=∞, (6.19)

ran(HK,Ω) = (−∆ + V )H2
0 (Ω), (6.20)

HK,Ω has a purely discrete spectrum in (0,∞), σess(HK,Ω) = {0}, (6.21)

and for any nonnegative self-adjoint extension S̃ of (−∆ + V )|C∞0 (Ω) one has (cf. (2.5)),

HK,Ω ≤ S̃ ≤ HD,Ω. (6.22)

The nonlocal character of the boundary condition for the Krein–von Neumann extension HK,Ω

τN,V,0v = γ̂Nv +MD,N,Ω,V (0)v = 0, v ∈ dom(HK,Ω) (6.23)

(cf. (6.15) with z = 0) was originally isolated by Grubb [94] (see also [95], [97]) andMD,N,Ω,V (0) was identified
as the operator sending Dirichlet data to Neumann data. The connection with Weyl–Titchmarsh theory and
particularly, the Weyl–Titchmarsh operator MD,N,Ω,V (z) (an energy dependent Dirichlet-to-Neumann map),
in the special one-dimensional half-line case Ω = [a,∞) has been made in [180]. In terms of abstract boundary
conditions in connection with the theory of boundary value spaces, such a Weyl–Titchmarsh connection has
also been made in [67] and [68]. However, we note that this abstract boundary value space approach, while
applicable to ordinary differential operators, is not applicable to partial differential operators even in the case
of smooth boundaries ∂Ω (see, e.g., the discussion in [35]). In particular, it does not apply to the nonsmooth
domains Ω studied in this survey. In fact, only very recently, appropriate modifications of the theory of
boundary value spaces have successfully been applied to partial differential operators in smooth domains in
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[35], [50], [51], [52], [158], [159], [164], [165], and [166]. With the exception of the following short discussions:
Subsection 4.1 in [35] (which treat the special case where Ω equals the unit ball in R2), Remark 3.8 in [50],
Section 2 in [164], Subsection 2.4 in [165], and Remark 5.12 in [166], these investigations did not enter a
detailed discussion of the Krein-von Neumann extension. In particular, none of these references applies to
the case of nonsmooth domains Ω.

7. Connections with the Problem of the Buckling of a Clamped Plate

In this section we proceed to study a fourth-order problem, which is a perturbation of the classical
problem for the buckling of a clamped plate, and which turns out to be essentially spectrally equivalent to
the perturbed Krein Laplacian HK,Ω := HK,Ω,0.

For now, let us assume Hypotheses 4.1 and 4.7. Given λ ∈ C, consider the eigenvalue problem for the
generalized buckling of a clamped plate in the domain Ω ⊂ Rn

u ∈ dom(−∆max,Ω),

(−∆ + V )2u = λ (−∆ + V )u in Ω,

γ̂Du = 0 in
(
N1/2(∂Ω)

)∗
,

γ̂Nu = 0 in
(
N3/2(∂Ω)

)∗
,

(7.1)

where (−∆ + V )2u := (−∆ + V )(−∆u + V u) in the sense of distributions in Ω. Due to the trace theory
developed in Sections 4 and 5, this formulation is meaningful. In addition, if Hypothesis 5.7 is assumed in
place of Hypothesis 4.1 then, by (4.66), this problem can be equivalently rephrased as{

u ∈ H2
0 (Ω),

(−∆ + V )2u = λ (−∆ + V )u in Ω.
(7.2)

Lemma 7.1. Assume Hypothesis 6.2 and suppose that u 6= 0 solves (7.1) for some λ ∈ C. Then necessarily
λ ∈ (0,∞).

Proof. Let u, λ be as in the statement of the lemma. Then, as already pointed out above, u ∈ H2
0 (Ω). Based

on this, the fact that ∆u ∈ dom(−∆max,Ω), and the integration by parts formulas (4.21) and (4.35), we may
then write (we recall that our L2 pairing is conjugate linear in the first argument):

λ
[
‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2(L2(Ω;dnx))n

]
= λ (u, (−∆ + V )u)L2(Ω;dnx)

= (u , λ (−∆ + V )u)L2(Ω;dnx) =
(
u, (−∆ + V )2u

)
L2(Ω;dnx)

= (u, (−∆ + V )(−∆u+ V u))L2(Ω;dnx) = ((−∆ + V )u, (−∆ + V )u)L2(Ω;dnx)

= ‖(−∆ + V )u‖2L2(Ω;dnx). (7.3)

Since, according to Theorem 5.11, L2(Ω; dnx) 3 u 6= 0 and γ̂Du = 0 prevent u from being a constant function,
(7.3) entails

λ =
‖(−∆ + V )u‖2L2(Ω;dnx)

‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2(L2(Ω;dnx))n
> 0, (7.4)

as desired. �

Next, we recall the operator PD,Ω,V,z introduced just above (5.26) and agree to simplify notation by
abbreviating PD,Ω,V := PD,Ω,V,0. That is,

PD,Ω,V =
[
γN (HD,Ω)−1

]∗ ∈ B((N1/2(∂Ω))∗, L2(Ω; dnx)
)

(7.5)

is such that if u := PD,Ω,V g for some g ∈
(
N1/2(∂Ω)

)∗
, then

(−∆ + V )u = 0 in Ω,

u ∈ L2(Ω; dnx),

γ̂Du = g on ∂Ω.

(7.6)

Hence,

(−∆ + V )PD,Ω,V = 0,

γ̂NPD,Ω,V = −MD,N,Ω,V (0) and γ̂DPD,Ω,V = I(N1/2(∂Ω))∗ ,
(7.7)
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with I(N1/2(∂Ω))∗ the identity operator, on
(
N1/2(∂Ω)

)∗
.

Theorem 7.2. Assume Hypothesis 6.2. If 0 6= v ∈ L2(Ω; dnx) is an eigenfunction of the perturbed Krein
Laplacian HK,Ω corresponding to the eigenvalue 0 6= λ ∈ C (hence λ > 0), then

u := v − PD,Ω,V (γ̂Dv) (7.8)

is a nontrivial solution of (7.1). Conversely, if 0 6= u ∈ L2(Ω; dnx) solves (7.1) for some λ ∈ C then λ is a
(strictly) positive eigenvalue of the perturbed Krein Laplacian HK,Ω, and

v := λ−1(−∆ + V )u (7.9)

is a nonzero eigenfunction of the perturbed Krein Laplacian, corresponding to this eigenvalue.

Proof. In one direction, assume that 0 6= v ∈ L2(Ω; dnx) is an eigenfunction of the perturbed Krein Laplacian
HK,Ω corresponding to the eigenvalue 0 6= λ ∈ C (since HK,Ω ≥ 0 – cf. Theorem 6.5– it follows that λ > 0).
Thus, v satisfies

v ∈ dom(Hmax,Ω), (−∆ + V )v = λ v, τN,V,0v = 0. (7.10)

In particular, γ̂Dv ∈
(
N1/2(∂Ω)

)∗
by Theorem 4.4. Hence, by (7.5), u in (7.8) is a well-defined function

which belongs to L2(Ω; dnx). In fact, since also (−∆ + V )u = (−∆ + V )v ∈ L2(Ω; dnx), it follows that
u ∈ dom(Hmax,Ω). Going further, we note that

(−∆ + V )2u = (−∆ + V )(−∆ + V )u = (−∆ + V )(−∆ + V )v

= λ (−∆ + V )v = λ (−∆ + V )u.
(7.11)

Hence, (−∆ + V )2u = λ (−∆ + V )u in Ω. In addition, by (7.7),

γ̂Du = γ̂Dv − γ̂D(PD,Ω,V (γ̂Dv) = γ̂Dv − γ̂Dv = 0, (7.12)

whereas
γ̂Nu = γ̂Nv − γ̂N (PD,Ω,V (γ̂Dv) = γ̂Nv +MD,N,Ω,V (0)(γ̂Dv) = τN,V,0v = 0, (7.13)

by the last condition in (7.10). Next, to see that u cannot vanish identically, we note that u = 0 would imply
v = PD,Ω,V (γ̂Dv) which further entails λ v = (−∆ + V )v = (−∆ + V )PD,Ω,V (γ̂Dv) = 0, that is, v = 0 (since
λ 6= 0). This contradicts the original assumption on v and shows that u is a nontrivial solution of (7.1).
This completes the proof of the first half of the theorem.

Turning to the second half, suppose that λ ∈ C and 0 6= u ∈ L2(Ω; dnx) is a solution of (7.1). Lemma 7.1
then yields λ > 0, so that v := λ−1(−∆ + V )u is a well-defined function satisfying

v ∈ dom(Hmax,Ω) and (−∆ + V )v = λ−1 (−∆ + V )2u = (−∆ + V )u = λ v. (7.14)

If we now set w := v − u ∈ L2(Ω; dnx) it follows that

(−∆ + V )w = (−∆ + V )v − (−∆ + V )u = λ v − λ v = 0, (7.15)

and
γ̂Nw = γ̂Nv, γ̂Dw = γ̂Dv. (7.16)

In particular, by the uniqueness in the Dirichlet problem (7.6),

w = PD,Ω,V (γ̂Dv). (7.17)

Consequently,
γ̂Nv = γ̂Nw = γ̂N (PD,Ω,V (γ̂Dv) = −MD,N,Ω,V (0)(γ̂Dv), (7.18)

which shows that
τN,V,0v = γ̂Nv +MD,N,Ω,V (0)(γ̂Dv) = 0. (7.19)

Hence v ∈ dom(HK,Ω). We note that v = 0 would entail that the function u ∈ H2
0 (Ω) is a null solution

of −∆ + V , hence identically zero which, by assumption, is not the case. Therefore, v does not vanish
identically. Altogether, the above reasoning shows that v is a nonzero eigenfunction of the perturbed Krein
Laplacian, corresponding to the positive eigenvalue λ > 0, completing the proof. �

Proposition 7.3. (i) Assume Hypothesis 6.2 and let 0 6= v be any eigenfunction of HK,Ω corresponding to
the eigenvalue 0 6= λ ∈ σ(HK,Ω). In addition suppose that the operator of multiplication by V satisfies

MV ∈ B
(
H2(Ω), Hs(Ω)

)
for some 1/2 < s ≤ 2. (7.20)

Then u defined in (7.8) satisfies

u ∈ H5/2(Ω), implying v ∈ H1/2(Ω). (7.21)
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(ii) Assume the smooth case, that is, ∂Ω is C∞ and V ∈ C∞(Ω), and let 0 6= v be any eigenfunction of
HK,Ω corresponding to the eigenvalue 0 6= λ ∈ σ(HK,Ω). Then u defined in (7.8) satisfies

u ∈ C∞(Ω), implying v ∈ C∞(Ω). (7.22)

Proof. (i) We note that u ∈ L2(Ω; dnx) satisfies γ̂D(u) = 0, γ̂N (u) = 0, and (−∆ + V )u = (−∆ + V )v =
λv ∈ L2(Ω; dnx). Hence, by Theorems 5.9 and 5.11, we obtain that u ∈ H2

0 (Ω). Next, observe that
(−∆ + V )2u = λ2v ∈ L2(Ω; dnx) which therefore entails ∆2u ∈ Hs−2(Ω) by (7.20). With this at hand, the
regularity results in [157] (cf. also [5] for related results) yield that u ∈ H5/2(Ω).

(ii) Given the eigenfunction 0 6= v of HK,Ω, (7.8) yields that u satisfies the generalized buckling problem

(7.1), so that by elliptic regularity u ∈ C∞(Ω). By (7.9) and (7.10) one thus obtains

λv = (−∆ + V )v = (−∆ + V )u, with u ∈ C∞(Ω), (7.23)

proving (7.22). �

In passing, we note that the multiplier condition (7.20) is satisfied, for instance, if V is Lipschitz.
We next wish to prove that the perturbed Krein Laplacian has only point spectrum (which, as the

previous theorem shows, is directly related to the eigenvalues of the generalized buckling of the clamped
plate problem). This requires some preparations, and we proceed by first establishing the following.

Lemma 7.4. Assume Hypothesis 6.2. Then there exists a discrete subset ΛΩ of (0,∞) without any finite
accumulation points which has the following significance: For every z ∈ C\ΛΩ and every f ∈ H−2(Ω), the
problem {

u ∈ H2
0 (Ω),

(−∆ + V )(−∆ + V − z)u = f in Ω,
(7.24)

has a unique solution. In addition, there exists C = C(Ω, z) > 0 such that the solution satisfies

‖u‖H2(Ω) ≤ C‖f‖H−2(Ω). (7.25)

Finally, if z ∈ ΛΩ, then there exists u 6= 0 satisfying (7.2). In fact, the space of solutions for the problem
(7.2) is, in this case, finite-dimensional and nontrivial.

Proof. In a first stage, fix z ∈ C with Re(z) ≤ −M , where M = M(Ω, V ) > 0 is a large constant to be
specified later, and consider the bounded sesquilinear form

aV,z( · , · ) : H2
0 (Ω)×H2

0 (Ω)→ C,

aV,z(u, v) := ((−∆ + V )u, (−∆ + V )v)L2(Ω;dnx) +
(
V 1/2u, V 1/2v

)
L2(Ω;dnx)

(7.26)

− z (∇u,∇v)(L2(Ω;dnx))n , u, v ∈ H2
0 (Ω).

Then, since f ∈ H−2(Ω) =
(
H2

0 (Ω)
)∗

, the well-posedness of (7.24) will follow with the help of the Lax-
Milgram lemma as soon as we show that (7.26) is coercive. To this end, observe that via repeated integrations
by parts

aV,z(u, u) =

n∑
j,k=1

∫
Ω

dnx
∣∣∣ ∂2u

∂xj∂xk

∣∣∣2 − z n∑
j=1

∫
Ω

dnx
∣∣∣ ∂u
∂xj

∣∣∣2
+

∫
Ω

dnx
∣∣V 1/2u

∣∣+ 2 Re

(∫
Ω

dnx∆uV u

)
, u ∈ C∞0 (Ω).

