Proseminar Differentialgeometrie 1

Michael Kunzinger

SS 2006

- 9. Sei c eine reguläre Kurve im \mathbb{R}^3 . Zeige:
 - (a) c ist Teil einer Geraden genau dann, wenn $\kappa = 0$.
 - (b) Ist c Frenet, so liegt c genau dann in einer Ebene, wenn $\tau = 0$.
- 10. Unter der Hauptnormale einer Frenet-Kurve c im \mathbb{R}^3 im Punkt $c(s_0)$ versteht man die Gerade $\lambda \mapsto c(s_0) + \lambda e_2(s_0)$. Zeige, dass c auf einem Kreis liegt, falls alle Hauptnormalen von c einen Punkt gemeinsam haben.
- 11. (a) Zeige, dass man nahe $(x_0, y_0) = (\pi, \pi/2)$ im Gleichungssystem

$$\frac{x^4 + y^4}{x} = u, \quad \sin x + \cos y = v$$

x und y als glatte Funktionen von (u, v) schreiben kann. (Präzisiere zunächst diese Aufgabenstellung!)

(b) Zeige, dass nahe dem Punkt (x, y, u, v) = (1, 1, 1, 1) durch das Gleichungssystem

$$xu + yvu^2 = 2$$
$$xu^3 + y^2v^4 = 2$$

u und v eindeutig als glatte Funktionen von x und y festgelegt sind. Berechne $\frac{\partial u}{\partial x}$ an der Stelle (1,1).

12. Zeige, dass der Zylinder M im \mathbb{R}^3 , der die Gleichung $x^2 + y^2 = R^2$ hat, eine Teilmannigfaltigkeit der Dimension 2 im \mathbb{R}^3 ist. Gib außerdem eine lokale Parametrisierung, eine Darstellung als lokaler Graph und eine lokale Trivialisierung von M an.