Peter Raith Fakultät für Mathematik Universität Wien Oskar-Morgenstern-Platz 1 1090 Wien Austria E-mail: Peter.Raith@univie.ac.at |
[1] F. Hofbauer, P. Raith, Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points, Monatsh. Math. 107 (1989), 217–239. MR 91c:58074, Zbl. 676.54049.
[2] P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math. 94 (1989), 17–33. MR 91c:58063, Zbl. 687.58013.
[3] F. Hofbauer, P. Raith, The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), 84–98. MR 93c:58113, Zbl. 701.28005.
[4] P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97–133. MR 94j:58103, Zbl. 768.28010.
[5] P. Raith, Continuity of the Hausdorff dimension for invariant subsets of interval maps, Acta Math. Univ. Comenian. 63 (1994), 39–53. MR 96c:58104, Zbl. 828.58014.
[6] P. Raith, Capacity for expanding piecewise monotonic interval maps, In: Proceedings of the European conference on iteration theory (ECIT 92), Batschuns, 1992 (editors: W. Förg-Rob, D. Gronau, C. Mira, N. Netzer, Gy. Targoński), 224–235. World Scientific, Singapore, 1996. MR 97m:58067, Zbl. 941.28014.
[7] P. Raith, The behaviour of the nonwandering set of a piecewise monotonic interval map under small perturbations, Math. Bohem. 122 (1997), 37–55. MR 98c:58051, Zbl. 896.58027.
[8] P. Raith, Continuity of the entropy for monotonic mod one transformations, Acta Math. Hungar. 77 (1997), 247–262. MR 98j:54075, Zbl. 906.54016.
[9] P. Raith, Stability of the maximal measure for piecewise monotonic interval maps, Ergodic Theory Dynam. Systems 17 (1997), 1419–1436. MR 98i:58144, Zbl. 898.58015.
[10] P. Raith, The dynamics of piecewise monotonic maps under small perturbations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 783–811. MR 99d:58111, Zbl. 0974.54027.
[11] P. Raith, Dynamical properties of a piecewise monotonic interval map and its small perturbations, In: Proceedings of the European conference on iteration theory (ECIT 94), Opava, 1994, (editors: L. Reich, J. Smítal, Gy. Targoński). Grazer Math. Ber. 334 (1997), 37–65. Zbl. 924.58019.
[12] F. Hofbauer, P. Raith, Density of periodic orbit measures for transformations on the interval with two monotonic pieces, Fund. Math. 157 (1998), 221–234. MR 99f:58125, Zbl. 915.58026.
[13] P. Raith, Topological transitivity for expanding piecewise monotonic maps on the interval, Aequationes Math. 57 (1999), 303–311. MR 2000m:37049, Zbl. 927.37004.
[14] P. Raith, Stability of the topological pressure for piecewise monotonic maps under -perturbations, J. Anal. Math. 78 (1999), 117–142. MR 2001a:37046, Zbl. 0991.37019.
[15] P. Raith, Perturbations of a topologically transitive piecewise monotonic map on the interval, In: Proceedings of the European conference on iteration theory (ECIT 1996), Urbino, 1996, (editors: L. Gardini, G. L. Forti, D. Gronau, L. Paganoni). Grazer Math. Ber. 339 (1999), 301–312. MR 2001i:37057, Zbl. 948.37026.
[16] P. Raith, Topological transitivity for expanding monotonic mod one transformations with two monotonic pieces, In: Proceedings of the European conference on iteration theory (ECIT 98), Muszyna-Złockie, 1998, (editors: L. Gardini et al.). Ann. Math. Sil. 13 (1999), 233–241. MR 2000k:37049, Zbl. 957.37039.
[17] P. Raith, On the continuity of the pressure for monotonic mod one transformations, Comment. Math. Univ. Carolin. 41 (2000), 61–78. MR 2002b:37048, Zbl. 1034.37021.
[18] P. Raith, Discontinuities of the pressure for piecewise monotonic interval maps, Ergodic Theory Dynam. Systems 21 (2001), 197–232. MR 2002f:37067, Zbl. 0972.37024.
[19] F. Hofbauer, P. Raith, T. Steinberger, Multifractal dimensions for invariant subsets of piecewise monotonic interval maps, Fund. Math. 176 (2003), 209–232. MR 2004e:37039, Zbl. 1051.37011.
[20] P. Raith, Continuity of the measure of maximal entropy for unimodal maps on the interval, Qual. Theory Dyn. Syst. 4 (2003), 67–76. MR 2004m:37072, Zbl. 1207.37026.
[21] P. Raith, Two commuting interval maps with entropy zero whose composition has positive topological entropy, In: Proceedings of the European conference on iteration theory (ECIT 2002), Évora, 2002, (editors: J. Sousa Ramos, D. Gronau, C. Mira, L. Reich, A. Sharkovskii). Grazer Math. Ber. 346 (2004), 351–354. MR2089553 (2005g:37079), Zbl. 1072.37031.
[22] F. Hofbauer, J. Hofbauer, P. Raith, T. Steinberger, Intermingled basins in a two species system, J. Math. Biol. 49 (2004), 293–309. MR2102760 (2005m:37212), Zbl. 1059.37070.
[23] M. Misiurewicz, P. Raith, Strict inequalities for the entropy of transitive piecewise monotone maps, Discrete Contin. Dyn. Syst. 13 (2005), 451–468. MR2152399 (2006e:37069), Zbl. 1078.37032.
[24] F. Hofbauer, P. Raith, K. Simon, Hausdorff dimension for some hyperbolic attractors with overlaps and without finite Markov partition, Ergodic Theory Dynam. Systems 27 (2007), 1143–1165, © 2007 Cambridge University Press. MR2342970 (2009i:37059), Zbl. 1131.37031.
[25] F. Hofbauer, P. Raith, Stability of the omega limit set for unimodal transformations, Nonlinearity 22 (2009), 955–966, © IOP Publishing, Bristol. MR2501031 (2011b:37070), Zbl. 1169.37304.
[26] F. Hofbauer, P. Raith, J. Smítal, The space of ω-limit sets of piecewise continuous maps of the interval, J. Difference Equ. Appl. 16 (2010), 275–290, © Taylor & Francis, London. MR2640444 (2011g:37110), Zbl. 1189.37047.
[27] M. Lampart, P. Raith, Topological entropy for set valued maps, Nonlinear Anal. 73 (2010), 1533–1537, © Elsevier, Amsterdam. MR2661338 (2011g:37034), Zbl. 1193.37019.
[28] P. Raith, A. Stachelberger, Topological transitivity for a class of monotonic mod one transformations, Aequationes Math. 82 (2011), 91–109, © Birkhäuser, Basel.
[29] M. Málek, P. Raith, Stability of the distribution function for piecewise monotonic maps on the interval, Discrete Contin. Dyn. Syst. 38 (2018), 2527–2539, © American Institute of Mathematical Sciences, Springfield.
[30] P. Oprocha, P. Potorski, P. Raith, Mixing properties in expanding Lorenz maps, Adv. Math. 343 (2019), 712–755, © Elsevier, Amsterdam.
[31] R. D. Prokaj, P. Raith, K. Simon, Fractal dimensions of continuous piecewise linear iterated function systems, Proc. Amer. Math. Soc. 151 (2023), 4703–4719, © American Mathematical Society, Providence, Rhode Island.