(7.27)

We note that the last term is of the order

O
(
‖V ‖L∞(Ω;dnx)‖∆u‖L2(Ω;dnx)‖u‖L2(Ω;dnx)

)
(7.28)

and hence, can be dominated by

C‖V ‖L∞(Ω;dnx)

[
ε‖u‖2H2(Ω) + (4ε)−1‖u‖2L2(Ω;dnx)

]
, (7.29)

for every ε > 0. Thus, based on this and Poincaré’s inequality, we eventually obtain, by taking ε > 0
sufficiently small, and M (introduced in the beginning of the proof) sufficiently large, that

Re(aV,z(u, u)) ≥ C‖u‖2H2(Ω), u ∈ C∞0 (Ω). (7.30)

Hence,

Re(aV,z(u, u)) ≥ C‖u‖2H2(Ω), u ∈ H2
0 (Ω), (7.31)
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by the density of C∞0 (Ω) in H2
0 (Ω). Thus, the form (7.27) is coercive and hence, the problem (7.24) is

well-posed whenever z ∈ C has Re(z) ≤ −M .
We now wish to extend this type of conclusion to a larger set of z’s. With this in mind, set

AV,z := (−∆ + V )(−∆ + V − zIΩ) ∈ B
(
H2

0 (Ω), H−2(Ω)
)
, z ∈ C. (7.32)

The well-posedness of (7.24) is equivalent to the fact that the above operator is invertible. In this vein, we
note that if we fix z0 ∈ C with Re(z0) ≤ −M , then, from what we have shown so far,

A−1
V,z0
∈ B

(
H−2(Ω), H2

0 (Ω)
)

(7.33)

is a well-defined operator. For an arbitrary z ∈ C we then write

AV,z = AV,z0 [IH2
0 (Ω) +BV,z], (7.34)

where IH2
0 (Ω) is the identity operator on H2

0 (Ω) and we have set

BV,z := A−1
V,z0

(AV,z −AV,z0) = (z0 − z)A−1
V,z0

(−∆ + V ) ∈ B∞
(
H2

0 (Ω)
)
. (7.35)

Since C 3 z 7→ BV,z ∈ B
(
H2

0 (Ω)
)

is an analytic, compact operator-valued mapping, which vanishes for
z = z0, the Analytic Fredholm Theorem yields the existence of an exceptional, discrete set ΛΩ ⊂ C, without
any finite accumulation points such that

(IH2
0 (Ω) +BV,z)

−1 ∈ B
(
H2

0 (Ω)
)
, z ∈ C\ΛΩ. (7.36)

As a consequence of this, (7.33), and (7.34), we therefore have

A−1
V,z ∈ B

(
H−2(Ω), H2

0 (Ω)
)
, z ∈ C\ΛΩ. (7.37)

We now proceed to show that, in fact, ΛΩ ⊂ (0,∞). To justify this inclusion, we observe that

AV,z in (7.32) is a Fredholm operator, with Fredholm index zero, for every z ∈ C, (7.38)

due to (7.33), (7.34), and (7.35). Thus, if for some z ∈ C the operator AV,z fails to be invertible, then there
exists 0 6= u ∈ L2(Ω; dnx) such that AV,zu = 0. In view of (7.32) and Lemma 7.1, the latter condition forces
z ∈ (0,∞). Thus, ΛΩ consists of positive numbers. At this stage, it remains to justify the very last claim in
the statement of the lemma. This, however, readily follows from (7.38), completing the proof. �

Theorem 7.5. Assume Hypothesis 6.2 and recall the exceptional set ΛΩ ⊂ (0,∞) from Lemma 7.4, which
is discrete with only accumulation point at infinity. Then

σ(HK,Ω) = ΛΩ ∪ {0}. (7.39)

Furthermore, for every 0 6= z ∈ C\ΛΩ, the action of the resolvent (HK,Ω − zIΩ)−1 on an arbitrary element
f ∈ L2(Ω; dnx) can be described as follows: Let v solve{

v ∈ H2
0 (Ω),

(−∆ + V )(−∆ + V − z)v = (−∆ + V )f ∈ H−2(Ω),
(7.40)

and consider
w := z−1[(−∆ + V − z)v − f ] ∈ L2(Ω; dnx). (7.41)

Then
(HK,Ω − zIΩ)−1f = v + w. (7.42)

Finally, every z ∈ ΛΩ ∪ {0} is actually an eigenvalue (of finite multiplicity, if nonzero) for the perturbed
Krein Laplacian, and the essential spectrum of this operator is given by

σess(HK,Ω) = {0}. (7.43)

Proof. Let 0 6= z ∈ C\ΛΩ, fix f ∈ L2(Ω; dnx), and assume that v, w are as in the statement of the theorem.
That v (hence also w) is well-defined follows from Lemma 7.4. Set

u := v + w ∈H2
0 (Ω)+̇

{
η ∈ L2(Ω; dnx)

∣∣ (−∆ + V )η = 0 in Ω
}

= ker
(
τN,V,0

)
↪→ dom(Hmax,Ω), (7.44)

by (6.6). Thus, u ∈ dom(Hmax,Ω) and τN,V,0u = 0 which force u ∈ dom(HK,Ω). Furthermore,

‖u‖L2(Ω;dnx) + ‖∆u‖L2(Ω;dnx) ≤ C‖f‖L2(Ω;dnx), (7.45)

for some C = C(Ω, V, z) > 0, and

(−∆ + V − z)u = (−∆ + V − z)v + (−∆ + V − z)w
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= (−∆ + V − z)v + z−1(−∆ + V − z)[(−∆ + V − z)v − f ]

= (−∆ + V − z)v + z−1(−∆ + V )[(−∆ + V − z)v − f ]− [(−∆ + V − z)v − f ]

= f + z−1[(−∆ + V )(−∆ + V − z)v − (−∆ + V )f ] = f, (7.46)

by (7.40), (7.41). As a consequence of this analysis, we may conclude that the operator

HK,Ω − zIΩ : dom(HK,Ω) ⊂ L2(Ω; dnx)→ L2(Ω; dnx) (7.47)

is onto (with norm control), for every z ∈ C\(ΛΩ ∪ {0}). When z ∈ C\(ΛΩ ∪ {0}) the last part in Lemma
7.4 together with Theorem 7.2 also yield that the operator (7.47) is injective. Together, these considerations
prove that

σ(HK,Ω) ⊆ ΛΩ ∪ {0}. (7.48)

Since the converse inclusion also follows from the last part in Lemma 7.4 together with Theorem 7.2, equality
(7.39) follows. Formula (7.42), along with the final conclusion in the statement of the theorem, is also implicit
in the above analysis plus the fact that ker(HK,Ω) is infinite-dimensional (cf. (2.46) and [145]). �

8. Eigenvalue Estimates for the Perturbed Krein Laplacian

The aim of this section is to study in greater detail the nature of the spectrum of the operator HK,Ω.
We split the discussion into two separate cases, dealing with the situation when the potential V is as in
Hypothesis 4.7 (Subsection 8.1), and when V ≡ 0 (Subsection 8.2).

8.1. The Perturbed Case. Given a domain Ω as in Hypothesis 5.7 and a potential V as in Hypothesis
4.7, we recall the exceptional set ΛΩ ⊂ (0,∞) associated with Ω as in Section 7, consisting of numbers

0 < λK,Ω,1 ≤ λK,Ω,2 ≤ · · · ≤ λK,Ω,j ≤ λK,Ω,j+1 ≤ · · · (8.1)

converging to infinity. Above, we have displayed the λ’s according to their (geometric) multiplicity which
equals the dimension of the kernel of the (Fredholm) operator (7.32).

Lemma 8.1. Assume Hypothesis 6.2. Then there exists a family of functions {uj}j∈N with the following
properties:

uj ∈ H2
0 (Ω) and (−∆ + V )2uj = λK,Ω,j(−∆ + V )uj , j ∈ N, (8.2)

((−∆ + V )uj , (−∆ + V )uk)L2(Ω;dnx) = δj,k, j, k ∈ N, (8.3)

u =

∞∑
j=1

((−∆ + V )u, (−∆ + V )uj)L2(Ω;dnx) uj , u ∈ H2
0 (Ω), (8.4)

with convergence in H2(Ω).

Proof. Consider the vector space and inner product

HV := H2
0 (Ω), [u, v]HV :=

∫
Ω

dnx (−∆ + V )u (−∆ + V )v, u, v ∈ HV . (8.5)

We claim that
(
HV , [ · , · ]HV

)
is a Hilbert space. This readily follows as soon as we show that

‖u‖H2(Ω) ≤ C‖(−∆ + V )u‖L2(Ω;dnx), u ∈ H2
0 (Ω), (8.6)

for some finite constant C = C(Ω, V ) > 0. To justify this, observe that for every u ∈ C∞0 (Ω) we have∫
Ω

dnx |u|2 ≤ C
n∑
j=1

∫
Ω

dnx
∣∣∣ ∂u
∂xj

∣∣∣2
≤ C

n∑
j,k=1

∫
Ω

dnx
∣∣∣ ∂2u

∂xj∂xk

∣∣∣2 =

∫
Ω

dnx |∆u|2, (8.7)

where we have used Poincaré’s inequality in the first two steps. Based on this, the fact that V is bounded,
and the density of C∞0 (Ω) in H2

0 (Ω) we therefore have

‖u‖H2(Ω) ≤ C
(
‖(−∆ + V )u‖L2(Ω;dnx) + ‖u‖L2(Ω;dnx)

)
, u ∈ H2

0 (Ω), (8.8)

for some finite constant C = C(Ω, V ) > 0. Hence, the operator

−∆ + V ∈ B
(
H2

0 (Ω), L2(Ω; dnx)
)

(8.9)
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is bounded from below modulo compact operators, since the embedding H2
0 (Ω) ↪→ L2(Ω; dnx) is compact.

Hence, it follows that (8.9) has closed range. Since this operator is also one-to-one (as 0 6∈ σ(HD,Ω)), estimate
(8.6) follows from the Open Mapping Theorem. This shows that

HV = H2
0 (Ω) as Banach spaces, with equivalence of norms. (8.10)

Next, we recall from the proof of Lemma 7.4 that the operator (7.32) is invertible for λ ∈ C\ΛΩ (cf. (7.37)),
and that ΛΩ ⊂ (0,∞). Taking λ = 0 this shows that

(−∆ + V )−2 := ((−∆ + V )2)−1 ∈ B
(
H−2(Ω), H2

0 (Ω)
)

(8.11)

is well-defined. Furthermore, this operator is self-adjoint (viewed as a linear, bounded operator mapping a
Banach space into its dual, cf. (2.1)). Consider now

B := −(−∆ + V )−2(−∆ + V ). (8.12)

Since B admits the factorization

B : H2
0 (Ω)

−∆+V
−−−−→ L2(Ω; dnx)

ι
↪→ H−2(Ω)

−(−∆+V )−2

−−−−−−−→ H2
0 (Ω), (8.13)

where the middle arrow is a compact inclusion, it follows that

B ∈ B(HV ) is compact and injective. (8.14)

In addition, for every u, v ∈ C∞0 (Ω) we have via repeated integrations by parts

[Bu, v]HV = −
(
(−∆ + V )(−∆ + V )−2(−∆ + V )u, (−∆ + V )v

)
L2(Ω;dnx)

= −
(
(−∆ + V )−2(−∆ + V )u, (−∆ + V )2v

)
L2(Ω;dnx)

= −
(
(−∆ + V )u, (−∆ + V )−2(−∆ + V )2v

)
L2(Ω;dnx)

= −((−∆ + V )u, v)L2(Ω;dnx)

= −(∇u,∇v)(L2(Ω;dnx))n −
(
V 1/2u, V 1/2v

)
L2(Ω;dnx)

. (8.15)

Consequently, by symmetry, [Bu, v]HV = [Bv, u]HV , u, v ∈ C∞0 (Ω) and hence,

[Bu, v]HV = [Bv, u]HV u, v ∈ HV , (8.16)

since C∞0 (Ω) ↪→ HV densely. Thus,

B ∈ B∞(HV ) is self-adjoint and injective. (8.17)

To continue, we recall the operator AV,λ from (7.32) and observe that

(−∆ + V )−2AV,z = IHV − zB, z ∈ C, (8.18)

as operators in B
(
H2

0 (Ω)
)
. Thus, the spectrum of B consists (including multiplicities) precisely of the

reciprocals of those numbers z ∈ C for which the operator AV,z ∈ B
(
H2

0 (Ω), H−2(Ω)
)

fails to be invertible.
In other words, the spectrum of B ∈ B(HV ) is given by

σ(B) = {(λK,Ω,j)−1}j∈N. (8.19)

Now, from the spectral theory of compact, self-adjoint (injective) operators on Hilbert spaces (cf., e.g., [142,
Theorem 2.36]), it follows that there exists a family of functions {uj}j∈N for which

uj ∈ HV and Buj = (λK,Ω,j)
−1uj , j ∈ N, (8.20)

[uj , uk]HV = δj,k, j, k ∈ N, (8.21)

u =

∞∑
j=1

[u, uj ]HV uj , u ∈ HV , (8.22)

with convergence in HV . Unraveling notation, (8.2)–(8.4) then readily follow from (8.20)–(8.22). �

Remark 8.2. We note that Lemma 8.1 gives the orthogonality of the eigenfunctions uj in terms of the inner
product for HV (cf. (8.3) and (8.5), or see (8.21) immediately above). Here we remark that the given inner
product for HV does not correspond to the inner product that has traditionally been used in treating the
buckling problem for a clamped plate, even after specializing to the case V ≡ 0. The traditional inner
product in that case is the Dirichlet inner product, defined by

D(u, v) =

∫
Ω

dnx (∇u,∇v)Cn , u, v ∈ H1
0 (Ω), (8.23)
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where (·, ·)Cn denotes the usual inner product for elements of Cn, conjugate linear in its first entry, linear
in its second. When the potential V > 0 is included, the appropriate generalization of D(u, v) is the inner
product

DV (u, v) = D(u, v) +

∫
Ω

dnxV u v, u, v ∈ H1
0 (Ω) (8.24)

(we recall that throughout this survey V is assumed nonnegative, and hence that this inner product gives rise
to a well-defined norm). Here we observe that orthogonality of the eigenfunctions of the buckling problem
in the sense of HV is entirely equivalent to their orthogonality in the sense of DV (·, ·): Indeed, starting from
the orthogonality in (8.21), integrating by parts, and using the eigenvalue equation (8.2), one has, for j 6= k,

0 = [uj , uk]HV =

∫
Ω

dnx (−∆ + V )uj (−∆ + V )uk =

∫
Ω

dnxuj (−∆ + V )2uk

= λk

∫
Ω

dnxuj (−∆ + V )uk = λk

[
D(uj , uk) +

∫
Ω

dnxV uj uk

]
= λkDV (uj , uk), u, v ∈ H2

0 (Ω), (8.25)

where λk is shorthand for λK,Ω,k of (8.1), the eigenvalue corresponding to the eigenfunction uk (cf. (8.2),
which exhibits the eigenvalue equation for the eigenpair (uj , λj)). Since all the λj ’s considered here are
positive (see (8.1)), this shows that the family of eigenfunctions {uj}j∈N, orthogonal with respect to [·, ·]HV ,
is also orthogonal with respect to the “generalized Dirichlet inner product”, DV (·, ·). Clearly, this argument
can also be reversed (since all eigenvalues are positive), and one sees that a family of eigenfunctions of the
generalized buckling problem orthogonal in the sense of the Dirichlet inner product DV (·, ·) is also orthogonal
with respect to the inner product for HV , that is, with respect to [·, ·]HV . On the other hand, it should be
mentioned that the normalization of each of the uk’s changes if one passes from one of these inner products
to the other, due to the factor of λk encountered above (specifically, one has [uk, uk]HV = λkDV (uk, uk) for
each k).

Next, we recall the following result (which provides a slight variation of the case V ≡ 0 treated in [89]).

Lemma 8.3. Assume Hypothesis 6.2. Then the subspace (−∆ + V )H2
0 (Ω) is closed in L2(Ω; dnx) and

L2(Ω; dnx) = ker(HV,max,Ω)⊕
[
(−∆ + V )H2

0 (Ω)
]
, (8.26)

as an orthogonal direct sum.

Our next theorem shows that there exists a countable family of orthonormal eigenfunctions for the per-
turbed Krein Laplacian which span the orthogonal complement of the kernel of this operator:

Theorem 8.4. Assume Hypothesis 6.2. Then there exists a family of functions {wj}j∈N with the following
properties:

wj ∈ dom(HK,Ω) ∩H1/2(Ω) and HK,Ωwj = λK,Ω,jwj , λK,Ω,j > 0, j ∈ N, (8.27)

(wj , wk)L2(Ω;dnx) = δj,k, j, k ∈ N, (8.28)

L2(Ω; dnx) = ker(HK,Ω) ⊕ lin. span{wj}j∈N (orthogonal direct sum). (8.29)

Proof. That wj ∈ H1/2(Ω), j ∈ N, follows from Proposition 7.3 (i). The rest is a direct consequence of
Lemma 8.3, the fact that

ker(HV,max,Ω) =
{
u ∈ L2(Ω; dnx)

∣∣ (−∆ + V )u = 0
}

= ker(HK,Ω), (8.30)

the second part of Theorem 7.2, and Lemma 8.1 in which we set wj := (−∆ + V )uj , j ∈ N. �

Next, we define the following Rayleigh quotient

RK,Ω[u] :=
‖(−∆ + V )u‖2L2(Ω;dnx)

‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2L2(Ω;dnx)

, 0 6= u ∈ H2
0 (Ω). (8.31)

Then the following min-max principle holds:

Proposition 8.5. Assume Hypothesis 6.2. Then

λK,Ω,j = min
Wj subspace of H2

0(Ω)

dim(Wj)=j

(
max

06=u∈Wj

RK,Ω[u]
)
, j ∈ N. (8.32)
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As a consequence, given two domains Ω, Ω̃ as in Hypothesis 5.7 for which Ω ⊆ Ω̃, and given a potential

0 ≤ Ṽ ∈ L∞(Ω̃), one has

0 < λ̃K,Ω̃,j ≤ λK,Ω,j , j ∈ N, (8.33)

where V := Ṽ |Ω, and λK,Ω,j and λ̃K,Ω̃,j, j ∈ N, are the eigenvalues corresponding to the Krein–von Neumann

extensions associated with Ω, V and Ω̃, Ṽ , respectively.

