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Abstract. — Let x1, x2, . . . , xn be the zeroes of a polynomial P (x) of
degree n and y1, y2, . . . , ym be the zeroes of another polynomial Q(y) of degree
m. Our object of study is the permanent per(1/(xi − yj))1≤i≤n, 1≤j≤m, here
named “Scott-type” permanent, the case of P (x) = xn − 1 and Q(y) = yn + 1
having been considered by R. F. Scott. We present an efficient approach to
determining explicit evaluations of Scott-type permanents, based on generaliza-
tions of classical theorems by Cauchy and Borchardt, and of a recent theorem
by Lascoux. This continues and extends the work initiated by the first author
(“Généralisation de l’identité de Scott sur les permanents,” to appear in Linear
Algebra Appl.). Our approach enables us to provide numerous closed form eval-
uations of Scott-type permanents for special choices of the polynomials P (x) and
Q(y), including generalizations of all the results from the above mentioned paper
and of Scott’s permanent itself. For example, we prove that if P (x) = xn − 1
and Q(y) = y2n + yn + 1 then the corresponding Scott-type permanent is equal
to (−1)n+1n!.

Résumé. — Soient x1, x2, . . . , xn les zéros d’un polynôme P (x) de degré n
et y1, y2, . . . , ym les zéros d’un autre polynôme Q(y) de degré m. Notre objet
d’étude est le permanent per(1/(xi − yj))1≤i≤n, 1≤j≤m, appelé ici permanent
de type Scott. Le cas de P (x) = xn − 1 et Q(y) = yn + 1 a été considéré
par R. F. Scott. Nous présentons une approche efficace pour déterminer les
évaluations explicites des permanents de type Scott, basée sur des généralisations
des théorèmes classiques de Cauchy et Borchardt, et d’un théorème récent de Las-
coux. La présente étude prolonge le travail du premier auteur (“Généralisation
de l’identité de Scott sur les permanents,” à apparâıtre dans Linear Algebra
Appl.). Notre approche nous permet de fournir de nombreuses évaluations ex-
plicites des permanents de type Scott pour des choix spéciaux des polynômes
P (x) et Q(y), y compris des généalisations de tous les résultats de l’article men-
tionné ci-dessus et du permanent de Scott lui-même. Par exemple, nous prouvons
que si P (x) = xn − 1 et Q(y) = y2n + yn + 1 alors le permanent correspondant
de type Scott est égal à (−1)n+1n!.

1. Introduction

In 1881, Scott [16] stated, without proof, the following result:
Let x1, x2, . . . , xn be the zeroes of xn−1 and y1, y2, . . . , yn be the
zeroes of yn + 1. Let A be the n× n matrix (1/(xi − yj))1≤i,j≤n.
Then

per(A) =

{
(−1)

n−1
2

n(1 · 3 · 5 · · · (n− 2))2

2n
, if n is odd,

0, if n is even.

In 1978, in his monograph Permanents, Minc [13, p. 155] included this
result in a list of conjectures on permanents. Since then, several proofs
have been given [3, 8, 14, 17], one of which by Minc himself. All of these
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proofs are heavily based on the fact that the zeroes of the polynomials
xn − 1 and yn + 1 can be written in simple explicit terms. Thus, neither
of these proofs extends to the more general problem which is the subject
of this paper:

Given a polynomial P (x) of degree n and a polynomial Q(y) of
degree m, let x1, x2, . . . , xn be the zeroes of P (x) and y1, y2, . . . ,
ym be the zeroes of Q(y). Evaluate the permanent of the n ×m
matrix (1/(xi − yj))1≤i≤n, 1≤j≤m.

As usual, the permanent per(A) of an n ×m matrix A is defined as the
sum of all possible products of n coefficients of A chosen such that no two
of the coefficients are taken from the same row nor from the same column
(see [13, Ch. 1, (1.1)]). Given the assumptions of the above problem, we
call the permanent of the matrix (1/(xi − yj))1≤i≤n, 1≤j≤m a Scott-type
permanent, and denote it by PER(P (x), Q(y)).

In [6], the first author presented a new approach to this type of problem
in the case n = m, i.e., in the case that both polynomials have the same
degree. This approach does not rely at all on explicit analytic forms of
zeroes of polynomials. Instead, it makes essential use of recent symmet-
ric functions techniques, in particular of a theorem due to Lascoux [11],
which the latter author established in his étude on the square ice model
of statistical mechanics.

In the present paper, we are going to extend this approach to arbitrary
n and m. This requires extensions of classical theorems of Cauchy and
Borchardt (see Theorems (Cauchy+) and (Borchardt+) in Section 2), and
an extension of Lascoux’s theorem (see Theorem (Lascoux+)). As a re-
sult (see Theorem 1), we are able to express any Scott-type permanent
as the quotient of a determinant which features complete homogeneous
and elementary symmetric functions in the zeroes of the two polynomials,
divided by the resultant of the two polynomials. In particular, it follows
immediately that any Scott-type permanent is rational in the coefficients
of the polynomials P (x) and Q(y).

In Section 5 we apply this result to obtain explicit evaluations of Scott-
type permanents in numerous special cases. Amongst others, we provide
generalizations of all the results from [6], thus also covering Scott’s per-
manent itself. For the proofs of the results in Section 5, we make use
of two particular specializations of our main theorem, Theorem 1, which
we derive in Section 3 (see Theorems 3 and 4), and of four determinant
evaluations, which we state and establish separately in Section 4.

Finally, we also comment briefly on an alternative approach to the eval-
uation of Scott-type determinants, due to the first author [5]. It allows
to express Scott-type permanents in terms of weighted sums over involu-
tions (see Theorem 2 in Section 2). By combining this result with some of
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the evaluations in Section 5, we obtain interesting summation theorems,
which are presented in Section 6.

2. The general theory

In [6], the main ingredients are theorems by Cauchy, Borchardt, Las-
coux, and a lemma on the resultant. Since we intend to extend the ap-
proach of [6] to the case of rectangular Scott-type permanents (correspond-
ing to polynomials of, possibly, different degrees), we have to first provide
the appropriate extensions of these theorems.

Given positive integers m and n and two sets X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , ym} of variables, we use the following notations:

R(X,Y ) :=
n∏
i=1

m∏
j=1

(xi − yj) and ∆(X) :=
∏
i<j

(xi − xj).

( 1
xi − yj

)
:=



1
x1 − y1

1
x1 − y2

· · · 1
x1 − ym

1
x2 − y1

1
x2 − y2

· · · 1
x2 − ym

...
...

