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Motivation

m discontinuous Petrov-Galerkin (dPG) methods invented by L.
Demkowicz, J. Gopalakrishnan (2010)

m motivated by search for optimal test functions

m dPG can be viewed as mixed method with nonstandard test
space (typically broken test functions) or minimal residual
method

m main idea: too many test functions ensure an inf-sup
condition, let computer handle redundant dofs

m applications: linear elasticity, Stokes equations, Maxwell, ...
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General Framework of dPG Methods
m Inf-Sup Conditions
m dPG as Mixed Method and Minimal Residual Method
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The Continuous Problem

Suppose that the problem
xeX: bx,e)=F inY

is well-posed with unique solution.
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The Continuous Problem

Suppose that the problem
xeX: bx,e)=F inY

is well-posed with unique solution. The standard theory on mixed
finite element methods [Boffi, Brezzi, Fortin] shows that this is
equivalent to the inf-sup condition

0<pf:= inf sup b(x,y) (H1)
xeS(X) yeS(Y)

and non-degeneracy

{0} =N:={yeY|b(s,y)=0in X}.
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The Discrete Problem?

Question: How to discretize this problem?
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The Discrete Problem?

B <
Upprtt

Question: How to discretize this problem? For any chosen
finite-dimensional subspaces X, € X, Y}, C Y, the well-posedness
of the discrete problem

Xp € Xh . b(Xh,O) =F in Yh
is equivalent to the discrete inf-sup condition

0<pp:= inf sup  b(xp,yn) (H2)
xp€S(Xn) yn€S(Yh)

and non-degeneracy

—~
o
=
Il
=
>
|

={yn € Yn|b(e,ys) =0 in Xp}.
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The Discrete Problem? (2)

0<pp:= inf sup  b(xp,yh)
xp€S(Xn) yn€S(Yh)
{0} = Np :={yn € Yh|b(e,ys) =0 in X}
Spaces X}, and Y}, need to be well-balanced to satisfy these two
conditions.
For fixed X,

m a big Y}, makes it easier to satisfy discrete inf-sup condition

m but harder to guarantee discrete non-degeneracy.
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Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG
methods):

m choose only the discrete trial space X} C X,

m compute a discrete test space C Y with (H2) and
non-degeneracy.
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Trial-to-Test-Operator

The idea of discontinuous Petrov-Galerkin methods (dPG
methods):

m choose only the discrete trial space X} C X,

m compute a discrete test space C Y with (H2) and
non-degeneracy.

Define the trial-to-test-operator T : X — Y by
(Tx,y)y = b(x,y) foranyyeVY.

For a fixed choice of discrete trial space X}, C X the idealized dPG
method utilizes the discrete test space T(Xp) C VY.
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dPG methods

B <
Upprtt

Variational formulation

continuous problem xeX: b(x,¢)=FinY
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dPG methods

Variational formulation

continuous problem | xeX: b(x,¢)=FinY |
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dPG methods

Variational formulation

continuous problem | xeX: b(x,¢)=FinY |
idealized PG | Xp € Xn:  blxhe) = F in T(Xp) |
practical dPG | xn € Xp:  b(xne) = F in Th(Xp) |

m X;, and Tx(Xp) C Y}, satisfy non-degeneracy but not
necessarily the discrete inf-sup condition

m continuous inf-sup condition holds — Y}, big enough leads to
the discrete inf-sup condition

0< inf sup  b(xp,yn) = inf sup b(xn, vn).
xh€S(Xn) yn€S(Yh) xh€S(Xp) yn€S(Th(Xn))
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dPG methods...seen as minimization

Variational formulation Minimal Residual Method
continuous problem | xeX: b(x,e)=FinY |<:>| x € argmingex [|b(£,0) — Flly=
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practical dPG | xn € Xp:  b(xne) = F in Th(Xp) |®| Xp € arg ming, ex; [b(¢h,®) = Flly»

m equivalence by calculation of Gateaux derivative

F. Hellwig 9/27



A priori estimate

Theorem
Suppose (H1) and (H2) hold. Then the solution xp € X}, to the
practical dPG method satisfies

16l

Ix = xplx < = min |x = &lx.
Bn &neXn

F. Hellwig 10/27



A posteriori estimate for idealized dPG

Idealized dPG method has built-in a posteriori estimate

Blx = xpllx < 1b(xn,®) = Flly= < [bllx — xplx,

Ix = xplx = 1b(xh, ®) = Flly+.

Is such an estimate possible for the practical dPG method as well?
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Fortin Operator

el’BER“\%
For an a posteriori estimate of the practical dPG method, we need
some Fortin operator IT: Y — Y.
Existence of IT: Y — Y}, linear and bounded projection

with b(Xp, (1 =I)Y) = 0 (H3)
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Fortin Operator

For an a posteriori estimate of the practical dPG method, we need
some Fortin operator I1: Y — Y.