Proof. Obviously, (8.33) is a consequence of (8.32), so we will concentrate on the latter. We recall the
Hilbert space HV from (8.5) and the orthogonal family {uj}j∈N in (8.20)–(8.22). Next, consider the following
subspaces of HV ,

V0 := {0}, Vj := lin. span{ui | 1 ≤ i ≤ j}, j ∈ N. (8.34)

Finally, set

V ⊥j := {u ∈ H | [u, ui]HV = 0, 1 ≤ i ≤ j}, j ∈ N. (8.35)

We claim that

λK,Ω,j = min
06=u∈V ⊥j−1

RK,Ω[u] = RK,Ω[uj ], j ∈ N. (8.36)

Indeed, if j ∈ N and u =
∑∞
k=1 ckuk ∈ V ⊥j−1, then ck = 0 whenever 1 ≤ k ≤ j − 1. Consequently,

‖(−∆ + V )u‖2L2(Ω;dnx) =

∥∥∥∥ ∞∑
k=j

ck(−∆ + V )uk

∥∥∥∥2

L2(Ω;dnx)

=

∞∑
k=j

|ck|2 (8.37)

by (8.3), so that

‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2L2(Ω;dnx) = ((−∆ + V )u, u)L2(Ω;dnx)

=

( ∞∑
k=j

ck(−∆ + V )uk, u

)
L2(Ω;dnx)

=

( ∞∑
k=j

(λK,Ω,k)−1ck(−∆ + V )2uk, u

)
L2(Ω;dnx)

=

( ∞∑
k=j

(λK,Ω,k)−1ck(−∆ + V )uk, (−∆ + V )u

)
L2(Ω;dnx)

=

( ∞∑
k=j

(λK,Ω,k)−1ck(−∆ + V )uk,

∞∑
k=j

ck(−∆ + V )uk

)
L2(Ω;dnx)

=

∞∑
k=j

(λK,Ω,k)−1|ck|2 ≤ (λK,Ω,j)
−1
∞∑
k=j

|ck|2

= (λK,Ω,j)
−1‖(−∆ + V )u‖2L2(Ω;dnx), (8.38)

where in the third step we have relied on (8.2), and the last step is based on (8.37). Thus, RK,Ω[u] ≥ λK,Ω,j
with equality if u = uj (cf. the calculation leading up to (7.4)). This proves (8.36). In fact, the same type
of argument as the one just performed also shows that

λK,Ω,j = max
0 6=u∈Vj

RK,Ω[u] = RK,Ω[uj ], j ∈ N. (8.39)

Next, we claim that if Wj is an arbitrary subspace of H of dimension j then

λK,Ω,j ≤ max
06=u∈Wj

RK,Ω[u], j ∈ N. (8.40)

To justify this inequality, observe that Wj ∩ V ⊥j−1 6= {0} by dimensional considerations. Hence, if 0 6= vj ∈
Wj ∩ V ⊥j−1 then

λK,Ω,j = min
0 6=u∈V ⊥j−1

RK,Ω[u] ≤ RK,Ω[vj ] ≤ max
06=u∈Wj

RK,Ω[u], (8.41)

establishing (8.40). Now formula (8.32) readily follows from this and (8.39). �
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If Ω ⊂ Rn is a bounded Lipschitz domain denote by

0 < λD,Ω,1 ≤ λD,Ω,2 ≤ · · · ≤ λD,Ω,j ≤ λD,Ω,j+1 ≤ · · · (8.42)

the collection of eigenvalues for the perturbed Dirichlet Laplacian HD,Ω (again, listed according to their
multiplicity). Then, if 0 ≤ V ∈ L∞(Ω; dnx), we have the well-known formula (cf., e.g., [64] for the case
where V ≡ 0)

λD,Ω,j = min
Wj subspace of H1

0(Ω)

dim(Wj)=j

(
max

0 6=u∈Wj

RD,Ω[u]
)
, j ∈ N, (8.43)

where RD,Ω[u], the Rayleigh quotient for the perturbed Dirichlet Laplacian, is given by

RD,Ω[u] :=
‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2L2(Ω;dnx)

‖u‖2L2(Ω;dnx)

, 0 6= u ∈ H1
0 (Ω). (8.44)

From Theorem 2.10, Theorem 4.8, and Proposition 5.10, we already know that, granted Hypothesis 6.2, the
nonzero eigenvalues of the perturbed Krein Laplacian are at least as large as the corresponding eigenvalues
of the perturbed Dirichlet Laplacian. It is nonetheless of interest to provide a direct, analytical proof of this
result. We do so in the proposition below.

Proposition 8.6. Assume Hypothesis 6.2. Then

0 < λD,Ω,j ≤ λK,Ω,j , j ∈ N. (8.45)

Proof. By the density of C∞0 (Ω) into H2
0 (Ω) and H1

0 (Ω), respectively, we obtain from (8.32) and (8.43) that

λK,Ω,j = inf
Wj subspace of C∞0 (Ω)

dim(Wj)=j

(
sup

06=u∈Wj

RK,Ω[u]
)
, (8.46)

λD,Ω,j = inf
Wj subspace of C∞0 (Ω)

dim(Wj)=j

(
sup

0 6=u∈Wj

RD,Ω[u]
)
, (8.47)

for every j ∈ N. Since, if u ∈ C∞0 (Ω),

‖∇u‖2(L2(Ω;dnx))n + ‖V 1/2u‖2L2(Ω;dnx) = ((−∆ + V )u, u)L2(Ω;dnx)

≤ ‖(−∆ + V )u‖L2(Ω;dnx)‖u‖L2(Ω;dnx), (8.48)

we deduce that
RD,Ω[u] ≤ RK,Ω[u], whenever 0 6= u ∈ C∞0 (Ω). (8.49)

With this at hand, (8.45) follows from (8.46)–(8.47). �

Remark 8.7. Another analytical approach to (8.45) which highlights the connection between the perturbed
Krein Laplacian and a fourth-order boundary problem is as follows. Granted Hypotheses 4.1 and 4.7, and
given λ ∈ C, consider the following eigenvalue problem

u ∈ dom(−∆max,Ω), (−∆ + V )u ∈ dom(−∆max,Ω),

(−∆ + V )2u = λ (−∆ + V )u in Ω,

γ̂D(u) = 0 in
(
N1/2(∂Ω)

)∗
,

γ̂D((−∆ + V )u) = 0 in
(
N1/2(∂Ω)

)∗
.

(8.50)

Associated with it is the sesquilinear form
ãV,λ( · , · ) : H̃ × H̃ −→ C, H̃ := H2(Ω) ∩H1

0 (Ω),

ãV,λ(u, v) := ((−∆ + V )u, (−∆ + V )v)L2(Ω;dnx) +
(
V 1/2u, V 1/2v

)
L2(Ω;dnx)

−λ (∇u,∇v)(L2(Ω;dnx))n , u, v ∈ H̃,
(8.51)

which has the property that

u ∈ H̃ satisfies ãV,λ(u, v) = 0 for every v ∈ H̃ if and only if u solves (8.50). (8.52)

We note that since the operator −∆ + V : H2(Ω) ∩H1
0 (Ω)→ L2(Ω; dnx) is an isomorphism, it follows that

u 7→ ‖(−∆+V )u‖L2(Ω;dnx) is an equivalent norm on the Banach space H̃, and the form ãV,λ( · , · ) is coercive
if λ < −M , where M = M(Ω, V ) > 0 is a sufficiently large constant. Based on this and proceeding as in
Section 7, it can then be shown that the problem (8.50) has nontrivial solutions if and only if λ belongs
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to an exceptional set Λ̃Ω,V ⊂ (0,∞) which is discrete and only accumulates at infinity. Furthermore, u
solves (8.50) if and only if v := (−∆ + V )u is an eigenfunction for HD,Ω, corresponding to the eigenvalue
λ and, conversely, if u is an eigenfunction for HD,Ω corresponding to the eigenvalue λ, then u solves (8.50).
Consequently, the problem (8.50) is spectrally equivalent to HD,Ω. From this, it follows that the eigenvalues
{λD,Ω,j}j∈N of HD,Ω can be expressed as

λD,Ω,j = min
Wj subspace of H̃

dim(Wj)=j

(
max

06=u∈Wj

RK,Ω[u]
)
, j ∈ N, (8.53)

where the Rayleigh quotient RK,Ω[u] is as in (8.31). The upshot of this representation is that it immediately

yields (8.45), on account of (8.32) and the fact that H2
0 (Ω) ⊂ H̃.

Next, let Ω be as in Hypothesis 4.1 and 0 ≤ V ∈ L∞(Ω; dnx). For λ ∈ R set

NX,Ω(λ) := #{j ∈ N |λX,Ω,j ≤ λ}, X ∈ {D,K}, (8.54)

where #S denotes the cardinality of the set S.

Corollary 8.8. Assume Hypothesis 6.2. Then

NK,Ω(λ) ≤ ND,Ω(λ), λ ∈ R. (8.55)

In particular,

NK,Ω(λ) = O(λn/2) as λ→∞. (8.56)

Proof. Estimate (8.55) is a trivial consequence of (8.45), whereas (8.56) follows from (8.42) and Weyl’s
asymptotic formula for the Dirichlet Laplacian in a Lipschitz domain (cf. [40] and the references therein for
very general results of this nature). �

8.2. The Unperturbed Case. What we have proved in Section 7 and Section 8.1 shows that all known
eigenvalue estimates for the (standard) buckling problem

u ∈ H2
0 (Ω), ∆2u = −λ∆u in Ω, (8.57)

valid in the class of domains described in Hypothesis 5.7, automatically hold, in the same format, for the

Krein Laplacian (corresponding to V ≡ 0). For example, we have the following result with λ
(0)
K,Ω,j , j ∈ N,

denoting the nonzero eigenvalues of the Krein Laplacian −∆K,Ω and λ
(0)
D,Ω,j , j ∈ N, denoting the eigenvalues

of the Dirichlet Laplacian −∆D,Ω:

Theorem 8.9. If Ω ⊂ Rn is as in Hypothesis 5.7, the nonzero eigenvalues of the Krein Laplacian −∆K,Ω

satisfy

λ
(0)
K,Ω,2 ≤

n2 + 8n+ 20

(n+ 2)2
λ

(0)
K,Ω,1, (8.58)

n∑
j=1

λ
(0)
K,Ω,j+1 < (n+ 4)λ

(0)
K,Ω,1 −

4

n+ 4
(λ

(0)
K,Ω,2 − λ

(0)
K,Ω,1) 6 (n+ 4)λ

(0)
K,Ω,1, (8.59)

k∑
j=1

(
λ

(0)
K,Ω,k+1 − λ

(0)
K,Ω,j

)2 ≤ 4(n+ 2)

n2

k∑
j=1

(
λ

(0)
K,Ω,k+1 − λK,0,j

)
λ

(0)
K,Ω,j , k ∈ N, (8.60)

Furthermore, if j(n−2)/2,1 is the first positive zero of the Bessel function of first kind and order (n−2)/2 (cf.
[1, Sect. 9.5]), vn denotes the volume of the unit ball in Rn, and |Ω| stands for the n-dimensional Euclidean
volume of Ω, then

22/nj2
(n−2)/2,1v

2/n
n

|Ω|2/n
< λ

(0)
D,Ω,2 ≤ λ

(0)
K,Ω,1. (8.61)

Proof. With the eigenvalues of the buckling plate problem replacing the corresponding eigenvalues of the
Krein Laplacian, estimates (8.58)–(8.60) have been proved in [26], [27], [28], [60], and [110] (indeed, further
strengthenings of (8.59) are detailed in [27], [28]), whereas the respective parts of (8.61) are covered by
results in [122] and [150] (see also [31], [47]). �
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Remark 8.10. Given the physical interpretation of the first eigenvalue for (8.57), it follows that λ
(0)
K,Ω,1, the

first nonzero eigenvalue for the Krein Laplacian −∆K,Ω, is proportional to the load compression at which
the plate Ω (assumed to be as in Hypothesis 5.7) buckles. In this connection, it is worth remembering the
long-standing conjecture of Pólya–Szegő, to the effect that amongst all plates of a given area, the circular
one will buckle first (assuming all relevant physical parameters to be identical). In [31], the authors have

given a partial result in this direction which, in terms of the first eigenvalue λ
(0)
K,Ω,1 for the Krein Laplacian

−∆K,Ω in a domain Ω as in Hypothesis 5.7, reads

λ
(0)
K,Ω,1 >

22/nj2
(n−2)/2,1v

2/n
n

|Ω|2/n
= cnλ

(0)

K,Ω#,1
(8.62)

where Ω# is the n-dimensional ball with the same volume as Ω, and

cn = 22/n[j(n−2)/2,1/jn/2,1]2 = 1− (4− log 4)/n+O(n−5/3)→ 1 as n→∞. (8.63)

This result implies an earlier inequality of Bramble and Payne [47] for the two-dimensional case, which reads

λ
(0)
K,Ω,1 >

2πj2
0,1

Area (Ω)
. (8.64)

Given that (8.58) states a universal inequality for the ratio of the first two nonzero eigenvalues of the
Krein Laplacian, that is, of the buckling problem, it is natural to wonder what the best upper bound for this
ratio might be, and the shape of domain that saturates it. While this question is still open, the conjecture
that springs most naturally to mind is that the ratio is maximized by the disk/ball, and that in n dimensions
the best upper bound is therefore j2

(n+2)/2,1/j
2
n/2,1 (a ratio of squares of first positive zeros of Bessel functions

of appropriate order). In the context of the buckling problem this conjecture was stated in [26] (see p. 129).
This circle of ideas goes back to Payne, Pólya, and Weinberger [154, 155], who first considered bounds for
ratios of eigenvalues and who formulated the corresponding conjecture for the first two membrane eigenvalues
(i.e., that the disk/ball maximizes the ratio of the first two eigenvalues).

Before stating an interesting universal inequality concerning the ratio of the first (nonzero) Dirichlet and
Krein Laplacian eigenvalues for a bounded domain with boundary of nonnegative Gaussian mean curvature
(which includes, obviously, the case of a bounded convex domain), we recall a well-known result due to
Babuška and Výborný [34] concerning domain continuity of Dirichlet eigenvalues (see also [55], [56], [62],
[80], [171], [186], and the literature cited therein):

Theorem 8.11. Let Ω ⊂ Rn be open and bounded, and suppose that Ωm ⊂ Ω, m ∈ N, are open and
monotone increasing toward Ω, that is,

Ωm ⊂ Ωm+1 ⊂ Ω, m ∈ N,
⋃
m∈N

Ωm = Ω. (8.65)

In addition, let −∆D,Ωm and −∆D,Ω be the Dirichlet Laplacians in L2(Ωm; dnx) and L2(Ω; dnx) (cf. (4.47),
(4.53)), and denote their respective spectra by

σ(−∆D,Ωm) =
{
λ

(0)
D,Ωm,j

}
j∈N, m ∈ N, and σ(−∆D,Ω) =

{
λ

(0)
D,Ω,j

}
j∈N. (8.66)

Then, for each j ∈ N,

lim
m→∞

λ
(0)
D,Ωm,j

= λ
(0)
D,Ω,j . (8.67)

Theorem 8.12. Assume that Ω ⊂ Rn is a bounded quasi-convex domain. In addition, assume there exists
a sequence of C∞-smooth domains {Ωm}m∈N satisfying the following two conditions:

(i) The sequence {Ωm}m∈N monotonically converges to Ω from inside, that is,

Ωm ⊂ Ωm+1 ⊂ Ω, m ∈ N,
⋃
m∈N

Ωm = Ω. (8.68)

(ii) If Gm denotes the Gaussian mean curvature of ∂Ωm, then

Gm ≥ 0 for all m ∈ N. (8.69)

Then the first Dirichlet eigenvalue and the first nonzero eigenvalue for the Krein Laplacian in Ω satisfy

1 ≤
λ

(0)
K,Ω,1

λ
(0)
D,Ω,1

≤ 4. (8.70)
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In particular, each bounded convex domain Ω ⊂ Rn satisfies conditions (i) and (ii) and hence (8.70) holds
for such domains.

