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Abstract. In the framework of abstract ergodic probability-preserving trans-
formations, we prove that the limiting return-time statistics and hitting-time

statistics persist if we pass from the original system to a first-return map and
vice versa.

1. Introduction

The asymptotic behaviour of return-time and hitting-time distributions of small
sets H in an ergodic probability-preserving dynamical system (X,A, µ, T ) is a well-
studied circle of questions. For the open dynamical system obtained by regarding
H as a hole in X, this is of obvious interest since the hitting time of H represents
the survival time of orbits in the open system.

In the present note, we shall always assume that (X,A, µ) is a probability space,
and that T : X → X is an ergodic measure-preserving map thereon. Also, H,Hl

and Y will always denote measurable sets of positive measure. By ergodicity and
the Poincaré recurrence theorem, the measurable (first) hitting time function of H,
ϕH : X → N := {1, 2, . . . ,∞} with ϕH(x) := inf{n ≥ 1 : Tnx ∈ H}, is finite a.e. on
X. When restricted to H it is called the (first) return time function of our set, and
it satisfies Kac’ formula

∫
H
ϕH dµH = 1/µ(H), where µH(A) := µ(H ∩ A)/µ(H),

A ∈ A. That is, when regarded as a random variable on the probability space
(H,A ∩H,µH), the return time has a distribution with expectation 1/µ(H), and
we will often normalize our variable accordingly, thus passing to µ(H)ϕH .

In the following, our goal is to obtain further information about this return-
time distribution of H, in particular when H is really small, that is, we are going to
study sequences (Hl)l≥1 of asymptotically rare events, meaning that1 µ(Hl) → 0.
The sequence is said to have (asymptotic) return time statistics given by a random
variable R̃ which takes values in [0,∞], if its normalized return time distributions
converge, in the usual sense, to that of R̃, so that F̃l(t) := µHl

(µ(Hl)ϕHl
≤ t) →

F̃ (t) := Pr[R̃ ≤ t] as l→∞ whenever t > 0 is a continuity point of F̃ . In standard
probabilistic notation, this is expressed, on the level of distribution functions, as
F̃l =⇒ F̃ .
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1This is obviously a property of the sequence, and not of the individual events Hl. Still, we

take the liberty of following this imprecise but common terminology.
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Similarly, one may study the hitting-time distribution of H, that is, the law of
ϕH on the original probability space (X,A, µ), and ask, for sequences (Hl)l≥1 as
above, for (asymptotic) hitting time statistics given by some [0,∞]-valued random
variable R. This means that Fl(t) := µ(µ(Hl)ϕHl

≤ t)→ F (t) := Pr[R ≤ t] for all
continuity points t > 0 of F , that is Fl =⇒ F . This situation is somewhat simpler,
as the underlying measure µ remains the same.

A large amount of material on return- and hitting time statistics for specific
types of dynamical systems is available. We refer the reader to [8], [9], [12] and the
references cited there. (For systems with some hyperbolicity, and reasonably well
behaved sequences (Hl)l≥1 one typically gets convergence to an exponential law.)

Moreover, certain fundamental questions can be posed and answered in an
abstract ergodic-theoretical setup. Most important for us, this is the case for the
relation between the two types of limits introduced above, which has been clarified
in [6]. We will recall it below, see Theorem 2.1.

The focus of the present paper is on the behaviour of the two limiting relations
under the standard operation of inducing on a suitable reference set Y ⊆ X. The
technique of inducing is a basic tool, both for the analysis of specific systems, and
for abstract ergodic theory. In the former sense, it has been used to identify return-
time statistics of certain non-uniformly hyperbolic systems in [4], where it is shown
that return-time statistics persist under inducing, at least in situations in which
X is a Riemannian manifold, (Hl) is a sequence of ε-neighbourhoods of a typical
point, and where the limit law has no mass at zero. This has been exploited in
further papers, see e.g. [5].

Here, we extend this principle to the general measure-theoretical setup and
dispose of these extra conditions, see Theorem 4.1 below. We do so by first proving
a corresponding abstract statement for the easier case of hitting-times (Theorem
3.1), and then transfer it to return-times via the aforementioned universal corre-
spondence between the two. The results below were obtained independently in [7]
and [13].