...
...

1
xn − y1

1
xn − y2

· · · 1
xn − ym


.

We first state a variation on Cauchy’s evaluation of his double alternant
(cf. [4; 15, vol. 1, pp. 342–345]).

Theorem (Cauchy+). — For m ≥ n, let

C(X,Y ) :=



1
x1 − y1

1
x1 − y2

· · · 1
x1 − ym

1
x2 − y1

1
x2 − y2

· · · 1
x2 − ym

...
...

...
...

1
xn − y1

1
xn − y2

· · · 1
xn − ym

1 1 · · · 1
y1 y2 · · · ym
y2

1 y2
2 · · · y2

m
...

...
...

...
ym−n−1

1 ym−n−1
2 · · · ym−n−1

m



.

Then

det(C(X,Y )) = (−1)n(n−1)/2 ∆(X)∆(Y )
R(X,Y )

.
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Proof. — If n = m, this is exactly Cauchy’s theorem. The general case
can be either established directly, or, it may be observed that the “general”
case is in fact implied by Cauchy’s theorem. To see this, consider the above
identity with n = m. Given k < m, expand both sides as power series
in 1/xk+1, . . . , 1/xm, and compare coefficients of 1/xk+1x

2
k+2 · · ·xm−km on

both sides.
Next we state the required extension of Borchardt’s theorem [2; 15,

vol. 2, pp. 173–175]. It can be established by reading through the proof of
Borchardt’s theorem given in [1, Proof of Cor. 5.1], ignoring however the
restriction m = n (see also [5]).

Theorem (Borchardt+). — For m ≥ n, let

B(X,Y ) :=



1
(x1 − y1)2

1
(x1 − y2)2

· · · 1
(x1 − ym)2

1
(x2 − y1)2

1
(x2 − y2)2

· · · 1
(x2 − ym)2

...
...

...
...

1
(xn − y1)2

1
(xn − y2)2

· · · 1
(xn − ym)2

1 1 · · · 1
y1 y2 · · · ym
y2

1 y2
2 · · · y2

m
...

...
...

...
ym−n−1

1 ym−n−1
2 · · · ym−n−1

m



.

Then

det(B(X,Y )) = det(C(X,Y ))× per
(

1
xi − yj

)
.

Our next goal is to derive the required extension of (a special case of)
Lascoux’s theorem [11, Theorem q]. Let Z = {z1, z2, . . . , zn} be another
set of variables, of equal cardinality as X. For 1 ≤ i ≤ n we define the
divided difference ∂i by

∂i : f 7→ f − fσi
xi − zi

,

where σi is the transposition which interchanges xi and zi. It is easy to
see that

∂i
1

zi − y
=

1
(xi − y)(zi − y)

.
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Since the operator ∂i acts only on one row of the matrix C(Z, Y ) (to be
precise, the i-th row), it follows that

∂1∂2 · · · ∂n(det(C(Z, Y ))|Z=X = det(B(X,Y )). (1)

Now, to generalize Lascoux’s theorem to our case, one simply reads
through the proof of Theorem q in [11], on introducing slight modifications
if necessary. The result is:

Theorem (Lascoux+). — Let H(X) be the n× (m+n− 1) matrix
defined by

H(X) :=
(
hj−i(X)

)
1≤i≤n,1≤j≤m+n−1

,

where hs(X) denotes the complete homogeneous symmetric function of
degree s in the variables X (cf. [12, Ch. 1]), and E(Y ) be the (m+n−1)×n
matrix defined by

E(Y ) :=
(

(j − 2k + 2)(−1)m−j+k−1em−j+k−1(Y )
)

1≤j≤m+n−1,1≤k≤n
,

where es(Y ) denotes the elementary symmetric function of degree s in the
variables Y (cf. [12, Ch. 1]). Then

∂1∂2 · · · ∂n(∆(Z)R(X,Y ))|Z=X = ∆(X) det
(
H(X)E(Y )

)
.

Now we are in the position to state our main theorem, which will enable
us, in Section 5, to evaluate numerous Scott-type permanents in closed
form. The theorem implies immediately that any Scott-type permanent
PER(P (x), Q(y)) is a rational function in the coefficients of the two poly-
nomials P (x) and Q(y).

Theorem 1. — Let m and n be arbitrary positive integers, and let
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two sets of variables.
Then

per
(

1
xi − yj

)
=

det
(
H(X)E(Y )

)
R(X,Y )

.

Proof. — First let m ≥ n. By combining Theorems (Cauchy+) and
(Borchardt+), and Equation (1), we obtain

(−1)n(n−1)/2 R(X,Y )
∆(X)∆(Y )

∂1∂2 · · · ∂n(det(C(Z, Y ))|Z=X

for the permanent. Now we apply Theorem (Cauchy+) again in order
to replace C(Z, Y ) by the corresponding product form guaranteed by the
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theorem. After having used that the divided differences ∂i commute with
∆(Y )/R(X,Y )R(Z, Y ) (because the latter expression is symmetric in xi
and zi), Theorem (Lascoux+) applies and yields the desired result.

If m < n, the permanent clearly vanishes. According to Theorem (Las-
coux+), it suffices to establish that

U := ∂1∂2 · · · ∂n(∆(Z)R(X,Y )) = 0.

To begin with, we rewrite the Vandermonde determinant evaluation as
∆(Z)R(X,Y ) = (−1)n(n−1)/2 det(zj−1

i R(xi, Y )). Writing Q(xi) :=
R(xi, Y ) = amx

m
i + · · ·+ a1xi + a0, we obtain for U the expression

U = det(∂iz
j−1
i R(xi, Y )) = det

(
zj−1
i Q(xi)− xj−1

i Q(zi)
)/∏

(xi − zi).

Since for m < n, we have

m∑
j=0

am
(
zjiQ(xi)− xjiQ(zi)

)
= 0,

the m+ 1 elements zjiQ(xi)−xjiQ(zi), 0 ≤ j ≤ m, are linearly dependent.
Hence, U = 0.

In [5], the first author obtained another expression for the permanent,
in form of a certain weighted sum over involutions. To state and explain
this formula, for s ∈ X define

L(s;X,Y ) :=
∑
x6=s

1
x− s

+
∑
y∈Y

1
s− y

.

