1

Exercises for Algebraic Topology

WS 2011

Andreas Kriegl

1.1.

Prove the following statements:

- (a) Let X and Y be topological spaces, $A \subseteq X$, $B \subseteq Y$. Then $\overline{A} \times \overline{B} \cup \overline{A} \times \overline{B}$ is the boundary of $A \times B$ in $X \times Y$.
- (b) Let $A \subseteq \mathbb{R}^m$ and $B \subseteq \mathbb{R}^n$ be convex. Then $A \times B \subseteq \mathbb{R}^{n+m}$ is convex.

1.2.

The convex hull $\langle A \rangle_{\text{cv}}$ of $A \subseteq \mathbb{R}^n$ is defined to be the smallest convex subset of \mathbb{R}^n which contains A. This is the intersection of all convex subsets of \mathbb{R}^n containing A. Show that

$$
A = \Big\{ \sum_{i=0}^{q} \lambda_i x_i : q \in \mathbb{N}, \lambda_i \ge 0, x_i \in A, \sum_{i=0}^{q} \lambda_i = 1 \Big\}.
$$

1.3.

Give an example of a mapping of pairs $f : (X, A) \to (Y, B)$ which is a relative homeomorphism and for which $f|_A : A \to B$ is a homeomorphism, but which is not a homeomorphism of pairs.

1.4.

For locally compact (T_2) but not compact spaces X the Alexandroff-compactification X_{∞} is defined as the disjoint union $X \sqcup \{\infty\}$ with the neighborhoods in X as neighborhoodbasis for the points $x \in X$ and the complements of the compact subsets $K \subseteq X$ in X_{∞} as neighborhoodbasis at ∞ . Show that this compactification is up to homeomorphy characterized by the properties that X_{∞} is a compact space, X is a topological subspace of X_{∞} , and $X_{\infty} \setminus X$ is a single point. Conclude that for compact spaces X and $x_0 \in X$ we have $X \cong (X \setminus \{x_0\})_\infty$.

1.5.

Show that for any $x, y \in \mathring{D}^n$ there is a homeomorphism of pairs $(D^n, \{x\}) \cong (D^n, \{y\}).$

1.6.

For $R > r > 0$ let the filled torus be the subset of V of \mathbb{R}^3 obtained by rotating a closed disk in the x-z-plane with center $(R, 0, 0)$ and radius r around the z-axes. It can be described by $V = \{(x, y, z) :$ $(\sqrt{x^2+y^2}-R)^2+z^2\leq r^2$. Show that formula of the embedding described in example (1.18) gives also a homeomorphism $S^1 \times D^2 \cong V$.

1.7.

Show that the mapping $(i_1, \ldots, i_n) : X_1 \vee \cdots \vee X_n \to X_1 \times \ldots \times X_n$ defined in (1.41) is an embedding.

1.8.

Show: $(S^1 \times S^1)/(S^1 \vee S^1) \cong S^2$.

1.9.

Show that $\mathbb{R}^n/D^n \cong \mathbb{R}^n$ and that $\mathbb{R}^n/\mathring{D}^n$ is not Hausdorff.

1.10.

Show that any continuous $f: X \to Y$ induces a continuous mapping $C(f): C(X) \to C(Y)$ between the cones, via $f \times I : X \times I \to Y \times I$.

1.11.

The suspension (dt. Einhängung) of a topological space X is $E(X) := C(X)/X$, where X is embedded into $C(X)$ via $x \mapsto (x, 1)$. Show that $f : X \to Y$ induces a mapping $E(f) : E(X) \to E(Y)$. Show furthermore, that $E(D^n) \cong D^{n+1}$ and $E(S^n) \cong S^{n+1}$.

1.12.

Show that the lens space $L(\frac{1}{2})$ is homeomorphic to $\mathbb{P}^3_{\mathbb{R}}$.

1.13.

Describe a mapping $f: S^2 \to S^2 \vee S^1$ such that $(S^2 \vee S^1) \cup_f D^3 \cong S^2 \times S^1$. **Hint:** (1.12).

1.14.

Consider the subspace $X := S^1 \cup D^1 \subseteq \mathbb{C}$ and a mapping $f : S^1 \to X$ which runs through the top half circle, the diameter D^1 , the bottom half circle, and again the diameter. Show that $X \cup_f D^2$ is homeomorphic to the Möbius strip. **Hint:** Use (1.94) .

1.15.

Let Z act on \mathbb{R}^2 by $n : (x_1, x_2) \mapsto (x_1 + n, (-1)^n x_2)$. Show that \mathbb{R}^2/\mathbb{Z} is homeomorphic to the open Möbius strip (i.e. the Möbius strip from (1.59) without ist boundary $S¹$).