2. Preliminaries

Distributional convergence. A sub-probability distribution function on [0,∞)
is a non-decreasing right-continuous function F : [0,∞) → [0, 1] (with a canonical
extension to R which vanishes on (−∞, 0)). These F are in a one-to-one correspon-
dence with the Borel probability measures Q on [0,∞], where Q corresponds to the
function given by F (t) := Q([0, t]), t ∈ [0,∞), so that Q({∞}) = 1− limt→∞ F (t).
These Q, in turn, are the distributions of random variables R taking values in [0,∞],
Q(B) = Pr[R ∈ B], B ∈ B[0,∞]. R is (almost surely) real-valued iff F (t) → 1 as
t→∞, i.e. iff F is a proper probability distribution function on [0,∞).

If F, Fl are sub-probability distribution functions on [0,∞), then Fl =⇒ F
means that Fl(t) → F (t) as l → ∞ for all continuity points t > 0 of F . This is
equivalent to the usual weak convergence Ql =⇒ Q (cf. [3]) of the corresponding
Borel probabilities on [0,∞]. (This is obvious if, for example, we map [0,∞] onto
[0, 1] by some orientation-preserving homeomorphism, and carry the measures and
distribution functions along.)

In the present context we are interested in certain measurable functions Rl :
X → [0,∞], the distributions of which may be taken w.r.t. different probabilities
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νl on (X,A). Convergence in the above sense of these distributions to the law of
some random variable R will be denoted by

(2.1) Rl
νl=⇒ R as l→∞,

that is, with F (t) := Pr[R ≤ t] denoting the distribution function of R, (2.1) means

νl(Rl ≤ t) −→ F (t) for all continuity points t > 0 of F .

As a special case, this includes the notation Rl
ν=⇒ R for distributional convergence

of the Rl when regarded as random variables on the common probability space
(X,A, ν), that is, ν(Rl ≤ t) −→ F (t) for all continuity points t > 0 of F .

If, in the setup of the introduction, Rl := µ(Hl)ϕHl
, then return-time statistics

refer to convergence Rl
νl=⇒ R with νl = µHl

, while hitting-time statistics concern
the convergence Rl

ν=⇒ R with ν := µ.

Relation between return-time and hitting-time statistics. Given an ar-
bitrary sequence (Hl)l≥1 of asymptotically rare events, its return-time statistics
and its hitting-time statistics are intimately related to each other. The following
fundamental result was first established in [6]. For an alternative proof see [2].

Theorem 2.1 (Hitting-time statistics versus return-time statistics).
Let (X,A, µ, T ) be an ergodic probability-preserving system, and (Hl)l≥1 a sequence
of asymptotically rare events. Then

(2.2) µ(Hl)ϕHl

µ
=⇒ R for some random variable R in [0,∞]

iff

(2.3) µ(Hl)ϕHl

µHl=⇒ R̃ for some random variable R̃ in [0,∞].

In this case, the sub-probability distribution functions F and F̃ of R and R̃ satisfy

(2.4)
∫ t
0
(1− F̃ (s)) ds = F (t) for t ≥ 0.

Through this integral equation each of F and F̃ uniquely determines the other.
Moreover, F is necessarily continuous and concave with F (t) ≤ t, while F̃ is always
a probability distribution function satisfying

∫∞
0

(1− F̃ (s)) ds ≤ 1.

It is also known that the properties recorded above (which follow easily from
(2.4)) completely determine the class of all F and F̃ which do occur as hitting- and
return-time limits in an arbitrary aperiodic ergodic system, see [11] and [10].