Proof. Of course, the lower bound in (8.70) is contained in (8.45), so we will concentrate on establishing the
upper bound. To this end, we recall that it is possible to approximate Ω with a sequence of C∞-smooth
bounded domains satisfying (8.68) and (8.69). By Theorem 8.11, the Dirichlet eigenvalues are continuous
under the domain perturbations described in (8.68) and one obtains, in particular,

lim
m→∞

λ
(0)
D,Ωm,1

= λ
(0)
D,Ω,1. (8.71)

On the other hand, (8.33) yields that λ
(0)
K,Ω,1 ≤ λ

(0)
K,Ωm,1

. Together with (8.71), this shows that it suffices to
prove that

λ
(0)
K,Ωm,1

≤ 4λ
(0)
D,Ωm,1

, m ∈ N. (8.72)

Summarizing, it suffices to show that

Ω ⊂ Rn a bounded, C∞-smooth domain, whose Gaussian mean

curvature G of ∂Ω is nonnegative, implies λ
(0)
K,Ω,1 ≤ 4λ

(0)
D,Ω,1.

(8.73)

Thus, we fix a bounded, C∞ domain Ω ⊂ Rn with G ≥ 0 on ∂Ω and denote by u1 the (unique, up to

normalization) first eigenfunction for the Dirichlet Laplacian in Ω. In the sequel, we abbreviate λD := λ
(0)
D,Ω,1

and λK := λ
(0)
K,Ω,1. Then (cf. [92, Theorems 8.13 and 8.38]),

u1 ∈ C∞(Ω), u1|∂Ω = 0, u1 > 0 in Ω, −∆u1 = λD u1 in Ω, (8.74)

and

λD =

∫
Ω
dnx |∇u1|2∫

Ω
dnx |u1|2

. (8.75)

In addition, (8.36) (with j = 1) and u2
1 as a “trial function” yields

λK ≤
∫

Ω
dnx |∆(u2

1)|2∫
Ω
dnx |∇(u2

1)|2
. (8.76)

Then (8.73) follows as soon as one shows that the right-hand side of (8.76) is less than or equal to the
quadruple of the right-hand side of (8.75). For bounded, smooth, convex domains in the plane (i.e., for
n = 2), such an estimate was established in [151]. For the convenience of the reader, below we review
Payne’s ingenious proof, primarily to make sure that it continues to hold in much the same format for our
more general class of domains and in all space dimensions (in the process, we also shed more light on some
less explicit steps in Payne’s original proof, including the realization that the key hypothesis is not convexity
of the domain, but rather nonnegativity of the Gaussian mean curvature G of its boundary). To get started,
we expand

(∆(u2
1))2 = 4

[
λ2
Du

4
1 − 2λD u

2
1|∇u1|2 + |∇u1|4

]
, |∇(u2

1)|2 = 4u2
1|∇u1|2, (8.77)

and use (8.76) to write

λK ≤ λ2
D

( ∫
Ω
dnxu4

1∫
Ω
dnxu2

1|∇u1|2

)
− 2λD +

( ∫
Ω
dnx |∇u1|4∫

Ω
dnxu2

1|∇u1|2

)
. (8.78)

Next, observe that based on (8.74) and the Divergence Theorem we may write∫
Ω

dnx
[
3u2

1|∇u1|2 − λD u4
1

]
=

∫
Ω

dnx
[
3u2

1|∇u1|2 + u3
1∆u1

]
=

∫
Ω

dnxdiv
(
u3

1∇u1

)
=

∫
∂Ω

dn−1ω u3
1∂νu1 = 0, (8.79)

where ν is the outward unit normal to ∂Ω, and dn−1ω denotes the induced surface measure on ∂Ω. This
shows that the coefficient of λ2

D in (8.78) is 3λ−1
D , so that

λK ≤ λD + θ, where θ :=

∫
Ω
dnx |∇u1|4∫

Ω
dnxu2

1|∇u1|2
. (8.80)

We begin to estimate θ by writing∫
Ω

dnx |∇u1|4 =

∫
Ω

dnx (∇u1) · (|∇u1|2∇u1) = −
∫

Ω

dnxu1 div(|∇u1|2∇u1)
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= −
∫

Ω

dnx
[
(u1∇u1) · (∇|∇u1|2)− λD u2

1|∇u1|2
]
, (8.81)

so that ∫
Ω
dnx (u1∇u1) · (∇|∇u1|2)∫

Ω
dnxu2

1|∇u1|2
= λD − θ. (8.82)

To continue, one observes that because of (8.74) and the classical Hopf lemma (cf. [92, Lemma 3.4]) one has
∂νu1 < 0 on ∂Ω. Thus, |∇u1| 6= 0 at points in Ω near ∂Ω. This allows one to conclude that

ν = − ∇u1

|∇u1|
near and on ∂Ω. (8.83)

By a standard result from differential geometry (see, for example, [69, p. 142])

div(ν) = (n− 1)G on ∂Ω, (8.84)

where G denotes the mean curvature of ∂Ω.
To proceed further, we introduce the following notations for the second derivative matrix, or Hessian, of

u1 and its norm:

Hess(u1) :=

(
∂2u1

∂xj∂xk

)
1≤j,k≤n

, |Hess(u1)| :=
( n∑
j,k=1

|∂j∂ku1|2
)1/2

. (8.85)

Relatively brief and straightforward computations (cf. [123, Theorem 2.2.14]) then yield

div(ν) = −
n∑
j=1

∂j

(
∂ju1

|∇u1|

)
= |∇u1|−1[−∆u1 + 〈ν,Hess(u1)ν〉]

= |∇u1|−1〈ν,Hess(u1)ν〉 on ∂Ω (8.86)

(since −∆u1 = λDu1 = 0 on ∂Ω),

ν · (∂νν) = −
n∑

j,k=1

νjνk∂k

(
∂ju1

|∇u1|

)
= −|∇u1|−1〈ν,Hess(u1)ν〉+ |∇u1|−1|ν|2〈ν,Hess(u1)ν〉
= 0, (8.87)

and finally, by (8.86),

∂ν(|∇u1|2) =

n∑
j,k=1

νj∂j [(∂ku1)2] = 2

n∑
j,k=1

νj(∂ku1)(∂j∂ku1)

= −2|∇u1|〈ν,Hess(u1)ν〉 = −2|∇u1|2div(ν)

= −2(n− 1)G|∇u1|2 ≤ 0 on ∂Ω, (8.88)

given our assumption G ≥ 0.
Next, we compute∫

Ω

dnx
[
|∇(|∇u1|2)|2 − 2λD |∇u1|4 + 2|∇u1|2|Hess(u1)|2

]
=

∫
Ω

dnx div
(
|∇u1|2∇(|∇u1|2)

)
=

∫
∂Ω

dn−1ω ν ·
(
|∇u1|2∇(|∇u1|2)

)
=

∫
∂Ω

dn−1ω |∇u1|2∂ν
(
|∇u1|2

)
≤ 0, (8.89)

since ∂ν(|∇u1|2) ≤ 0 on ∂Ω by (8.88). As a consequence,

2λD

∫
Ω

dnx |∇u1|4 ≥
∫

Ω

dnx
[
|∇(|∇u1|2)|2 + 2|∇u1|2|Hess(u1)|2

]
. (8.90)

Now, simple algebra shows that |∇(|∇u1|2)|2 ≤ 4 |∇u1|2|Hess(u1)|2 which, when combined with (8.90), yields

4λD
3

∫
Ω

dnx |∇u1|4 ≥
∫

Ω

dnx |∇(|∇u1|2)|2. (8.91)
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Let us now return to (8.81) and rewrite this equality as∫
Ω

dnx |∇u1|4 = −
∫

Ω

dnx (u1∇u1) · (∇|∇u1|2 − λD u1∇u1). (8.92)

An application of the Cauchy-Schwarz inequality then yields(∫
Ω

dnx |∇u1|4
)2

≤
(∫

Ω

dnxu2
1 |∇u1|2

)(∫
Ω

dnx |∇|∇u1|2 − λD u1∇u1|2
)
. (8.93)

By expanding the last integrand and recalling the definition of θ we then arrive at

θ2 ≤ λ2
D − 2λD

(∫
Ω
dnx (u1∇u1) · (∇|∇u1|2)∫

Ω
dnxu2

1|∇u1|2

)
+

(∫
Ω
dnx |∇(|∇u1|2)|2∫
Ω
dnxu2

1|∇u1|2

)
. (8.94)

Upon recalling (8.82) and (8.91), this becomes

θ2 ≤ λ2
D − 2λD(λD − θ) +

4λD
3
θ = −λ2

D +
10λD

3
θ. (8.95)

In turn, this forces θ ≤ 3λD hence, ultimately, λK ≤ 4λD due to this estimate and (8.80). This establishes
(8.73) and completes the proof of the theorem. �

Remark 8.13. (i) The upper bound in (8.70) for two-dimensional smooth, convex C∞ domains Ω is due to
Payne [151] in 1960. He notes that the proof carries over without difficulty to dimensions n ≥ 2 in [152,
p. 464]. In addition, one can avoid assuming smoothness in his proof by using smooth approximations Ωm,
m ∈ N, of Ω as discussed in our proof. Of course, Payne did not consider the eigenvalues of the Krein
Laplacian −∆K,Ω, instead, he compared the first eigenvalue of the fixed membrane problem and the first
eigenvalue of the problem of the buckling of a clamped plate.
(ii) By thinking of Hess(u1) represented in terms of an orthonormal basis for Rn that contains ν, one sees
that (8.86) yields

div(ν) =

∣∣∣∣∂u1

∂ν

∣∣∣∣−1
∂2u1

∂ν2 = −
(
∂u1

∂ν

)−1
∂2u1

∂ν2 (8.96)

(the latter because ∂u1/∂ν < 0 on ∂Ω by our convention on the sign of u1 (see (8.74))), and thus

∂2u1

∂ν2 = −(n− 1)G ∂u1

∂ν
on ∂Ω. (8.97)

For a different but related argument leading to this same result, see Ashbaugh and Levine [32, pp. I-8, I-9].
Aviles [33], Payne [150], [151], and Levine and Weinberger [132] all use similar arguments as well.
(iii) We note that Payne’s basic result here, when done in n dimensions, holds for smooth domains having
a boundary which is everywhere of nonnegative mean curvature. In addition, Levine and Weinberger [132],
in the context of a related problem, consider nonsmooth domains for the nonnegative mean curvature case
and a variety of cases intermediate between that and the convex case (including the convex case).
(iv) Payne’s argument (and the constant 4 in Theorem 8.12) would appear to be sharp, with any infinite
slab in Rn bounded by parallel hyperplanes being a saturating case (in a limiting sense). We note that such
a slab is essentially one-dimensional, and that, up to normalization, the first Dirichlet eigenfunction u1 for
the interval [0, a] (with a > 0) is

u1(x) = sin(πx/a) with eigenvalue λ = π2/a2, (8.98)

while the corresponding first buckling eigenfunction and eigenvalue are

u1(x)2 = sin2(πx/a) = [1− cos(2πx/a)]/2 and 4λ = 4π2/a2. (8.99)

Thus, Payne’s choice of the trial function u2
1, where u1 is the first Dirichlet eigenfunction should be optimal

for this limiting case, implying that the bound 4 is best possible. Payne, too, made observations about
the equality case of his inequality, and observed that the infinite strip saturates it in 2 dimensions. His
supporting arguments are via tracing the case of equality through the inequalities in his proof, which also
yields interesting insights.

Remark 8.14. The eigenvalues corresponding to the buckling of a two-dimensional square plate, clamped
along its boundary, have been analyzed numerically by several authors (see, e.g., [8], [9], and [46]). All these
results can now be naturally reinterpreted in the context of the Krein Laplacian −∆K,Ω in the case where
Ω = (0, 1)2 ⊂ R2. Lower bounds for the first k buckling problem eigenvalues were discussed in [131]. The
existence of convex domains Ω, for which the first eigenfunction of the problem of a clamped plate and the
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problem of the buckling of a clamped plate possesses a change of sign, was established in [121]. Relations
between an eigenvalue problem governing the behavior of an elastic medium and the buckling problem were
studied in [111]. Buckling eigenvalues as a function of the elasticity constant are investigated in [115].
Finally, spectral properties of linear operator pencils A − λB with discrete spectra, and basis properties of
the corresponding eigenvectors, applicable to differential operators, were discussed, for instance, in [156],
[175] (see also the references cited therein).

Formula (8.56) suggests the issue of deriving a Weyl asymptotic formula for the perturbed Krein Laplacian
HK,Ω. This is the topic of our next section.

9. Weyl Asymptotics for the Perturbed Krein Laplacian in Nonsmooth Domains

We begin by recording a very useful result due to V.A. Kozlov which, for the convenience of the reader,
we state here in more generality than is actually required for our purposes. To set the stage, let Ω ⊂ Rn,
n > 2, be a bounded Lipschitz domain. In addition, assume that m > r ≥ 0 are two fixed integers and set

η := 2(m− r) > 0. (9.1)

Let W be a closed subspace in Hm(Ω) such that Hm
0 (Ω) ⊆W . On W , consider the symmetric forms

a(u, v) :=
∑

0≤|α|,|β|≤m

∫
Ω

dnx aα,β(x)(∂βu)(x)(∂αv)(x), u, v ∈W, (9.2)

and

b(u, v) :=
∑

0≤|α|,|β|6r

∫
Ω

dnx bα,β(x)(∂βu)(x)(∂αv)(x), u, v ∈W. (9.3)

Suppose that the leading coefficients in a( · , · ) and b( · , · ) are Lipschitz functions, while the coefficients
of all lower-order terms are bounded, measurable functions in Ω. Furthermore, assume that the following
coercivity, nondegeneracy, and nonnegativity conditions hold: For some C0 ∈ (0,∞),

a(u, u) > C0‖u‖2Hm(Ω), u ∈W, (9.4)∑
|α|=|β|=r

bα,β(x) ξα+β 6= 0, x ∈ Ω, ξ 6= 0, (9.5)

b(u, u) > 0, u ∈W. (9.6)

Under the above assumptions, W can be regarded as a Hilbert space when equipped with the inner product
a( · , · ). Next, consider the operator T ∈ B(W ) uniquely defined by the requirement that

a(u, Tv) = b(u, v), u, v ∈W. (9.7)

Then the operator T is compact, nonnegative and self-adjoint on W (when the latter is viewed as a Hilbert
space). Going further, denote by

0 ≤ · · · ≤ µj+1(T ) ≤ µj(T ) ≤ · · · ≤ µ1(T ), (9.8)

the eigenvalues of T listed according to their multiplicity, and set

N(λ;W,a, b) := # {j ∈ N |µj(T ) ≥ λ−1}, λ > 0. (9.9)

The following Weyl asymptotic formula is a particular case of a slightly more general result which can be
found in [119].

Theorem 9.1. Assume Hypothesis 4.1 and retain the above notation and assumptions on a( · , · ), b( · , · ),
W , and T . In addition, we recall (9.1). Then the distribution function of the spectrum of T introduced in
(9.9) satisfies the asymptotic formula

N(λ;W,a, b) = ωa,b,Ω λ
n/η +O

(
λ(n−(1/2))/η

)
as λ→∞, (9.10)

where, with dωn−1 denoting the surface measure on the unit sphere Sn−1 = {ξ ∈ Rn | |ξ| = 1} in Rn,

ωa,b,Ω :=
1

n(2π)n

∫
Ω

dnx

∫
|ξ|=1

dωn−1(ξ)

[ ∑
|α|=|β|=r bα,β(x)ξα+β∑
|α|=|β|=m aα,β(x)ξα+β

]n
η

 . (9.11)

Various related results can be found in [118], [120]. After this preamble, we are in a position to state and
prove the main result of this section:
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Theorem 9.2. Assume Hypothesis 6.2. In addition, we recall that

NK,Ω(λ) = #{j ∈ N |λK,Ω,j ≤ λ}, λ ∈ R, (9.12)

where the (strictly) positive eigenvalues {λK,Ω,j}j∈N of the perturbed Krein Laplacian HK,Ω are enumerated
as in (8.1) (according to their multiplicities). Then the following Weyl asymptotic formula holds:

NK,Ω(λ) = (2π)−nvn|Ω|λn/2 +O
(
λ(n−(1/2))/2

)
as λ→∞, (9.13)

where, as before, vn denotes the volume of the unit ball in Rn, and |Ω| stands for the n-dimensional Euclidean
volume of Ω.