Let us denote by I(n) the set of involutions on {1, 2, . . . , n}. Given an
involution σ ∈ I(n), we define the weight Ψ(σ) of σ by

Ψ(σ;X,Y ) :=
∏

(ij)∈σ

1
(xi − xj)2

∏
(k)∈σ

L(xk;X,Y )

where the first product is over all transpositions (ij) in the disjoint cycle
decomposition of σ, and where the second product is over all fixed points
k of σ. Then the result from [5] is the following.

Theorem 2. — Let m and n be arbitrary positive integers, and let
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two sets of variables.
Then

per
(

1
xi − yj

)
=

∑
σ∈I(n)

Ψ(σ;X,Y ).
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Example 1. — Let n = 1, X = {x}, Y = {y1, y2, . . . , ym}. Then

H(X) :=
(
hj−1(X)

)
i=1,1≤j≤m = (h0(x), h1(x), . . . , hm−1(x)),

E(Y ) :=
(
j(−1)m−jem−j(Y )

)
1≤j≤m,k=1

= (1(−1)m−1em−1(Y ), 2(−1)m−2em−2(Y ), . . . ,me0(Y ))t.

We have

H(X)E(Y ) =
m−1∑
j=0

(j + 1)(−1)m−j−1em−j−1(Y )xj .

Therefore,

per
(

1
x− y

)
=

1
x− y1

+
1

x− y2
+ · · ·+ 1

x− ym
[Definition, Th. 2]

=

∑m−1
j=0 (j + 1)(−1)m−j−1em−j−1(Y )xj

(x− y1)(x− y2) · · · (x− ym)
. [Th. 1]

Example 2. — For n = 4 and m = 3, Theorem 1 yields the following
identity:

det


(
h0 h1 h2 h3 h4 h5
0 h0 h1 h2 h3 h4
0 0 h0 h1 h2 h3
0 0 0 h0 h1 h2

)
×


e2 e3 0 0
−2e1 0 2e3 0
3e0 −e1 −e2 3e3
0 2e0 0 −2e2
0 0 e0 e1
0 0 0 0


 = 0.

For n = 2 and m = 1, Theorem 2 yields

1
(x1 − x2)2

+
(

1
x2 − x1

+
1

x1 − y

)(
1

x1 − x2
+

1
x2 − y

)
= 0.

3. The case of P (x) = xn − 1 and of P (x) = xn−1 + · · ·+ x+ 1
In this section we specialize Theorem 1 to the case that the xi’s are the

zeroes of the polynomial P (x) = xn−1 or of P (x)+xn−1 + · · ·+x+1, and
the yi’s are the zeroes of an arbitrary other polynomial. (This covers, for
example, the case of Scott’s identity). For the remainder of this section,
we fix m and n, m ≥ n.

Let X = {x1, x2, . . . , xn} be the set of zeroes of xn − 1, and let Y =
{y1, y2, . . . , ym} be the set of zeroes of Q(x) = amy

m + am−1y
m−1 + · · ·+

a1y
1 + a0, with am = 1. We write

PER(P,Q) := per
(

1
xi − yj

)
=

det(H(X)E(Y ))
R(X,Y )

. (2)
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Since ∑
hi(X)ti =

1∏
i(1− txi)

=
1

(1− tn)
= 1 + tn + t2n + · · · ,

we have

hk(X) =
{

1, if k = 0 (mod n),
0, if k 6= 0 (mod n).

We denote by Ik the k × k identity matrix, and by 0l,c the l × c matrix
with all entries equal to 0. For all r, we write r%n for the number between
1 and n that satisfies r (mod n) = r%n (mod n). Then we have

H(X) =
(

In In · · · In
Im′

0n−m′,m′

)
,

with m′ = (m+ n− 1)%n.
Furthermore, let diagin(c1, c2, . . . , cn) denote the n× n “diagonal” ma-

trix, in which the (broken) diagonal starts in the i-th row,(
0i−1,n−i+1 diagi−1(cn−i+2, cn−i+3, . . . , cn)

diagn−i+1(c1, c2, . . . , cn−i+1) 0n−i+1,i−1

)
.

According to the definition of E(Y ), a simple calculation yields that

H(X)E(Y ) =
m∑
r=0

diagr%nn (rar, (r − 1)ar, . . . , (r − n+ 1)ar).

Example 3. — For n = 3 and m = 4, let P (x) = x3 − 1 and Q(y) =
y4 + a3y

3 + a2y
2 + a1y+ a0. Then H(X)E(Y ) is the sum of the following

matrices:(
0 −a0 0
0 0 −2a0
0 0 0

)
+
(
a1 0 0
0 0 0
0 0 −a1

)
+
(

0 0 0
2a2 0 0
0 a2 0

)
+
(

0 2a3 0
0 0 a3

3a3 0 0

)
+
(

4 0 0
0 3 0
0 0 2

)
.

In the theorem below, we summarize our findings.

Theorem 3. — Let P (x) = xn−1 and Q(y) = amy
m+· · ·+a1y

1+a0,
am not necessarily 1. Writing

Fes(Q) = det
( m∑
r=0

diagr%nn (rar, (r − 1)ar, . . . , (r − n+ 1)ar)
)
, (3)
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we have

PER(P,Q) =
Fes(Q)

Res(P,Q)
,

where Res is the classical resultant of two polynomials.
Proof. — We have already seen that the theorem is true for am = 1.

On the other hand, there hold Fes(λQ) = λnFes(Q) and Res(P, λQ) =
λnRes(P,Q), as is easily verified.

Now let us consider the case that X = {x1, x2, . . . , xn−1} is the set of
zeroes of P (x) = xn−1 + · · ·+ x+ 1. We perform an analysis very similar
to the one before, using the fact that we have∑

hi(X)ti =
1∏

i(1− txi)
=

1− t∏
i(1− tn)

= 1− t+ tn − tn+1 +− · · · .

In order to state the result, we introduce the following notation: We write
d̃iagin−1(c1, c2, . . . , cn−1) for the (n− 1)× (n− 1) matrix(

0i−1,n−i 0i−1,1 diagi−2(cn−i+2, cn−i+3, . . . , cn−1)
diagn−i(c1, c2, . . . , cn−i) 0n−i,1 0n−i+1,i−2

)
if i > 1, respectively diagn−1(c1, c2, . . . , cn−1) if i = 1. This is again a
matrix with a (possibly broken) diagonal, in which the diagonal “jumps
over” one row and column in the case that it is broken. (Note the slight
discrepancy in dimension between the diagonal and the zero matrices.)

