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Motivation

discontinuous Petrov-Galerkin (dPG) methods invented by L.
Demkowicz, J. Gopalakrishnan (2010)
motivated by search for optimal test functions
dPG can be viewed as mixed method with nonstandard test
space (typically broken test functions) or minimal residual
method
main idea: too many test functions ensure an inf-sup
condition, let computer handle redundant dofs
applications: linear elasticity, Stokes equations, Maxwell, ...
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Notation

X Hilbert space with norm || • ||X

Y Hilbert space with norm || • ||Y and scalar product (•,•)Y
for any normed space W , let S (W ) := {w ∈ W | ||w ||W = 1}
b : X × Y → R a bounded bilinear form with
||b || = supx ∈S (X ) supy ∈S (Y ) b(x ,y )
F ∈ Y ? := {G : Y → R | G linear and bounded}
for any G ∈ Y ?, let ||G ||Y? := supy ∈S (Y ) G (y )
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The Continuous Problem

Suppose that the problem

x ∈ X : b(x ,•) = F in Y

is well-posed with unique solution.

The standard theory on mixed
finite element methods [Boffi, Brezzi, Fortin] shows that this is
equivalent to the inf-sup condition

0 < β := inf
x ∈S (X )

sup
y ∈S (Y )

b(x ,y ) (H1)

and non-degeneracy

{0} = N := {y ∈ Y | b(•,y ) = 0 in X }.
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The Discrete Problem?

Question: How to discretize this problem?

For any chosen
finite-dimensional subspaces Xh ⊆ X , Yh ⊆ Y , the well-posedness
of the discrete problem

xh ∈ Xh : b(xh,•) = F in Yh

is equivalent to the discrete inf-sup condition

0 < βh := inf
xh∈S (Xh )

sup
yh∈S (Yh )

b(xh,yh) (H2)

and non-degeneracy

{0} = Nh := {yh ∈ Yh | b(•,yh) = 0 in Xh}.
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The Discrete Problem? (2)

0 < βh := inf
xh∈S (Xh )

sup
yh∈S (Yh )

b(xh,yh)

{0} = Nh := {yh ∈ Yh | b(•,yh) = 0 in Xh}

Spaces Xh and Yh need to be well-balanced to satisfy these two
conditions.
For fixed Xh,

a big Yh makes it easier to satisfy discrete inf-sup condition
but harder to guarantee discrete non-degeneracy.
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Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG
methods):

choose only the discrete trial space Xh ⊆ X ,
compute a discrete test space ⊆ Y with (H2) and
non-degeneracy.

Define the trial-to-test-operator T : X → Y by

(Tx ,y )Y = b(x ,y ) for any y ∈ Y .

For a fixed choice of discrete trial space Xh ⊆ X the idealized dPG
method utilizes the discrete test space T (Xh) ⊆ Y .
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dPG methods

x ∈ X : b(x ,•) = F in Y

xh ∈ Xh : b(xh,•) = F in T (Xh)

xh ∈ Xh : b(xh,•) = F in Th (Xh)

x ∈ argminξ ∈X ||b(ξ ,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?
h

continuous problem

idealized dPG

practical dPG

Variational formulation

Minimal Residual Method

F. Hellwig 9/27



dPG methods

x ∈ X : b(x ,•) = F in Y

xh ∈ Xh : b(xh,•) = F in T (Xh)

xh ∈ Xh : b(xh,•) = F in Th (Xh)

x ∈ argminξ ∈X ||b(ξ ,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?
h

continuous problem

idealized dPG

practical dPG

Variational formulation

Minimal Residual Method

F. Hellwig 9/27



dPG methods

x ∈ X : b(x ,•) = F in Y

xh ∈ Xh : b(xh,•) = F in T (Xh)

xh ∈ Xh : b(xh,•) = F in Th (Xh)

x ∈ argminξ ∈X ||b(ξ ,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?

xh ∈ argminξh∈Xh ||b(ξh,•) − F ||Y?
h

continuous problem

idealized dPG

practical dPG

Variational formulation

Minimal Residual Method

Xh and T (Xh) of idealized dPG method automatically satisfy
the discrete inf-sup condition and non-degeneracy

Operator T requires solution to infinite-dimensional problem
→ not computable
Remedy: discrete trial-to-test-operator Th : X → Yh for some
discrete space Yh ⊆ Y . Define Th : X → Yh similar to the
continuous operator T by

(Thx ,yh)Y = b(x ,yh) for any yh ∈ Yh.
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A priori estimate

Theorem
Suppose (H1) and (H2) hold. Then the solution xh ∈ Xh to the
practical dPG method satisfies

||x − xh ||X ≤
||b ||
βh

min
ξh∈Xh

||x − ξh ||X .