Strong distributional convergence for hitting-times of rare events. It is an
interesting but sometimes neglected fact that many distributional limit theorems
for ergodic processes automatically hold for large collections of initial probability
distributions ν on the underlying space. In Section 4 below, this principle will serve
as an important technical tool. Let (Rl)l≥1 be a sequence of non-negative measur-
able functions on (X,A, µ), and R some [0,∞]-valued random variable. Strong
distributional convergence w.r.t. µ of (Rl)l≥1 to R means that

(2.5) Rl
ν=⇒ R for all probability measures ν � µ,

compare [1]. This type of convergence is denoted by Rl
L(µ)
=⇒ R. (The probabilistic

literature sometimes uses the term (Rényi-)mixing.)
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A situation in which one always has strong convergence for trivial reasons is that
of an a.s. constant limit variable R, i.e. Pr[R = c] = 1 for some c ∈ [0,∞]. There
are, however, more interesting scenarios in which strong distributional convergence
is automatic. A discussion of a natural and widely applicable sufficient condition
for this to happen in an ergodic system can be found in [15]. Using it, it is not hard
to see that asymptotic hitting-time distributions for rare events always behave in
this way: If a limit law shows up under one particular initial distribution ν � µ,
then it does so for all ν � µ. The following fact, which will be very useful for the
proof of our main results, is contained in Corollary 5 of [15].

Proposition 2.1 (Strong distributional convergence of hitting-times).
Let (X,A, µ, T ) be an ergodic probability-preserving system, and ν � µ some prob-
ability measure. Let (Hl)l≥1 be a sequence of asymptotically rare events. Then, for
any random variable R in [0,∞],

(2.6) µ(Hl)ϕHl

ν=⇒ R implies µ(Hl)ϕHl

L(µ)
=⇒ R.

As a consequence, we see that proving µ(Hl)ϕHl

ν=⇒ R for some particular ν
is as good as proving it for any other probability measure.

We emphasize that the analogous statement for return-time statistics is false.
First, for an arbitrarily chosen probability ν � µ, we may have ν(Hl) = 0, so that
the statement doesn’t even make sense. But even if ν(Hl) > 0, there is no hope
for a universality statement like that of the Proposition. We illustrate this in the
simple setup of disjoint sequences (Hl)l≥1.

Example 2.2. Let (X,A, µ, T ) be an ergodic probability-preserving system, and
(Hl)l≥1 a sequence of pairwise disjoint asymptotically rare events. Assume that, for

some non-constant random variable R̃, we have R̃l := µ(Hl)ϕHl

µHl=⇒ R̃. Then there
is some probability ν � µ such that ν(Hl) > 0 for l ≥ l∗ but R̃l

νHl; R̃.
To see this, let t∗ ∈ (0,∞) be a continuity point of F̃ (t) := Pr[R̃ ≤ t] such

that 0 < F̃ (t∗) < 1. Define H∗l := Hl ∩ {R̃l ≤ t∗}, l ≥ 1. By assumption,
µHl

(H∗l ) → F̃ (t∗), so that µ(H∗l ) > 0 for l ≥ l∗. Let Z :=
⋃
l≥l∗H

∗
l and ν := µZ .

Since the Hl are pairwise disjoint, we find that νHl
(R̃l ≤ t∗) = ν(H∗l )/ν(Hl) =

µ(H∗l )/µ(H∗l ) = 1 for l ≥ l∗. Our claim follows.

3. Hitting-time statistics via inducing

As before, we let (X,A, µ, T ) be an ergodic probability-preserving system. Now
fix some Y ∈ A, µ(Y ) > 0. It is a well-known classical result that the first-return
map TY : Y → Y defined by

TY x := TϕY (x)x, x ∈ Y ,

is a measure-preserving ergodic map on the probability space (Y,A ∩ Y, µY ). (For
measure-preservation by more general versions of induced maps, see e.g. [14].)
When studying specific systems, one often tries to find some good reference set Y
such that TY is more convenient a map than T . In this case, it often pays to prove
a relevant property first for TY , and to transfer it back to T afterwards - if possi-
ble. Here, we show that this strategy can be employed to deal with hitting-time
statistics. The conclusion is pleasantly simple, as the respective limit laws for T
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and TY coincide.

In the following, we let ϕYH : Y → N denote the hitting time of H ∈ A ∩ Y
under the first-return map TY , that is,

(3.1) ϕYH(x) := inf{j ≥ 1 : T jY x ∈ H}, x ∈ Y .

The hitting time functions ϕH and ϕYH are naturally related to each other in that

(3.2) ϕH =
ϕY

H−1∑
j=0

ϕY ◦ T jY on Y .