Theorem 4. — Let P (x) = xn−1 + · · ·+ x+ 1 and Q(y) = amy
m +

· · ·+ a1y
1 + a0, am not necessarily 1. Writing

F̃es(Q) = det
( m∑
r=0

d̃iagr%nn−1(rar, (r − 1)ar, . . . , (r − n+ 2)ar)

−
m∑
r=0

d̃iag(r−1)%n
n−1 (rar, (r − 1)ar, . . . , (r − n+ 2)ar)

)
,

(4)

we have

PER(P,Q) =
F̃es(Q)

Res(P,Q)
,

where, again, Res is the classical resultant of two polynomials.

According to Theorems 3 and 4, for accomplishing the evaluation of
the permanent, it is necessary to evaluate the numerator Fes(Q), respec-
tively F̃es(Q), and the denominator Res(P,Q). For the evaluation of the
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resultant Res(P,Q), we make use of the following lemma, which, for ex-
ample, appears explicitly in [7]. (In fact, it follows from a special case of
Proposition 6 in the next section.)

Lemma 5. — Let d be the greatest common divisor of m and n, and
let A and C be two nonzero constants. Then the resultant of the two
polynomials Axm −B and Cxn −D is given by

Res(Axm −B,Cxn −D) = (−1)m
(
An/dDm/d −Bn/dCm/d

)d
.

What concerns the evaluation of Fes(Q), respectively F̃es(Q), we refer
the reader to the next section for the determinant evaluations that we
are going to use. In combination with Lemma 5, these will allow us to
evaluate Scott-type permanents in numerous special cases, see Section 5.

4. Determinant evaluations

Proposition 6. — Let n and r be positive integers, r ≤ n, and
x1, x2, . . . , xn, y1, y2, . . . , yn be indeterminates. Then, with d = gcd(r, n),
we have

det



x1 0 . . . 0 yn−r+1 0
0 x2 0 0 yn−r+2 0

. . . . . . 0
0 0 yn
y1 0
0 y2 0

0
. . . 0

. . . 0
0 yn−r 0 0 xn


=

d∏
i=1

( n/d∏
j=1

xi+(j−1)d − (−1)n/d
n/d∏
j=1

yi+(j−1)d

)
.

(5)
(I.e., in the matrix there are only nonzero entries along two diagonals,
one of which is a broken diagonal.)

Proof. — Let A = (Aij)1≤i,j≤n be the matrix of which the determinant
is taken in (5). By definition, we have

detA =
∑
σ∈Sn

sgnσ
n∏
i=1

Aiσ(i), (6)

where Sn denotes the symmetric group of order n. Since the matrix A is
a sparse matrix, only those permutations σ contribute to the sum which
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have the property σ(i) = i or σ(i) = i + r mod n for all i. Thus, the
decomposition into disjoint cycles of such a permutation consists only of
cycles of length 1, and of cycles of length n/d of the form (i, i+ r, . . . , i+
(n/d− 1)r) (where, again, all integers have to be taken modulo n). Using
these observations and the fact that the sign of any cycle of length n/d is
(−1)n/d−1 in (6) yields (5) immediately.

Theorem 7. — Let a, b, c, d, e be indeterminates. For any positive in-
teger n and integers i, j let n(i, j) denote 1 plus (the representative between
0 and n− 1 of) the residue class of i− j mod n. Then

det
1≤i,j≤n

(
(n(i, j) + c)(n(i, j)a+ b) + d− (j − 1)(n(i, j)a+ e)

)

= det



(c+ 1)(a+ b) (c+ n)(na+ b) (c+ 2)(2a+ b)
+d +d− (na+ e) . . . +d− (n− 1)(2a+ e)

(c+ 2)(2a+ b) (c+ 1)(a+ b) (c+ 3)(3a+ b)
+d +d− (a+ e) . . . +d− (n− 1)(3a+ e)
...

... . . .
...

(c+ n)(na+ b) (c+ n− 1) (c+ 1)(a+ b)
+d ×((n− 1)a+ b) + d . . . +d− (n− 1)(a+ e)

−((n− 1)a+ e)


= (−n)n−1Un(a, b, c, d, e)

n∏
i=3

(ia+ b+ ca), (7)

where Un(a, b, c, d, e) is the polynomial

Un(a, b, c, d, e) =
(n+ 1)(n+ 2)

3
a2 +

(n+ 1)(2n+ 7)

6
ab+

(n+ 1)

2
b2

+
(n+ 1)(2n+ 7)

6
a2c+

(3n+ 5)

2
abc+ b2c+

(n+ 1)

2
a2c2 + abc2 +

(n+ 3)

2
ad

+ bd+ acd−
(n− 1)(2n+ 5)

6
ae−

(n− 1)

2
be−

(n− 1)

2
ace.

In the case that n = 2, the product in (7) has to be read as 1, and in the
case that n = 1, the product has to be interpreted as 1/(2a+ b+ ca).

Proof. — In the cases n = 1 and n = 2, the claim can be verified
directly. For n ≥ 3, we use the “identification of factors” method as
explained in [10, Sec. 2.4] or [9, Sec. 2].

We proceed in several steps. An outline is as follows. In the first step we
show that

∏n
i=3(ia+ b+ ca) is a factor of the determinant as a polynomial

in a, b, c, d, e. In the second step we prove that Un(a, b, c, d, e) is a factor
of the determinant. Then, in the third step, we determine the maximal
degree of the determinant as a polynomial in a, and also in b, c, d, and
in e. It turns out that the maximal degree is n as a polynomial in a, the
same being true as a polynomial in b and as a polynomial in c, while it is
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1 as a polynomial in d, the same being true as a polynomial in e. On the
other hand, the degree in a, and also in b and in c, of the product on the
right-hand side of (7), which by the first two steps divides the determinant,
is exactly n. It is exactly 1 in d and also in e. Therefore we are forced to
conclude that the determinant equals

C(n)Un(a, b, c, d, e)
n∏
i=3

(ia+ b+ ca), (8)

where C(n) is a constant independent of a, b, c, d, e. Finally, in the fourth
step, we determine the constant C(n), which turns out to equal (−n)n−1.
Clearly, this would finish the proof of theorem.