F. Hellwig 10/27



A posteriori estimate for idealized dPG

Idealized dPG method has built-in a posteriori estimate

β ||x − xh ||X ≤ ||b(xh,•) − F ||Y? ≤ ||b || ||x − xh ||X ,

i.e.
||x − xh ||X ≈ ||b(xh,•) − F ||Y? .

Is such an estimate possible for the practical dPG method as well?
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Fortin Operator

For an a posteriori estimate of the practical dPG method, we need
some Fortin operator Π : Y → Yh.

Existence of Π : Y → Yh linear and bounded projection
with b(Xh, (1 − Π)Y ) = 0

(H3)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Proof.
(H3) =⇒ (H2). Continuity of Π implies 1/||y ||Y ≤ ||Π ||/||Πy ||Y and
(H1) shows

0 < β ≤ inf
xh∈S (Xh )

sup
y ∈Y ,y,0

b(xh,y )
||y ||Y

≤ ||Π || inf
xh∈S (Xh )

sup
y ∈Y ,y,0

b(xh,Πy )
||Πy ||Y

≤ ||Π || inf
xh∈S (Xh )

sup
yh∈Yh,yh,0

b(xh,yh)

||yh ||Y
.

�
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Fortin Operator (2)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Proof.
(H2) =⇒ (H3).

Condition (H2) and non-degeneracy imply that
B : Th (Xh) → X?

h ,BTxh := b(•,Txh) is an isomorphism. Let
G : Y → X?

h ,Gy := b(•,y ). Define Π := B−1 ◦ G : Y → Th (Xh)
linear and bounded.

Π(Txh) = B−1b(•,Txh) = B−1BTxh = Txh

y ∈ Y satisfies b(•,y ) = G (y ) = B (Πy ) = b(•,Πy ) in Xh �
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A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any ξh ∈ Xh satisfies

β ||x − xh ||X ≤ ||Π || ||b(xh,•) − F ||Y?
h
+ ||F ◦ (1 − Π) ||Y?

≤ 2||b || ||Π || ||x − xh ||X .

Proof.
(H1) and (H3) imply β ||x − xh ||X ≤ ||F − b(ξh,•) ||Y? and

||F − b(ξh,•) ||Y? ≤ sup
y ∈S (Y )

F ((1 − Π)y ) + sup
y ∈S (Y )

F (Πy ) − b(ξh,Πy ).

Second estimate follows from continuity of b, ||Π || = ||1 − Π || and

F ((1 − Π)y ) = b(x , (1 − Π)y ) = b(x − ξh, (1 − Π)y ). �
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Computation of dPG Solution

{Φ1, . . . ,ΦJ } basis of Xh

{Ψ1, . . . ,ΨK } basis of Yh

A ∈ RK×J , Akj := b(Φj ,Ψk ), k = 1, . . . ,K , j = 1, . . . ,J, matrix
for bilinear form
M ∈ RK×K , Mk` := (Ψk ,Ψ` )Y , k , ` = 1, . . . ,K , matrix for scalar
product on Y
b ∈ RK , bk := F (Ψk ), k = 1, . . . ,K , vector for right-hand side

For x ∈ RJ coefficient vector for solution xh =
∑J

j=1 xjΦj , the linear
system of equation reads

A>M−1Ax = A>M−1b.

Bigger Yh guarantees inf-sup condition, but computation will be
more expensive! Concept of broken test functions leads to
block-diagonal M.
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1 General Framework of dPG Methods
Inf-Sup Conditions
dPG as Mixed Method and Minimal Residual Method
Built-in A Posteriori Estimate

2 The Primal dPG Method for the Poisson Model Problem
Problem Formulation
Proof of (H1) and (H2)
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Traces

Theorem (Traces of H1-functions)
For U ⊆ Rn open and bounded Lipschitz domain, there exists
continuous, linear γ0 : H1 (U ) → L2 (∂U ) with

γ0w = w |∂U for all w ∈ H1 (U ) ∩ C 0 (U ).