Existence of IT: Y — Y}, linear and bounded projection

H3
with b(Xp, (1 -1I)Y) =0 (H3)
Lemma
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Fortin Operator

For an a posteriori estimate of the practical dPG method, we need
some Fortin operator I1: Y — Y.

Existence of IT: Y — Y}, linear and bounded projection

with b(Xp, (1 =I)Y) = 0 (H3)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Proof.

(H3) = (H2). Continuity of IT implies 1/|y|y < ||/|y|y and
(H1) shows

b(xp, _ b(xp. TI
0<p< inf su M <o inf sup (xp,I1y)
xh€S(Xp) y€Y,y#0 lyly xp€S(Xp) yeY,y#0 Iy |y
b(xp,
< inf sup 2w
F.Hellwig  Xh€SXh) Yh€Ypyn#0 lynlly 227



Fortin Operator (2)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Proof.
(H2) = (H3).
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Fortin Operator (2)

Lemma
Suppose (H1) holds. Then (H2) and (H3) are equivalent.

Proof.
(H2) = (H3). Condition (H2) and non-degeneracy imply that
B : Th(Xp) = X*,BTxp := b(e, Txp) is an isomorphism. Let
G:Y — XF,Gy = b(e,y). Define IT := BloG:Y = Th(Xp)
linear and bounded.
m II(Txp) = B~ tb(e, Txp) = B~1BTxp = Txp
m y € Y satisfies b(e,y) = G(y) = B(Ily) = b(e,Ily) in X, |
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A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any &, € X}, satisfies
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Proof.
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A posteriori estimate

Theorem
Suppose (H1) and (H3) hold. Then any &, € X}, satisfies

Blx = xplx < ITIHb(xp, @) = Fllyx +1F o (1 =ID)[y=
< 2|bIINx = Xallx-

Proof.
(H1) and (H3) imply Slx — xpllx < |F — b(&p, )|y~ and

IF = b(éh, @)y~ < sup F((1-I)y)+ sup F(Ily) - b(&sIly).

yeS(Y) yeS(Y)
Second estimate follows from continuity of b, |II| = |1 — II| and
F((1-T)y) = b(x,(1 = )y) = b(x — &, (1L —I)y). m
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Computation of dPG Solution

m {Dq,...,D, ) basis of X,

m {¥q,...,Px)} basis of Y},

m Ac RKXJ, Akj = b(q)j,‘l’k), k = 1,...,K, _] =1,...,J, matrix
for bilinear form

B MeRKK M= (P, %)y, k., =1,...,K, matrix for scalar
product on Y

m beRK, b= F(¥,), k=1,...,K, vector for right-hand side

For x € R7 coefficient vector for solution x, = 37
system of equation reads

. 1 X;®;, the linear

ATMTAx = ATM 1.

Bigger Y}, guarantees inf-sup condition, but computation will be
more expensive! Concept of broken test functions leads to
block-diagonal M.

F. Hellwig 15/27



The Primal dPG Method for the Poisson Model Problem
m Problem Formulation
m Proof of (H1) and (H2)

F. Hellwig 16/27



Traces

Theorem (Traces of H!-functions)

For U C R" open and bounded Lipschitz domain, there exists
continuous, linear yo : H*(U) — L?(0U) with

yow = wlgy  for all w € HX(U) n C°(U).
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Traces

Theorem (Traces of H!-functions)

For U C R" open and bounded Lipschitz domain, there exists
continuous, linear yo : H*(U) — L?(0U) with

yow = wlgy  for all w € HX(U) n C°(U).
Set

HY2(0U) := yo(H*(U)) and H7Y2(aU) := (HY2(aU))*.
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Traces (2)

B <
Upprtt

Theorem (Normal traces of H(div)-functions)

For U C R" open and bounded Lipschitz domain, there exists
continuous, linear y, : H(div, U) — H™Y/2(3U), with

Yvad=gqlou-v forall qe C“(U; R").
Any q € H(div,U) and w € H*(U) satisfies

(rva,yow)au = (q,Vw)y + (div g, w)y.

F. Hellwig 18/27



Traces (3)

7 regular triangulation, 97 := |J7eq 0T the skeleton
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Traces (3)

7 regular triangulation, 97 := |J7eq 0T the skeleton
For g € H(div,7") define y7 g € [T1eq HY/?(0T) by

vDq:=(tr)Ter, with t7 :=y,(ql7) forall TeT.

H7207) := yT H(div, Q)
is a Hilbert space with minimal extension norm
ItlH-172977) = min{lqlHiv) | g € H(div,Q).y, q = t}.

For t € [Tres HY2(0T) and v € HY(T") define

(t.V)or = ) (tr.yovdar.

TeT

F. Hellwig 19/27



Poisson Model Problem

Q C R? open Lipschitz domain with polygonal boundary
Seek u: Q — R with

-Au=f inQ,
u=0 ondQ.