Step 1. For i = 3, . . . , n the term (ia + b + ca) is a factor of the
determinant. We claim that, if b = −ia− ca, we have

−
(
row (n− i)

)
+ 3
(
row (n− i+ 1)

)
− 3
(
row (n− i+ 2)

)
+
(
row (n− i+ 3)

)
= 0

as long as n > i. (Here, (row i) denotes the i-th row of the matrix
underlying the determinant in (7).) In the case that n = i, we claim that
we have

−3
(
row 1

)
+ 3
(
row 2

)
−
(
row 3

)
+
(
row n

)
= 0

as long as n > 3, and that we have −
(
row 1

)
+
(
row 2

)
= 0 if n = 3. All

these claims are easily verified by an obvious case-by-case analysis.
Step 2. The polynomial Un(a, b, c, d, e) is a factor of the determinant.

We claim that if d is chosen so that Un(a, b, c, d, e) vanishes, we have

n∑
j=1

((j + 1)a+ b+ ca)
(
column j

)
= 0.

Again, it is a routine task to verify this identity.
Step 3. The determinant is a polynomial in a (in b, respectively in c)

of maximal degree n, and a polynomial in d (respectively in e) of maximal
degree 1. The first claim follows from the fact that each term in the defining
expansion of the determinant has degree n in a (as well as in b, respectively
in c). To establish the second claim, we simply subtract the first row of
the determinant from all other rows, with the effect that only the entries
in the first row contain d and e after these transformations. Since the
right-hand side of (7), which by Steps 1 and 2 divides the determinant
as a polynomial in a, b, c, d, e, also has degree n in a, in b, and in c, and

12



degree 1 in d, and in e, the determinant and the right-hand side of (7)
differ only by a multiplicative constant.

Step 4. The evaluation of the multiplicative constant. By the preceding
steps we know that the determinant equals (8). In particular, if we set
a = c = d = e = 0 and b = 1, we have

det
1≤i,j≤n

(n(i, j)) = C(n)(n+ 1)/2. (9)

The matrix on the left-hand side of (9) is a circulant matrix with entries
1, 2, . . . , n. Hence, its determinant equals

∏
ω : zero of xn−1

(1 + 2ω + 3ω2 + · · ·+ nωn−1).

The sum is easily evaluated by observing that it is the derivative of a
geometric series. It turns out to be equal to −n/(1 − ω). The resulting
product simplifies by the observation

∏
ω : zero of xn−1, ω 6=1

(1− ω) = (1 + x+ · · ·+ xn−1)
∣∣
x=1

= n. (10)

Thus, the determinant in (9) equals (−n)n−1(n+ 1)/2. Therefore C(n) is
equal to (−n)n−1.

This finishes the proof of (7) and thus of the theorem.

Theorem 8. — Let a be an indeterminate. For any positive integer
n and integers i, j let s(i, j) denote (the representative between 0 and n−1
of) the residue class of i− j + 1 mod n. Then

det
1≤i,j≤n−1

({
(n−m− 1) + j(1 + a− n) if i = j − 2 (mod n)

(n− 1)(m− 1) + j(1− a) if i = j − 3 (mod n)

(n−m− 3− 2s(i, j)) + j otherwise

})

= (−1)n−1 1
n

n∏
i=2

(nm− ia). (11)

Proof. — The matrix underlying this determinant is a matrix whose
elements have a uniform definition, except for two (broken) diagonals, the
one with i = j − 2 (mod n), and the one with i = j − 3 (mod n).

To begin with, we reorder the rows so that the next-to-last row becomes
the first row, the last row becomes the second row, and then follow the
remaining rows in their original order.

13



Now we add all the rows to the (new) last row. In the resulting matrix,
we change the sign of the last row and, subsequently, move it up so that
it becomes the third row. As a result of these manipulations, we obtain

(−1)n−1 det
1≤i,j≤n−1




(n− 1)(m− 1) + j(1− a) if i = j
(n−m− 1) + j(a− n+ 1) if i = j + 1
−m− n+ 1− 2i+ 3j if i < j
−m+ n+ 1− 2i+ 3j if i > j + 1


 . (12)

Next we apply further row operations. We subtract the second row
from the first, the third from the second, . . . , the (n− 1)-st row from the
(n − 2)-nd row, in that order. Subsequently, we repeat the same kind of
operations, but stop before the last row, i.e., we subtract the second row
from the first, the third from the second, . . . , the (n − 2)-nd row from
the (n − 3)-rd row, in that order. As a result, the above determinant is
converted into the determinant of the following matrix





nm− ja if i = j − 2
−2nm+ 2n− j(3a− n) if i = j − 1 and i < n− 2
nm− 2n− j(3a− 2n) if i = j and i < n− 2

j(a− n) if i = j + 1 and i < n− 2
2 if i = n− 2 and j ≤ n− 4

(n− 3)(a− n) + 2 if i = n− 2 and j = n− 3
nm− 2n+ 2− (n− 2)(2a− n) if i = n− 2 and j = n− 2
n− nm+ 1 + (n− 1)(a− 1) if i = n− 2 and j = n− 1

−m− n+ 3 + 3j if i = n− 1 and j ≤ n− 3
n−m− 1 + (n− 2)(a− n+ 1) if i = n− 1 and j = n− 2

(n− 1)(m− a) if i = n− 1 and j = n− 1
0 otherwise





.

(13)
This is a matrix with four “special” diagonals (the diagonals with i = j−2,
j − 1, j, j + 1, respectively) and two “special” rows (the last two rows).
All other entries are zero.

Now we factor (nm−3a) out of the first row. Subsequently, we substract
(a−n) times the (new) first row from the second. Now one is able to factor
(nm−4a) out of the (new) second row. Next, we substract 2(a−n) times
the (new) second row from the third row. Etc. We stop this procedure in
the (n − 3)-rd row. Thus, the determinant of the matrix in (13) is equal
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to
∏n−1
i=3 (nm− ia) times the determinant of the matrix

1 −2 1 0 . . .
0 1 −2 1 0 . . .
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 1 −2 1
an−2,1 an−2,2 . . . . . . . . . . . . . . . . . . . an−2,n−1

an−1,1 an−1,2 . . . . . . . . . . . . . . . . . . . an−1,n−1


, (14)

where the entries in the last two rows are still the same as in (13).
We now perform the final set of transformations. We add column 1

through column n− 2 to column n− 1, and then we add

n−3∑
j=1

(n− j − 1)
(
column j

)
to column n− 2. The effect is that a block matrix is obtained of the form(

U 0
∗ M

)
,

where U is an (n − 3) × (n − 3) upper-triangular matrix with 1s on the
diagonal, and where M is the 2× 2 matrix(

nm− n− 2a+ 2 n− 2
1
2 (n− 2)(n+m+ 2a− nm− 3) 5

2n−
n2

2 +m− a− 3

)
.