Set

H1/2 (∂U ) := γ0 (H1 (U )) and H−1/2 (∂U ) := (H1/2 (∂U ))?.
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Traces (2)

Theorem (Normal traces of H (div )-functions)
For U ⊆ Rn open and bounded Lipschitz domain, there exists
continuous, linear γν : H (div,U ) → H−1/2 (∂U ), with

γνq = q |∂U · ν for all q ∈ C∞ (U;Rn).

Any q ∈ H (div,U ) and w ∈ H1 (U ) satisfies

〈γνq,γ0w〉∂U = (q,∇w )U + (div q,w )U .
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Traces (3)

T regular triangulation, ∂T :=
⋃

T ∈T ∂T the skeleton

For q ∈ H (div,T ) define γ Tν q ∈
∏

T ∈T H−1/2 (∂T ) by

γ Tν q := (tT )T ∈T , with tT := γν (q |T ) for all T ∈ T .

H−1/2 (∂T ) := γ Tν H (div,Ω)

is a Hilbert space with minimal extension norm

||t ||H−1/2 (∂T ) = min{||q ||H (div) | q ∈ H (div,Ω),γ Tν q = t}.

For t ∈
∏

T ∈T H−1/2 (∂T ) and v ∈ H1 (T ) define

〈t,v〉∂T :=
∑
T ∈T

〈tT ,γ0v〉∂T .

F. Hellwig 19/27



Traces (3)

T regular triangulation, ∂T :=
⋃

T ∈T ∂T the skeleton
For q ∈ H (div,T ) define γ Tν q ∈

∏
T ∈T H−1/2 (∂T ) by

γ Tν q := (tT )T ∈T , with tT := γν (q |T ) for all T ∈ T .

H−1/2 (∂T ) := γ Tν H (div,Ω)

is a Hilbert space with minimal extension norm

||t ||H−1/2 (∂T ) = min{||q ||H (div) | q ∈ H (div,Ω),γ Tν q = t}.

For t ∈
∏

T ∈T H−1/2 (∂T ) and v ∈ H1 (T ) define

〈t,v〉∂T :=
∑
T ∈T

〈tT ,γ0v〉∂T .

F. Hellwig 19/27



Traces (3)

T regular triangulation, ∂T :=
⋃

T ∈T ∂T the skeleton
For q ∈ H (div,T ) define γ Tν q ∈

∏
T ∈T H−1/2 (∂T ) by

γ Tν q := (tT )T ∈T , with tT := γν (q |T ) for all T ∈ T .

H−1/2 (∂T ) := γ Tν H (div,Ω)

is a Hilbert space with minimal extension norm

||t ||H−1/2 (∂T ) = min{||q ||H (div) | q ∈ H (div,Ω),γ Tν q = t}.

For t ∈
∏

T ∈T H−1/2 (∂T ) and v ∈ H1 (T ) define

〈t,v〉∂T :=
∑
T ∈T

〈tT ,γ0v〉∂T .

F. Hellwig 19/27



Traces (3)

T regular triangulation, ∂T :=
⋃

T ∈T ∂T the skeleton
For q ∈ H (div,T ) define γ Tν q ∈

∏
T ∈T H−1/2 (∂T ) by

γ Tν q := (tT )T ∈T , with tT := γν (q |T ) for all T ∈ T .

H−1/2 (∂T ) := γ Tν H (div,Ω)

is a Hilbert space with minimal extension norm

||t ||H−1/2 (∂T ) = min{||q ||H (div) | q ∈ H (div,Ω),γ Tν q = t}.

For t ∈
∏

T ∈T H−1/2 (∂T ) and v ∈ H1 (T ) define

〈t,v〉∂T :=
∑
T ∈T

〈tT ,γ0v〉∂T .

F. Hellwig 19/27



Poisson Model Problem

Ω ⊆ R2 open Lipschitz domain with polygonal boundary
Seek u : Ω → R with

−∆u = f in Ω,

u = 0 on ∂Ω.
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Weak formulation

multiply equation with test function v ,
integrate by parts on Ω

test function v ∈ H1
0 (Ω)

boundary integral
sum over all elements

∫
Ω
fv dx =

∫
Ω
∇u · ∇v dx −

∫
∂Ω

v∇u · ν

︸︷︷︸
tT

ds

︸             ︷︷             ︸
=0

Primal dPG formulation seeks u ∈ H1
0 (Ω),t ∈ H−1/2 (∂T ) with

(f ,v )Ω = (∇u,∇NCv )Ω − 〈t,v〉∂T for all v ∈ H1 (T ).
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Duality lemma

Theorem
Any t ∈ H−1/2 (∂T ) satisfies

||t ||H−1/2 (∂T ) ≤ sup
v ∈H1 (T ),v,0

〈t,v〉∂T
||v ||H1 (T )

.