Proof. Set W := H2
0 (Ω) and consider the symmetric forms

a(u, v) :=

∫
Ω

dnx (−∆ + V )u (−∆ + V )v, u, v ∈W, (9.14)

b(u, v) :=

∫
Ω

dnx∇u · ∇v +

∫
Ω

dnxV 1/2uV 1/2v, u, v ∈W, (9.15)

for which conditions (9.4)–(9.6) (with m = 2) are verified (cf. (8.6)). Next, we recall the operator (−∆ +
V )−2 := ((−∆ + V )2)−1 ∈ B

(
H−2(Ω), H2

0 (Ω)
)

from (8.11) along with the operator

B ∈ B∞(W ), Bu := −(−∆ + V )−2(−∆ + V )u, u ∈W, (9.16)

from (8.13). Then, in the current notation, formula (8.15) reads a(Bu, v) = b(u, v) for every u, v ∈ C∞0 (Ω).
Hence, by density,

a(Bu, v) = b(u, v), u, v ∈W. (9.17)

This shows that actually B = T , the operator originally introduced in (9.7). In particular, T is one-to-one.
Consequently, Tu = µu for u ∈W and 0 6= µ ∈ C, if and only if u ∈ H2

0 (Ω) satisfies (−∆+V )−2(−∆+V )u =
µu, that is, (−∆ + V )2u = µ−1(−∆ + V )u. Hence, the eigenvalues of T are precisely the reciprocals of
the eigenvalues of the buckling clamped plate problem (7.6). Having established this, formula (9.13) then
follows from Theorem 7.5 and (9.10), upon observing that in our case m = 2, r = 1 (hence η = 2) and
ωa,b,Ω = (2π)−nvn|Ω|. �

Incidentally, Theorem 9.2 and Theorem 7.5 show that, granted Hypothesis 6.2, a Weyl asymptotic formula
holds in the case of the (perturbed) buckling problem (7.1). For smoother domains and potentials, this is
covered by Grubb’s results in [97]. In the smooth context, a sharpening of the remainder has been derived
in [143], [144], and most recently, in [102].

In the case where Ω ⊂ R2 is a bounded domain with a C∞-boundary and 0 ≤ V ∈ C∞(Ω), a more precise
form of the error term in (9.13) was obtained in [97] where Grubb has shown that

NK,Ω(λ) =
|Ω|
4π

λ+O
(
λ2/3

)
as λ→∞, (9.18)

In fact, in [97], Grubb deals with the Weyl asymptotic for the Krein–von Neumann extension of a general
strongly elliptic, formally self-adjoint differential operator of arbitrary order, provided both its coefficients
as well as the the underlying domain Ω ⊂ Rn (n ≥ 2) are C∞-smooth. In the special case where Ω equals
the open ball Bn(0;R), R > 0, in Rn, and when V ≡ 0, it turns out that (9.13), (9.18) can be further refined
to

N
(0)
K,Bn(0;R)(λ) = (2π)−nv2

nR
nλn/2 − (2π)−(n−1)vn−1[(n/4)vn + vn−1]Rn−1λ(n−1)/2

+O
(
λ(n−2)/2

)
as λ→∞, (9.19)

for every n ≥ 2. This will be the object of the final Section 11 (cf. Proposition 11.1).

10. A Class of Domains for which the Krein and Dirichlet Laplacians Coincide

Motivated by the special example where Ω = R2\{0} and S = −∆C∞0 (R2\{0}), in which case one can show
the interesting fact that SF = SK (cf. [12], [13, Ch. I.5], [83], and Subsections 11.4 and 11.5) and hence the
nonnegative self-adjoint extension of S is unique, the aim of this section is to present a class of (nonempty,
proper) open sets Ω = Rn\K, K ⊂ Rn compact and subject to a vanishing Bessel capacity condition, with
the property that the Friedrichs and Krein–von Neumann extensions of −∆

∣∣
C∞0 (Ω)

in L2(Ω; dnx), coincide.

To the best of our knowledge, the case where the set K differs from a single point is without precedent and
so the following results for more general sets K appear to be new.
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We start by making some definitions and discussing some preliminary results, of independent interest.
Given an arbitrary open set Ω ⊂ Rn, n ≥ 2, we consider three realizations of −∆ as unbounded operators
in L2(Ω; dnx), with domains given by (cf. Subsection 4.2)

dom(−∆max,Ω) :=
{
u ∈ L2(Ω; dnx)

∣∣∆u ∈ L2(Ω; dnx)
}
, (10.1)

dom(−∆D,Ω) :=
{
u ∈ H1

0 (Ω)
∣∣∆u ∈ L2(Ω; dnx)

}
, (10.2)

dom(−∆c,Ω) := C∞0 (Ω). (10.3)

Lemma 10.1. For any open, nonempty subset Ω ⊆ Rn, n ≥ 2, the following statements hold:

(i) One has

(−∆c,Ω)∗ = −∆max,Ω. (10.4)

(ii) The Friedrichs extension of −∆c,Ω is given by

(−∆c,Ω)F = −∆D,Ω. (10.5)

(iii) The Krein–von Neumann extension of −∆c,Ω has the domain

dom((−∆c,Ω)K) =
{
u ∈ dom(−∆max,Ω)

∣∣ there exists {uj}j∈N ∈ C∞0 (Ω) (10.6)

with lim
j→∞

‖∆uj −∆u‖L2(Ω;dnx) = 0 and {∇uj}j∈N Cauchy in L2(Ω; dnx)n
}
.

(iv) One has

ker((−∆c,Ω)K) =
{
u ∈ L2(Ω; dnx)

∣∣∆u = 0 in Ω
}
, (10.7)

and

ker((−∆c,Ω)F ) = {0}. (10.8)

Proof. Formula (10.4) follows in a straightforward fashion, by unraveling definitions, whereas (10.5) is a
direct consequence of (2.14) or (2.19) (compare also with Proposition 5.10). Next, (10.6) is readily implied
by (2.20) and (10.4). In addition, (10.7) is easily derived from (2.12), (10.4) and (10.1). Finally, consider
(10.8). In a first stage, (10.5) and (10.2) yield that

ker((−∆c,Ω)F ) =
{
u ∈ H1

0 (Ω)
∣∣∆u = 0 in Ω

}
, (10.9)

so the goal is to show that the latter space is trivial. To this end, pick a function u ∈ H1
0 (Ω) which is

harmonic in Ω, and observe that this forces ∇u = 0 in Ω. Now, with tilde denoting the extension by zero

outside Ω, we have ũ ∈ H1(Rn) and ∇(ũ) = ∇̃u. In turn, this entails that ũ is a constant function in
L2(R; dnx) and hence u ≡ 0 in Ω, establishing (10.8). �

Next, we record some useful capacity results. For an authoritative extensive discussion on this topic see
the monographs [3], [137], [174], and [191]. We denote by Bα,2(E) the Bessel capacity of order α > 0 of a
set E ⊂ Rn. When K ⊂ Rn is a compact set, this is defined by

Bα,2(K) := inf
{
‖f‖2L2(Rn;dnx)

∣∣ gα ∗ f ≥ 1 on K, f ≥ 0
}
, (10.10)

where the Bessel kernel gα is defined as the function whose Fourier transform is given by

ĝα(ξ) = (2π)−n/2(1 + |ξ|2)−α/2, ξ ∈ Rn. (10.11)

When O ⊆ Rn is open, we define

Bα,2(O) := sup {Bα,2(K) |K ⊂ O, K compact }, (10.12)

and, finally, when E ⊆ Rn is an arbitrary set,

Bα,2(E) := inf {Bα,2(O) | O ⊃ E, O open }. (10.13)

In addition, denote by Hk the k-dimensional Hausdorff measure on Rn, 0 ≤ k ≤ n. Finally, a compact subset
K ⊂ Rn is said to be L2-removable for the Laplacian provided every bounded, open neighborhood O of K
has the property that

u ∈ L2(O\K; dnx) with ∆u = 0 in O\K imply

there exists ũ ∈ L2(O; dnx) so that

ũ
∣∣∣
O\K

= u and ∆ũ = 0 in O. (10.14)

Proposition 10.2. For α > 0, k ∈ N, n ≥ 2 and E ⊂ Rn, the following properties are valid:

(i) A compact set K ⊂ Rn is L2-removable for the Laplacian if and only if B2,2(K) = 0.
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(ii) Assume that Ω ⊂ Rn is an open set and that K ⊂ Ω is a closed set. Then the space C∞0 (Ω\K)
is dense in Hk(Ω) (i.e., one has the natural identification Hk

0 (Ω) ≡ Hk
0 (Ω\K)), if and only if

Bk,2(K) = 0.
(iii) If 2α ≤ n and Hn−2α(E) < +∞ then Bα,2(E) = 0. Conversely, if 2α ≤ n and Bα,2(E) = 0 then

Hn−2α+ε(E) = 0 for every ε > 0.
(iv) Whenever 2α > n then there exists C = C(α, n) > 0 such that Bα,2(E) ≥ C provided E 6= ∅.

See, [3, Corollary 3.3.4], [137, Theorem 3], [191, Theorem 2.6.16 and Remark 2.6.15], respectively. For
other useful removability criteria the interested reader may wish to consult [59], [136], [162], and [177].

The first main result of this section is then the following:

Theorem 10.3. Assume that K ⊂ Rn, n ≥ 3, is a compact set with the property that

B2,2(K) = 0. (10.15)

Define Ω := Rn\K. Then, in the domain Ω, the Friedrichs and Krein–von Neumann extensions of −∆,
initially considered on C∞0 (Ω), coincide, that is,

(−∆c,Ω)F = (−∆c,Ω)K . (10.16)

As a consequence, −∆|C∞0 (Ω) has a unique nonnegative self-adjoint extension in L2(Ω; dnx).

Proof. We note that (10.15) implies that K has zero n-dimensional Lebesgue measure, so that L2(Ω; dnx) ≡
L2(Rn; dnx). In addition, by (iii) in Proposition 10.2, we also have B1,2(K) = 0. Now, if u ∈ dom(−∆c,Ω)K ,
(10.6) entails that u ∈ L2(Ω; dnx), ∆u ∈ L2(Ω; dnx), and that there exists a sequence uj ∈ C∞0 (Ω), j ∈ N,
for which

∆uj → ∆u in L2(Ω; dnx) as j →∞, and {∇uj}j∈N is Cauchy in L2(Ω; dnx). (10.17)

In view of the well-known estimate (cf. the Corollary on p. 56 of [137]),

‖v‖L2∗ (Rn;dnx) ≤ Cn‖∇v‖L2(Rn;dnx), v ∈ C∞0 (Rn), (10.18)

where 2∗ := (2n)/(n− 2), the last condition in (10.17) implies that there exists w ∈ L2∗(Rn; dnx) with the
property that

uj → w in L2∗(Rn; dnx) and ∇uj → ∇w in L2(Rn; dnx) as j →∞. (10.19)

Furthermore, by the first convergence in (10.17), we also have that ∆w = ∆u in the sense of distributions
in Ω. In particular, the function

f := w − u ∈ L2∗(Rn; dnx) + L2(Rn; dnx) ↪→ L2
loc(Rn; dnx) (10.20)

satisfies ∆f = 0 in Ω = Rn\K. Granted (10.15), Proposition 10.2 yields that K is L2-removable for the
Laplacian, so we may conclude that ∆f = 0 in Rn. With this at hand, Liouville’s theorem then ensures
that f ≡ 0 in Rn. This forces u = w as distributions in Ω and hence, ∇u = ∇w distributionally in Ω. In
view of the last condition in (10.19) we may therefore conclude that u ∈ H1(Rn) = H1

0 (Rn). With this at
hand, Proposition 10.2 yields that u ∈ H1

0 (Ω). This proves that dom(−∆c,Ω)K ⊆ dom(−∆c,Ω)F and hence,
(−∆c,Ω)K ⊆ (−∆c,Ω)F . Since both operators in question are self-adjoint, (10.16) follows. �

We emphasize that equality of the Friedrichs and Krein Laplacians necessarily requires that fact that
inf(σ((−∆c,Ω)F )) = inf(σ((−∆c,Ω)K)) = 0, and hence rules out the case of bounded domains Ω ⊂ Rn,
n ∈ N (for which inf(σ((−∆c,Ω)F )) > 0).

Corollary 10.4. Assume that K ⊂ Rn, n ≥ 4, is a compact set with finite (n − 4)-dimensional Hausdorff
measure, that is,

Hn−4(K) < +∞. (10.21)

Then, with Ω := Rn\K, one has (−∆c,Ω)F = (−∆c,Ω)K , and hence, −∆|C∞0 (Ω) has a unique nonnegative

self-adjoint extension in L2(Ω; dnx).

Proof. This is a direct consequence of Proposition 10.2 and Theorem 10.3. �

In closing, we wish to remark that, as a trivial particular case of the above corollary, formula (10.16) holds
for the punctured space

Ω := Rn\{0}, n ≥ 4, (10.22)

however, this fact is also clear from the well-known fact that −∆|C∞0 (Rn\{0}) is essentially self-adjoint in

L2(Rn; dnx) if (and only if) n ≥ 4 (cf., e.g., [161, p. 161], and our discussion concerning the Bessel operator
(11.118)). In [83, Example 4.9] (see also our discussion in Subsection 10.3), it has been shown (by using
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different methods) that (10.16) continues to hold for the choice (10.22) when n = 2, but that the Friedrichs
and Krein–von Neumann extensions of −∆, initially considered on C∞0 (Ω) with Ω as in (10.22), are different
when n = 3.

In light of Theorem 10.3, a natural question is whether the coincidence of the Friedrichs and Krein–von
Neumann extensions of −∆, initially defined on C∞0 (Ω) for some open set Ω ⊂ Rn, actually implies that the
complement of Ω has zero Bessel capacity of order two. Below, under some mild background assumptions
on the domain in question, we shall establish this type of converse result. Specifically, we now prove the
following fact:

Theorem 10.5. Assume that K ⊂ Rn, n > 4, is a compact set of zero n-dimensional Lebesgue measure,
and set Ω := Rn\K. Then

(−∆c,Ω)F = (−∆c,Ω)K implies B2,2(K) = 0. (10.23)

Proof. Let K be as in the statement of the theorem. In particular, L2(Ω; dnx) ≡ L2(Rn; dnx). Hence,
granted that (−∆c,Ω)K = (−∆c,Ω)F , in view of (10.7), (10.8) this yields{

u ∈ L2(Rn; dnx)
∣∣∆u = 0 in Rn\K

}
= {0}. (10.24)

It is useful to think of (10.24) as a capacitary condition. More precisely, (10.24) implies that Cap(K) = 0,
where

Cap(K) := sup
{∣∣E′(Rn)〈∆u, 1〉E(Rn)

∣∣ ∣∣ ‖u‖L2(Rn;dnx) ≤ 1 and supp(∆u) ⊆ K
}
. (10.25)

Above, E(Rn) is the space of smooth functions in Rn equipped with the usual Frechét topology, which ensures
that its dual, E ′(Rn), is the space of compactly supported distributions in Rn. At this stage, we recall the
fundamental solution for the Laplacian in Rn, n ≥ 3, that is,

En(x) :=
Γ(n/2)

2(2− n)πn/2|x|n−2
, x ∈ Rn\{0} (10.26)

(Γ(·) the classical Gamma function [1, Sect. 6.1]), and introduce a related capacity, namely

Cap∗(K) := sup
{∣∣E′(Rn)〈f, 1〉E(Rn)

∣∣ ∣∣ f ∈ E ′(Rn), supp(f) ⊆ K, ‖En ∗ f‖L2(Rn;dnx) ≤ 1
}
. (10.27)

Then

0 ≤ Cap∗(K) ≤ Cap(K) = 0 (10.28)

so that Cap∗(K) = 0. With this at hand, [104, Theorem 1.5 (a)] (here we make use of the fact that n > 4)
then allows us to strengthen (10.24) to{

u ∈ L2
loc(Rn; dnx)

∣∣∆u = 0 in Rn\K
}

= {0}. (10.29)

Next, we follow the argument used in the proof of [138, Lemma 5.5] and [3, Theorem 2.7.4]. Reasoning by
contradiction, assume that B2,2(K) > 0. Then there exists a nonzero, positive measure µ supported in K
such that g2 ∗ µ ∈ L2(Rn). Since g2(x) = cnEn(x) + o(|x|2−n) as |x| → 0 (cf. the discussion in Section 1.2.4
of [3]) this further implies that En ∗ µ ∈ L2

loc(Rn; dnx). However, En ∗ µ is a harmonic function in Rn\K,
which is not identically zero since

lim
x→∞

|x|n−2(En ∗ µ)(x) = cnµ(K) > 0, (10.30)

so this contradicts (10.29). This shows that B2,2(K) = 0. �

In this context we also refer to [82, Sect. 3.3] for necessary and sufficient conditions for equality of (certain
generalizations of) the Friedrichs and the Krein Laplacians in terms of appropriate notions of capacity and
Dirichlet forms.