Clearly, the determinant of U is 1, while the determinant of M is (m −
a)(nm − 2a). Putting everything together, we have completed the proof
of (11).

Corollary 9. — Let a be an indeterminate. For any positive integer
n and integers i, j let s(i, j) denote (the representative between 0 and n−1
of) the residue class of i− j + 1 mod n. Then

det
1≤i,j≤n−1

({
−2s(i, j)− a+ j − 1 if i 6= j − 2 (mod n)

(n− 1)(n+ a− j − 1) if i = j − 2 (mod n)

})
= nn−2

n−2∏
i=0

(i+ a). (15)

Proof. — In the determinant, we move the last row on top, replace the
(now) last row by the sum of all the rows, factor (−1) out of the resulting
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row, and finally move it up so that it becomes the second row, retaining
the order of all the other rows. These operations did not change the value
of the determinant. However, the resulting determinant is exactly the
determinant in (12) with a = n and m = a+ n. As we have shown in the
proof of Theorem 8, the latter determinant differs from the determinant
in (11) just by a sign of (−1)n−1. Thus, we obtain the right-hand side of
(15).

5. Closed form evaluations for Scott-type permanents

Theorem 10. — Let n, m and r be positive integers and d =
gcd(n, r). Then

PER
(
xn − 1,

m∑
`=0

a`y
`n +

m∑
`=0

b`y
`n+r

)

= −

dn
d∏
i=1

(( m∑
`=0

a`

)n/d( m∑
`=0

(i− n`− 1)a`

/ m∑
`=0

da`

)
n/d

−
(
−

m∑
`=0

b`

)n/d( m∑
`=0

(i− r − n`− 1)b`

/ m∑
`=0

db`

)
n/d

)
(( m∑

`=0

a`

)n/d
−
(
−

m∑
`=0

b`

)n/d)d ,

where (α)k is the standard notation for shifted factorials, (α)k := α(α +
1) · · · (α+ k − 1), k ≥ 1, and (α)0 := 1.

Proof. — Let us first consider the case that n - r. According to The-
orem 3, we have to compute the quotient Fes(Q)/Res(xn − 1, Q), where
Q =

∑m
`=0 a`y

`n +
∑m
`=0 b`y

`n+r. In order to compute Fes(Q), in (3) we
replace a`n by a` and a`n+r by b`, ` = 0, 1, . . . ,m, and set all other a`’s
equal to zero. In the resulting determinant we move the last row to the
top, thus creating a sign of (−1)n−1, and finally apply Proposition 6 with
xj =

∑m
`=0(n`− j+ 1)a` and yj =

∑m
`=0(n`+ r− j+ 1)b`, j = 1, 2, . . . , n.

For the evaluation of Res(xn − 1, Q) we note that

Res
(
xn − 1,

m∑
`=0

a`y
`n +

m∑
`=0

b`y
`n+r

)

=
∏

ω : zero of xn−1

( m∑
`=0

a` + ωr
m∑
`=0

b`

)
= Res

(
xn − 1, yr

m∑
`=0

b` +
m∑
`=0

a`

)
.

Now we can apply Lemma 5.
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If on the other hand n | r, then d = n. It can be verified directly that
the claimed formula remains valid in that case, too.

Remark. — Given a polynomial Q(y), there is no unique way to write
it in the form

∑m
`=0 a`y

`n +
∑m
`=0 b`y

`n+r. For example, we may write
Q(y) = yn + a + b as Q(y) = (yn + ay0) + b, or as Q(y) = (yn + (a + b))
(i.e., either with a1 = 1, a0 = a, r = 0, b0 = b, or with a1 = 1, a0 = a+ b,
b` = 0 for all `). Regardless which choice we make, Theorem 10 yields

PER(xn − 1, yn + a+ b) = (−1)n+1

∏n
i=1(i− (n− i)(a+ b))

(a+ b+ 1)n
.

Corollary 11. — Let n and m be positive integers. Then

PER
(
xn − 1,

m∑
`=0

a`y
`n

)
= −

(
− n

m∑
`=0

`a`

/ m∑
`=0

a`

)
n

.

Corollary 12. — We have

PER(xn − 1, ymn + · · ·+ y2n + yn + 1) = −(−mn/2)n.

Corollary 13. — If m is even then

PER(xn + 1, ymn + · · ·+ y2n + yn + 1) = (−mn/2)n.

Proof. — We use the case a` = (−1)` in Corollary 11, and the fact that

per
(

1
xi

n
√
−1− yj

)
1≤i≤n, 1≤j≤mn

= −per
(

1
xi − yj/ n

√
−1

)
1≤i≤n, 1≤j≤mn

.

Corollary 14. — We have

PER
(
xn − 1,

m∑
`=0

`y`n
)

= −(−n(2m+ 1)/3)n.

Corollary 15. — We have

PER
(
xn − 1,

m∑
`=0

`y`
2n

)
= −(−nm(m+ 1)/2)n.
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Corollary 16. — We have

PER(xn − 1, ymn + ayrn + b) = −(−(m+ ra)n/(a+ b+ 1))n.

Corollary 17. — We have

PER(xn − 1, ymn + 1) = −(−mn/2)n.

For m = 1 one recovers Scott’s identity stated at the beginning of the
introduction.

Corollary 18. — If m+ ra = a+ b+ 1 6= 0, then

PER(xn − 1, ymn + ayrn + b) = (−1)n+1n!.

Corollary 19. — If a 6= −2 then

PER(xn − 1, y2n + ayn + 1) = (−1)n+1n!.

Corollary 20. — If m+ ra = 0 and a+ b+ 1 6= 0, then

PER(xn − 1, ymn + ayrn + b) = 0.

Corollary 21. — If b 6= 1 then

PER(xn − 1, y2n − 2yn + b) = 0.

Corollary 22. — Let n and m be positive integers and d =
gcd(n,m). Then

PER(xn − 1, ym + b) = −
dn

d∏
i=1

((
i−m−1

d

)
n/d
− (−b)n/d

(
i−1
d

)
n/d

)
(

1− (−b)n/d
)d .

Proof. — In Theorem 10, set m = 0, a0 = b, b0 = 1, and replace r by
m, in this order.