This can be exploited in a fairly straightforward manner to obtain

Theorem 3.1 (Hitting-time statistics via inducing). Let (X,A, µ, T ) be
an ergodic probability-preserving system, and Y ∈ A, µ(Y ) > 0. Assume that
(Hl)l≥1 is a sequence of asymptotically rare events in A ∩ Y , and that R is any
random variable with values in [0,∞]. Then

(3.3) µY (Hl)ϕYHl

µY=⇒ R as l→∞

iff

(3.4) µ(Hl)ϕHl

µ
=⇒ R as l→∞.

Proof. (i) Let F : [0,∞)→ [0, 1] be the (sub-)distribution function of R. Due
to Proposition 2.1 we know that in (3.4) convergence

µ
=⇒ w.r.t. µ is equivalent to

convergence
µY=⇒ w.r.t. µY . It is therefore sufficient to prove that

(3.5) µY
(
µ(Y )−1µ(Hl)ϕYHl

≤ t
)
−→ F (t) for all continuity points t > 0

iff

(3.6) µY (µ(Hl)ϕHl
≤ t) −→ F (t) for all continuity points t > 0.

To this end, we fix any continuity point t > 0 of F , and any ε > 0. Next, we choose
δ > 0 so small that

(3.7) F (t)− ε/4 < F (e−δt) ≤ F (eδt) < F (t) + ε/4.

Since F is continuous on a dense set, we may also assume that both e−δt and eδt
are continuity points of F .

(ii) By the Ergodic theorem and Kac’ formula, we have

(3.8) m−1∑m−1
j=0 ϕY ◦ T

j
Y −→ µ(Y )−1 a.e. on Y .

This implies that the increasing sequence of sets given by

EM := {
∑m−1
j=0 ϕY ◦ T

j
Y ≥ e

−δµ(Y )−1m for all m ≥M} ∈ A ∩ Y

satisfies µY (EcM )→ 0 as M →∞. Now fix some M such that µY (EcM ) < ε/4.
Next, let Fl := {ϕYHl

≥ M} ∈ A ∩ Y , l ≥ 1. Then, Fl = Y ∩
⋂M−1
j=1 T−jY Hc

l ,
and hence µY (F cl ) ≤

∑M−1
j=1 µY (T−jY Hl) ≤ M µY (Hl) → 0 as l → ∞, since TY

preserves µY , and the sequence (Hl)l≥1 is asymptotically rare. Therefore there is
some L ≥ 1 such that µY (F cl ) < ε/4 for l ≥ L.
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(iii) Now recall (3.2). By definition of EM and Fl we have

ϕHl
=
∑ϕY

Hl
−1

j=0 ϕY ◦ T jY ≥ e
−δ µ(Y )−1ϕYHl

on Fl ∩ EM .

Therefore, for any s > 0,

Fl ∩ EM ∩ {µ(Hl)ϕHl
≤ s} ⊆ Fl ∩ EM ∩ {µ(Y )−1µ(Hl)ϕYHl

≤ eδs},
and hence

µY (µ(Hl)ϕHl
≤ s) ≤ µY

(
µ(Y )−1µ(Hl)ϕYHl

≤ eδs
)

+ µY ((Fl ∩ EM )c)

< µY
(
µ(Y )−1µ(Hl)ϕYHl

≤ eδs
)

+ ε/2 for l ≥ L.(3.9)

(iv) Assume (3.5). Since eδt is a continuity point of F , we can pick L′ ≥ 1 such
that µY (µ(Y )−1µ(Hl)ϕYHl

≤ eδt) < F (eδt) + ε/4 for l ≥ L′. Combining this with
(3.7) and with (3.9) for s := t, we obtain

(3.10) µY (µ(Hl)ϕHl
≤ t) < F (t) + ε for l ≥ max(L,L′).

If, on the other hand, we start from (3.6), then µY
(
µ(Hl)ϕHl

≤ e−δt
)
> F (e−δt)−

ε/4 for l ≥ L′ with L′ large enough, as e−δt, too, is a continuity point of F .
Combining this with (3.7) and with (3.9) for s := e−δt, we get

(3.11) µY
(
µ(Y )−1µ(Hl)ϕYHl

≤ t
)
> F (t)− ε for l ≥ max(L,L′).