1.16.

Let G be the subgroup of homeomorphisms on \mathbb{R}^2 generated by $(x_1, x_2) \mapsto (x_1 + 1, x_2)$ and $(x_1, x_2) \mapsto$ $(-x_1, x_2 + 1)$. Show that \mathbb{R}^2/G is homeomorphic to Kleins bottle.

1.17.

Let T be the torus into \mathbb{R}^3 as in (1.18). Consider the action of the group $S^0 = \{\pm 1\}$ on T given by

- (1) $(x, y, z) \mapsto (-x, -y, z)$ and show that $T/S^0 \cong S^1 \times S^1$.
- (2) $(x, y, z) \mapsto (x, -y, -z)$ and show that $T/S^0 \cong S^2$.
- (3) $(x, y, z) \mapsto (-x, -y, -z)$ and show that T/S^0 is homeomorphic to Kleins bottle.

2.1.

Show that $X \times Y$ is contractible provided X and Y are contractible.

2.2.

Two homeomorphisms $f_0, f_1 : X \to Y$ are called isotopic, iff there exists a homotopy $t \mapsto f_t$ consisting of homeomorphism $f_t: X \to Y$ only. Let $f: D^n \to D^n$ be a homeomorphism with $f|_{S^{n-1}} = id$ and $f(0) = 0$. Show that id_{D_n} is isotopic f to via $f_t : x \mapsto t \tilde{f}(x/t)$, where $\tilde{f} : \mathbb{R}^n \to \mathbb{R}^n$ is an appropriate extension of f.

2.3.

Show that X is contractible if and only if $\Delta: X \to X \times X$, $x \mapsto (x, x)$ is 0-homotopic.

2.4.

Show that the pointwise multiplication defines an Abelian group structure on $[X, S^1]$ and, furthermore, that deg : $[S^1, S^1] \to (\mathbb{Z}, +)$ is a group-homomorphism with respect to this group structure for $X := S^1$. 2.5.

Let $f: D^2 \to \mathbb{R}^2$ be a continuous function with $f|_{S^1}$ odd. Show that there exists an $z \in D^2$ with $f(z) = 0$. Deduce the existence of a solution $(x, y) \in \mathbb{R}^2$ for

$$
x \cos(y) = x^2 + y^2 - 1
$$
 and $y \cos(x) = \sin(2\pi(x^2 + y^2))$

2.6.

Show that S^∞ is contractible.

Hint: Let $p : \mathbb{R}^{\infty} \setminus \{0\} \to S^{\infty}$ given by $x \mapsto \frac{x}{\|x\|_2}$, where $\|x\|_2 := \sqrt{\sum_k x_k^2}$. Show that h_t : $(x_0, x_1, x_2, \dots) \mapsto p((1-t)x_0, tx_0 + (1-t)x_1, tx_1 + (1-t)x_2, tx_2 + (1-t)x_3, \dots)$ defines a homotopy between $id_{S^{\infty}}$ and the right shift $S^{\infty} \to \{x \in S^{\infty} : x_0 = 0\}$. Now consider the homotopy $(0, x_1, x_2, \dots) \mapsto p(t, (1-t)x_1, (1-t)x_2, \dots).$

2.7.

Let $p, q \in S^1 \times S^1$ be different points. Show that $S^1 \times S^1 \setminus \{p, q\} \sim S^1 \vee S^1 \vee S^1$.

2.8.

Show that $\mathbb{R}^3 \setminus S^1 \sim S^1 \vee S^2$, where S^1 is the unit-circle in $\mathbb{R}^2 \times \{0\}$.

2.9.

Show that $S^3 \setminus S^1 \sim S^1$, where S^1 is the unit-circle in $\mathbb{R}^2 \times \{(0,0)\}.$

2.10.

Show that the mapping cylinder of $z \mapsto z^2$, $S^1 \to S^1$ is homeomorphic to the Möbius strip.

2.11.

Show that for $f: S^{n-1} \to Y$ one has $M_f/S^{n-1} \sim Y \cup_f D^n$.

2.12.

Show that $O(n) \subseteq GL(n)$ is an SDR. **Hint:** Apply Gram-Schmidt orthonormalization to the columns of $A \in GL(n)$ to obtain $r(A) \in O(n)$. This procedure is given by multiplication with an upper triangular matrix with positive diagonal entries depending smoothly on A. Now deform the matrix to the identity matrix.

3.1.