Corollary 23. — If gcd(m,n) = 1, then

PER(xn − 1, ym + b) = (−1)n+1m(m− 1) · · · (m− n+ 1)
1− (−b)n

.
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Corollary 24. — If gcd(m,n) = 1, then

PER(xs(n−1) + · · ·+ x2s + xs + 1, ys(m−1) + · · ·+ y2s + ys + 1)

=

s−1∏
i=0

( n−1∏
`=0

(i+ `s)−
n−1∏
`=0

(i+ `s−ms)
)

(mns)s
.

Proof. — Consider the Scott-type permanent PER(xsn−1, ysm− qsm)
(expressed in terms of its definition). When we multiply it by (1 −
q)s and then perform the limit q → 1, then the permanent reduces to
PER(xs(n−1) + · · ·+ xs + 1, ys(m−1) + · · ·+ ys + 1), as is straightforward
to see. On the other hand, the permanent that we started with is the
permanent in Corollary 22 with n replaced by sn, m replaced by sm, and
b = −qsm. Indeed, if we multiply the right-hand side from Corollary 22
(with these choices for the parameters) by (1 − q)sm, and then perform
the limit q → 1, we obtain exactly the claimed result.

Corollary 25. — If gcd(m,n) = 1, then

PER(xn−1 + · · ·+ x+ 1, ym−1 + · · ·+ y + 1)

= (−1)n+1 (m− 1) · · · (m− n+ 1)
n

.

Corollary 26. — If gcd(m,n) = 1 and n is odd, then

PER(xn − 1, ym + 1) =
m(m− 1) · · · (m− n+ 1)

2
.

Corollary 27. — If n is odd, then

PER(xn − 1, yn+1 + 1) =
(n+ 1)!

2
.

Corollary 28. — Let n and r be positive integers (not necessarily
n > r) and d = gcd(n, r). Then

PER(xn − 1, yn + ayr + b)

= −
dn

d∏
i=1

(
(b+ 1)

n
d

( ib− b+ i− n− 1
d(b+ 1)

)
n
d

− (−a)
n
d

( i− r − 1
d

)
n
d

)
(

(b+ 1)
n
d − (−a)

n
d

)d .

19



Proof. — In Theorem 10, set m = 1, a0 = b, a1 = 1, b0 = a, and
b1 = 0.

Corollary 29. — Let n and r be positive integers (not necessarily
n > r) and gcd(n, r) = 1. Then

PER(xn − 1, yn + ayr + b) = (−1)n+1

∏n
i=1(i− (n− i)b))− an(−r)n

(b+ 1)n − (−a)n
.

If 1 ≤ r ≤ n − 1 then (−r)n = 0. Thus, one recovers the results in
[6]. On the other hand, if we set r = n + 1, we obtain, for example, the
following result.

Corollary 30. — We have

PER(xn − 1, yn+1 + yn − 1) = nn − (−1)n(n+ 1)!.

Corollary 31. — We have

PER(xn − 1, yn + ny − 1) = 1.

Theorem 32. — Let n and m be positive integers and a be an arbi-
trary number. Then

PER
(
xn − 1,

mn−1∑
`=0

(`+ a)y`
)

= (−1)n−1n(m− 1)Vn(a,m)
6 (mn+ 2a− 1)

(a+ (m− 1)n+ 1)n−2 ,

where Vn(a,m) is the polynomial

Vn(a,m) = 1− 6a+ 6a2 + n− 2an− 5mn+ 10amn−mn2 + 4m2n2.

Proof. — Let Q =
∑mn−1
`=0 (` + a)y`. Using Theorem 3 again, we

have to compute Fes(Q)/Res(xn − 1, Q). In order to compute Fes(Q), in
(3) set a` = ` + a, ` = 0, 1, . . . ,mn − 1. In the resulting determinant
we move the last row to the top, thus creating a sign of (−1)n−1, and
finally apply Theorem 7 with a = 1, b = (m − 1)n − 1, c = a − 1,
d = n2(m− 1)(2m− 1)/6− an(m− 1)/2 and e = a+ n(m− 1)/2− 1.
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For the computation of Res(xn − 1, Q) we note that

Res(xn − 1, Q) =
∏

ω : zero of xn−1

(mn−1∑
`=0

(`+ a)ω`
)

=
((

mn

2

)
+mna

) ∏
ω : zero of xn−1, ω 6=1

( mn∑
`=1

`ω`−1

)
.

The sum in the last line is the derivative of a geometric series, and is
therefore easily evaluated. The result of the summation turns out to be
−mn/(1−ω). The computation is completed by the observation (10), and
some simplification.

Corollary 33. — Let n and m be positive integers, n ≥ 2. Then

PER
(
xn − 1,

mn−1∑
`=0

`y`
)

= (−1)n−1 (4mn− n− 1)(mn− 2)!
6(mn− n− 1)!

.

Corollary 34. — Let n and m be positive integers, n ≥ 2. Then

PER
(
xn−1,

mn−1∑
`=0

(`+1)y`
)

= (−1)n−1 (4mn− n+ 1)(mn− n)(mn− 1)!
6(mn− n+ 1)!

.

Corollary 35. — Let n and m be positive integers, n ≥ 2. Then

PER
(
xn − 1,

mn−1∑
`=0

(mn− `)y`
)

=
(m− 1) (n+ 1)!

6
.

Corollary 36. — Let n and m be positive integers, n ≥ 2. Then

PER
(
xn − 1,

mn−1∑
`=0

(mn− `− 1)y`
)

=
(m− 1)n!

6
.

Remark. — It is also possible to move forward and derive formulas for
PER

(
xn − 1,

∑mn/s−1
`=0 (`+ a)y`s

)
, where s is some positive integer. This

would require to find analogues of Theorem 7 in which n(i, j) is replaced
by Dn(i, j), where D is the inverse of s/gcd(n, s) modulo n/gcd(n, s).
As calculations aided by the computer indicate, the resulting determinant
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evaluations have forms very similar to (7). That is, the result shows a
product of linear factors in a and b as the one on the right-hand side of (7),
and one irreducible polynomial of higher degree (such as Un(a, b, c, d, e) in
(7)). However, as D increases, the degree of the irreducible polynomial
also increases, whereas the amount of linear factors in a and b decreases,
so that the results become more and more unwieldy. We therefore content
ourselves with stating the result when s divides n.