Theorems 10.3–10.5 readily generalize to other types of elliptic operators (including higher-order systems).
For example, using the polyharmonic operator (−∆)`, ` ∈ N, as a prototype, we have the following result:

Theorem 10.6. Fix ` ∈ N, n ≥ 2` + 1, and assume that K ⊂ Rn is a compact set of zero n-dimensional
Lebesgue measure. Define Ω := Rn\K. Then, in the domain Ω, the Friedrichs and Krein–von Neumann
extensions of the polyharmonic operator (−∆)`, initially considered on C∞0 (Ω), coincide if and only if
B2`,2(K) = 0.

For some related results in the punctured space Ω := Rn\{0}, see also the recent article [4]. Moreover, we
mention that in the case of the Bessel operator hν = (−d2/dr2) + (ν2 − (1/4))r−2 defined on C∞0 ((0,∞)),
equality of the Friedrichs and Krein extension of hν in L2((0,∞); dr) if and only if ν = 0 has been established
in [134]. (The sufficiency of the condition ν = 0 was established earlier in [83].)
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While this section focused on differential operators, we conclude with a very brief remark on half-line
Jacobi, that is, tridiagonal (and hence, second-order finite difference) operators: As discussed in depth by
Simon [169], the Friedrichs and Krein–von Neumann extensions of a minimally defined symmetric half-line
Jacobi operator (cf. also [49]) coincide, if and only if the associated Stieltjes moment problem is determinate
(i.e., has a unique solution) while the corresponding Hamburger moment problem is indeterminate (and
hence has uncountably many solutions).

11. Examples

11.1. The Case of a Bounded Interval (a, b), −∞ < a < b <∞, V = 0. We briefly recall the essence of
the one-dimensional example Ω = (a, b), −∞ < a < b <∞, and V = 0. This was first discussed in detail by
[14] and [81, Sect. 2.3] (see also [82, Sect. 3.3]).

Consider the minimal operator −∆min,(a,b) in L2((a, b); dx), given by

−∆min,(a,b)u = −u′′,
u ∈ dom(−∆min,(a,b)) =

{
v ∈ L2((a, b); dx)

∣∣ v, v′ ∈ AC([a, b]); (11.1)

v(a) = v′(a) = v(b) = v′(b) = 0; v′′ ∈ L2((a, b); dx)
}
,

where AC([a, b]) denotes the set of absolutely continuous functions on [a, b]. Evidently,

−∆min,(a,b) = − d2

dx2

∣∣∣∣
C∞0 ((a,b))

, (11.2)

and one can show that
−∆min,(a,b) ≥ [π/(b− a)]2IL2((a,b);dx). (11.3)

In addition, one infers that
(−∆min,(a,b))

∗ = −∆max,(a,b), (11.4)

where

−∆max,(a,b)u = −u′′,
u ∈ dom(−∆max,(a,b)) =

{
v ∈ L2((a, b); dx)

∣∣ v, v′ ∈ AC([a, b]); v′′ ∈ L2((a, b); dx)
}
. (11.5)

In particular,
def(−∆min,(a,b)) = (2, 2) and ker((−∆min,(a,b))

∗) = lin. span{1, x}. (11.6)

The Friedrichs (equivalently, the Dirichlet) extension −∆D,(a,b) of −∆min,(a,b) is then given by

−∆D,(a,b)u = −u′′,
u ∈ dom(−∆D,(a,b)) =

{
v ∈ L2((a, b); dx)

∣∣ v, v′ ∈ AC([a, b]); (11.7)

v(a) = v(b) = 0; v′′ ∈ L2((a, b); dx)
}
.

In addition,
σ(−∆D,(a,b)) = {j2π2(b− a)−2}j∈N, (11.8)

and

dom
(
(−∆D,(a,b))

1/2
)

=
{
v ∈ L2((a, b); dx)

∣∣ v ∈ AC([a, b]); v(a) = v(b) = 0; v′ ∈ L2((a, b); dx)
}
. (11.9)

By (2.10),
dom(−∆K,(a,b)) = dom(−∆min,(a,b))u ker((−∆min,(a,b))

∗), (11.10)

and hence any u ∈ dom(−∆K,(a,b)) is of the type

u = f + η, f ∈ dom(−∆min,(a,b)), η(x) = u(a) + [u(b)− u(a)]

(
x− a
b− a

)
, x ∈ (a, b), (11.11)

in particular, f(a) = f ′(a) = f(b) = f ′(b) = 0. Thus, the Krein–von Neumann extension −∆K,(a,b) of
−∆min,(a,b) is given by

−∆K,(a,b)u = −u′′,
u ∈ dom(−∆K,(a,b)) =

{
v ∈ L2((a, b); dx)

∣∣ v, v′ ∈ AC([a, b]); (11.12)

v′(a) = v′(b) = [v(b)− v(a)]/(b− a); v′′ ∈ L2((a, b); dx)
}
.

Using the characterization of all self-adjoint extensions of general Sturm–Liouville operators in [187, Theorem
13.14], one can also directly verify that −∆K,(a,b) as given by (11.12) is a self-adjoint extension of −∆min,(a,b).
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In connection with (11.1), (11.5), (11.7), and (11.12), we also note that the well-known fact that

v, v′′ ∈ L2((a, b); dx) implies v′ ∈ L2((a, b); dx). (11.13)

Utilizing (11.13), we briefly consider the quadratic form associated with the Krein Laplacian −∆K,(a,b).
By (2.42) and (2.43), one infers,

dom
(
(−∆K,(a,b))

1/2
)

= dom
(
(−∆D,(a,b))

1/2
)
u ker((−∆min,(a,b))

∗), (11.14)∥∥(−∆K,(a,b))
1/2(u+ g)

∥∥2

L2((a,b);dx)
=
∥∥(−∆D,(a,b))

1/2u
∥∥2

L2((a,b);dx)

= ((u+ g)′, (u+ g)′)L2((a,b);dx) − [g(b)g′(b)− g(a)g′(a)]

= ((u+ g)′, (u+ g)′)L2((a,b);dx) − |[u(b) + g(b)]− [u(a) + g(a)]|2/(b− a),

u ∈ dom
(
(−∆D,(a,b))

1/2
)
, g ∈ ker((−∆min,(a,b))

∗). (11.15)

Finally, we turn to the spectrum of −∆K,(a,b). The boundary conditions in (11.12) lead to two kinds of
(nonnormalized) eigenfunctions and eigenvalue equations

ψ(k, x) = cos(k(x− [(a+ b)/2])), k sin(k(b− a)/2) = 0,

kK,(a,b),j = (j + 1)π/(b− a), j = −1, 1, 3, 5, . . . ,
(11.16)

and

φ(k, x) = sin(k(x− [(a+ b)/2])), k(b− a)/2 = tan(k(b− a)/2),

kK,(a,b),0 = 0, jπ < kK,(a,b),j < (j + 1)π, j = 2, 4, 6, 8, . . . , (11.17)

lim
`→∞

[kK,(a,b),2` − ((2`+ 1)π/(b− a))] = 0.

The associated eigenvalues of −∆K,(a,b) are thus given by

σ(−∆K,(a,b)) = {0} ∪ {k2
K,(a,b),j}j∈N, (11.18)

where the eigenvalue 0 of −∆K,(a,b) is of multiplicity two, but the remaining nonzero eigenvalues of −∆K,(a,b)

are all simple.

11.2. The Case of a Bounded Interval (a, b), −∞ < a < b < ∞, 0 ≤ V ∈ L1((a, b); dx). The general
case with a nonvanishing potential 0 ≤ V ∈ L1((a, b); dx) has very recently been worked out in [61]. We
briefly summarize these findings next.

Suppose τ = − d2

dx2 + V (x), x ∈ (a, b), and Hmin,(a,b), defined by

Hmin,(a,b)u = −u′′ + V u,

u ∈ dom(Hmin,(a,b)) =
{
v ∈ L2((a, b); dx)

∣∣ v, v′ ∈ AC([a, b]); (11.19)

v(a) = v′(a) = v(b) = v′(b) = 0; [−v′′ + V v] ∈ L2((a, b); dx)
}
,

is strictly positive in the sense that there exists an ε > 0 for which

(u,Hmin, (a,b)u)L2((a,b);dx) ≥ ε‖u‖2L2((a,b);dx), u ∈ dom(Hmin, (a,b)). (11.20)

Since the deficiency indices of Hmin, (a,b) are (2, 2), the assumption (11.20) implies that

dim(ker(H∗min, (a,b))) = 2. (11.21)

As a basis for ker(H∗min, (a,b)), we choose {u1(·), u2(·)}, where u1(·) and u2(·) are real-valued and satisfy

u1(a) = 0, u1(b) = 1, u2(a) = 1, u2(b) = 0. (11.22)

The Krein–von Neumann extension HK,(a,b) of Hmin, (a,b) in L2((a, b); dx) is defined as the restriction of
H∗min,(a,b) with domain

dom(HK,(a,b)) = dom(Hmin,(a,b))u ker(H∗min,(a,b)). (11.23)

Since HK,(a,b) is a self-adjoint extension of Hmin,(a,b), functions in dom(HK,(a,b)) must satisfy certain bound-
ary conditions; we now provide a characterization of these boundary conditions. Let u ∈ dom(HK,(a,b)); by
(11.23) there exist f ∈ dom(Hmin,(a,b)) and η ∈ ker(H∗min,(a,b)) with

u(x) = f(x) + η(x), x ∈ [a, b]. (11.24)

Since f ∈ dom(Hmin,(a,b)),

f(a) = f ′(a) = f(b) = f ′(b) = 0, (11.25)
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and as a result,

u(a) = η(a), u(b) = η(b). (11.26)

Since η ∈ ker(H∗min,(a,b)), we write (cf. (11.22))

η(x) = c1u1(0, x) + c2u2(0, x), x ∈ [a, b], (11.27)

for appropriate scalars c1, c2 ∈ C. By separately evaluating (11.27) at x = a and x = b, one infers from
(11.22) that

η(a) = c2, η(b) = c1. (11.28)

Comparing (11.28) and (11.26) allows one to write (11.27) as

η(x) = u(b)u1(x) + u(a)u2(x), x ∈ [a, b]. (11.29)

Finally, (11.24) and (11.29) imply

u(x) = f(x) + u(b)u1(x) + u(a)u2(x), x ∈ [a, b], (11.30)

and as a result,

u′(x) = f ′(x) + u(b)u′1(x) + u(a)u′2(x), x ∈ [a, b]. (11.31)

Evaluating (11.31) separately at x = a and x = b, and using (11.25) yields the following boundary conditions
for u:

u′(a) = u(b)u′1(a) + u(a)u′2(a), u′(b) = u(b)u′1(b) + u(a)u′2(b). (11.32)

Since u′1(a) 6= 0 (one recalls that u1(a) = 0), relations (11.32) can be recast as(
u(b)
u′(b)

)
= FK

(
u(a)
u′(a)

)
, (11.33)

where

FK =
1

u′1(a)

(
−u′2(a) 1

u′1(a)u′2(b)− u′1(b)u′2(a) u′1(b)

)
. (11.34)

Then FK ∈ SL2(R) since (11.34) implies

det(FK) = −u
′
2(b)

u′1(a)
= 1. (11.35)

Thus, HK,(a,b), the Krein–von Neumann extension of Hmin,(a,b) explicitly reads

HK,(a,b)u = −u′′ + V u,

u ∈ dom(HK,(a,b)) =

{
v ∈ L2((a, b); dx)

∣∣∣∣ v, v′ ∈ AC([a, b]);

(
v(b)
v′(b)

)
= FK

(
v(a)
v′(a)

)
; (11.36)

[−v′′ + V v] ∈ L2((a, b); dx)

}
.

Taking V ≡ 0, one readily verifies that (11.36) reduces to (11.12) as in this case, a basis for ker(H∗min,(a,b))

is provided by

u
(0)
1 (x) =

x− a
b− a

, u
(0)
2 (x) =

b− x
b− a

, x ∈ [a, b]. (11.37)

The case V ≡ 0 and −d2/dx2 replaced by −(d/dx)p(d/x), with p > 0 a.e., p ∈ L1
loc((a, b); dx), p−1 ∈

L1((a, b); dx), was recently discussed in [76].

11.3. The Case of the Ball Bn(0;R), R > 0, in Rn, n ≥ 2, V = 0. In this subsection, we consider in
great detail the scenario when the domain Ω equals a ball of radius R > 0 (for convenience, centered at the
origin) in Rn,

Ω = Bn(0;R) ⊂ Rn, R > 0, n > 2. (11.38)

Since both the domain Bn(0;R) in (11.38), as well as the Laplacian −∆ are invariant under rotations in Rn
centered at the origin, we will employ the (angular momentum) decomposition of L2(Bn(0;R); dnx) into the
direct sum of tensor products

L2(Bn(0;R); dnx) = L2((0, R); rn−1dr)⊗ L2(Sn−1; dωn−1) =
⊕
`∈N0

Hn,`,(0,R), (11.39)

Hn,`,(0,R) = L2((0, R); rn−1dr)⊗Kn,`, ` ∈ N0, n ≥ 2, (11.40)
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where Sn−1 = ∂Bn(0; 1) = {x ∈ Rn | |x| = 1} denotes the (n−1)-dimensional unit sphere in Rn, dωn−1 repre-
sents the surface measure on Sn−1, n ≥ 2, and Kn,` denoting the eigenspace of the Laplace–Beltrami operator
−∆Sn−1 in L2(Sn−1; dωn−1) corresponding to the `th eigenvalue κn,` of −∆Sn−1 counting multiplicity,

κn,` = `(`+ n− 2),

dim(Kn,`) =
(2`+ n− 2)Γ(`+ n− 2)

Γ(`+ 1)Γ(n− 1)
:= dn,`, ` ∈ N0, n ≥ 2

(11.41)

(cf. [147, p. 4]). In other words, Kn,` is spanned by the n-dimensional spherical harmonics of degree ` ∈ N0.
For more details in this connection we refer to [161, App. to Sect. X.1] and [187, Ch. 18].

As a result, the minimal Laplacian in L2(Bn(0;R); dnx) can be decomposed as follows

−∆min,Bn(0;R) = −∆|C∞0 (Bn(0;R)) =
⊕
`∈N0

H
(0)
n,`,min ⊗ IKn,` ,

dom(−∆min,Bn(0;R)) = H2
0 (Bn(0;R)),

(11.42)

where H
(0)
n,`,min in L2((0, R); rn−1dr) are given by

H
(0)
n,`,min =

(
− d2

dr2
− n− 1

r

d

dr
+
κn,`
r2

)
C∞0 ((0,R))

, ` ∈ N0. (11.43)

Using the unitary operator Un defined by

Un :

{
L2((0, R); rn−1dr)→ L2((0, R); dr),

φ 7→ (Unφ)(r) = r(n−1)/2φ(r),
(11.44)

it will also be convenient to consider the unitary transformation of H
(0)
n,`,min given by

h
(0)
n,`,min = UnH

(0)
n,`,minU

−1
n , ` ∈ N0, (11.45)

where

h
(0)
n,0,min = − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,0,min

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f(R−) = f ′(R−) = 0, f0 = 0; (11.46)

(−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}

for n = 2, 3,

h
(0)
n,`,min = − d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,`,min

)
=
{
f ∈ L2((0, R); dr) | f, f ′ ∈ AC([ε,R]) for all ε > 0;

f(R−) = f ′(R−) = 0; (11.47)

(−f ′′ + [κn,` + ((n− 1)(n− 3)/4)]r−2f) ∈ L2((0, R); dr)
}

for ` ∈ N, n ≥ 2 and ` = 0, n ≥ 4.