Let K be a simplicial complex in \mathbb{R}^n and $p \in \mathbb{R}^{n+1} \setminus \mathbb{R}^n$. The cone $C(K, p)$ is the set consisting of $\{p\}$, all simplices of K, and all simplicies $\langle p, x_0, \ldots, x_i \rangle$ for $\langle x_0, \ldots, x_i \rangle \in K$. The suspension is $E(K) :=$ $C(K, p) \cup C(K, -p)$. Show that $C(K, p)$ and $E(K)$ are simplicial complexes with $|C(K, p)| \cong C(|K|)$ and $|E(K)| = E(|K|)$.

3.2.

The cartesian product of two polyeder is a polyeder. Hint: Show that the product of two closed simplices $\bar{\sigma}$ and $\bar{\tau}$ can be triangulated using $C((\sigma \times \tau)^{\cdot}) = \bar{\sigma} \times \bar{\tau}$.

3.3.

Let K be a simplicial complex and α_i the number of *i*-simplices of K. The number $\chi(K) := \sum_{i \geq 0} (-1)^i \alpha_i$ is called Euler-characteristic of K . Show that

- For any triangulation K of S^1 we have $\chi(K) = 0$.
- $\chi(C(K, p)) = 1$ for the cone $C(K, p)$ given in exercise (3.1).
- $\chi(E(K)) = 2 \chi(K)$ for the suspension $E(K)$ given in exercise (3.1).
- $\chi(\dot{\sigma}) = 1 + (-1)^n$ where $\dot{\sigma} := {\tau : \tau < \sigma}$ for any $n + 1$ -simplex σ .

3.4.

Let x_0, \ldots, x_q be vertices of K. Show that $\operatorname{st}_K(x_0) \cap \cdots \cap \operatorname{st}_K(x_q) \neq \emptyset \Leftrightarrow \langle x_0, \ldots, x_q \rangle \in K$.

3.5.

Show that $S^1 \nsim S^n$ for $n > 1$ and deduce $\mathbb{R}^2 \ncong \mathbb{R}^{n+1}$. **Hint:** (3.33).

4.1.

Find CW-decompositions with as few cells as possible of D^n , $S^1 \times I$, the closed Möbiusstrip, and the disk D_g^2 with g holes as in (1.4.13).

4.2.

Show that $S^n \times S^m/S^n \vee S^m$ is a CW-space which is homeomorphic to S^{n+m} .

4.3.

Show that the mapping cylinder of a cellular mapping between CW-spaces is a CW-space.

4.4.

Let X be a CW-space with $\dim(X) < n$. Show that $[X, S^n] = \{0\}$. Hint: Use (4.21).

5.1.

Determine the fundamental group of $S^1 \times \mathbb{P}^2$, $\mathbb{P}^2 \vee \mathbb{P}^2$, $\mathbb{P}^2 \times \mathbb{P}^2$, $S^1 \times S^m$ for $m \geq 2$, and of $\mathbb{R}^3 \setminus S^1$.

The following exercises (5.2)–(5.5) show, that the isomorphy problem is algorithmically unsolvable for m-manifolds with $m > 4$. For this it is enough to show that every finitely presented group appears as fundamental group of such a manifold.

5.2.

Let M be a connected manifold of dimension $m \geq 3$. Show that $\pi_1(M \setminus D_1^0) \cong \pi_1(M)$ for $M \setminus D_1^0$ as in (1.60).Deduce that for the connected sum M $\sharp N$ of (1.64) of two such manifolds we get $\pi_1(M\sharp N) \cong$ $\pi_1(M) \coprod \pi_1(N)$.

Hint: Satz von Seifert und van Kampen.

5.3.

Show that for $m \geq 4$ the fundamental group of the connected sum M of k copies of $S^1 \times S^{m-1}$ is the free group $\langle \{s_1, \ldots, s_k\} : \emptyset \rangle$ with k generators.

5.4.

Let $f: S^1 \times D^{m-1} \to M$ be an embedding into an m-manifold M. Show that $\pi_1(M) \cong \pi_1(M) \setminus f(S^1 \times$ D^{m-1})) and, for M as in exercise (5.3), we have $\pi_1(M \cup_f (D^2 \times S^{m-2}) \cong \langle \{s_1, \ldots, s_k\} : \{f|_{S^1 \times \{0\}}\}\rangle$.

5.5.

Let $G = \{\{s_1, \ldots, s_k\} : \{r_1, \ldots, r_l\}\}\$ be a finitely represented group. Now construct a compact connected manifold without boundary recursively by starting with M from exercise (5.3) and cutting for every $r_i \in \pi_1(M)$ a neighborhood homeomorphic to $S^1 \times D^{m-1}$ of a appropriately choosen representant of r_i and pasting a cylinder $D^2 \times S^{m-2}$ as in exercise (5.4).