Theorem 37. — Let n, m and s be positive integers so that s | n,
and let a be an arbitrary number. Then

PER
(
xn − 1,

mn
s −1∑
`=0

(`+ a)y`s
)

= (−1)n−1 sn−2s

6s (mn+ 2as− s)s

×
s−1∏
k=0

((
a+ 1

s (nm− n− k) + 1
)
n/s−2

Vn,s(a,m, k)
)
,

where Vn,s(a,m, k) is the polynomial

Vn,s(a,m, k) = 6k2mn+ 6kmn2 − 10km2n2 +mn3 − 5m2n3 + 4m3n3 − 6k2s

+ 12ak2s− 6kns+ 12akns+ 12kmns− 24akmns− n2s+ 2an2s+ 6mn2s

− 12amn2s− 5m2n2s+ 10am2n2s− 2ks2 + 12aks2 − 12a2ks2 − ns2

+ 6ans2 − 6a2ns2 +mns2 − 6amns2 + 6a2mns2.

Proof. — Let Q =
∑mn−1
`=0 (`+ a)y`s. Again, according to Theorem 3,

we have to compute Fes(Q)/Res(xn − 1, Q). In order to compute Fes(Q),
in (3) set a`s = `+ a, ` = 0, 1, . . . ,mn/s− 1, and all other ai’s to zero. In
the resulting determinant we move the last row to the top, thus creating a
sign of (−1)n−1. Since only every s-th ai is nonzero, we are dealing with
a determinant of a matrix in which a lot of entries are zero. If we permute
rows and columns so that first come the rows and columns whose indices
are congruent 1 mod s, then come the rows and columns whose indices
are congruent 2 mod s, etc., then the matrix of which we want to compute
the determinant assumes a block form, with (n/s) × (n/s) blocks on the
diagonal, and zeroes otherwise. Therefore the determinant equals the
product of the determinants of the s matrices of dimension (n/s)× (n/s)
on the diagonal. Each of these determinants can be evaluated by means
of Theorem 7. We leave it to the reader to fill in the details.

For the computation of Res(xn − 1, Q) we proceed as in the proof of
Theorem 32.

Theorem 38. — Let n and m be positive integers, n ≥ 2, and a be
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an arbitrary number. Then

PER
(
xn−1 + · · ·+ x+ 1,

mn−1∑
`=0

(`+ a)y`
)

= (−1)n−1 (a+ (m− 1)n+ 1)n−1 .

Proof. — Let P (x) = xn−1 + · · ·+ x+ 1 and Q(y) =
∑mn−1
`=0 (`+ a)y`.

This time we apply Theorem 4. According to that theorem, we have
to compute F̃es(Q)/Res(P,Q). In order to compute F̃es(Q), in (4) we set
a` = `+a, ` = 0, 1, . . . ,mn−1. The resulting determinant is exactly mn−1

times the determinant in Corollary 9 with a replaced by ((m−1)n+a+1).
For the computation of the resultant of P and Q we proceed as in the proof
of Theorem 7. Simplification of the result yields the claimed expression.

Theorem 39. — Let n and m be positive integers, n ≥ 2, and a be
an arbitrary number. Then

PER
(
xn−1 + · · ·+ x+ 1,

mn−2∑
`=0

(`+ a)y`
)

= (−1)n−1 (nm− n)n−1 (nm+ a− 1)n−1

(mn+ a− 1)n − (a− 1)n
.

Proof. — Let P (x) = xn−1 + · · ·+ x+ 1 and Q(y) =
∑mn−1
`=0 (`+ a)y`.

Using Theorem 4 again, we have to compute F̃es(Q)/Res(P,Q). In order
to compute F̃es(Q), in (4) we set a` = ` + a, ` = 0, 1, . . . ,mn − 2. The
resulting determinant is exactly mn−1 times the determinant in Theorem 8
with m replaced by mn + A − 1, a replaced by (mn + A − 1)/m, and A
replaced by a, in that order.

For the computation of Res(xn + · · · + x + 1, Q) we proceed similarly
as in the proof of Theorem 32. Using an observation from that proof, we
note that

Res(xn + · · ·+ x+ 1, Q) =
∏

ω : zero of xn−1, x 6=1

(mn−2∑
`=0

(`+ a)ω`
)

=
∏

ω : zero of xn−1, x 6=1

(
− mn

1− ω
− (mn+ a− 1)ωmn−1

)

= (−1)n−1
∏

ω : zero of xn−1, x 6=1

mn+ a− 1 + ω(1− a)
ω(1− ω)

=
(mn+ a− 1)n − (a− 1)n

n2m
.

The result follows now upon some simplification.
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6. Sums of involutions

As in [6, Sec. 4], we may obtain interesting summation theorems by
combining special evaluations of Scott-type determinants (see Section 5)
with Theorem 2. For example, if we combine Corollary 19 with Theorem 2,
we obtain the following result.

Proposition 40. — Let x1, x2, . . . , xn be the zeroes of xn − 1. Then∑
σ∈I(n)

∏
(ij)∈σ

1
(xi − xj)2

∏
(k)∈σ

n+ 1
2xk

= (−1)n+1n!,

where the first product is over all transpositions (ij) of σ in its disjoint
cycle decomposition, and where the second product is over all fixed points
k of σ.

Similarly, if we combine Corollary 21 with Theorem 2, we obtain the
result below.

Proposition 41. — Let x1, x2, . . . , xn be the zeroes of xn − 1. Then∑
σ∈I(n)

∏
(ij)∈σ

1
(xi − xj)2

∏
(k)∈σ

n− 1
2xk

= 0,

where the first product is over all transpositions (ij) of σ in its disjoint
cycle decomposition, and where the second product is over all fixed points
k of σ.

If we combine Corollary 31 with Theorem 2, then we obtain the follow-
ing result.

Proposition 42. — Let x1, x2, . . . , xn be the zeroes of xn − 1. Then∑
σ∈I(n)

∏
(ij)∈σ

1
(xi − xj)2

∏
(k)∈σ

2n+ (n+ 1)xk
2x2

k

= 1,

where the first product is over all transpositions (ij) of σ in its disjoint
cycle decomposition, and where the second product is over all fixed points
k of σ.

Finally, if we combine Corollary 27 with Theorem 2, we obtain the
result below.

Proposition 43. — Let n be odd, and let x1, x2, . . . , xn be the zeroes
of xn − 1. Then∑

σ∈I(n)

∏
(ij)∈σ

1
(xi − xj)2

∏
(k)∈σ

1− n+ (3 + n)xk
2(1 + xk)xk

=
(n+ 1)!

2
,

where the first product is over all transpositions (ij) of σ in its disjoint
cycle decomposition, and where the second product is over all fixed points
k of σ.
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