Versions of (3.10) and (3.11) providing the corresponding estimate in the opposite
direction are obtained in exactly the same way. As ε > 0 was arbitrary, our claim
follows. �

In the proof, Proposition 2.1, was used at the very start to ensure that

(3.12) µ(Hl)ϕHl

µ
=⇒ R iff µ(Hl)ϕHl

µY=⇒ R.

This special case of strong distributional convergence can also be verified directly.
We indicate an argument which is somewhat more elementary than the theory
behind Proposition 2.1.

Direct proof of (3.12). (i) Let F denote the (necessarily continuous, see
Theorem 2.1) sub-probability distribution function of R. To prove that for every
t > 0 (henceforth fixed),

(3.13) µ (ϕHl
≤ sl)→ F (t) iff µY (Y ∩ {ϕHl

≤ sl})→ F (t)

with sl := t/µ(Hl), we show that for ε ∈ (0, t) there is some L0 ≥ 1 s.t.

(3.14) µY
(
Y ∩ {ϕHl

≤ s−l }
)
− ε < µ (ϕHl

≤ sl) < µY
(
Y ∩ {ϕHl

≤ s+l }
)

+ ε,

for l ≥ L0, where s±l := (t ± ε)/µ(Hl). Below we focus on the second of these
estimates. The other one is obtained by an analogous argument.

(ii) To switch from µ on X to its restriction to Y in (3.14), we will show that
µ (ϕHl

≤ sl) ≈
∫
Y
ϕY · 1{ϕHl

≤sl} dµ (which only involves µ on Y ). This uses the
well-known canonical representation (from the theory of induced transformations)

(3.15) µ(A) =
∑
n≥0µ

(
Y ∩ {ϕY > n} ∩ T−nA

)
for A ∈ A.

As µ is finite, there is some N∗ such that

(3.16)
∑
n>N∗µ (Y ∩ {ϕY > n}) < ε/4.
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We observe an approximate invariance property of the variables ϕHl
. Note that

(3.17) ϕHl
◦ Tn = ϕHl

− n on {ϕHl
> n}.

As (Hl) is asymptotically rare, there is some L1 s.t. µ(ϕHl
≤ N∗) < ε/4(N∗+1) for

l ≥ L1. Moreover, there is some L2 s.t. sl +N∗ ≤ (t± ε/2)/µ(Hl) =: s∗l whenever
l ≥ L2. For n ∈ {0, . . . , N∗} and l ≥ L1 ∨ L2 we then find that

µ
(
Y ∩ {ϕY > n} ∩ T−n{ϕHl

≤ sl}
)

≤ µ (Y ∩ {ϕHl
> N∗} ∩ {ϕY > n} ∩ {ϕHl

≤ sl + n}) + µ ({ϕHl
≤ N∗})

< µ (Y ∩ {ϕY > n} ∩ {ϕHl
≤ s∗l }) + ε/4(N∗ + 1).

Combining the preceding considerations, we then obtain

µ (ϕHl
≤ sl) <

∑N∗

n=0µ
(
Y ∩ {ϕY > n} ∩ T−n{ϕHl

≤ sl}
)

+ ε/4(3.18)

<
∑N∗

n=0µ (Y ∩ {ϕY > n} ∩ {ϕHl
≤ s∗l }) + 2ε/4

≤
∑
n≥0µ (Y ∩ {ϕY > n} ∩ {ϕHl

≤ s∗l }) + ε/2

=
∫
Y
ϕY · 1{ϕHl

≤s∗l } dµ+ ε/2.

(iii) We now verify that
∫
Y
ϕY · 1{ϕHl

≤sl} dµ ≈ µ(Y )−1µ (Y ∩ {ϕHl
≤ sl}). To this

end, we use that TY is measure-preserving, and write

(3.19)
∫
Y
ϕY · 1{ϕHl

≤s∗l } dµ = N−1∑N−1
n=0

∫
Y
ϕY ◦ TnY · 1{ϕHl

≤s∗l } ◦ T
n
Y dµ.