In particular, for ` ∈ N, n ≥ 2, and ` = 0, n ≥ 4, one obtains

h
(0)
n,`,min =

(
− d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2

)∣∣∣∣
C∞0 ((0,R))

for ` ∈ N, n ≥ 2, and ` = 0, n ≥ 4.

(11.48)

On the other hand, for n = 2, 3, the domain of the closure of h
(0)
n,0,min

∣∣
C∞0 ((0,R))

is strictly contained in that

of dom
(
h

(0)
n,0,min

)
, and in this case one obtains for

ĥ
(0)
n,0,min =

(
− d2

dr2
+

(n− 1)(n− 3)

4r2

)∣∣∣∣
C∞0 ((0,R))

, n = 2, 3, (11.49)

that

ĥ
(0)
n,0,min = − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,
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dom
(
ĥ

(0)
n,0,min

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f(R−) = f ′(R−) = 0, f0 = f ′0 = 0; (11.50)

(−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}
.

Here we used the abbreviations (cf. [54] for details)

f0 =

{
limr↓0[−r1/2 ln(r)]−1f(r), n = 2,

f(0+), n = 3,

f ′0 =

{
limr↓0 r

−1/2[f(r) + f0r
1/2 ln(r)], n = 2,

f ′(0+), n = 3.

(11.51)

We also recall the adjoints of h
(0)
n,`,min which are given by(

h
(0)
n,0,min

)∗
= − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,

dom
((
h

(0)
n,0,min

)∗)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0; (11.52)

f0 = 0; (−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}

for n = 2, 3,(
h

(0)
n,`,min

)∗
= − d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
, 0 < r < R,

dom
((
h

(0)
n,`,min

)∗)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0; (11.53)

(−f ′′ + [κn,` + ((n− 1)(n− 3)/4)]r−2f) ∈ L2((0, R); dr)
}

for ` ∈ N, n ≥ 2 and ` = 0, n ≥ 4.

In particular,

h
(0)
n,`,max =

(
h

(0)
n,`,min

)∗
, ` ∈ N0, n ≥ 2. (11.54)

All self-adjoint extensions of h
(0)
n,`,min are given by the following one-parameter families h

(0)
n,`,αn,`

, αn,` ∈
R ∪ {∞},

h
(0)
n,0,αn,0

= − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,0,αn,0

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f ′(R−) + αn,0f(R−) = 0, f0 = 0; (11.55)

(−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}

for n = 2, 3,

h
(0)
n,`,αn,`

= − d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,`,αn,`

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f ′(R−) + αn,`f(R−) = 0; (11.56)

(−f ′′ + [κn,` + ((n− 1)(n− 3)/4)]r−2f) ∈ L2((0, R); dr)
}

for ` ∈ N, n ≥ 2 and ` = 0, n ≥ 4.

Here, in obvious notation, the boundary condition for αn,` = ∞ simply represents the Dirichlet boundary

condition f(R−) = 0. In particular, the Friedrichs or Dirichlet extension h
(0)
n,`,D of h

(0)
n,`,min is given by h

(0)
n,`,∞,

that is, by

h
(0)
n,0,D = − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,0,D

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0; f(R−) = 0,

f0 = 0; (−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}

for n = 2, 3, (11.57)

h
(0)
n,`,D = − d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,`,D

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0; f(R−) = 0;
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(−f ′′ + [κn,` + ((n− 1)(n− 3)/4)]r−2f) ∈ L2((0, R); dr)
}

for ` ∈ N, n ≥ 2 and ` = 0, n ≥ 4. (11.58)

To find the boundary condition for the Krein–von Neumann extension h
(0)
n,`,K of h

(0)
n,`,min, that is, to find the

corresponding boundary condition parameter αn,`,K in (11.55), (11.56), we recall (2.10), that is,

dom
(
h

(0)
n,`,K

)
= dom

(
h

(0)
n,`,min

)
u ker

((
h

(0)
n,`,min

)∗)
. (11.59)

By inspection, the general solution of(
− d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2

)
ψ(r) = 0, r ∈ (0, R), (11.60)

is given by

ψ(r) = Ar`+[(n−1)/2] +Br−`−[(n−3)/2], A,B ∈ C, r ∈ (0, R). (11.61)

However, for ` ≥ 1, n ≥ 2 and for ` = 0, n ≥ 4, the requirement ψ ∈ L2((0, R); dr) requires B = 0 in (11.61).
Similarly, also the requirement ψ0 = 0 (cf. (11.52)) for ` = 0, n = 2, 3, enforces B = 0 in (11.61).

Hence, any u ∈ dom
(
h

(0)
n,`,K

)
is of the type

u = f + η, f ∈ dom
(
h

(0)
n,`,min

)
, η(r) = u(R−)r`+[(n−1)/2], r ∈ [0, R), (11.62)

in particular, f(R−) = f ′(R−) = 0. Denoting by αn,`,K the boundary condition parameter for h
(0)
n,`,K one

thus computes

− αn,`,K =
u′(R−)

u(R−)
=
η′(R−)

η(R−)
= [`+ ((n− 1)/2)]/R. (11.63)

Thus, the Krein–von Neumann extension h
(0)
n,`,K of h

(0)
n,`,min is given by

h
(0)
n,0,K = − d2

dr2
+

(n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,0,K

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f ′(R−)− [(n− 1)/2]R−1f(R−) = 0, f0 = 0; (11.64)

(−f ′′ + [(n− 1)(n− 3)/4]r−2f) ∈ L2((0, R); dr)
}

for n = 2, 3,

h
(0)
n,`,K = − d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
, 0 < r < R,

dom
(
h

(0)
n,`,K

)
=
{
f ∈ L2((0, R); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all ε > 0;

f ′(R−)− [`+ ((n− 1)/2)]R−1f(R−) = 0; (11.65)

(−f ′′ + [κn,` + ((n− 1)(n− 3)/4)]r−2f) ∈ L2((0, R); dr)
}

for ` ∈ N, n ≥ 2 and ` = 0, n ≥ 4.

Next we briefly turn to the eigenvalues of h
(0)
n,`,D and h

(0)
n,`,K . In analogy to (11.60), the solution ψ of(

− d2

dr2
+

4κn,` + (n− 1)(n− 3)

4r2
− z
)
ψ(r, z) = 0, r ∈ (0, R), (11.66)

satisfying the condition ψ(·, z) ∈ L2((0, R); dr) for ` = 0, n ≥ 4 and ψ0(z) = 0 (cf. (11.52)) for ` = 0,
n = 2, 3, yields

ψ(r, z) = Ar1/2Jl+[(n−2)/2](z
1/2r), A ∈ C, r ∈ (0, R), (11.67)

Here Jν(·) denotes the Bessel function of the first kind and order ν (cf. [1, Sect. 9.1]). Thus, by the boundary

condition f(R−) = 0 in (11.57), (11.58), the eigenvalues of the Dirichlet extension h
(0)
n,`,D are determined by

the equation ψ(R−, z) = 0, and hence by

Jl+[(n−2)/2](z
1/2R) = 0. (11.68)

Following [1, Sect. 9.5], we denote the zeros of Jν(·) by jν,k, k ∈ N, and hence obtain for the spectrum of

h
(0)
n,`,F ,

σ
(
h

(0)
n,`,D

)
=
{
λ

(0)
n,`,D,k

}
k∈N =

{
j2
`+[(n−2)/2],kR

−2
}
k∈N, ` ∈ N0, n ≥ 2. (11.69)

Each eigenvalue of of h
(0)
n,`,D is simple.
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Similarly, by the boundary condition f ′(R−) − [` + ((n − 1)/2)]R−1f(R−) = 0 in (11.64), (11.65), the

eigenvalues of the Krein–von Neumann extension h
(0)
n,`,K are determined by the equation

ψ′(R, z)− [`+ ((n− 1)/2)]ψ(R, z) = −Az1/2R1/2J`+(n/2)(z
1/2R) = 0 (11.70)

(cf. [1, eq. (9.1.27)]), and hence by

z1/2J`+(n/2)(z
1/2R) = 0. (11.71)

Thus, one obtains for the spectrum of h
(0)
n,`,K ,

σ
(
h

(0)
n,`,K

)
= {0} ∪

{
λ

(0)
n,`,K,k

}
k∈N = {0} ∪

{
j2
`+(n/2),kR

−2
}
k∈N, ` ∈ N0, n ≥ 2. (11.72)

Again, each eigenvalue of h
(0)
n,`,K is simple, and η(r) = Cr`+[(n−1)/2], C ∈ C, represents the (unnormalized)

eigenfunction of h
(0)
n,`,K corresponding to the eigenvalue 0.

Combining Propositions 2.2–2.4, one then obtains

−∆max,Bn(0;R) = (−∆min,Bn(0;R))
∗ =

⊕
`∈N0

(
H

(0)
n,`,min

)∗ ⊗ IKn,` , (11.73)

−∆D,Bn(0;R) =
⊕
`∈N0

H
(0)
n,`,D ⊗ IKn,` , (11.74)

−∆K,Bn(0;R) =
⊕
`∈N0

H
(0)
n,`,K ⊗ IKn,` , (11.75)

where (cf. (11.42))

H
(0)
n,`,max =

(
H

(0)
n,`,min

)∗
= U−1

n

(
h

(0)
n,`,min

)∗
Un, ` ∈ N0, (11.76)

H
(0)
n,`,D = U−1

n h
(0)
n,`,DUn, ` ∈ N0, (11.77)

H
(0)
n,`,K = U−1

n h
(0)
n,`,KUn, ` ∈ N0. (11.78)

Consequently,

σ(−∆D,Bn(0;R)) =
{
λ

(0)
n,`,D,k

}
`∈N0,k∈N

=
{
j2
`+[(n−2)/2],kR

−2
}
`∈N0,k∈N

, (11.79)

σess(−∆D,Bn(0;R)) = ∅, (11.80)

σ(−∆K,Bn(0;R)) = {0} ∪
{
λ

(0)
n,`,K,k

}
`∈N0,k∈N

= {0} ∪
{
j2
`+(n/2),kR

−2
}
`∈N0,k∈N

, (11.81)

dim(ker(−∆K,Bn(0;R))) =∞, σess(−∆K,Bn(0;R)) = {0}. (11.82)

By (11.41), each eigenvalue λ
(0)
n,`,D,k, k ∈ N, of −∆D,Bn(0;R) has multiplicity dn,` and similarly, again by

(11.41), each eigenvalue λ
(0)
n,`,K,k, k ∈ N, of −∆K,Bn(0;R) has multiplicity dn,`.

Finally, we briefly turn to the Weyl asymptotics for the eigenvalue counting function (8.54) associated
with the Krein Laplacian −∆K,Bn(0;R) for the ball Bn(0;R), R > 0, in Rn, n ≥ 2. We will discuss a
direct approach to the Weyl asymptotics that is independent of the general treatment presented in Section
9. Due to the smooth nature of the ball, we will obtain an improvement in the remainder term of the Weyl
asymptotics of the Krein Laplacian.

First we recall the well-known fact that in the case of the Dirichlet Laplacian associated with the ball
Bn(0;R),

N
(0)
D,Bn(0;R)(λ) = (2π)−nv2

nR
nλn/2 − (2π)−(n−1)vn−1(n/4)vnR

n−1λ(n−1)/2

+O
(
λ(n−2)/2

)
as λ→∞, (11.83)

with vn = πn/2/Γ((n/2) + 1) the volume of the unit ball in Rn (and nvn representing the surface area of the
unit ball in Rn).

Proposition 11.1. The strictly positive eigenvalues of the Krein Laplacian associated with the ball of radius
R > 0, Bn(0;R) ⊂ Rn, R > 0, n ≥ 2, satisfy the following Weyl-type eigenvalue asymptotics,

N
(0)
K,Bn(0;R)(λ) = (2π)−nv2

nR
nλn/2 − (2π)−(n−1)vn−1[(n/4)vn + vn−1]Rn−1λ(n−1)/2

+O
(
λ(n−2)/2

)
as λ→∞. (11.84)
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Proof. From the outset one observes that

λ
(0)
n,`,D,k 6 λ

(0)
n,`,K,k 6 λ

(0)
n,`,D,k+1, ` ∈ N0, k ∈ N, (11.85)

implying

N
(0)
K,Bn(0;R)(λ) 6 N (0)

D,Bn(0;R)(λ), λ ∈ R. (11.86)

Next, introducing

Nν(λ) :=

{
the largest k ∈ N such that j2

ν,kR
−2 ≤ λ,

0, if no such k ≥ 1 exists,
λ ∈ R, (11.87)

we note the well-known monotonicity of jν,k with respect to ν (cf. [184, Sect. 15.6, p. 508]), implying that
for each λ ∈ R (and fixed R > 0),

Nν′(λ) ≤ Nν(λ) for ν′ ≥ ν ≥ 0. (11.88)

Then one infers

N
(0)
D,Bn(0;R)(λ) =

∑
`∈N0

dn,`N(n/2)−1+`(λ), N
(0)
K,Bn(0;R)(λ) =

∑
`∈N0

dn,`N(n/2)+`(λ). (11.89)

Hence, using the fact that
dn,` = dn−1,` + dn,`−1 (11.90)

(cf. (11.41)), setting dn,−1 = 0, n ≥ 2, one computes

N
(0)
D,Bn(0;R)(λ) =

∑
`∈N

dn,`−1N(n/2)−1+`(λ) +
∑
`∈N0

dn−1,`N(n/2)−1+`(λ)

≤
∑
`∈N0

dn,`N(n/2)+`(λ) +
∑
`∈N0

dn−1,`N((n−1)/2)−1+`(λ)

= N
(0)
K,Bn(0;R)(λ) +N

(0)
D,Bn−1(0;R)(λ), (11.91)

that is,

N
(0)
D,Bn(0;R)(λ) ≤ N (0)

K,Bn(0;R)(λ) +N
(0)
D,Bn−1(0;R)(λ). (11.92)

Similarly,

N
(0)
D,Bn(0;R)(λ) =

∑
`∈N

dn,`−1N(n/2)−1+`(λ) +
∑
`∈N0

dn−1,`N(n/2)−1+`(λ)

≥
∑
`∈N0

dn,`N(n/2)+`(λ) +
∑
`∈N0

dn−1,`N((n−1)/2)+`(λ)

= N
(0)
K,Bn(0;R)(λ) +N

(0)
K,Bn−1(0;R)(λ), (11.93)

that is,

N
(0)
D,Bn(0;R)(λ) ≥ N (0)

K,Bn(0;R)(λ) +N
(0)
K,Bn−1(0;R)(λ), (11.94)

and hence,

N
(0)
K,Bn−1(0;R)(λ) ≤

[
N

(0)
D,Bn(0;R)(λ)−N (0)

K,Bn(0;R)(λ)
]
≤ N (0)

D,Bn−1(0;R)(λ). (11.95)

Thus, using

0 ≤
[
N

(0)
D,Bn(0;R)(λ)−N (0)

K,Bn(0;R)(λ)
]
≤ N (0)

D,Bn−1(0;R)(λ) = O
(
λ(n−1)/2

)
as λ→∞, (11.96)

one first concludes that
[
N

(0)
D,Bn(0;R)(λ)−N (0)

K,Bn(0;R)(λ)
]

= O
(
λ(n−1)/2

)
as λ→∞, and hence using (11.83),

N
(0)
K,Bn(0;R)(λ) = (2π)−nv2

nR
nλn/2 +O

(
λ(n−1)/2

)
as λ→∞. (11.97)

This type of reasoning actually yields a bit more: Dividing (11.95) by λ(n−1)/2, and using that both,

N
(0)
D,Bn−1(0;R)(λ) and N

(0)
K,Bn−1(0;R)(λ) have the same leading asymptotics (2π)−(n−1)v2

n−1R
n−1λ(n−1)/2 as

λ→∞, one infers, using (11.83) again,

N
(0)
K,Bn(0;R)(λ) = N

(0)
D,Bn(0;R)(λ)−

[
N

(0)
D,Bn(0;R)(λ)−N (0)