F. Hellwig 20/27



Weak formulation

m multiply equation with test function v,
m integrate by parts on Q
m test function v € H&(Q)

ffvdx=fVu-Vvdx—f vVu-vds
Q Q 1)
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Weak formulation

m multiply equation with test function v,
m integrate by parts on Q
m test function v € H&(Q)

m boundary integral vanishes

ffvdx=fVu-Vvdx—f vVu-vds
Q Q 1)

| —
=0
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Weak formulation

multiply equation with test function v,
integrate by partson T € 7~
test function v € HY(7")

boundary integral introduces new variable t

sum over all elements

ffvdx=fVu-Vvdx—f vVu-vds
T T oT T

Primal dPG formulation seeks u € H&(Q),t € HY2(d7") with

(f,V)a = (Vu, Ve v)o — (t,v)gs for all vie HY(T).

F. Hellwig 21/27



Duality lemma

Theorem
Any t € H"Y2(0T") satisfies

(t,vV)oT
Itlg-1297) < sup  ———.
veH (T ),v20 IVIHL (7
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Duality lemma

Theorem
Any t € H"Y2(0T") satisfies

(t,vV)oT
Itlg-1297) < sup  ———.
veH (T ),v20 IVIHL (7

Proof.
Let v € HY(7") on each T € 7 weak solution to
—-Av+v=0inTand Vv-v=trondT.

With g := Vyev € H(div,Q), it holds Itlg-17257) < IqlHdiv),
divg = v, and ||qllH(div) = IVIH1(7). Integration by parts shows

(t,V)ar = (6. YncV)a + (diva,v)a = 191 g, ©

F. Hellwig 22/27



Inf-Sup Condition

B <
Upprtt

Theorem
The spaces X := Hy(Q) x HY2(dT"), Y := HY(T") and the bilinear
form b: X XY, b(u,t;v) = (Vu,Vncv)q — (t,v)es satisty (HI).
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Inf-Sup Condition

Theorem
The spaces X := Hy(Q) x HY2(dT"), Y := HY(T") and the bilinear
form b: X XY, b(u,t;v) = (Vu,Vncv)q — (t,v)es satisty (HI).

Proof.
The Friedrichs inequality implies

(Vu,Vv)q b(u,t; v)
IVuli2q) < sup ——— = —— 7
veHg (Q),v#0 IVIH () veH2(Q),v#0 (s

The duality lemma and the triangle inequality show
b(u,t;v) (Vu,Vnev)a
Il arz@r < sup —?) L Ineve

veYw#o IWVIHi )y vevivzo  IVImi(r)
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Discretization

B <
Upprtt

Recall

X = H3 (Q) x HY2(67),
Y = HY(7).

The discrete spaces read

Xp, = Sa(T) x Po(E) € X,
Yh:=Pi(T)CY.

F. Hellwig 24 /27



Discrete Inf-Sup Condition

Theorem
The discrete spaces X;, and Y}, satisfy (H2).
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Discrete Inf-Sup Condition

Theorem
The discrete spaces X;, and Y}, satisfy (H2).

Proof.

m given x;, = (uc,to) € X, let gr7 € RTo(T), v, (qrT) = to
m choose vi = —divgrT + (Vuc —IogrT) - (¢ = mid(7)) € Y4

m integration by parts shows

b(uc,to;v1) = (Vuc — qr7.Vnevi)a — (div grT, vi)o

= [Vuc ~ MoqrTl 2 (o) + I div grT I o

m Since Py(7) is orthogonal to (¢ — mid(77)) in L2(Q),
IVilEa iy < (1+ hrg)bluc, to; vi).

F. Hellwig 25/27



Discrete Inf-Sup Condition (2)

Proof.
m recall b(uc,to; vi) = [Vuc —oGrT I3, o) + I divgrTIE

m Helmholtz decomposition leads to ac € SJ(7),
Bcr € CRI(T) with Vuc — TlpgrT = Vac + Curlye fer.
Orthogonality in Helmholtz and integration by parts shows

IV(uc = ac)20y = (V(uc — ac),qrT)a = —(uc — ac,div grT)o
12(9)

S IV(uc = ac)lizl div grTll2(q)-

m triangle inequality implies
IVucliz) < IV(uc —ac)liz) + IVacliz) <
Idiv grTl2() + IVuc = TogrTli2(0) S b(uc, to; v1)
ltolg12(07) < 19T IH(iv) S IHogrTl2(0) + I div grTl2(0) S
b(uc,to; v1)'/2. =
F. Hellwig 26/27
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Summary

m idea of dPG: choose discrete trial space, compute discrete test
space

idealized dPG: inf-sup stable, but not practical

practical dPG inf-sup stable for Y}, big enough

practical dPG has built-in a priori and a posteriori error control

application to Poisson as primal dPG with broken test
functions

m continuous inf-sup follows from stability of non-broken
functions

m discrete inf-sup utilizes discrete Helmholtz decomposition

F. Hellwig 27/27
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