Proof.
Let v ∈ H1 (T ) on each T ∈ T weak solution to

−∆v + v = 0 in T and ∇v · ν = tT on ∂T .

With q := ∇NCv ∈ H (div,Ω), it holds ||t ||H−1/2 (∂T ) ≤ ||q ||H (div),
div q = v , and ||q ||H (div) = ||v ||H1 (T ). Integration by parts shows

〈t,v〉∂T = (q,∇NCv )Ω + (div q,v )Ω = ||q ||2H (div) . �
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Inf-Sup Condition

Theorem
The spaces X := H1

0 (Ω) ×H−1/2 (∂T ), Y := H1 (T ) and the bilinear
form b : X × Y , b(u,t; v ) := (∇u,∇NCv )Ω − 〈t,v〉∂T satisfy (H1).

Proof.
The Friedrichs inequality implies

||∇u ||L2 (Ω) . sup
v ∈H1

0 (Ω),v,0

(∇u,∇v )Ω
||v ||H1 (T )

= sup
v ∈H1

0 (Ω),v,0

b(u,t; v )
||v ||H1 (T )

.

The duality lemma and the triangle inequality show

||t ||H−1/2 (∂T ) ≤ sup
v ∈Y ,v,0

b(u,t; v )
||v ||H1 (T )

+ sup
v ∈Y ,v,0

(∇u,∇NCv )Ω
||v ||H1 (T )

. �
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Discretization

Recall

X = H1
0 (Ω) × H−1/2 (∂T ),

Y = H1 (T ).

The discrete spaces read

Xh := S1
0 (T ) × P0 (E) ⊆ X ,

Yh := P1 (T ) ⊆ Y .
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Discrete Inf-Sup Condition

Theorem
The discrete spaces Xh and Yh satisfy (H2).

Proof.

given xh = (uC ,t0) ∈ Xh, let qRT ∈ RT0 (T ), γ Tν (qRT ) = t0
choose v1 = − div qRT + (∇uC − Π0qRT ) · (• −mid(T )) ∈ Yh

integration by parts shows

b(uC ,t0; v1) = (∇uC − qRT ,∇NCv1)Ω − (div qRT ,v1)Ω

= ||∇uC − Π0qRT ||
2
L2 (Ω)

+ || div qRT ||
2
L2 (Ω)

Since P0 (T ) is orthogonal to (• −mid(T )) in L2 (Ω),
||v1 ||

2
H1 (T )

≤ (1 + h2
max)b(uC ,t0; v1).
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Discrete Inf-Sup Condition (2)

Proof.

recall b(uC ,t0; v1) = ||∇uC − Π0qRT ||
2
L2 (Ω)

+ || div qRT ||
2
L2 (Ω)

Helmholtz decomposition leads to αC ∈ S1
0 (T ),

βCR ∈ CR1 (T ) with ∇uC − Π0qRT = ∇αC + CurlNC βCR .
Orthogonality in Helmholtz and integration by parts shows

||∇(uC − αC ) ||
2
L2 (Ω)

= (∇(uC − αC ),qRT )Ω = −(uC − αC ,div qRT )Ω

. ||∇(uC − αC ) ||L2 (Ω) || div qRT ||L2 (Ω) .

triangle inequality implies
||∇uC ||L2 (Ω) ≤ ||∇(uC − αC ) ||L2 (Ω) + ||∇αC ||L2 (Ω) .
|| div qRT ||L2 (Ω) + ||∇uC − Π0qRT ||L2 (Ω) . b(uC ,t0; v1)

1/2 and
||t0 ||H−1/2 (∂T ) ≤ ||qRT ||H (div) . ||Π0qRT ||L2 (Ω) + || div qRT ||L2 (Ω) .

b(uC ,t0; v1)
1/2. �
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Summary

idea of dPG: choose discrete trial space, compute discrete test
space
idealized dPG: inf-sup stable, but not practical
practical dPG inf-sup stable for Yh big enough
practical dPG has built-in a priori and a posteriori error control
application to Poisson as primal dPG with broken test
functions
continuous inf-sup follows from stability of non-broken
functions
discrete inf-sup utilizes discrete Helmholtz decomposition
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