Due to ergodicity of TY and the L1-ergodic theorem (plus Kac’ formula), we can
choose this N in such a way that

(3.20)
∫
Y

∣∣∣N−1∑N−1
n=0 ϕY ◦ T

n
Y − µ(Y )−1

∣∣∣ dµ < ε/4,

and hence, a fortiori,

(3.21) N−1∑N−1
n=0

∫
Y

(ϕY ◦ TnY ) 1{ϕHl
≤s+l }

dµ < µY
(
Y ∩ {ϕHl

≤ s+l }
)

+ ε/4.

The left-hand expression here differs from the right-hand side of (3.19). However,
to switch from 1{ϕHl

≤s∗l } ◦ T
n
Y to 1{ϕHl

≤s+l }
we can again exploit approximate in-

variance of the ϕHl
. We first record that there is some δ > 0 such that

(3.22)
∫
A
ϕY ◦ TnY dµ < ε/4 for all n ≥ 0 and A ∈ A ∩ Y with µ(A) < δ.

Indeed, since TY is measure-preserving on Y , it is immediate that the sequence
(ϕY ◦ TnY )n≥0 is uniformly integrable on Y , whence (3.22).

Reviewing the idea which gave (3.17), we see that

(3.23) ϕHl
◦ TnY = ϕHl

−
∑n−1
j=0ϕY ◦ T

j
Y on Y ∩ {ϕYHl

> n}.

Let Φ :=
∑N−1
j=0 ϕY ◦T

j
Y which is finite a.e. on Y . Take M so large that µ(Y ∩{Φ >

M}) < δ/2. Next, choose L3 such that µ(Y ∩ {ϕYHl
≤ N}) < δ/2 and s∗l +M ≤ s+l

whenever l ≥ L3. Then Al := Y ∩ {Φ ≤ M} ∩ {ϕYHl
> N} satisfies µ(Y \ Al) < δ

for l ≥ L3. For such l and n ∈ {0, . . . , N}, we thus get∫
Y
ϕY ◦ TnY · 1{ϕHl

≤s∗l } ◦ T
n
Y dµ(3.24)

≤
∫
Al
ϕY ◦ TnY · 1{ϕHl

≤s∗l +M} dµ+
∫
Y \Al

ϕY ◦ TnY dµ

<
∫
Y
ϕY ◦ TnY · 1{ϕHl

≤s+l }
dµ+ ε/4.
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(iv) The proof of the right-hand half of (3.14) is completed by letting L0 := L1 ∨
L2 ∨ L3, and combining (3.18) with (3.24) and (3.21). �

4. Return-time statistics via inducing

We finally extend the applicability of the inducing method to return-time sta-
tistics from the setup of [4] to the general abstract framework of measure-theoretic
ergodic theory. With Theorem 2.1 and Proposition 2.1 at our disposal, we can
easily pass from the fully general Theorem 3.1 to a corresponding result for return-
time statistics which does not require any further assumptions. This is a significant
improvement of Theorem 2.1 of [4], since the latter a) only deals with a slightly
restricted class of limit laws where the limiting distribution F̃ of the return times
satisfies limt→0+ F̃ (t) = 0, i.e. there is no point mass at t = 0, b) assumes that X is
a Riemannian manifold and c) only applies to sequences (Hl) of ε-neighbourhoods
of typical (but not arbitrary) points of X.

Theorem 4.1 (Return-time statistics via inducing). Let (X,A, µ, T ) be
an ergodic probability-preserving system, and Y ∈ A, µ(Y ) > 0. Assume that
(Hl)l≥1 is a sequence of asymptotically rare events in A ∩ Y , and that R̃ is any
random variable with values in [0,∞]. Then

(4.1) µY (Hl)ϕYHl

µHl=⇒ R̃ as l→∞
iff

(4.2) µ(Hl)ϕHl

µHl=⇒ R̃ as l→∞.

Proof. Applying Theorem 2.1 to TY , we see that (4.1) is equivalent to

(4.3) µY (Hl)ϕYHl

µY=⇒ R as l→∞,

with R and R̃ related by the integral equation (2.4) for their respective distribution
functions F and F̃ . Due to Theorem 3.1, (4.3) is equivalent to

(4.4) µ(Hl)ϕHl

µ
=⇒ R as l→∞.

But then we can again apply Theorem 2.1, this time to T , to validate that (4.4) is
indeed equivalent to (4.2), as claimed. �
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