K,Bn(0;R)(λ)
]

= N
(0)
D,Bn(0;R)(λ)− (2π)−(n−1)v2

n−1R
n−1λ(n−1)/2 + o

(
λ(n−1)/2

)
= (2π)−nv2

nR
nλn/2 − (2π)−(n−1)vn−1[(n/4)vn + vn−1]Rn−1λ(n−1)/2
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+ o
(
λ(n−1)/2

)
as λ→∞. (11.98)

Finally, it is possible to improve the remainder term in (11.98) from o
(
λ(n−1)/2

)
to O

(
λ(n−2)/2

)
as follows:

Replacing n by n− 1 in (11.92) yields

N
(0)
D,Bn−1(0;R)(λ) ≤ N (0)

K,Bn−1(0;R)(λ) +N
(0)
D,Bn−2(0;R)(λ). (11.99)

Insertion of (11.99) into (11.94) permits one to eliminate N
(0)
K,Bn−1(0;R) as follows:

N
(0)
D,Bn(0;R)(λ) ≥ N (0)

K,Bn(0;R)(λ) +N
(0)
D,Bn−1(0;R)(λ)−N (0)

D,Bn−2(0;R)(λ), (11.100)

which implies [
N

(0)
D,Bn(0;R)(λ)−N (0)

D,Bn−1(0;R)(λ)
]
≤ N (0)

K,Bn(0;R)(λ)

≤
[
N

(0)
D,Bn(0;R)(λ)−N (0)

D,Bn−1(0;R)(λ)
]

+N
(0)
D,Bn−2(0;R)(λ),

(11.101)

and hence,

0 ≤ N (0)
K,Bn(0;R)(λ)−

[
N

(0)
D,Bn(0;R)(λ)−N (0)

D,Bn−1(0;R)(λ)
]
≤ N (0)

D,Bn−2(0;R)(λ). (11.102)

Thus, N
(0)
K,Bn(0;R)(λ)−

[
N

(0)
D,Bn(0;R)(λ)−N (0)

D,Bn−1(0;R)(λ)
]

= O
(
λ(n−2)/2

)
as λ→∞, proving (11.84). �

Due to the smoothness of the domain Bn(0;R), the remainder terms in (11.84) represent a marked
improvement over the general result (9.13) for domains Ω satisfying Hypothesis 6.2. A comparison of the
second term in the asymptotic relations (11.83) and (11.84) exhibits the difference between Dirichlet and
Krein–von Neumann eigenvalues.

11.4. The Case Ω = Rn\{0}, n = 2, 3, V = 0. In this subsection we consider the following minimal
operator −∆min,Rn\{0} in L2(Rn; dnx), n = 2, 3,

−∆min,Rn\{0} = −∆
∣∣
C∞0 (Rn\{0}) ≥ 0, n = 2, 3. (11.103)

Then
HF,R2\{0} = HK,R2\{0} = −∆,

dom(HF,R2\{0}) = dom(HK,R2\{0}) = H2(R2) if n = 2
(11.104)

is the unique nonnegative self-adjoint extension of −∆min,R2\{0} in L2(R2; d2x) and

HF,R3\{0} = HD,R3\{0} = −∆,

dom(HF,R3\{0}) = dom(HD,R3\{0}) = H2(R3) if n = 3,
(11.105)

HK,R3\{0} = HN,R3\{0} = U−1h
(0)
0,N,R+

U ⊕
⊕
`∈N

U−1h
(0)
`,R+

U if n = 3, (11.106)

whereHD,R3\{0} andHN,R3\{0} denote the Dirichlet and Neumann1 extension of−∆min,Rn\{0} in L2(R3; d3x),
respectively. Here we used the angular momentum decomposition (cf. also (11.39), (11.40)),

L2(Rn; dnx) = L2((0,∞); rn−1dr)⊗ L2(Sn−1; dωn−1) =
⊕
`∈N0

Hn,`,(0,∞), (11.107)

Hn,`,(0,∞) = L2((0,∞); rn−1dr)⊗Kn,`, ` ∈ N0, n = 2, 3. (11.108)

Moreover, we abbreviated R+ = (0,∞) and introduced

h
(0)
0,N,R+

= − d2

dr2
, r > 0,

dom
(
h

(0)
0,N,R+

)
=
{
f ∈ L2((0,∞); dr)

∣∣ f, f ′ ∈ AC([0, R]) for all R > 0; (11.109)

f ′(0+) = 0; f ′′ ∈ L2((0,∞); dr)
}
,

h
(0)
`,R+

= − d2

dr2
+
`(`+ 1)

r2
, r > 0,

dom
(
h

(0)
`,R+

)
=
{
f ∈ L2((0,∞); dr)

∣∣ f, f ′ ∈ AC([0, R]) for all R > 0; (11.110)

1The Neumann extension HN,R3\{0} of −∆min,Rn\{0}, associated with a Neumann boundary condition, in honor of Carl

Gottfried Neumann, should of course not be confused with the Krein–von Neumann extension HK,R3\{0} of −∆min,Rn\{0}.
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− f ′′ + `(`+ 1)r−2f ∈ L2((0,∞); dr)
}
, ` ∈ N.

The operators h
(0)
`,R+
|C∞0 ((0,∞)), ` ∈ N, are essentially self-adjoint in L2((0,∞); dr) (but we note that f ∈

dom
(
h

(0)
`,R+

)
implies that f(0+) = 0). In addition, U in (11.106) denotes the unitary operator,

U :

{
L2((0,∞); r2dr)→ L2((0,∞); dr),

f(r) 7→ (Uf)(r) = rf(r).
(11.111)

As discussed in detail in [83, Sects. 4, 5], equations (11.104)–(11.106) follow from Corollary 4.8 in [83] and
the facts that

(u+,MHF,Rn\{0},N+(z)u+)L2(Rn;dnx) =

{
−(2/π) ln(z) + 2i, n = 2,

i(2z)1/2 + 1, n = 3,
(11.112)

and
(u+,MHK,R3\{0},N+(z)u+)L2(R3;d3x) = i(2/z)1/2 − 1. (11.113)

Here

N+ = lin. span{u+},
u+(x) = G0(i, x, 0)/‖G0(i, ·, 0)‖L2(Rn;dnx), x ∈ Rn\{0}, n = 2, 3,

(11.114)

and

G0(z, x, y) =

{
i
4H

(1)
0 (z1/2|x− y|), x 6= y, n = 2,

eiz
1/2|x−y|/(4π|x− y|), x 6= y, n = 3

(11.115)

denotes the Green’s function of −∆ defined on H2(Rn), n = 2, 3 (i.e., the integral kernel of the resolvent

(−∆ − z)−1), and H
(1)
0 (·) abbreviates the Hankel function of the first kind and order zero (cf., [1, Sect.

9.1]). Here the Donoghue-type Weyl–Titchmarsh operators (cf. [70] in the case where dim(N+) = 1 and [83],
[85], and [91] in the general abstract case where dim(N+) ∈ N∪ {∞}) MHF,Rn\{0},N+ and MHK,Rn\{0},N+ are

defined according to equation (4.8) in [83]: More precisely, given a self-adjoint extension S̃ of the densely
defined closed symmetric operator S in a complex separable Hilbert space H, and a closed linear subspace
N of N+ = ker(S∗ − iIH), N ⊆ N+, the Donoghue-type Weyl–Titchmarsh operator MS̃,N (z) ∈ B(N )

associated with the pair (S̃,N ) is defined by

MS̃,N (z) = PN (zS̃ + IH)(S̃ − zIH)−1PN
∣∣
N

= zIN + (1 + z2)PN (S̃ − zIH)−1PN
∣∣
N , z ∈ C\R,

(11.116)

with IN the identity operator in N and PN the orthogonal projection in H onto N .
Equation (11.112) then immediately follows from repeated use of the identity (the first resolvent equation),∫

Rn
dnx′G0(z1, x, x

′)G0(z2, x
′, 0) = (z1 − z2)−1[G0(z1, x, 0)−G0(z2, x, 0)],

x 6= 0, z1 6= z2, n = 2, 3, (11.117)

and its limiting case as x→ 0.
Finally, (11.113) follows from the following arguments: First one notices that[

− (d2/dr2) + α r−2
]∣∣
C∞0 ((0,∞))

(11.118)

is essentially self-adjoint in L2(R+; dr) if and only if α ≥ 3/4. Hence it suffices to consider the restriction of
Hmin,R3\{0} to the centrally symmetric subspace H3,0,(0,∞) of L2(R3; d3x) corresponding to angular momen-
tum ` = 0 in (11.107), (11.108). But then it is a well-known fact (cf. [83, Sects. 4,5]) that the Donoghue-type
Dirichlet m-function (u+,MHD,R3\{0},N+

(z)u+)L2(R3;d3x), satisfies

(u+,MHD,R3\{0},N+(z)u+)L2(R3;d3x) = (u0,+,Mh
(0)
0,D,R+

,N0,+
(z)u0,+)L2(R+;dr),

= i(2z)1/2 + 1, (11.119)

where
N0,+ = lin. span{u0,+}, u0,+(r) = eiz

1/2r/[2 Im(z1/2]1/2, r > 0, (11.120)

and M
h

(0)
0,D,R+

,N0,+
(z) denotes the Donoghue-type Dirichlet m-function corresponding to the operator

h
(0)
0,D,R+

= − d2

dr2
, r > 0,
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dom
(
h

(0)
0,D,R+

)
=
{
f ∈ L2((0,∞); dr)

∣∣ f, f ′ ∈ AC([0, R]) for all R > 0; (11.121)

f(0+) = 0; f ′′ ∈ L2((0,∞); dr)
}
,

Next, turning to the Donoghue-type Neumann m-function given by (u+,MHN,R3\{0},N+(z)u+)L2(R3;d3x) one

obtains analogously to (11.119) that

(u+,MHN,R3\{0},N+(z)u+)L2(R3;d3x) = (u0,+,Mh
(0)
0,N,R+

,N0,+
(z)u0,+)L2(R+;dr), (11.122)

where M
h

(0)
0,N,R+

,N0,+
(z) denotes the Donoghue-type Neumann m-function corresponding to the operator

h
(0)
0,N,R+

in (11.109). The well-known linear fractional transformation relating the operators M
h

(0)
0,D,R+

,N0,+
(z)

and M
h

(0)
0,N,R+

,N0,+
(z) (cf. [83, Lemmas 5.3, 5.4, Theorem 5.5, and Corollary 5.6]) then yields

(u0,+,Mh
(0)
0,N,R+

,N0,+
(z)u0,+)L2(R+;dr) = i(2/z)1/2 − 1, (11.123)

verifying (11.113).
The fact that the operator T = −∆, dom(T ) = H2(R2) is the unique nonnegative self-adjoint extension

of −∆min,R2\{0} in L2(R2; d2x), has been shown in [12] (see also [13, Ch. I.5]).

11.5. The Case Ω = Rn\{0}, V = −[(n − 2)2/4]|x|−2, n ≥ 2. In our final subsection we briefly consider
the following minimal operator Hmin,Rn\{0} in L2(Rn; dnx), n ≥ 2,

Hmin,Rn\{0} = (−∆− ((n− 2)2/4)|x|−2)
∣∣
C∞0 (Rn\{0}) ≥ 0, n ≥ 2. (11.124)

Then, using again the angular momentum decomposition (cf. also (11.39), (11.40)),

L2(Rn; dnx) = L2((0,∞); rn−1dr)⊗ L2(Sn−1; dωn−1) =
⊕
`∈N0

Hn,`,(0,∞), (11.125)

Hn,`,(0,∞) = L2((0,∞); rn−1dr)⊗Kn,`, ` ∈ N0, n ≥ 2, (11.126)

one finally obtains that

HF,Rn\{0} = HK,Rn\{0} = U−1h0,R+
U ⊕

⊕
`∈N

U−1hn,`,R+
U, n ≥ 2, (11.127)

is the unique nonnegative self-adjoint extension of Hmin,Rn\{0} in L2(Rn; dnx), where

h0,R+
= − d2

dr2
− 1

4r2
, r > 0,

dom(h0,R+) =
{
f ∈ L2((0,∞); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all 0 < ε < R; (11.128)

f0 = 0; (−f ′′ − (1/4)r−2f) ∈ L2((0,∞); dr)
}
,

hn,`,R+ = − d2

dr2
+

4κn,` − 1

4r2
, r > 0,

dom(hn,`,R+
) =

{
f ∈ L2((0,∞); dr)

∣∣ f, f ′ ∈ AC([ε,R]) for all 0 < ε < R;

(−f ′′ + [κn,` − (1/4)]r−2f) ∈ L2((0,∞); dr)
}
, ` ∈ N, n ≥ 2. (11.129)

Here f0 in (11.128) is defined by (cf. also (11.51))

f0 = lim
r↓0

[−r1/2 ln(r)]−1f(r). (11.130)

As in the previous subsection, hn,`,R+
|C∞0 ((0,∞)), ` ∈ N, n ≥ 2, are essentially self-adjoint in L2((0,∞); dr).

In addition, h0,R+
is the unique nonnegative self-adjoint extension of h0,R+

|C∞0 ((0,∞)) in L2((0,∞); dr). We
omit further details.
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[23] Yu. M. Arlinskĭı and E. R. Tsekanovskĭı, On von Neumann’s problem in extension theory of nonnegative operators, Proc.

Amer. Math. Soc. 131, 3143–3154 (2003).
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[148] G. Nenciu, Applications of the Krĕın resolvent formula to the theory of self-adjoint extensions of positive symmetric

operators, J. Operator Th. 10, 209–218 (1983).
[149] Yu. Netrusov and Yu. Safarov, Weyl asymptotic formula for the Laplacian on domains with rough boundaries, Comm.

Math. Phys. 253, no. 2, 481–509 (2005).

[150] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rat. Mech. Anal. 4, 517–529 (1955).
[151] L. E. Payne, A note on inequalities for plate eigenvalues, J. Math. and Phys. 39, 155–159 (1960).

[152] L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9, 453–488 (1967).

[153] L. E. Payne, Some comments on the past fifty years of isoperimetric inequalities, in Inequalities. Fifty Years on from
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Basel, 1995, pp. 369–374.

[172] O. G. Storozh, On the hard and soft extensions of a nonnegative operator, J. Math. Sci. 79, 1378–1380 (1996).

[173] A. V. S̆traus, On extensions of a semibounded operator, Sov. Math. Dokl. 14, 1075–1079 (1973).

[174] N. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Mathematical Topics, Vol. 7, Akademie Verlag,
Berlin, 1995.

[175] C. Tretter, Linear operator pencils A− λB with discrete spectrum, Integral Equ. Operator Th. 37, 357–373 (2000).

[176] H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise
multipliers, Rev. Mat. Complut. 15, 475–524 (2002).

[177] H. Triebel, The dichotomy between traces on d-sets Γ in Rn and the density of D(Rn\Γ) in function spaces, Acta Math.

Sin. (Engl. Ser.) 24, no. 4, 539–554 (2008).
[178] E. R. Tsekanovskii, Non-self-adjoint accretive extensions of positive operators and theorems of Friedrichs–Krein–Phillips,

Funct. Anal. Appl. 14, 156–157 (1980).

[179] E. R. Tsekanovskii, Friedrichs and Krein extensions of positive operators and holomorphic contraction semigroups, Funct.
Anal. Appl. 15, 308–309 (1981).

http://arxiv.org/abs/0904.0276


68 M. S. ASHBAUGH, F. GESZTESY, M. MITREA, R. SHTERENBERG, AND G. TESCHL

[180] E. R. Tsekanovskii, Characteristic function and sectorial boundary value problems, Trudy Inst. Mat. (Novosibirsk) 7,

180–194, 200 (1987), Issled. Geom. Mat. Anal. (Russian).
[181] E. R. Tsekanovskii, Accretive extensions and problems on the Stieltjes operator-valued functions realizations, in Operator

Theory and Complex Analysis, T. Ando and I. Gohberg (eds.), Operator Theory: Advances and Applications, Vol. 59,
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